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% Check for updates Ciliary neurotrophic factor (CNTF) acts as a potent neuroprotective cytokine

in multiple models of retinal degeneration. To understand mechanisms
underlying its broad neuroprotective effects, we have investigated the influ-
ence of CNTF on metabolism in a mouse model of photoreceptor degenera-
tion. CNTF treatment improves the morphology of photoreceptor
mitochondria, but also leads to reduced oxygen consumption and suppressed
respiratory chain activities. Molecular analyses show elevated glycolytic
pathway gene transcripts and active enzymes. Metabolomics analyses detect
significantly higher levels of ATP and the energy currency phosphocreatine,

elevated glycolytic pathway metabolites, increased TCA cycle metabolites,
lipid biosynthetic pathway intermediates, nucleotides, and amino acids.
Moreover, CNTF treatment restores the key antioxidant glutathione to the wild
type level. Therefore, CNTF significantly impacts the metabolic status of
degenerating retinas by promoting aerobic glycolysis and augmenting ana-
bolic activities. These findings reveal cellular mechanisms underlying
enhanced neuronal viability and suggest potential therapies for treating retinal

degeneration.

Ciliary neurotrophic factor (CNTF) has long been recognized as a
potent neuroprotective agent in the vertebrate retina'. Enhancement
of neuronal survival by CNTF has been demonstrated in multiple
animal models of retinal degeneration, ranging from zebrafish to
canine’. Interestingly, CNTF is effective in rescuing photoreceptor
degeneration due to various underlying causes, including mutations
in photoreceptor-specific genes and damages induced by strong
light or neurotoxins®™. In addition to enhancing the viability of
photoreceptors, CNTF has been shown to increase the survival of
retinal ganglion cells and promote retinal ganglion cell axonal
regeneration in optic nerve crush or transection models***. Based on
its significant and broad neuroprotective effects for retinal neurons,

an encapsulated cell implant producing a secreted form of recom-
binant human CNTF has been tested in clinical trials to treat her-
editary and age-related retinal degenerative diseases?* . The trials
for retinitis pigmentosa (RP) with two CNTF doses for durations up to
two years detected increased retinal thickness but did not observe
efficacy using the best corrected visual acuity as the primary
outcome”. However, recent reports of the CNTF trial for treating
macular telangiectasia (MacTel) type 2 have described morphologi-
cal and visual function improvements using multiple readout
parameters’**', The ongoing clinical trials also include treatment for
glaucoma with retinal ganglion cell loss, a leading cause of blindness
world-wide®.
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CNTF belongs to a subfamily of cytokines that share a tripartite
receptor system, including the two transmembrane receptors gp130
and LIFRB and a ligand-specific alpha receptor (CNTFRa)**. In
developing and mature retinas, CNTF primarily stimulates the Jak-
STAT and MEK-ERK signaling pathways*. Using cell type-specific
gene ablation analysis in a mouse retinal degeneration model, we have
shown that exogenous CNTF delivered to degenerating retinas initially
activates STAT3 and ERK signaling in Muller glial cells through the
gp130 receptor*®. This initial event elicits an intercellular signaling
cascade, which subsequently triggers gp130-mediated STAT3 activa-
tion in rod cells to promote photoreceptor survival*’. Previous studies
have also shown that the dosage and duration of CNTF treatment
critically affect the rescued neurons, as a single dose injection of CNTF
transiently affects the length of photoreceptor outer segments while
prolonged exposure to high levels of CNTF can result in decreased
visual function despite robust rescue of photoreceptors’*™*, Mole-
cular analyses have revealed that CNTF-induced STAT3 phosphoryla-
tion, followed by its dimerization and nuclear entry, significantly
influences the retinal transcriptome, resulting in rapid elevation of
transcripts involved in innate immunity and growth factor signaling, as
well as reduced expression of genes involved in phototransduction
and maintenance of photoreceptor identities**.

The mature retina is among the most metabolically active com-
partments in the central nervous system. Photoreceptors have high
energy demands for regulating membrane potentials in response to
visual cues***°. In addition, photoreceptors require continuous lipid
and protein biosynthesis to sustain lifelong outer segment renewal®’.
Both rod and cone photoreceptors primarily consume glucose, which
is supplied by the choroidal vessels through the retinal pigment epi-
thelium (RPE)**™*°, Fatty acids can also be a fuel source available to
photoreceptors through the blood supply and the catabolic process of
outer segment degradation by the RPE***. Accumulating evidence
indicates that cone photoreceptor survival relies on glucose avail-
ability, which is partially dependent on neighboring rod cells’**,
Although mature photoreceptors contain a multitude of mitochondria
distributed in the inner segments and at the synaptic termini, photo-
receptors rely heavily on aerobic glycolysis under normal
conditions***°. Perturbing the glycolytic pathway regulatory enzymes
phosphofructokinase (PFK) or lactate dehydrogenase (LDH) can result
in deficits in outer segment renewal®®. Ablation of genes encoding the
glycolytic pathway enzymes hexokinase (HK2) in rod cells®® or pyr-
uvate kinase (PKM2) in rod or cone cells®*** leads to photoreceptor
dysfunction and degeneration in aging mice. Furthermore, the pro-
tection of photoreceptors from strong light-induced damage involves
AMPK activity, which is regulated by the cellular AMP to ATP ratio®.
The cumulative data thus suggest that the cellular metabolic status of
photoreceptors plays a crucial role in photoreceptor viability and
function.

To elucidate cellular mechanisms underlying CNTF-dependent
enhancement of neuronal viability, we have investigated the impact of
CNTF signaling on retinal metabolism in a mouse model of retinitis
pigmentosa, in which rod death precedes cone loss. By delivering the
same secreted human CNTF used in clinical trials followed by mole-
cular, cellular, and biochemical analyses, we demonstrate that CNTF
treatment effectively influences the metabolic status of the degen-
erating retina, leading to elevated aerobic glycolysis and enhanced
anabolism. These findings thus reveal a fundamental cellular
mechanism by which a neurotrophic factor promotes neuronal viabi-
lity in disease conditions.

