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Stochastic modeling of a serial killer

M.V. Simkin and V.P. Roychowdhury
Department of Electrical Engineering, University of California, Los Angeles, CA 90095-1594

Abstract

We analyze the time pattern of the activity of a serial killer, who during twelve years had

murdered 53 people. The plot of the cumulative number of murders as a function of time is of

“Devil’s staircase” type. The distribution of the intervals between murders (step length) follows a

power law with the exponent of 1.4. We propose a model according to which the serial killer

commits murders when neuronal excitation in his brain exceeds certain threshold. We model this

neural activity as a branching process, which in turn is approximated by a random walk. As the

distribution of the random walk return times is a power law with the exponent 1.5, the distribution

of the inter-murder intervals is thus explained. We illustrate analytical results by numerical

simulation. Time pattern activity data from two other serial killers further substantiate our

analysis.
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Figure 1 shows a time-plot of the cumulative number of murders committed by Andrei

Chikatilo [1] during his twelve-year activity. It is highly irregular with long time intervals

without murder interrupted by jumps, when he murdered many people during a short period.

Such a curve is known in mathematics as a “Devil’s staircase” [2]. We can characterize the

staircase by the distributions of step lengths. Figure 2 shows such distributions for the

staircase of Figure 1 in log-log coordinates. A linear fit shows that the exponent of the

power law of the probability density distribution (in the region of more than 16 days) is 1.4.

Recently Osorio et al [3] reported a similar power-law distribution (with the exponent 1.5)

of the intervals between epileptic seizures. Soon afterward they proposed [4] a self-

organized critical model of epileptic seizures. They performed numerical simulations of

their model and reproduced a power-law distribution of inter-seizure intervals. Almost

simultaneously we proposed a stochastic neural network model of epileptic seizures [5],

which was very similar to that of Osorio et al [4]. Unlike them, however, we solved our
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model analytically. Here we apply a similar model to explain the distribution of intervals

between murders.

The Model

We make a hypothesis that, similar to epileptic seizures, the condition, causing a serial killer

to commit murder, arise from the simultaneous firing of large number of neurons in the

brain. Our neural net model for epileptics [5] and serial killers is as follows. After a neuron

has fired, it cannot fire again for a time interval known as the refractory period. Therefore,

the minimum interval between the two subsequent firings of a neuron is the sum of spike

duration and refractory period. This interval is few milliseconds and we will use it as our

time unit. Consider one particular firing neuron. Its axon connects to synapses of thousands

of other neurons. Some of them are almost ready to fire: their membrane potential is close to

the firing threshold and the impulse from our neuron will be sufficient to surpass this

threshold. These neurons will be firing at the next time step and they can be called

“children” of our neuron in the language of the theory of branching processes [6]. Since the

number of neurons connected to a given neuron is large and since each firing neuron will

independently induce the firing of each of the neurons connected to it with a small

probability, the number of firings induced by one firing neuron is binomially distributed

with a large number of trials and a small success probability, which can be approximated by

a Poisson random variable. In addition to induced firings, some neurons will fire

spontaneously. We assume that the number of spontaneously firing neurons at each time

step comes from a Poisson distribution with mean p.

Let us introduce the following random variables:

Xn := number of firing neurons at time n

Yn := number of spontaneously firing neurons at time n

Zn,j := number of firings induced by the jth firing neuron at time n.

Then, the process (Xn) defines a discrete-time Markov chain which we obtain by assuming

that the two collections of random variables Yn and Zn,j are collections of independent

Poisson random variables with mean p and λ, respectively, and by setting

The above equation can be rewritten as (here E (…) denotes the expectation value)

(1)

In the limit of large Xn we can apply the Central Limit Theorem and get

(2)
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where ⇒ means convergence in distribution and N(0, λ)is normal distribution with mean 0

and variance λ. By substituting Eq.(2) into Eq.(1) and noting that E (Zn,1 +⋯+ Zn, Xn)= λ Xn

and E(Yn+1)=p we obtain that in the limit of large Xn

(3)

where z(0, λ) is a normal random variable with mean 0 and variance λ. We can rewrite Eq.

