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ABSTRACT 

The next generation of alternative fuels is being investigated 
through advanced chemical and biological production 
techniques for the purpose of finding suitable replacements to 
diesel and gasoline while lowering production costs and 
increasing process yields. Chemical conversion of biomass to 
fuels provides a plethora of pathways with a variety of fuel 
molecules, both novel and traditional, which may be targeted. 
In the search for new fuels, an initial, intuition-driven 
evaluation of fuel compounds with desired properties is 
required. Due to the high cost and significant production time 
needed to synthesize these materials at a scale sufficient for 
exhaustive testing, a predictive model would allow chemists to 
preemptively screen fuel properties of potentially desirable fuel 
candidates. Recent work has shown that predictive models, in 
this case artificial neural networks (ANN’s) analyzing 
quantitative structure property relationships (QSPR’s), can 
predict the cetane number (CN) of a proposed fuel molecule 
with relatively small error. A fuel’s CN is a measure of its 
ignition quality, typically defined using prescribed ASTM 
standards and a cetane testing engine. Alternatively, the 
analogous derived cetane number (DCN), obtained using an 
Ignition Quality Tester (IQT), is a direct measurement 
alternative to the CN that uses an empirical inverse relationship 
to the ignition delay found in the constant volume combustion 
chamber apparatus.  DCN data points acquired using an IQT 
were utilized for model validation and expansion of the 
experimental database used in this study. The present work 
improves on an existing model by optimizing the model 
architecture along with the key learning variables of the ANN 
and by making the model more generalizable to a wider variety 

of fuel candidate types, specifically the class of furans and 
furan derivatives, by including specific molecules for the model 
to incorporate. The new molecules considered include 
tetrahydrofuran, 2-methylfuran, 2-methyltetrahydrofuran, 5,5'-
(furan-2-ylmethylene)bis(2-methylfuran), 5,5'-
((tetrahydrofuran-2-yl)methylene)bis(2-methyltetrahydrofuran), 
tris(5-methylfuran-2-yl)methane, and tris(5-
methyltetrahydrofuran-2-yl)methane. Model architecture 
adjustments improved the overall root-mean-squared error 
(RMSE) of the base database predictions by 5.54%. 
Additionally, through the targeted database expansion, it is 
shown that the predicted cetane number of the furan-based 
molecules improves on average by 49.21% (3.74 CN units) and 
significantly for a few of the individual molecules. This 
indicates that a selected subset of representative molecules can 
be used to extend the model’s predictive accuracy to new 
molecular classes. The approach, bolstered by the 
improvements presented in this paper, enables chemists to 
focus on promising molecules by eliminating less favorable 
candidates in relation to their ignition quality. 

INTRODUCTION 

Research into next-generation alternative fuels has gained 
significant interest due to concern over global warming, 
decreasing reserves of conventional fossil fuels, and drawbacks 
associated with first-generation biofuels like corn ethanol. 
Biofuels are typically derived from renewable sources such as 
sugars, starch and vegetable oil; however, the oxygenated 
functional groups in biofuel molecules add an additional layer 
of complexity over traditional hydrocarbons. Though these 
fuels offer many benefits, especially when derived from 
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cellulosic biomass, the next-generation of biofuels have proven 
challenging to produce at scale cost-effectively. Providing 
predictive insight into key properties, such as the cetane 
number, can accelerate the development of new alternative 
fuels. By shortening the feedback loop inherent to research, 
scientists can quickly identify the most promising compounds 
and focus on increasing yield and decreasing costs. 

