UC Berkeley
UC Berkeley Previously Published Works

Title
Intrinsic Interface Adsorption Drives Selectivity in Atomically Smooth Nanofluidic Channels

Permalink
https://escholarship.org/uc/item/3kv2948d

Journal
Nano Letters, 23(10)

ISSN
1530-6984

Authors

Helms, Phillip
Poggioli, Anthony R
Limmer, David T

Publication Date
2023-05-24

DOI
10.1021/acs.nanolett.3c00207

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/3kv2948c
https://escholarship.org
http://www.cdlib.org/

NANO... 5

Ho®

pubs.acs.org/NanoLett

Intrinsic Interface Adsorption Drives Selectivity in Atomically

Smooth Nanofluidic Channels

Phillip Helms, Anthony R. Poggioli, and David T. Limmer*

Cite This: Nano Lett. 2023, 23, 4226-4233

I: I Read Online

ACCESS |

[l Metrics & More

| Article Recommendations

ABSTRACT: Specific molecular interactions underlie unexpected and useful phenomena in
nanofluidic systems, but these require descriptions that go beyond traditional macroscopic
hydrodynamics. In this letter, we demonstrate how equilibrium molecular dynamics
simulations and linear response theory can be synthesized with hydrodynamics to provide
a comprehensive characterization of nanofluidic transport. Specifically, we study the pressure
driven flows of ionic solutions in nanochannels comprised of two-dimensional crystalline
substrates made from graphite and hexagonal boron nitride. While simple hydrodynamic
descriptions do not predict a streaming electrical current or salt selectivity in such simple
systems, we observe that both arise due to the intrinsic molecular interactions that act to
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selectively adsorb ions to the interface in the absence of a net surface charge. Notably, this
emergent selectivity indicates that these nanochannels can serve as desalination membranes.

KEYWORDS: nanofluidics, desalination, membranes, interfaces, hydrodynamics

Recent advances in nanoscale fabrication techniques have
enabled the synthesis of nanofluidic systems with novel
functionalities,' ™ with applications to biotechnology,* filtra-
tion,”” and computation.” ' For example, nanofluidics-based
membranes have leveraged atomic level details like those of
evolved biological membranes''™'® to circumvent traditional
trade-offs between permeability and selectivity that plague
membrane technology.'”~>* While continuum-level hydro-
dynamic descriptions can remain accurate at scales of a few
nanometers, enabling some general design principles to be
deduced, > *° the continued development of nanofluidic
devices is limited by a lack of understanding of emergent
interfacial effects which are resolutely molecular in origin. With
large surface to volume ratios, the properties of fluids confined
to nanometer scales are determined in large part by a delicate
interplay of interactions between the bounding surfaces and
the working fluid. To understand and design nanofluidic
devices, an approach that combines macroscopic and
molecular perspectives is necessary.”’

In this letter, we show how interfacial atomic structure
affects the directed transport of an electrolyte solution in
nanochannels made of atomically flat graphite (GR) and
hexagonal boron nitride (BN) walls using molecular dynamics
simulations unified with a contemporary perspective on
hydrodynamics. These simple systems have been studied
extensively because of their intriguing transport properties,
such as anomalously high permeabilities in GR,”***~*° and the
potential to incorporate selectivity for desalination or blue
energy applications.””*® By computing the spatially resolved
volumetric, charge, and species transport coefficients from
equilibrium correlations”’ ™" we elucidate the importance of
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molecular interactions on nanofluidic device functionality.
While from a continuum perspective, driving the solution with
a pressure gradient should result in salt filtration or electric
current only when the confining walls have a net charge, we
discover that the intrinsic interfacial adsorption of ions can
lead to streaming electrical currents and a novel, emergent
desalination mechanism.