Results

CNTF treatment alters the morphology of rod photoreceptor
mitochondria

To study the influence of CNTF on retinal metabolism under photo-
receptor degeneration conditions, we used a mouse model of retinitis

pigmentosa that expressed the dominant mutant pheripherin2 trans-
gene Prph2(P216L) in the wild type photoreceptors®. This transgenic
mouse model exhibits shortened photoreceptor inner segments,
rudimental outer segments, and a relatively slow loss of photo-
receptors, referred to as “retinal degeneration slow” (rds) herein. After
mice reach adulthood at postnatal day 25 (P25), the rds mutant retina
contains approximately 80% of photoreceptors in number compared
to the wild type. By P45, the loss of photoreceptors in the rds mutant
has reached 50%. Subretinal delivery of a lentivirus expressing secre-
ted CNTF (LV-CNTF) at P25 halts the degeneration process, resulting in
the pan-retinal rescue of rod cells and partial restoration of the outer
segment as well as the inner segment*’, where the majority of photo-
receptor mitochondria reside.

To examine the influence of CNTF on rod mitochondria, we
genetically labeled rod mitochondria by crossing Rho-iCre mice®
with the PhAM mouse line that encodes a Cre-dependent mito-
chondrial targeting fluorescent reporter dendra2®®. The resulting
mouse retina showed specific labeling of rod mitochondria with the
dendra2 reporter in the inner segments and the ribbon synapses of
wild type rod photoreceptors (Fig. 1a, b). The rds mutant retinas
exhibited similar rod mitochondrial labeling, but with more ectopi-
cally located mitochondria within the outer nuclear layer where rod
photoreceptor soma resided (Fig. 1a). To characterize the morphol-
ogy of rod mitochondria, we performed super-resolution structured
illumination microscopy (SIM). The wild type rod mitochondria
within the inner segment presented elongated cylindrical morphol-
ogy, whereas those in the synaptic terminals were larger in size and
granular in shape (Fig. 1c and Supplementary Videos 1, 2). In contrast,
rod mitochondria in the rds mutant inner segment exhibited shor-
tened and fragmental morphology (Fig. 1c and Supplementary
Video 3). The LV-CNTF treatment of the rds retina resulted in elon-
gation of the inner segments containing enlarged mitochondria both
in the inner segments and in the synaptic termini (Fig. 1c and Sup-
plementary Video 5), whereas control virus LV-IG treatment did not
result in photoreceptor rescue or significant changes of mitochon-
drial morphology (Fig. 1c and Supplementary Video 4). TEM analysis
also confirmed these morphological alterations detected by
SIM (Fig. 1d).

Since mitochondria morphology may correlate with their
functions®’, we characterized the morphological features of mito-
chondria in rod inner segments using acquired SIM imaging data (Fig. 2
and Source Data for Fig. 2). The MitoMap analysis®® confirmed that the
rds mutant mitochondria showed a marked departure from the wild
type with increased sphericity and distribution isotropy, but decreased
compactness and surface to volume ratio (Fig. 2a). Principal compo-
nent analysis indicated that in CNTF-treated rds retinas, morphological
features of inner segment mitochondria displayed more resemblance
to the wild type (Fig. 2b). However, in CNTF-treated rds retinas the
mitochondrial population overall still exhibited significant differences
from the wild type with regard to their compactness, surface to volume
ratio, and distribution isotropy (Fig. 2a).

CNTF treatment affects mitochondrial respiration and
suppresses respiratory complex activity

We next investigated the cellular respiration status using an Agilent
XF96 Extracellular Flux Analyzer to simultaneously measure the oxy-
gen consumption rate (OCR) and the extracellular acidification rate
(ECAR), which may serve as a surrogate indicator for glycolysis (Fig. 3
and Source Data for Fig. 3). Compared to the wild type, the rds mutant
retina showed decreased basal OCR and significantly increased basal
ECAR as early as P17 before overt degeneration of photoreceptors
(Fig. 3a). Both the OCR reduction and ECAR elevation persisted
through P35 during the continuous loss of rod cells in the outer nuclear
layer. Despite the lengthening of rod inner segments in the rds retina,
CNTF treatment did not result in an increased OCR, but significantly
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Fig. 1| CNTF-induced mitochondrial morphological changes in rod photo-
receptors. a Confocal microscopy images of P70 WT and rds retinas with the
mitochondrial PhAM reporter activated in rod photoreceptors. b A dissociated P35
WT rod photoreceptor with PhAM reporter shown as Airyscan fluorescent image
(left) and brightfield image (right). ¢ SIM images show PhAM-labeled rod mito-
chondria in WT, rds, and rds mutant injected with LV-IG or LV-CNTF at P28 and

harvested at P96. d TEM images of rod inner segments at P52 in WT, rds, and rds
mutant injected with LV-CNTF. All image analyses used three independent retinas
(N=3). Scale bars: a 20 pm; b 10 um; ¢ 3 pm; d 0.5 um. WT wild type, rds Prph2
P216L mutant, is inner segment, os outer segment, onl outer nuclear layer, opl outer
plexiform layer, inl inner nuclear layer, gcl ganglion cell layer.

elevated ECAR (Fig. 3b), suggesting possible elevation of glycolysis. To
examine whether CNTF affected oxidative phosphorylation, we first
assayed the basal OCR, and then determined the amount of ATP-linked
respiration and the maximal OCR by sequential additions of the ATP
synthase inhibitor oligomycin followed by the proton gradient
uncoupler FCCP (Fig. 3¢). The OCR measurements indicated that CNTF
treatment did not enhance the basal or maximal OCRs, but caused a
reduction of ATP-linked OCR (Fig. 3¢, d). These results suggested that
CNTF treatment did not enhance mitochondrial respiratory chain-
dependent oxygen consumption in the rds mutant retina.