Cetane Number 

One of the most important parameters for evaluating a fuel for 
use in a diesel engine is the cetane number (CN), a measure of 
the fuel’s ignition quality. It is a correlation based on ignition 
delay from the start of injection and includes both physical 
(vaporization) and chemical components. There are two widely 
used methods in determining CN, either using a Cooperative 
Fuel Research (CFR) engine or an Ignition Quality Tester 
(IQT). Experimental determination of CN using the single-
cylinder CFR is specified through American Society for 
Testing and Materials (ASTM) Standard D613 [1]. An 
alternative approach uses the IQT test procedure, which is 
specified in the ASTM D6890 standard [2]. The method 
determines the ignition delay in a constant volume combustion 
chamber by measuring the time between the start of fuel 
injection and the onset of combustion. Both methods provide 
accurate CN measurements, although the CN obtained on the 
CFR is preferred since it reflects combustion behavior in an 
actual engine. Furthermore, the correlation between DCN and 
CN is based on an empirical relation and has limited accuracy 
when used across a range of fuels [3]. The potential impact of 
this limitation in relation to novel fuels has not been fully 
characterized. However, the IQT offers a distinct advantage in 
terms of increased speed and lower volumetric requirements, 
typically about 100 mL.  

Even with the advantages provided by the IQT, the sheer 
number of potential fuel molecules makes testing prohibitive in 
terms of both cost and time. This reinforces the need for a rapid 
and robust screening method for predicting CN, and potentially 
other properties, in order to aid in alternative fuel development. 

Predicting the Cetane Number 

Predicting cetane numbers and other fuel properties from 
molecular structure has an extensive history. Prior models 
based on quantitative structure property relationships (QSPR) 
have been developed to predict the CN of different compounds, 
which included an early, but limited, application of 
backpropagating neural networks for predicting the CN of 
isoparaffins and diesel fuels [4]. Though the study was limited 
to branched paraffins, the model showed a superior predictive 
power compared to conventional equations [5]. A subsequent 
study used QSPR software to generate 100 molecular 
descriptors for a set 275 compounds including 147 
hydrocarbons and 128 oxygenates [6]; a genetic algorithm, or a 
search heuristic mimicking natural selection in regards to 

optimization problems, was used to identify which descriptors 
might influence CN. Although the model did not accurately 
predict CN (RMSE = 9.1 CN units), the work served as a basis 
for future models focused on predicting CN using QSPR inputs. 

Other types of models have been used to predict CN. One 
approach utilized an inverse function method to predict the CN 
of pure hydrocarbons [7]. Though the model is accurate for the 
range of compounds considered, it is unable to predict the CN 
of compounds outside the test range. A recent model 
considered chemical families likely found in diesel fuels using 
the genetic function approximation (GFA), an iterative 
approach to generate relationships between molecular 
descriptors and CN [8]. Though the approach could not 
satisfactorily predict CN when including all 147 molecules in 
the data set, it utilized an approach of dividing the set into four 
different groups based on their chemical families to improve 
the model’s predictive power. The method provides a sufficient 
local predictive tool for compounds within the same chemical 
family, but is unable to extend predictions to a larger and 
disparate data set.  

Another recent model extended the applicability to include 
alcohols and esters using “consensus” modeling, which 
averaged results from the outputs of various linear and 
nonlinear models (including neural networks) [9]. The 
approach considered 279 compounds from 7 chemical families 
and predicted CN with a RMSE of 6.3. 

In light of the advances and drawbacks inherent to previous 
models, this paper adopts a backpropagation neural network 
approach since it appears to be more robust across multiple 
molecular classes/families due to their nonlinear architecture, 
which allows for a representation of very complex relationships 
between input and output vectors [10]. The goal of this paper is 
two-fold: (1) improve upon the state-of-the art models for 
predicting CN for a diverse data set, and (2) extend the model 
to consider a new molecular class (furanic compounds). The 
model’s accuracy in regards to the furanic compounds can be 
compared for two cases, without new experimental data and 
with new experimental data. As a model’s predictive power is 
only as good as the input data, it is expected that the inclusion 
of some new furanic compounds will increase the accuracy of 
the model without affecting the overall RMSE. Ultimately, the 
objective is to minimize the RMSE as much as possible. In 
practice, it was found that an RMSE of about 6 is acceptable.  