We focus on the two systems illustrated in Figure 1(a),
consisting of an aqueous solution of potassium chloride
confined in nanochannels with walls of either BN or GR.
Because hydrodynamics are insensitive to solid dynamics for
stiff confining walls,>”*! as is consistent with observations that
water density profiles are insensitive to wall fluctuations® and
water—surface interactions are dominated by mean force
fluctuations,”® the walls are held fixed. Because of the
experimental similarity between the structure of BN and GR
lattices, we spaced atoms and lattice layers identically, with
interatomic and interlayer spacings of 1.42 and 3.38 A’>>**
Each wall has three layers, using AA” and AB stacking for BN
and GR, respectively, to match their equilibrium structures,
with lattice unit cells repeated 8 and 13 times in the x and y
directions for a cross-sectional surface area of nearly 9 nm?.
The walls were separated such that the spacing between the
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Figure 1. Description of the systems considered and resulting
equilibrium density distributions. (a) Snapshots respectively showing
the left and right halves of initial configurations of the boron nitride
and graphite nanochannels. The top images show the wall structure,
with each wall composed of three layers and the periodic unit cell
outlined in red. (b) Molecular species density distributions for
potassium (green), chloride (purple), and water (black) as a function
of position, normalized by bulk densities.

center of mass of the innermost wall layers was H & 5.7 nm,
with the channel width adjusted to ensure a bulk water density
of  ~ 1 g/cm®, computed via a temporal and spatial average
over the central 2 nm of the channels. The channels were filled
with N, 1920 TIP4P/2005 water molecules with r1§
geometries imposed using the SHAKE algorithm,
N+ =40 potassium ions, and Ng- =40 chloride ions,
resulting in a nearly 1 M electrolyte solution.

Previous work evaluating the friction of water on both BN
and GR found the predominate contribution was thermody-
namic in origin, characterized by the mean force fluctuations
between the liquid and solid (rather then how those force
correlations decay dynamically). Recent work has found that
the water density profiles, and thus mean force fluctuations, are
indistinguishable if the surfaces are allowed to fluctuate or
not.”” This is likely because both BN and GR are stiff lattices
and, as a consequence, we do not expect the freezing of the
lattices to impact our observations.

We evolved this system according to underdamped Langevin
dynamics

my, = (v, + Fi(l'N) + R;

1
where each particle i has mass m,, velocity v, and experiences a

friction ¢, with forcing from interparticle interactions E(r"),
and random noise R;. The random force is Gaussian with mean
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(R; o) = 0 and variance (R;,(t) Ry o (t')) = 2ksTC,6,8,,0 6(t —
t') for each Cartesian coordinate a, where kzT is Boltzmann’s
constant times temperature. Periodic boundary conditions
were imposed in all three spatial dimensions, with a vacuum
layer in the z direction of 5 nm to ensure no interaction
between periodic images of the channel. Intermolecular
Lennard-Jones forces were chosen from literature-reported
values to reproduce the solubility of ions in water and match
the ab initio eguﬂibrium fluid structure in BN and GR
nanochannels,””***® with Lorentz—Berthelot mixing rules
defining heteroatomic interactions. Additionally, water mole-
cules, charged ions, and the BN wall atoms interacted with
Coulomb potentials, where boron and nitrogen atoms have
charges of +1.05e, with e being the elementary charge, using an
Ewald summation as implemented in LAMMPS.> For all data
presented here, we performed S independent simulations, each
starting with an equilibration run for 5 ns with m,;/{; = 2 ps,
followed by a production run for 10—20 ns with m;/{; = 10 ns
at a temperature of 298 K. In all plots, lines represent averages
and shaded bands represent the standard deviation for the S
simulations. All scripts used to produce these results and the
raw data are openly available.”

Figure 1(b) shows the equilibrium particle number densities,
pi(z) for water, potassium, and chloride, with i = {w, K*, Cl7},
in the BN and GR channels, relative to their bulk values, p,. We
observe similar structures in both materials with interfacial
layering of water that is consistent with previous simulations of
neat water.””*® The distribution of ions near such interfaces is
known to be highly dependent on ion species, and the profiles
shown are consistent with previous simulations.”’ ~** A dense
layer of pure water accumulates near the wall, with the
molecules oriented such that they induce a small local negative
charge. The next layers are enriched in alternating concen-
trations of potassium and chloride ions, with depletion
(accumulation) of water molecules accompanying potassium
(chloride) enrichment. The two materials differ slightly, with a
higher water density in the first layer of BN resulting in
layering with higher amplitude in BN compared to GR, though
in both systems the layering in the density decays to its bulk
value for each species, p, within 1.5 nm.