To validate the retinal tissue assay results, we analyzed mito-
chondrial respiration using isolated retinal mitochondria in the pre-
sence of different respiratory chain substrates and inhibitors (Fig. 4 and
Source Data for Fig. 4). In the presence of pyruvate and malate, sub-
strates for complex I, mitochondria from rds retinas injected with the
control virus LV-IG showed lower complex I-linked respiration com-
pared to the wild type (Fig. 4a, b). LV-CNTF treatment of the rds retina
caused a further reduction of complex I activity (Fig. 4a, b). When
complex I was inhibited by rotenone and succinate was supplied, a
slight reduction of complex II activity was detected in the rds retina
(Fig. 4c, d). When complex I and complex IIl were both inhibited by
rotenone and antimycin A to test complex IV activity, mitochondria
from CNTF-treated rds retina showed a significant deficit when com-
pared to the wild type (Fig. 4e, f). Together, these results demonstrated
that the rds retina had an impaired mitochondrial respiratory chain, and

CNTF treatment did not improve but instead caused a further sup-
pression of mitochondrial respiratory chain function in the rds mutant.

CNTF elevates energy production, aerobic glycolysis, and ana-
bolic metabolites

To obtain a comprehensive assessment of the retinal metabolic status,
we performed metabolomics analysis for wild type, rds, and rds retinas
treated with either the control LV-IG or LV-CNTF virus. Quantification
of cellular metabolites with glucose as a fuel revealed a dramatic
impact of CNTF signaling on retinal metabolism (Supplementary Fig. 1
and Source Data of Metabolomics). Compared to the wild type, the rds
mutant retina had a lower level of ATP whereas CNTF-treated rds
retinas contained 1.5-fold of the wild type level of ATP, and conse-
quently a lower ADP/ATP ratio (Fig. 5a; Supplementary Fig. 2 and
Source Data for Fig. 5). In addition, the energy currency phospho-
creatine (p-creatine), which is normally present at high concentrations
in the brain and muscles to act as an energy buffer to quickly regen-
erate ATP**”°, was increased to 3.9-fold of the wild type level in CNTF-
treated rds retinas (Fig. 5a). Furthermore, CNTF restored the level of
GTP in the rds retina, which was reduced to 45% of the wild type level,
and elevated 5’-methylthioadenosine to 1.4-fold of the wild type level
(Fig. 5b and Supplementary Fig. 4). Consistent with the notion that
CNTF signaling promoted aerobic glycolysis, we detected increases of
glycolytic pathway intermediates fructosel,6 bisphosphate (F1,6BP),
3-phosphoglycerate (3PG) and phosphoenolpyruvic acid (PEP) (Fig. 5¢
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Fig. 2 | Characterization of rod photoreceptor mitochondrial morphological
features. a Quantification of PhAM-labeled mitochondria in rod inner segments
captured with SIM in WT, rds, and rds retinas (N = 3) treated with LV-IG or LV-CNTF.
Violin plots show geometrical features of the individual mitochondrion, including
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the minimum data value within 1.5 times the interquartile range below the 25th
percentile. The upper whiskers include the maximum value of the data within 1.5
times the interquartile range above the 75th percentile. One-way ANOVA and
Tukey all-pairs test were applied with adjusted P values shown. P<0.0001 is
indicated as ****. b Principal component analysis (PCA) separates rod mitochon-
drial geometry. Separation in PCAl is mainly driven by surface area, volume, and
sphericity, while compactness and SA:V contribute to separation in PCA2. N in

b represents the number of mitochondria used for the analysis shown in this figure.
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Fig. 3 | Influences on retinal cell respiration by the rds mutation and CNTF.

a Seahorse metabolic flux analysis measuring basal OCR (left) and ECAR (right) for
WT and rds retinas at P17, P25, and P35. For each age and genotype, N= 6 inde-
pendent retinas were used. P values from the two-tailed student ¢-test are indi-
cated. b Effects of CNTF on basal OCR and ECAR in rds retinas treated with LV-IG or
LV-CNTF from P25-P35 compared to WT and non-treated rds retinas. Independent
sample numbers N and adjusted P values from one-way ANOVA and Tukey all-pairs
test are shown with P < 0.0001 indicated as ****. ¢, d Seahorse mitochondria stress
tests to determine basal and maximum OCR, as well as ATP-linked OCR by
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sequential treatments with respiratory chain inhibitors oligomycin (oligo),
uncoupling agent FCCP, antimycin A (AA), and rotenone (Rot) for WT, rds, and rds
retinas treated with either LV-IG or LV-CNTF from P26-P42. ¢ Seahorse assay tra-
cings and the states indicating (1) basal OCR, (2) oligomycin inhibition of ATP
synthase, (3) maximum OCR, and (4) total inhibition of respiration with AA and Rot.
d Bar graphs show basal OCR, ATP-linked OCR, and maximal OCR. Independent
sample numbers N and adjusted P values from two-way ANOVA and Tukey all-pairs
test are shown. For a, b, d, data were presented as mean values + SEM.
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each contains mitochondria from four retinas for all conditions. For b, d, f, data
were presented as mean + SEM. Adjusted P values derived from two-way ANOVA
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and Supplementary Fig. 2). Furthermore, metabolomics analysis
detected significant elevation of TCA cycle products, including aco-
nitate, citrate, alpha-ketoglutarate, and malate (Fig. 5d and Supple-
mentary Fig. 2). Importantly, CNTF treatment also altered the
reduction-oxidation status by fully restoring the antioxidant glu-
tathione (GSH) in the rds retina from 50% reduction to the wild type
level (Fig. 5e and Supplementary Fig. 2).

Quantitative metabolomics analysis revealed that rds retinas
treated with LV-CNTF, but not the control LV-IG virus, elevated cellular
contents for the majority of amino acids to above the wild type levels
(Fig. 5f and Supplementary Fig. 3). Similarly, multiple fatty acid bio-
synthetic intermediates that showed reduced levels in the rds retina
were also elevated by CNTF treatment (Fig. 5g and Supplementary
Fig. 2). The results of metabolomics analysis, therefore, indicated that
CNTF signaling asserted a strong influence on retinal metabolism by
promoting glycolysis, increasing energy supply, and enhancing ana-
bolism in the rds mutant retina.