Furanic Biofuels 

Many strategies exist for converting the sugar units produced 
by biomass via photosynthesis into fuels.  One particularly 
attractive method is to generate furan derivatives through acid-
catalyzed dehydration reactions. Using this method, sugars 
containing five carbon atoms, such as the xylose sub-units that 
compose the hemicellulose portion of lignocellulosic biomass, 
can be converted into furfural, and sugars containing six carbon 



atoms, such as fructose or the glucose sub-units that are present 
in starches and cellulose, can be converted into 5-
hydroxymethyl furfural (HMF) [11-13].  

A popular reason for targeting furfural and HMF as fuel 
intermediates is that they provide useful molecular 
functionalities to continue to upgrade these molecules in high 
yields to produce increasingly valuable fuels.  Such coupling 
reactions are especially critical in growing diesel markets to 
meet the volatility specifications of existing fuels.  The scope of 
available reaction pathways from these furan derivatives is 
enormous.  For the purposes of this work, the set of biomass 
derivatives shown in Table 1 containing furan and 
tetrahydrofuran rings will be referred to as furanic compounds. 
Decarbonylation of furfural produces furan, which may be 
readily hydrogenated to produce tetrahydrofuran (Table 1, 
Entry 1).  Selective hydrogenation of furfural produces 2-
methylfuran (Table 1, Entry 2) [14], a valuable chemical 
intermediate, which may further be hydrogenated to 2-
methyltetrahydrofuran (Table 1, Entry 3). 2-
methyltetrahydrofuran, a gasoline additive, may also be formed 
from levulinic acid, another product of sugar dehydration 
reactions, and has been approved as a gasoline blend 
component by the United States Department of Energy [11].   

The listed furanic compounds, along with many other available 
molecules, produce a suite of intermediates that may readily be 
combined via acid-catalyzed electrophilic aromatic substitution 
[14-15], base-catalyzed aldol condensation [13], or acid-

catalyzed etherification [16], among others.  The coupling of 
two 2-methylfuran molecules by furfural or 5-methyl furfural 
via electrophilic aromatic substitution produces the molecules 
shown in Entries 4 and 6, respectively in Table 1 [14-15]. 
These reactions can occur at mild conditions with >90% 
selectivity with no reaction solvent, making them quite 
attractive [15].  The fuel value of these particular molecules has 
been previously reported and is intuitively expected to be low 
since the aromatic furan rings can stabilize radicals during the 
combustion process, slowing the combustion reactions and 
lowering the cetane number [17].  The aromaticity also causes 
π-stacking, raising the melting point of these pure components. 
A selective hydrogenation of the molecules shown in Entries 4 
and 6 of Table 1 has been shown to produce Entries 5 and 7, 
respectively [17].  After the reaction, the tetrahydrofuran rings 
on the products are no longer aromatic, leading to substantially 
improved fuel characteristics, including high cetane numbers, 
very good lubricity, and good cold flow properties [17]. 

While prior work has shown schemes for hydrodeoxygenation 
of the molecules in Entries 4 and 6 of Table 1 completely to 
traditional hydrocarbon alkanes [14], doing so imparts an 
additional cost by requiring 55-60% more hydrogen in the 
overall process than producing the tetrahydrofuranyl analogs in 
Entries 5 and 7.  Therefore, improvement of predictive cetane 
methods to include the scope of oxygenated fuels, especially 
those with furan and tetrahydrofuran rings, will assist in 
directing the path of fuel research toward novel targets, instead 
of solely to more traditional hydrocarbon products.

Table 1. Investigated Furanic Compounds 

Entry Compound Formula 
Tfp 
[oC] 

ν40
o
C 

[mm2 s-1] 
Lubricity 

[mm] 
ρ40

o
C 

[g mL-1] 
ΔHcomb 

[MJ L-1] Structure 

1 tetrahydrofuran C4H8O -108.4 - - 0.883 - 

2 2-methylfuran C5H6O -89 - - 0.91 - 

3 2-methyltetrahydrofuran C5H10O -136 - - 0.854 - 

4 
5,5'-(furan-2-
ylmethylene)bis(2-
methylfuran) 