We consider fluxes induced by a pressure differential, —AP,,
imposed electrostatic potential drop, —A®,, or water chemical
potential differential, —Ap,, with subscripts denoting applica-
tion in the x direction parallel to the walls, and limit ourselves
to small driving strengths. In this limit, linear response theory
dictates that induced local fluxes are linearly dependent on
driving forces

9(2)) (M My Mep|(-aPp,

X

i@ | = | Ma My Mp || AR
d(z) MdQ Md] Mip —Ap, (2)

where g(z) is the volumetric flow, j(z) is the charge flux, d(z)
is the excess water flux, and M_(z) are the spatially dependent
mobilities. The excess water flux d(z) represents the local
water flux relative to what would be predicted from the bulk
water density and the local total flux of water and ions, and it is
considered here because it is particularly relevant for
desalination. The diagonal elements of the mobility matrix
link a given forcing directly to its conjugate flux, e.g,, MI-] links

the potential drop, —A®,, directly to the induced charge flux,

https://doi.org/10.1021/acs.nanolett.3c00207
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j(z), while the off-diagonal elements are the so-called cross-
terms linking, for example, an induced charge flux to an applied
pressure differential. The total fluxes include the total
volumetric flow Q, charge flux J, and excess water flux D. We
index mobilities by the local induced flux a and total flux B
directly conjugate to a particular forcing.

The local fluxes are defined microscopically as

1z ) = 230 (1) 61z — z(0)]
N i=1
1 N
iz, t) = XZ ¢ v;(t) 8z — z(t)]
d(z, t) = Aiz ua(6) (5, — ) 61z — 2(1)]

©)

where particle i has velocity v, () and position z,(t) at time ¢
and a static charge of ¢, and 0§, is a Kronecker delta that
returns 1 if particle i is a water molecule and 0 otherwise. The

bulk water mole fraction is defined as f:; = Nvla/ NP, where N‘E

and N’ are respectively the average numbers of water
molecules and all molecules in the bulk and A, is the surface
area associated with the fluid—wall interface. The spatial
dependence can be integrated out by defining total fluxes, such

asQ=1/H fo "4z q(z), with analogous definitions for J and
D. Total channel conductivities can be evaluated as
L= 1/H/0H dz M_5(z), resulting in total flux linear

response relations such as
Q —.[,QQAPx - LQ]Aqu - ‘['QDA/‘,C . While the integrated
conductivities must obey Onsager reciprocal relations,
Ly = Lg,, mobilities are under no such constraint. It is
possible for M 5(z) # M, (2).

Rather than attempting to calculate mobilities directly via
nonequilibrium simulations, we use fluctuation—dissipation
relations in order to obtain transport coefficients from
equilibrium flux correlations.””~* This allows us to avoid
running separate nonequilibrium simulations for each term in
the mobility matrix, and ensures the validity of linear response.
We adopt the Einstein—Helfand approach over the Green—
Kubo method, as recent work has demonstrated its enhanced
statistical efficiency.”” Mobilities are obtained as the long time
slope of the correlation between time-integrated local and
global fluxes

Si=1

t
MaB = V 111'1’1 —KaB( )
ZkBT t— 00 t (4)
with the correlation function
t t
K = f dt’ f dt” {(a(z, t') B(t"))
0 0 (5)

volume V = AH, and brackets representing an equilibrium
average. Similarly, conductivities can be obtained using

correlations between global fluxes,
L= (V/2kgT) lim K,p5(t)/t with
t— oo

t ! t " ! "
KAB=/0 dr fo dt” (A(t) B(t")).
Previous work has demonstrated that while equilibrium
structures suggest minor differences between water in BN and