CNTF signaling impacts the expression of metabolic genes and
enzymatic activities

To evaluate whether CNTF signaling influenced metabolism at the
transcription level, we performed high throughput RNA-
sequencing and analyzed the retinal transcriptome of the rds
mutant retinas treated with either the control LV-IG or LV-CNTF

from P25 to P35". Compared to the wild type, LV-CNTF treatment
led to increased expression of most glycolytic pathway transcripts,
whereas LV-IG injection induced moderate gene expression eleva-
tion (Fig. 6a and Source Data for Fig. 6). CNTF treatment also ele-
vated expression of many genes encoding the TCA cycle enzymes
(Fig. 6b). Some of the genes involved in mitochondria stress and
turnover, such as Pink1”, was elevated in the rds mutant (Fig. 6c).
CNTF treatment suppressed the expression of Pinkl in the rds
mutant, and elevated expression of key mitochondrial transcrip-
tion factor Tfam’”, suggesting that CNTF signaling influenced
mitochondrial dynamics. Transcriptome analysis also revealed that
most nuclear-encoded respiratory complex genes were up-
regulated after CNTF treatment; however, several components for
complex I, complex IV, and ATP synthase were downregulated
compared to LV-IG treated rds retinas (Fig. 6d).

Next, we performed Western blot analysis to examine the Jak-
STAT signaling and the status of enzymes in the glycolytic pathway. As
expected, CNTF treatment resulted in increased phosphorylation of
STAT3 at Y705 as well as elevated total STAT3 protein (Fig. 6e and
Source Data for Fig. 6). Consistent with the observed CNTF-induced
elevation of LDHa mRNA (Fig. 6a), the active form of LDHa with Y10
phosphorylation were increased to near two-fold of LV-IG treated rds
retinas. These data thus further validated that CNTF signaling
enhanced glycolysis in rds retinas.
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Contribution of glycolysis and OXPHOS in wild type and
degenerating retinas

Since the metabolic changes in degenerative retinas were not well
characterized, we examined the metabolic contribution from aerobic
glycolysis and mitochondrial respiration in the wild type and rds reti-
nas. Metabolomics analyses were performed under conditions with
various metabolic inhibitors (Fig. 7a and Source Data for Fig. 7). In the
presence of the complex IV inhibitor sodium azide (Supplementary
Fig. 5), amino acid contents in both the wild type and CNTF-treated rds
mutant retinas were significantly reduced (Fig. 7b and Supplementary
Fig. 6), indicating that the respiratory chain activities impacted cellular
amino acid pools. Inhibition of complex IV also decreased CNTF-
dependent elevation of lipid biosynthetic pathway intermediates
(Fig. 7c). Quantification of ATP levels revealed that in the wild type
retina, 87% of ATP production relied on oxidative phosphorylation
(OXPHOS), whereas in the rds mutant only 65% of ATP production was

mitochondrial-dependent (Fig. 7e), suggesting that the degeneration
condition itself had led to a decreased dependency on OXPHOS. In
CNTF-treated rds mutant, azide caused a 62% reduction of ATP, indi-
cating that a significant portion of the total ATP, about 50% of the wild
type level, was not generated through mitochondrial respiration
(Fig. 7e). Inhibition of complex IV by azide resulted in 80% reduction of
acetyl-CoA in the wild type, but 66% reduction of acetyl-CoA and
malate in CNTF-treated rds retinas (Fig. 7f, g). Moreover, analysis using
azide showed that mitochondrial respiration was responsible for 50
and 56% of cellular GSH in the wild type and CNTF-treated rds retinas,
respectively (Fig. 7m).

The glycolytic pathway enzyme lactate dehydrogenases (LDH)
catalyze the conversion between pyruvate and lactate. Inhibition of
LDH by GSK2837808A in the wild type retina reduced ATP level by
58%, whereas CNTF-treated rds retinas sustained 65% ATP reduc-
tion (Fig. 7h), indicating that aerobic glycolysis contributed to a
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Fig. 6 | Influence of CNTF on metabolic gene expression and enzyme activity.
a-d Transcriptome analysis of WT retina and rds retinas treated with LV-IG or LV-
CNTF from P25-P35. Heatmaps show relative transcript levels (average of N=3,
each N contains two retinas). a Glycolytic pathway enzymes and Mpc2.

b Mitochondrial Pdhal, Pdhb, and TCA cycle enzymes. ¢ Participants of mito-
chondrial biogenesis. d Nuclear genome encoded mitochondrial respiratory chain

components. Asterisks indicate genes with decreased transcripts compared to WT.
e Western blot analysis of retinal extracts from WT retina and rds retinas treated

with LV-IG or LV-CNTF from P25-P100. Bar graphs show the quantification of CNTF
signaling effector pY705 STAT3 and total STAT3, the active pY10 LDHa and LDHa.
For e, data were presented as mean + SEM. Independent retinal samples (N = 3) and
adjusted P values based on one-way ANOVA and Tukey all-pairs test are indicated.

larger portion of ATP in CNTF-treated rds retinas. Inhibiting LDH
not only increased the AMP to ATP ratios, but also led to increased
creatine to p-creatine ratios (Fig. 7d). Furthermore, metabolomics
analysis showed significant increases of lactate in CNTF-treated rds
retinas compared to rds or rds treated with LV-IG (Fig. 7i), indi-
cating enhanced glycolysis. Consistent with the conversion from
lactate into pyruvate to supply mitochondria, inhibiting LDH
activity also led to a significant reduction of the TCA cycle product
alpha-ketoglutarate (Fig. 7j), likely due to a hindered pyruvate
production.

To further examine pyruvate utilization in mitochondrial meta-
bolic processes, we applied the mitochondrial pyruvate carrier inhi-
bitor UK5099, which caused a reduction of acetyl-CoA (Fig. 7k) and
TCA cycle intermediate citrate (Fig. 71), confirming that pyruvate
transport to mitochondria supported more than 50% of the citrate
production in both the wild type and rds mutant.