C15H14O3 11 11.8 160 1.102 35.9 

5 
5,5'-((tetrahydrofuran-2-
yl)methylene)bis(2-
methyltetrahydrofuran) 

C15H26O3 < -40 7.45 180 1.007 35.6 

6 tris(5-methylfuran-2-
yl)methane C16H16O3 31 18.1 160 1.086 35.9 

7 
tris(5-
methyltetrahydrofuran-2-
yl)methane 

C16H28O3 < -40 7.33 220 0.983 1.007 

         



METHODS 

The cetane number data used for the core data set was obtained 
from sets found in the NREL Compendium of Experimental 
Cetane Number Data [18] and other sources [6, 9]. It contains 
284 molecules in total. The NREL Compendium, used as the 
primary source of data, lists experimental cetane number values 
attained from multiple methods, including CFR, IQT, octane-
to-cetane correlations, and blend measurements. Values from 
the latter two approaches are less accurate (+/- 5 CN units). 
Furthermore, multiple compounds tested have numerous 
reported values within sizable ranges. Therefore, the quality of 
the reported data used for the core data set limits the accuracy 
of the predictive model. CN data for the set of furanic 
compounds was determined using an Ignition Quality Tester 
(IQT) using ASTM Standard D6890. The evaluations were 
conducted at Intertek (San Francisco, California, USA) and the 
National Renewable Energy Laboratory (Golden, Colorado, 
USA). 

As opposed to other models, we have chosen not to eliminate 
any data from the core data set based on concerns with the 
provided experimental data. It has already been shown that 
carefully eliminating data seen as questionable can improve a 
model, but the overarching goal is a fully generalizable model 
based on all available experimental data. Therefore, all 
experimental data in the core set is retained and targeted 
reductions are not implemented at this point.  

Compound structures were first converted to SMILES (Simple 
Molecular-Input Line-Entry System) using MarvinSketch 
(ChemAxon Ltd.) [19]. SMILES structures were then converted 
to 2-D structures using the NCI online calculator [20], which 
allowed for the generation of 1667 QSAR molecular 
descriptors using e-Dragon [21]. A database for the core data 
set and new furanic compound data set were constructed using 
these descriptors and their known cetane numbers. 

The number of input parameters was reduced from 1667 to 15 
using an iterative regression analysis technique. This was done 
to reduce build-time of the neural networks while retaining low 
error. For each parameter, networks regressed using only that 
single parameter. The parameter that produced the lowest 
average RMSE was retained, and the next trial was run using 
this parameter plus each of the remaining parameters, until a 
list of 15 parameters was obtained. This was considered one 
run. It is worth noting that each run has independent 
learning/validation/testing data splitting. A total of 15 
additional runs were completed, and the most frequently chosen 
parameters at all 15 intervals across 15 runs were taken to be 
the final parameters. This was done to ensure an accurate 
representation of parameters for multiple data splits. Regression 
using all of the parameters yields useful insight into the large 
amount of covariance between the possible inputs. 

Figure 1 shows the results of the parameter reduction. Between 
15-25 parameters, RMSE does not improve significantly. As
the list of included parameters is increased further, RMSE
begins to rise.  This is due to the fact that many of the values
for some parameters are equal for the majority of molecules,
which is detrimental to the neural network and unhelpful in
capturing the nonlinear behavior. Historically, 14-23
descriptors have been chosen for similar approaches in the
literature.  The process is repeatable across multiple attempts,
which suggests that the chosen set is likely to be the most
influential descriptors in regards to CN prediction.

A closer look at the included descriptors can give some insight 
into how a molecule’s geometry might influence a property like 
CN. Table 2 lists the definitions of each of the descriptors 
retained after the reduction process. Additional information on 
each of the descriptors can be found in the literature [22-23]. 

While these descriptors are relatively nuanced, others such as 
nROR, (number of ethers), nROH (number of hydroxyl 
groups), and nOHp (number of primary alochols) are more 
physical and align with the foundation of chemical kinetics in 
combustion. 