4228

GR nanochannels, the fluid dynamics are strikingly different.
This results in significant differences in friction at the fluid-wall
interface and thus channel permeabilities.”**>**** In the
presence of ions, the interfacial structure of water is altered and
as a consequence the friction may change. In Figure 2(a), we

a 6
NE 4 |
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40 - et velz) I
—_—
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c | 17
~ 209 °

o L 0 mim .
BN Gr

Figure 2. Comparison of the hydraulic conductivity and slip length
for the GR (black) and BN (blue) nanochannels. (a) Time-integrated
global flux correlation function Kg, versus time. (b) Comparison of
the slip lengths for both materials, computed from the hydraulic
conductivity (dark), against previously reported results for neat water
(light).”® The inset illustrates the geometric interpretation of the slip
length.

show the integrated global flux correlation function Kyq as a
function of time for both nanochannels. After approximately
200 ps, the correlation functions approach a linear dependence
on time and their slopes give the hydraulic conductivities as

L8N _ 18,0 + 9.2 mol nm® k]! ns~! and LI = 106 + 40
Q Q

mol nm® kJ™' ns™!, which differ by nearly an order of
magnitude.

While the hydraulic conductivities deduced above are
independent of a specific hydrodynamic model, they can be
connected to continuum theory through the slip length I. In
contrast to the no-slip condition typically applied in macro-
scopic contexts, which specifies that the fluid velocity vanishes
at the walls, the confinement and enhanced interfacial
importance in nanofluidic applications typically require the
finite-slip condition. This condition specifies that the velocity
at the wall is proportional to the shear strain at the wall, v, =
1,(0v,/0z)l,-. The slip length is interpreted geometrically as
the distance beyond the interface where the extrapolated flow
profile is zero, illustrated in Figure 2(b).

To apply a hydrodynamic interpretation, we consider only
the region where a hydrodynamic description is expected to be

https://doi.org/10.1021/acs.nanolett.3c00207
Nano Lett. 2023, 23, 4226—-4233
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valid by defining the effective hydrodynamic interface as the
location of the second water density peak in Figure 1(b).*® At
this distance, microscopic density correlations have decayed
and the fluid is well described as a continuous medium. The
Poiseuille solution for the hydraulic mobility in the presence of
a finite slip length is given by

1 2

2
thd s z z

2n

Myo(2) =

)
Hyq  Hyg  Hpg

(6)

where Hjq is the distance between hydrodynamic interfaces,
and 7 is the estimated viscosity of the solution. This expression
may be integrated to determine the hydraulic conductivity

[1 +6 L ]
Hyyq )

which allows us to relate the measured values of LQQ in GR

2
Hiyq
121

Log =

and BN to the corresponding slip lengths provided # is known.
Here, we use a viscosity of # = 1.0 mPa s, obtained by
interpolating literature values.”” Figure 2(b) indicates the

BNl — 40 +25nm and

resulting N

slip lengths,
lS[GR] =27 + 10nm, and compares them against reported
results for neat water.”® With the slip being approximately an
order of magnitude larger in GR than in BN nanochannels, it is
clear that the qualitative results do not change significantly
with the addition of salt. The material-dependency of I has
been observed in various contexts experimentally*>*°~ and is
understood to arise from a decoupling of structure and
dynamics, though the mechanism is debated.”**%>%*7%7!
Quantitatively, our simulations also suggest a decrease in slip
as salt is added, consistent with observations for slip on
hydrophobic surfaces, where increasing fluid—wall friction
results as a consequence of enhanced eqyuilibrium force
fluctuations from the heterogeneous solution.”*~"*

Detailed insight into the differences in transport character-
istics between these nanochannels can be obtained by
computing the spatially dependent hydraulic mobility using
eq 4. The results of this calculation are shown in Figure 3(a).
We also show the corresponding profiles calculated from eq 6
for comparison to the macroscopic theory. As expected for the
conductivity, we observe approximately an order of magnitude
difference between the peaks in the hydraulic mobilities in the
BN and GR nanochannels. The mobility profile is nearly flat
for GR and exhibits a slight curvature for BN, indicative of the
differences in slip. In the boundary region, the mobility profile
qualitatively mimics the fluid density profile with greater
(lesser) flux coinciding with density peaks (troughs).