Utilization of fatty acid oxidation by wild type and degenerating
retinas

Since the neural retina has highly active lipid biosynthesis and
turnover’, we examined the wild type and rds mutant retinas in their
abilities to utilize palmitate as a fuel source in the absence of glucose in
the medium (Fig. 8a and Source Data for Fig. 8). CNTF-treated rds
retinas showed higher than wild type levels of amino acids using pal-
mitate (Fig. 8b). Inhibiting the carnitine palmitoyltransferase 1 (CPT1)
with etomoxir resulted in a marked reduction of amino acids in both
the wild type and CNTF-treated rds retinas (Fig. 8b), revealing that the
retina relied substantially on fatty acid oxidation under the glucose
deprivation condition. As expected, CPT inhibition led to increasing
levels of carnitine and reduced levels of acetylcarnitine in both wild
type and CNTF-treated rds retinas, (Fig. 8c, i), reflecting disruption of
fatty acid transport from the cytoplasm into mitochondria. Compared
with the wild type, the rds retina exhibited a nearly two-fold capacity to
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Fig. 7 | Contribution of glycolysis and mitochondrial activities to retinal
metabolism and CNTF-induced metabolic changes. a Schematic illustration of
the glycolytic pathway and TCA cycle with glucose as a fuel. Enzymatic steps affected
by specific inhibitors are indicated (red circle). b-d Metabolomics heatmaps show
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GSH (m). Viral vector treatment periods are shown below treated rds samples. For
e-m, data were presented as mean + SEM. Independent sample numbers (V) are
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were applied to the entire group. For clarity, only significant adjusted P values for
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a Schematic illustration of fatty acid metabolic pathways and Cptl as a target of
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were presented as mean + SEM. Two-way ANOVA and Tukey’s multiple comparison
test were applied to the entire group. For clarity, only significant adjusted P values
for pairs of samples with and without Etomoxir are shown with P < 0.0001 indicated
as *** See Source Data for the entire statistical analysis.

produce ATP when palmitate was supplied (Fig. 8d). CNTF-treated rds
retina retained the efficiency to synthesize ATP using palmitate, but
sustained more severe deficits with etomoxir treatment (Fig. 8d). CPT1
inhibition also nearly demolished p-creatine generation in the wild
type and CNTF-treated rds retinas (Fig. 8e), confirming the potential
contribution of fatty acid beta-oxidation to the retinal energy buffer.
CPT1 inhibition did not affect glycolytic pathway metabolites such as
3PG (Fig. 8f), but did reduce the level of citrate, which can be driven by
fatty acid beta-oxidation (Fig. 8g).

Discussion
In this study, we provide evidence that delivery of the same CNTF used
in human trials to a mouse model of retinitis pigmentosa results in a

significant change in retinal metabolism, thus revealing a previously
unknown cellular mechanism underlying the potent and broad neu-
rotrophic effects of CNTF.

Cellular respiration assays using retinal tissues detected early
and persistent decreases in oxygen consumption and elevation of
extracellular acidification in the rds mutant. These changes likely
reflect the adaptation of the retinal metabolism under the condition
of progressive photoreceptor loss. SIM imaging revealed fragmental
and ectopically distributed rod mitochondria, suggesting a possible
decline of mitochondrial functionality in the rds mutant. Both SIM
and TEM analyses showed that CNTF treatment partially restored the
morphology of mitochondria in the rod inner segment, the main
cellular biosynthetic site for photoreceptors. However, instead of
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improving mitochondrial respiration, our results indicated that CNTF
treatment caused a reduction of ATP-linked OCR. Furthermore,
direct measurements of mitochondrial respiratory chain activities
confirmed the suppression of complex I and complex IV functions
following CNTF treatment. Concomitant with the suppression of
respiratory chain activity, we detected significantly increased ECAR
following CNTF treatment, suggesting the likelihood of enhanced
glycolysis.

Our biochemical and molecular analyses indeed support the
above conclusion and provide a comprehensive view of the retinal
metabolic status in the rds mutant and under the influence of CNTF.
Metabolomics analyses using glucose as a fuel revealed deficiencies
in ATP, amino acids, and fatty acid biosynthetic intermediates, as
well as a severe reduction in the major antioxidant glutathione in
the rds mutant retina. CNTF treatment effectively improved the
retinal energy supply resulting in more than a 50% increase in ATP
and a three-fold increase of p-creatine to the wild type levels. In
addition, we detected a significant elevation of glycolytic pathway
intermediates, TCA cycle metabolites, as well as various anabolic
metabolites, including amino acids, lipid biosynthetic inter-
mediates, and nucleotide derivatives. Strikingly, CNTF treatment
also restored the important antioxidant glutathione to the level
found in wild type retinas. This is not surprising as glutathione
biosynthesis requires amino acids glutamate, glycine, and
cysteine’. Consistent with the metabolomics data, molecular ana-
lyses also revealed increased expression of the glycolytic pathway
and TCA cycle gene transcripts, and active forms of glycolytic
pathway enzymes. Taken together, these results provide strong
evidence that CNTF signaling in the degenerating retina leads to a
global metabolic alteration by promoting aerobic glycolysis and
anabolism. Since metabolomics and transcriptome analyses per-
formed used the entire retina, the results described reflect the
summation of responses by various retinal cell types to CNTF rather
than photoreceptors alone. Future studies combining genetics and
multi-omics approaches are necessary to determine cell type-
specific responses to exogenous CNTF.