Figure 1. Iterative Addition of Descriptors to Model 

Using artificial neural networks (ANN’s) implemented in 
Python, a regression analysis of the core data set was performed 
using Levenberg-Marquardt backpropagation involving 
stochastic gradient descent, a common learning technique for 
ANN’s [24]. The optimization function used for the regression 
was the mean squared error function, where the network 
converges to the point of least error relative to the core data set 
as a whole. The model architecture, shown in Figure 2, includes 
input data (the 15 retained molecular descriptors), two hidden 
layers of 32 neurons each, and a single output (CN).  Two 
hidden layers, rather than one, are used in order to capture the 
highly nonlinear relationship between QSPR descriptors and 
CN. 



Table 2. Glossary of Descriptor Terminology 

Descriptor Definition 
Mor32e Signal 32 / Weighted by Sanderson 

electronegativity 
ESpm05u Spectral moment of order 2 from edge 

adjacency mat. 
CIC1 Complementary Information Content 

Index (neighborhood symmetry of 1-order) 
RDF035u Radial Distribution Function - 035 / 

unweighted 
nROR Number of ethers 
nROH Number of hydroxyl groups 
L/Bw Length-to-breadth ratio by WHIM 
RDF090m Radial Distribution Function - 090 / 

weighted by mass 
nHDon Number of donor atoms for H-bonds (N 

and O) 
RDF020p Radial Distribution Function - 020 / 

weighted by polarizability 
nOHp Number of primary alcohols 
EEig08x Eigenvalue n. 8 from augmented edge 

adjacency mat. weighted by bond order 
O-059 Al-O-Al / Atom-centered fragments 
G3s 3rd component symmetry direction WHIM 

index / weighted by l-state 
GATS8m Geary autocorrelation of lag 8 weighted by 

mass 

Figure 2. Model architecture including inputs (x1-x15), two 
hidden layers of 32 neurons, and an output y. 

Each ANN randomly assigned each molecule of the core data 
set to one of three conditions: learning, validation, and testing, 
with proportions of 65%, 25%, and 10% respectively. The 
testing proportion of the data was used to evaluate the final 
generalizability of the network after training. The ANN was 
trained on the learning proportion of the data set until there was 
no significant improvement in the performance of the 
validation proportion. This cutoff point was determined by the 
mean-delta-root-mean-squared-error (mdRMSE) falling below 
a predetermined threshold value. The mdRMSE represents the 
mean value of the change in RMSE of the validation data 
between learning epochs (iterations), and approaches zero as 

the number of learning epochs increases. Final performance of 
the ANN is determined by the overall RMSE of the ANN when 
tested on the entire core data set. A lower overall RMSE 
indicates a more optimized ANN. 

Using random learn/validate/test splitting increased the number 
of ANN’s needing to be constructed to achieve an accurate 
final network. This ultimately provided greater accuracy due to 
the ANN being able to choose what it learns, allowing itself to 
determine the learning set that provides the least error. Due to 
the learning data being randomly chosen, it is possible that an 
optimal ANN may not be completely representative of the 
entire database in regard to compound types. Hand-picking 
learn/validate/test sets may reduce the number of ANN’s that 
need to be built, however the accuracy of the ANN would be 
questionable without an enhanced selection technique. 

The architecture of the final predictive model (build set) 
consists of averaged results from the best five ANN’s from five 
nodes. Each node of the build set was subject to 75 trials, where 
each trial was an independent ANN. From each node, the best 
performing trial was selected based on the previously listed 
criteria. Averaging predictions across five ANN’s decreases the 
overall RMSE of the core data set. Because each ANN was 
trained with different learning data splits, each ANN tends to 
predict CN values slightly different than the others; either 
slightly higher or slightly lower than the desired CN for some 
molecules. When the predictions of five ANN’s are averaged, 
the average result tends to be closer to the desired CN, lowering 
the overall RMSE. A simulation diagram illustrating the 
construction of build sets is shown in Figure 3. 