We find that the molecular interfacial structure also affects
the cross-terms in the mobility matrix in eq 2. The streaming
mobility M;,, which quantifies the electrical current profile

produced by applying a pressure differential, is shown in Figure
3(b) for both systems. We observe the emergence of three
layers of electrical current of alternating sign near the fluid-wall
boundary, and no net current in the bulk. Because the applied
pressure produces particle flux in all regions, the alternating
current is caused by ion density localization at the interface,
with positive (negative) current where potassium (chloride)
ions are enriched. These interfacial effects decay away from the
wall more slowly than those observed with the hydraulic
mobility, with net charge flux penetrating into the hydro-
dynamic region defined by the hydraulic mobility. By
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Figure 3. Pressure-driven hydraulic (a), streaming (b), and excess
water (c) mobility profiles for BN (left, blue) and GR (right, black).
The red shaded regions demarcate areas where hydrodynamics are
invalid. (a) The red dashed curve corresponds to the hydrodynamic
estimate from the hydraulic conductivity. (b) and (c) The red dashed
curves are the mobility predictions from the product of the hydraulic
mobility and appropriate density.

integrating the mobility across the channel, we find that the
streaming conductivity £, is indistinguishable from zero for
both materials, indicating no net ionic transport. Though not
shown, our calculations verify the lack of symmetry between
cross-term mobilities, with M, being statistically zero at all

points in the channel, consistent with M, # M, while
maintaining LQ] = 'E]Q'
The pressure driven excess water mobility M, is shown in

Figure 3(c) as computed using eq 4. This quantity is related to
the desalination capabilities of a nanochannel, with its
magnitude determined by the channel’s selectivity and
permeability. This transport is summarized by the integrated
mobility, L5, with L5 > 0 corresponding to selective flux of

water through the channel. We find a positive integrated value
Lo > 0 for both materials, demonstrating water selectivity,

corresponding to salt rejection of approximately 25%, to be
illustrated later.

https://doi.org/10.1021/acs.nanolett.3c00207
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The spatial dependence of the cross-term mobility profiles
can be understood via a combination of microscopic and
macroscopic perspectives. The streaming mobility may be
evaluated microscopically as a product of density profiles and
the hydraulic mobility. For the streaming mobility this is

M@ = @) — pr(@IN/p () M@V ()
where pi(z) = py(2) + px(2) + per(z). Though a common
decomposition in macroscopic hydrodynamics, this is a
nontrivial statement when considering the microscopic
mobilities. The red dashed line in Figure 3(b) shows this
estimate agrees well with estimate using eq 4. The same
functional decomposition holds for excess water flux, obtained
from the product of the hydraulic mobility and excess water

density
Mig(®) = (,(2) /() = 7,/7) Mg ON/V (9)

This decomposition is shown in the red dashed line in Figure
3(c). Both of these decompositions follow directly from the
Langevin equations of motion. While the excess water
mobilities for both materials are qualitatively similar because
of their similar density and hydraulic mobility profiles, the
quantitative difference arises due to the differences in
magnitude of the hydraulic conductivity. The first contact
layer is nearly salt-free, so while interfacial friction slows
pressure driven transport, the high water purity gives a large
peak in excess water mobility. There is a second excess water
mobility peak near the second water density peak. The
enrichment and depletion of chloride and potassium,
respectively, brings the overall salt density close to its bulk
value and leaves an excess concentration of water where the
hydraulic mobility also peaks.