Metabolomics analyses using glucose in conjunction with
metabolic inhibitors permitted us to determine the contributions of
glycolysis and mitochondrial respiration to the energy supply of
healthy and degenerating retinas. Our results showed a reduced
reliance on mitochondrial respiration in CNTF-treated rds retina to
generate high levels of ATP and p-creatine, thus further supporting
the role of CNTF-dependent elevation of aerobic glycolysis. Con-
sistent with the elevated ECAR in CNTF-treated rds mutant, meta-
bolomics analysis detected elevated lactate in retinal tissues. Further,
LDHa transcripts and the active form of LDHa are both increased
under CNTF influence. Since LDH catalyzes a bidirectional reaction, it
is conceivable that CNTF may have promoted the conversion of
lactate toward pyruvate. Notably, the lactate-to-pyruvate enzymatic
reaction also produces NADH for cellular metabolism and as an
electron donor in oxidative phosphorylation. Indeed, inhibition of
the LDH enzymatic activity resulted in a 58% reduction of ATP and a
65% decrease of alpha-ketoglutarate, indicating that LDH-catalyzed
pyruvate production was critical for CNTF-dependent energy pro-
duction as well as the mitochondrial TCA cycle. Consistently, inhi-
biting the mitochondrial pyruvate carrier led to a significant
reduction of acetyl-CoA and citrate. Moreover, in the presence of the
complex IV inhibitor azide, we detected not only reduced TCA cycle
products, but also amino acids and lipid biosynthetic intermediates,
as the production of these anabolic metabolites relies on the supply
of acetyl-CoA and the TCA cycle metabolites. These findings
demonstrate that CNTF not only upregulates aerobic glycolysis and
dampens mitochondrial respiratory chain activity, but also strongly
impacts TCA cycle activities that are critical for amino acid and lipid
biosynthesis.

It is known that in the case of retinitis pigmentosa, rod photo-
receptor death leads to cone cell starvation of glucose®*. In the
absence of glucose supply, we found that the rds retina displayed an
increased capacity to utilize palmitate to produce ATP and p-creatine
compared to the wild type. Blocking palmitate transport into the
mitochondria resulted in decreases in ATP and p-creatine production
in both wild type and CNTF-treated rds retinas. Interestingly, when
provided with palmitate, CNTF-treated rds retinas showed only
increased amino acid contents without elevations of other anabolic
metabolites compared to using glucose as a fuel. Consistent with ret-
inal consumption of fatty acids through beta-oxidation and the TCA
cycle, inhibition of palmitate transport also caused the reduction of
citrate, amino acids, and most lipid biosynthetic pathway inter-
mediates, but had no effect on the levels of glycolytic pathway meta-
bolites. Therefore, compared to the wild type, the rds mutant retina
can more efficiently use fatty acids as a fuel source when experiencing
glucose deprivation.

The CNTF-triggered retinal metabolic changes show striking
similarities to the metabolic signatures of cancer cells as described by
Warburg nearly a century ago”. We have demonstrated previously that
CNTF primarily activates the Jak-STAT and ERK pathways in the
retina®®*°, Activation of STAT3 has long been deployed to maintain the
pluripotency of stem cells, which rely heavily on aerobic glycolysis to
supply energy and various metabolites for proliferation, epigenetic
modification, and cellular anabolic processes’®”’. Elevated
STAT3 signaling has been associated with the oncogenic process’*°,
Intriguingly, in addition to the nuclear-localized pY705 STAT3 dimer to
regulate target gene transcription, the Ser727 phosphorylated STAT3
has been shown to enter mitochondria and enhance electron transport
chain function, as well as promote oncogenic transformation®
However, the exact role of pS727 STAT3 in mitochondrial function
remains to be resolved®®’, A previous study has shown that elevating
wild type or a constitutively active STAT3 in mutant mouse rod pho-
toreceptors can delay degeneration and that the pY705 STAT3 med-
iates this protective effect®. Since CNTF signaling asserts a strong
influence on the retinal transcriptome®, the precise functions of
pY705 and pS727 STAT3 in CNTF-mediated metabolic modulation
require further investigations. Consistent with our results that exo-
genous CNTF suppresses mitochondrial respiratory chain activity and
promotes cell viability, accumulating evidence indicates that partial
uncoupling of mitochondrial respiration can reduce oxidative stress
and support neuronal survival under stressful conditions® . Fur-
thermore, blocking mitochondrial transport of pyruvate has been
shown to increase glycolysis and potentiate endogenous stem cell
activities’?, as well as attenuate neuronal loss”. It may appear para-
doxical that CNTF improves mitochondrial morphology on the one
hand, yet suppresses respiratory chain function. However, it is plau-
sible that CNTF signaling results in a partial uncoupling, but does not
compromise the TCA cycle activity in the mitochondrial matrix, thus
enhancing anabolism.

The results of this study provide much-needed insight at the
molecular and biochemical levels for the ongoing clinical trials aimed
at treating blinding diseases. Recent studies have shown that MacTel
type 2, which causes late-onset retinal degeneration, is associated with
metabolic dysfunction in the serine-glycine biosynthetic pathway®**.
In addition, metabolic changes in phospholipids, including phospha-
tidylethanolamines, have been detected among MacTel patients’.
Based on our findings, one possible explanation for the observed
efficacy of the phase Il CNTF trial for MacTel type 2% is likely due to
CNTF-dependent alterations of retinal metabolism, especially the ele-
vation of retinal amino acid contents. CNTF is known to have neuro-
trophic effects on RGC survival and RGC axon regeneration*". Future
investigations examining retinal cell type-specific effects of CNTF will
facilitate elucidating cellular mechanisms for the ongoing CNTF glau-
coma trials. In summary, the findings of this study have revealed
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cellular responses of the neural retina to CNTF treatments, thus sug-
gesting potential therapeutic treatments for neurodegenerative
diseases.

Methods

Animals

Mice were kept on a 12/12-h light/dark cycle with Rodent Diet 20 (Pico-
Lab, catalog number 15053). The rds transgenic mice carrying the
Prph2(P216L) mutation®* were maintained by crossing with the wild
type CD1 mice from the Jackson Laboratory. Progeny of the cross
without the Prph2(P216L) transgene were used as wild type littermate
controls. Mice expressing rod photoreceptor-specific mitochondrial
PhAM reporter were generated by crossing mice that carry both Rho
iCre75® (Jackson Laboratory Stock No0.015850) and the rds/
Prph2(P216L) transgenes with the PhAM reporter mice®® (Jackson
Laboratory Stock No0.018385). Genotyping was performed by tail
genomic DNA extraction followed by PCRs using primers listed in
the Supplementary Table. Equal numbers of male and female mice are
used for a given assay. All animal procedures followed National Insti-
tutes of Health guidelines and were approved by the Animal Research
Committee of University of California Los Angeles under protocol
number ARC-1996-047.