Figure 3. Simulation diagram of the build set construction 
procedure 



RESULTS & DISCUSSION 

Cetane numbers for the seven furanic compounds included in 
this study were predicted using the core data set as inputs and 
the model architecture outlined above. Figure 4 depicts a parity 
plot of experimental CN versus predicted CN for all molecules 
using the core data set. The solid line indicates parity (perfect 
prediction) and the dashed lines specify the total RMSE of the 
model. Predictions for the core data are shown as crosses, while 
predictions for the furanic compounds are shown as solid 
circles. The overall RMSE of the model based on the core data 
set was 5.97 CN units, showing an improvement of 5.54% 
(0.35 CN units) over prior efforts.  It is apparent that some of 
the furanic compounds fall well outside the RMSE bounds of 
the model.  The average absolute error between predicted and 
experimental CN was 7.60 CN units for the model based on the 
core data set, well outside the RMSE of the model. The 
maximum absolute error was 18.78 CN units for 5,5'-(furan-2-
ylmethylene)bis(2-methylfuran). This relatively high overall 
error is due to the absence of furanic compounds in the core 
data set, and hence the absence of furanic compounds during 
the learning processes. The absence of furanic compounds in 
the learning processes limits the model’s accuracy in regards to 
predicting the cetane number of some furanic compounds.  

Next, an expanded data set was created by adding experimental 
results for six of the seven furanic compounds to the core data. 
The remaining furanic compound was then predicted using a 
new model based on the expanded data set. This was done to 
attain a “blind” prediction of the compound left out, as the 
predictive model had no exposure to this compound in during 
the learning processes. As motivated in the introduction, the 
inclusion of additional similar molecules to the input data set 
should improve the generalizability of the model to other 
furanic compounds. The descriptor reduction step shows that 
the retained descriptors used in the model do not change 
between the core and expanded databases. This also makes 
sense intuitively; with a core data set of 284 molecules, adding 
only six would not change the descriptors used to predict all 
290. A parity plot of experimental CN versus predicted CN for
a model based on the expanded data set is shown in Figure 5.

The total RMSE of the model improves slightly to 5.95 CN 
units.  More importantly, the average absolute error between 
experimental and predicted cetane numbers for the furanic 
compounds improved to 3.86 CN units, with a maximum 
absolute error of 7.52 CN units. This represents an 
improvement of 49.21% when using the expanded data set over 
the core data set. This validates the hypothesis that a targeted 
expansion of the input data set can extend the applicability of 
the model to new molecular classes. 

Figure 4. Parity plot of cetane numbers for all compounds in 
the core data set. Solid line indicates parity; dashed line 

indicates RMSE (5.97 CN units). 

A summary of the individual results for the furanic compounds 
included this study is shown in Table 3. It is worth noting that 
the error is defined as the magnitude of the difference between 
the predicted cetane number and the experimental cetane 
number. As defined by the expanded set’s RMSE (5.95), the 
desired tolerance is also equal to 5.95 CN units. It can be seen 
that all compounds improved when the model was based on the 
expanded data set. However, some molecules experienced a 
greater improvement in the predicted CN than others. 

Table 3. Summary of results for experimental and predicted CN 

Compound 
CN 

(Experimental) 
Predicted CN 

(raw database) 
Predicted CN  

(exp. database) 
Error 
(raw) 

Error 
(expanded) 

tetrahydrofuran 26.8 31.09 29.72 4.29 2.92 
2-methylfuran 8.30 4.00 4.41 4.30 3.89 
2-methyltetrahydrofuran 20.5 22.40 20.53 1.90 0.03 
5,5'-(furan-2-ylmethylene)bis(2-methylfuran) 25.5 6.72 17.98 18.78 7.52 
5,5'-((tetrahydrofuran-2-yl)methylene)bis(2-
methyltetrahydrofuran) 60.4 57.00 57.76 3.40 2.64 

tris(5-methylfuran-2-yl)methane 22.3 9.99 17.57 12.31 4.73 
tris(5-methyltetrahydrofuran-2-yl)methane 59.8 51.61 54.48 8.19 5.32 



Predictions for 5,5'-(furan-2-ylmethylene)bis(2-methylfuran) 
and tris(5-methylfuran-2-yl)methane were the most 
pronounced. 