The molecular dynamics calculations suggest that the
transport properties of the nanochannel can be decomposed
as a sum of a molecular interfacial component, and a
continuum bulk component. The interfacial component
depends sensitively on specific molecular interactions as they
manifest in nonuniform density profiles. Beyond the domain of
those density correlations, which for these channels extend
around 2 nm into the channel, the transport is well described
by Poiseuille flow with a large slip length. This decomposition
allows us to infer the height dependence of the channel’s
selectivity and permeability. We can calculate the size
dependent conductivity using an integrated mobility

Lyo(H) = Z/OH/2 dz MqQ(z) /H, where we employ inver-

sion symmetry to integrate over only half of the channel. These
conductivities are shown for in Figure 4(a) normalized against

(GR]
Lag

would lead to overlapping interfacial regions, for which our
decomposition is likely invalidated. This boundary is larger
than the hydrodynamic region shown in Figure 2 because
interfacial effects on ion density extend into the expected
hydrodynamic region. Because the hydraulic mobility profile is
nearly flat in the hydrodynamic region, which is expected when
l; > Hyy4/6, the permeability increases linearly with channel
height, which is slower than anticipated from traditional
hydrodynamics with no slip.

A similar approach can be used to compute the dependency
of the water selectivity on the height of the channel. To
compute the selectivity, we first can determine a pressure
driven salt mobility

. The red regions in Figure 4 indicate system sizes which

4230

H/nm

Figure 4. Estimates of (a) hydraulic conductivity and (b) water
selectivity in simple GR (black) and BN (blue) nanochannels versus
channel height H. Red shaded regions indicate channel heights where
boundary effects from confining walls interact, meaning our estimate
is most reliable for H 2 2 nm. The normalization factors used are

L5 =106 + 40 mol nm® k™ ns™ and f_ = 0.04.

Mo (2) = [pe(2) + po(2)IN/p (2) Mo (2) V(1)

The ratio of salt to total particle flux as a function of channel
height is obtained as

H/2
/0 dz My (2)
N H/2
V ‘/0' dZ Ml]Q(Z)

fsalt (H) =
(11)

which is shown in Figure 4(b) normalized against the overall
number fraction of ions in the bulk, -Zalt = (ﬁK+ + ﬁcr)/ Dot

This provides a direct measurement of the size dependence of
the nanochannel selectivity. Consistent with the inference from
the excess water mobility, the salt flux is suppressed relative to
its expected value from the bulk concentration of ions and the
total channel conductivity. We find that BN and GR
nanochannels have effectively identical selectivities, primarily
because of their similar equilibrium fluid density distributions
and qualitatively similar hydraulic mobility profiles. For the
nanochannel size and ion concentrations considered here, the
flux of salt ions is reduced by approximately 25%, while
shrinking the nanochannel until interfacial regions overlap at
around 2 nm could provide a reduction of around 50%. Due to
the intrinsic interfacial absorption of ions to the interface and
their resultant suppressed mobility, as the nanochannel size is
decreased its selectivity is enhanced. An optimal desalination
device must separate ions from water with both high selectivity
as well as high permeability, and these phenomenological
channel scaling observations suggests that for both BN and GR
this optimum is between 2 and S nm.

This mechanism of selective transport, and the ability of the
channel to separate salt from water, is a result of an interplay
between local molecular interactions that drive ions to the
fluid—solid boundary in the absence of a net surface charge of

https://doi.org/10.1021/acs.nanolett.3c00207
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the substrate. These molecular interfacial features established a
nonuniform fluid composition across the channel that, when
combined with a spatially resolved evaluation of the hydraulic
mobilities, provide a complete description of the transport
within the nanochannel. The promise of this mechanism for
desalination technology is strikingly enhanced when this water
selectivity is coupled with the anomalously high permeability
of GR nanochannels. This framework is general and can be
used to understand and engineer other functionality in
nanofluidic systems. Employing recent generalizations of
response theory,””~”” our approach could be extended outside
the regime of linear response to provide insight into
performance at high driving strengths and between multiple
driving forces.
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