Lentiviral vector production and intraocular delivery

The lentivirus LV-CNTF and the control lentivirus LV-1G share the
same vector backbone and encode the CMV promoter followed by
CNTF-IRES-GFP or IRES-GFP, respectively*. The LV-CNTF expres-
ses the same secreted form of human CNTF with S166D and G167H
substitutions used in clinical trials*’. The lentiviral vectors and
helper plasmids were used to co-transfect HEK293t cells, and the
media were collected 48 h post-transfection. Ultracentrifugation-
concentrated viral particles were resuspended and used to obtain
viral titers by serial dilution and infection of HEK293t cells fol-
lowed by immunolabeling and quantification of GFP-positive
clones**”. For in vivo delivery, lentiviral stocks with titers of
1x10” CFU/ml were injected subretinally at 0.5 pl per eye.

Confocal, super-resolution, and transmission electron
microscopies

Cells or retinal tissues were fixed with 4% (wt/vol) paraformaldehyde in
PBS and processed as described previously”. Confocal fluorescent
images were captured using Olympus FluoView 1000 scanning laser
confocal microscope. Super-resolution images were captured with
either Zeiss Airyscan LSM 800 or General Electric DeltaVision
OMX microscope for structure illumination microscopy (SIM) using
PlanApoN 60x/1.42 NA oil objective (Olympus). For Airyscan imaging,
the retina was dissociated using papain as described’®. For SIM ima-
ging, 14-um thickness cryosections were adhered to #1.5 coverslip
(Thermo Fisher Scientific) coated with Matrigel (BD Biosciences and
StemCell Technologies) and mounted on a glass slide using Vecta-
shield mounting medium (Vectorlabs). The coverslip/slide was sealed
with CoverGrip (Biotium). Images were acquired in 3D-SIM mode using
a Z-spacing of 0.125 um and reconstructed using Softworx software
(GE Healthcare). Imaris software (Oxford Instruments) was used to
extract 5-um thickness 3D images and create 3D rotating video clips.
For TEM, eyes were fixed in 2% (wt/vol) formaldehyde and 2.5% (wt/vol)
glutaraldehyde in 0.1 M sodium phosphate buffer and processed as
described in ref. 99. TEM images were acquired using JEM-1400 (JEOL)
electron microscope.

Mitochondrial morphology analysis

SIM images were analyzed in FIJl/ImageJ'® using the open-source
software plugin MitoMap (http://www.gurdon.cam.ac.uk/stafflinks/
downloadspublic/imaging-plugins)®®. The plugin automates the pro-
cess to compute mitochondrial volume (um?), surface area (um2), and

other geometrical features in a region of interest (ROI). For each
sample analyzed, the 32-bit OMX images stack (dv file) are loaded onto
ImageJ using the Bio-formats plugin'®, and an ROI was chosen that
includes the photoreceptor inner segment (40 x 15 x 10 um?®) region.
The MitoMap plugins converted the images stack to 16-bit and applied
Otsu thresholding'® to extract the PhAM reporter-labeled mitochon-
drial volume. Before the quantification analysis, objects with volumes
smaller than 0.1 pm?® were excluded to eliminate artifacts. The principal
component analyses were performed on R Studio using “factoextra”

and “FactoMineR” packages'®.

Seahorse assays

For tissue OCR and ECAR assays, retinas were dissected in HBSS and
tissue disks containing all retinal layers were obtained using a1 mm
diameter biopsy puncher (Miltex)'**. Retinal disks were washed with
unbuffered Seahorse XF Base DMEM pH 7.4 (Agilent) and placed ina
well of 96-well microplate containing 175 ul medium supplemented
with 6 mM glucose (pH 7.4). Retinal disks were incubated for 30 min
at 37 °C prior to running the assay using a Seahorse XF96 Analyzer
(Agilent). During the assay, 3 uM oligomycin (Port A), 0.6 uM and
1.1uM FCCP (Ports B and C), and 2 uM antimycin A and 2 uM rote-
none (Port D) were injected into the assay medium (Supplemen-
tary Table).

For isolated mitochondria seahorse assays, eyes were dissected
in cold PBS and 4 retinas were pooled for each sample (N). After
washing and removal of PBS, 500 ul of MSHE buffer (210 mM man-
nitol, 70 mM sucrose, 5 mM HEPES, 1mM EDTA, 0.5% BSA, pH 7.2)
was added to the pooled retinas. Retinal tissues were homogenized
by drawing through a 23 G needle 20 times, followed by cen-
trifugation at 800xg for 10 min at 4 °C. The supernatants containing
mitochondria were collected and transferred to a new tube, and the
pellets were homogenized and centrifuged again to re-collect the
supernatants. The supernatants were then combined and cen-
trifuged at 8000xg for 10 min at 4 °C. The resulting pellets con-
taining mitochondria were resuspended in 800 ul of MSHE and
centrifuged again at 8000xg for 10 min at 4 °C. After discarding the
supernatant, the mitochondria pellet was resuspended in 35l of
mitochondrial assay solution (MAS; 220 mM mannitol, 70 mM
sucrose, 10 mM potassium phosphate monobasic, 5 mM magnesium
chloride, 2mM HEPES, 1mM EGTA, pH 7.2) without BSA. Mito-
chondrial protein contents were measured using the BCA assay
(Pierce). Isolated mitochondria were loaded into an ice-cold Sea-
horse XF96 microplate with 15 ul of 10x substrate solution (50 mM
pyruvate and 50 mM malate, or 50 mM succinate and 20 pM rote-
none). For Complex I-driven respiration (pyruvate + malate), 7 ug
protein was loaded per well; while 4 pg protein/well was loaded for
Complex Il-driven respiration (succinate + rotenone). The volume
was adjusted to 20 ul per well and the mitochondria plate was cen-
trifuged at 2100xg for 5 min to allow mitochondria to adhere to the
bottom of the well. After centrifugation, the total volume of the well
was adjusted to 130 pl with ice-cold MAS with 0.1% fatty acid-free
BSA (pH 7.2 adjusted with 1M KOH). During the assay, compounds
were injected from the ports of the XF96 Analyzer (Supplementary
Table). The isolated mitochondria conditions include injection of:
(1) 4 mM ADP in the presence of pyruvate and malate or succinate
and rotenone (State 3: maximal ATP synthesis capacity), (2) 3 uM of
the ATP Synthase inhibitor, oligomycin (State 40: proton leak), (3)
the chemical uncoupler, FCCP at 4 uM, and (4) 2 uM of the Complex
Il inhibitor, antimycin. When measuring Complex IV respiration,
isolated mitochondria conditions include injection of (1) 4 mM ADP
in the presence of pyruvate and malate or succinate and rotenone
(State 3: maximal ATP synthesis capacity), (2, 3) 1mM TMPD to
(donate electrons to cytochrome ¢/Complex IV) with ascorbate to
keep TMPD in the reduced state, and (4) 40 mM of the Complex IV
inhibitor, azide.
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Metabolomics analysis