Figure 5. Parity plot of cetane numbers for all compounds 
using the expanded data set. Solid line indicates parity; dashed 

line indicates RMSE (5.95 CN units). 

CONCLUSIONS 

Several furanic compounds were evaluated as potential 
alternative fuels for use in diesel engines.  Major conclusions 
include: 

• Two of the biofuel candidates posses CN’s in a suitable
range for use in traditional diesel engines. These
compounds are produced via hydrogenation of the furan
moieties in these 15 and 16-carbon containing compounds
to their tetrahydrofuranyl analogs, providing cetane
numbers of 60.4 and 59.8, respectively.

• Improvements in model architecture improved the overall
accuracy of CN predictions by 5.54% (0.35 CN units) over
prior efforts, with a total RMSE of 5.97 for the core data
set.

• The use of an expanded data set, based on a targeted
expansion of the input data to include similar molecules,
improved the predictive accuracy by 49.21%. This
represents an improvement in absolute error between
predicted and experimental CN from 7.60 CN units for the
core data set and 3.86 CN units for the expanded data set.

The results indicate that the current model is accurate and 
robust in predicting the CN of furanic molecules. 
Improvements in the overall RMSE of the model can be 
obtained through a few of the aforementioned approaches 
including elimination of questionable input data. Furthermore, 
the model can be confidently applied to other furanic 
compounds under consideration for use as alternative fuels.  

ACKNOWLEDGMENTS 

Alexis T. Bell acknowledges funding from the Energy 
Biosciences Institute (EBI), which is supported by BP. The 
authors would also like to acknowledge the National 
Renewable Energy Laboratory for their assistance in testing 
some of the furanic compounds and Juan Pablo Trelles at the 
University of Massachusetts Lowell for allowing the use of his 
computational cluster. 

REFERENCES 

[1] ASTM D613 Standard Test Method for Cetane Number
of Diesel Fuel Oil, ASTM International, West
Conshohocken, PA, 2015.

[2] ASTM D6890 Standard Test Method for Determination
of Ignition Delay and Derived Cetane Number (DCN) of
Diesel Fuel Oils by Combustion in a Constant Volume
Chamber, ASTM International, West Conshohocken,
PA, 2015.

[3] A.D.B. Yates, C.L. Viljoen, and A. Swarts,
“Understanding the Relation Between Cetane Number
and Combustion Bomb Ignition Delay Measurements.”
SAE Technical Paper 2004-01-2017, 2004.

[4] H. Yang, C. Fairbridge, and Z. Ring, “Neural Network
Prediction of Cetane Number for iso-Paraffins and
Diesel Fuel,” Petroleum Science and Technology, Vol.
19, No. 5–6, pp. 573-586, 2001.

[5] T.H. DeFries, R.V. Kastrup, and D. Indritz, “Prediction
of cetane number by group additivity and carbon-13
nuclear magnetic resonance,” Ind. Eng. Chem. Res., Vol.
26, pp. 188-193, 1987

[6] J. Taylor, R. McCormick, and W. Clark, “Report on the
relationship between molecular structure and
compression ignition fuels,” NREL Technical Report,
2004.

[7] E.A. Smolenskii, V.M. Bavykin, A.N. Ryzhov, O.L.
Slovokhotova, I.V. Chuvaeva, and A.L. Lapidus,
“Cetane numbers of hydrocarbons: calculations using
optimal topological indices,” Russian Chemical Bulletin,
Vol. 57, No. 3, pp. 461-467, 2008.

[8] B. Creton, C. Dartiguelongue, T. de Bruin, and H.
Toulhoat, “Prediction of the Cetane Number of Diesel
Compounds Using the Quantitative Structure Property
Relationship,” Energy & Fuels, Vol. 24, No. 10, pp.
5396–5403, 2010.

[9] D.A. Saldana, L. Starck, P. Mougin, B. Rousseau, L.
Pidol, N. Jeuland, and B. Creton, “Flash Point and



Cetane Number Predictions for Fuel Compounds Using 
Quantitative Structure Property Relationship (QSPR) 
Methods,” Energy & Fuels, Vol. 25, No. 9, pp. 3900–
3908, 2011. 

[10] T. Sennott, C. Gotianun, R. Serres, M. Ziabasharhagh,
J.H. Mack, and R.W. Dibble, “Artificial neural network
for predicting cetane number of biofuel candidates based
on molecular structure”, ASME 2013 Internal
Combustion Engine Division Fall Technical Conference,
2013.

[11] M.J. Climent, A. Corma, and S. Iborra, “Conversion of
biomass platform molecules into fuel additives and
liquid hydrocarbon fuels,” Green Chem., Vol. 16, pp.
516-547, 2014.

[12] S. Dutta, S. De, B. Saha, and Md.I. Alam, “Advances in
conversion of hemicellulosic biomass to furfural and
upgrade to biofuels,” Catal. Sci. Tech., Vol. 2, pp. 2025-
2036, 2012.

[13] D.M. Alonso, J.Q. Bond, and J.A. Dumesic, “Catalytic
conversion of biomass to biofuels,”  Green Chem., Vol.
12, pp. 1493-1513, 2010.

[14] A. Corma, O. de la Torre, and M. Renz, “Production of
high quality diesel from cellulose and hemicellulose by
the Sylvan process: catalysts and process variables,”
Energy Environ. Sci., Vol. 5, pp.6328-6344, 2012.

[15] M. Balakrishnan, E.R. Sacia, and A.T. Bell, “Syntheses
of Biodiesel Precursors: Sulfonic Acid Catalysts for
Condensation of Biomass-Derived Platform Molecules,”
ChemSusChem, Vol. 7, pp. 1078-1085, 2014.

[16] E.R. Sacia, M. Balakrishnan, and A.T. Bell, “Biomass
conversion to diesel via the etherification of furanyl
alcohols catalyzed by Amberlyst-15,” J. Catal., Vol. 313,
pp. 70-79, 2014.

[17] M. Balakrishnan, E.R. Sacia, and A.T. Bell, “Selective
Hydrogenation of Furan-Containing Condensation
Products as a Source of Biomass-Derived Diesel
Additives,” ChemSusChem, Vol. 7, pp. 2796-2800,
2014.

[18] J. Yanowitz, M.A. Ratcliff, R.L. McCormick, J.D.
Taylor, and M.J. Murphy, “Compendium of
Experimental Cetane Numbers,” NREL/TP-5400-61693,
2014.

[19] MarvinSketch, Version 15.10.19.0, 2015. ChemAxon
(http://www.chemaxon.com)

[20] C. G. C. T. and U. Services and W.-D. Ihlenfeldt,
“Online SMILES Translator and Structure File
Generator,” 2011. [Online]. Available:
http://cactus.nci.nih.gov/index.html.

[21] I. V Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D.
Livingstone, P. Ertl, V. a Palyulin, E. V Radchenko, N.
S. Zefirov, A. S. Makarenko, V. Y. Tanchuk, and V. V
Prokopenko, “Virtual computational chemistry
laboratory--design and description,” Journal of
computer-aided molecular design, Vol. 19, No. 6, pp.
453-63, 2005.

[22] R. Todeschini and V. Consonni, “Handbook of
molecular descriptors,” Weinheim: Wiley-VCH, 2000.

[23] O. Devinyak, D. Havrylyuk, and R. Lesyk, “3D-MoRSE
descriptors explained,” Journal of Molecular Graphics
and Modelling, Vol. 54, pp. 194-203, 2014.

[24] K. Levenberg, “A Method for The Solution of Certain
Nonlinear Problems in Least Squares,” The Quarterly of
Applied Mathematics, Vol. 2, No. 2, pp. 164-168, 1944.