For polar metabolite extraction from retinal tissues, retinas were dis-
sected in cold Krebs-Ringer Bicarbonate Buffer pH 7.4 (KRB: 119.78 mM
NaCl, 2.6 mM CacCl,, 4.56 mM KClI, 0.49 mM MgCl,, 0.7 mM Na2HPO,,
1.3 mM NaH,PO,, 14.99 mM NaHCO;, and 10 mM HEPES) with 5 mM
substrates (glucose or palmitate). Whole retina or 1 mm retinal disks
were incubated in 500 pl of KRB with or without inhibitors (Supple-
mentary Table), for 60 min at 37 °C. After removal of the KRB medium,
retinal tissues were homogenized in 500 pl of cold 80% methanol by
drawing through a 23G needle 20 times. The tissue extracts were spun
in a microfuge at 13,000 rpm at 4 °C for 10 min. The supernatants were
transferred into glass vials, 2 nmoles of norvaline was added to each
vial, and the extracts were desiccated using an EZ-2Elite evaporator
and stored at —80 °C.

Dried metabolites were resuspended in 50% ACN:water and 1/10th
was loaded onto a Luna 3pm NH2 100A (150 x 2.0 mm) column
(Phenomenex). The chromatographic separation under HILIC condi-
tions was performed on a Vanquish Flex (Thermo Scientific) with
mobile phases A (5 mM NH4AcO pH 9.9) and B (ACN) and a flow rate of
200 pl/min. A linear gradient from 15% A to 95% A over 18 min was
followed by 9 min isocratic flow at 95% A and re-equilibration to 15% A.
Metabolites were detected with a Thermo Scientific Q Exactive mass
spectrometer run with polarity switching (+3.5/~-3.5kV) in full scan
mode with an m/z range of 65-975. TraceFinder 4.1 (Thermo Scientific)
was used to quantify the targeted metabolites by area under the curve
using expected retention time and accurate mass measurements (<5
ppm). Data analysis was performed using in-house R scripts (https://
github.com/graeberlab-ucla/MetabR).

RNA-sequencing

The whole retinal transcriptome analysis was performed as
described*:. Briefly, total RNA was isolated from the wild type, and
rds/Prph2(P216L) mutant retinas treated with LV-IG or LV-CNTF
from P25-P35 (N=3, each N contains two retinas). Sequencing
libraries were prepared using the Illumina TruSeq Stranded Total
RNA with Ribo-Zero Gold Library Prep kit. Paired-end sequencing of
69 bp of the libraries was performed using HiSeq 4000 Sequencer
(Ilumina). After quality control and filtering, the median size was
5.65 Gb per library (range 3.66-7.26 Gb). Sequenced reads were then
aligned to the Mouse reference mm10 from UCSC (genome-euro.-
ucsc.edu) using Hisat2 (v2.0.4)'%. The expression levels were nor-
malized by calculating the fragments per kilobase million reads
(FPKM) values.

Western blots

For western blot analysis, the dissected retina was washed with PBS,
then lysed with RIPA (50 mM Tris, 150 mM NacCl, 1% Triton X-100, 2%
BSA, and complete protease inhibitor cocktail, pH 7.4). The lysates
were then resolved on SDS-PAGE and western blots were performed
as described in ref. 40. The protein signals were imaged using
Odyssey® CLx Imaging System (LI-COR Biosciences). Primary and
secondary antibodies used are summarized in the Supplemen-
tary Table.

Statistics

All N numbers represent independent samples analyzed, as indicated
pertinently in each figure, including Supplementary Figures. All error
bars in bar graphs of figures and supplementary figures are presented
as mean value + SEM. For Fig. 3a, a two-tailed student’s ¢-test was used
to compare the wild type with rds mutant data (Source Data for Fig. 3).
For the rest of the data in various figures, one-way or two-way ANOVA
and Tukey’s multiple comparison tests, when appropriate, were per-
formed (see Source Data for detailed statistics for each figure). Actual P
values are shown in figures with P<0.05 considered statistically sig-
nificant and P < 0.0001 indicated as ****,

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

RNA-sequencing data have been deposited at Gene Expression Omni-
bus (GEO) and will be publicly available with Accession number
GSE216208. All data generated for this study are included in the main
and supplementary figures. For all quantitative figures, data of indivi-
dual values, as well as the results of statistical tests, are provided in the
Source Data files with the paper. Other data that support the findings
of this study are available on request from the corresponding
author. Source data are provided with this paper.

Code availability

Images analysis of mitochondria used FIJl/Image)®” open-source soft-
ware plugin  MitoMap (http://www.gurdon.cam.ac.uk/stafflinks/
downloadspublic/imaging-plugins)®®. Code used for metabolomics
data analysis is deposited in Github Repository: https://github.com/
graeberlab-ucla/MetabR.
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