(3) as

(4)

The number of firing neurons, X, performs a random walk, with the size of the step

proportional to . We can simplify Eq.(4) by changing variable from X to . We

get [5]:

(5)

Whenλ =1, the first term disappears. In the limit of large x, we can neglect the second term,

since it is inversely proportional to x. Equation (5) reduces to Δx = 1 2 z which means that

 performs a symmetric Gaussian random walk. A well known problem in random walk

theory [7] is that of first return times. That is if the random walk is at point x, after how

many steps it will return back to x for the first time. A well known result is that the

distribution of first return times follows a power law with an exponent of 3/2 [7]. We

assume that the killer commits murder when the number of firing neurons reaches certain

threshold. Then the distribution of first returns into murder zone (inter-murder intervals) is

the same as the distribution of random walk’s return times.

The model needs to be a bit more complex. We cannot expect that the killer commits murder

right at the moment when neural excitation reaches a certain threshold. He needs time to

plan and prepare his crime. So we assume that he commits a murder after the neural

excitation was over the threshold for a certain period d. Another assumption that we make is

that a murder exercises a sedative effect on the killer, causing the number of excited neurons

to fall to the threshold. If we do not make this last assumption, the neural excitation will be

in the murder zone for half of the time.

Numerical Simulations

We made numerical simulations of the above model. We set λ = 1which corresponds to the

critical branching process in neuron firing. This selection is not arbitrary since some

experiments [8] suggest that neural circuits operate in critical regime. There are also

theoretical reasons to believe that the brain functions in a critical state [9]. The system was

simulated for 2 × 1011 time steps. Remember that time step is the sum of firing duration and

refractory period.
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A reasonable estimate for this is two milliseconds. Thus, our simulation run corresponds to

about twelve years. The rate of spontaneous firing was set at p = 0.1. We set the intensity

threshold at 109 firing neurons. We set the time threshold, d, at 24 hours. Figures 2–3 show

the results of these simulations. They qualitatively agree with the experimental data.

The major disagreement is probably that the actual minimum number of days between

murders is three, while the simulation produces a dozen inter-murder periods of one day.

One could enhance the model by introducing a murder success rate. That is, with certain

probability everything goes well for the killer and he is able to commit the murder as he

planned. If not, he repeats his attempt the next day. And so on. One could surely obtain a

better agreement with experimental data, but this would be achieved by the price of

introducing an extra parameter into the model.

Discussion

To our knowledge, the only previous mathematical study of the time patterns of serial killers

is that by Lange [10]. He used a polynomial map to express the (n+1)th inter-murder interval

through nth and (n-1)th intervals. Afterward he used regression to find the coefficients of the

polynomial that will maximize the correlation coefficient between the actual time series of

intermurder intervals and the time series obtained using the polynomial map. However,

Lange did not propose any plausible mechanism to justify his model.

The random-walk models have already been used in Psychology to model human behavior

[11]. However, those models deal with a choice between several opportunities, not with

intervals between events. The connection between the present research and those earlier

models may be worthy of investigation in the future.

An interesting question to ask is how the probability to commit a new murder depends on

the time passed since the last murder. Suppose the killer committed his last murder n days

ago. From the random-walk approximation, we immediately get that the probability to

commit a murder today is equal to . Figure 4 shows this curve together

with the actual data. The actual murder probability on the nth day after previous murder is

computed the following way. The number of instances, when there had been no murder for n

−1 days is the total number of murders that happened on nth or later day after the previous

one. Thus the murder frequency on the nth day is the ratio of the number of murders, which

happened exactly on nth day to the number of murders that happened on nth or later day. To

estimate the probabilities we average these frequencies over corresponding bins. There is at

least a qualitative agreement between theory and observation. In particular, the probability

of a new murder is significantly higher than the average murder rate immediately after

murder and is significantly lower than the average murder rate when long time has passed

since the last murder.

Looking at Figure 1(b) one can notice a cusp near 100-day inter-murder interval. This may

suggest that there is a characteristic time scale in the distribution. In one of their experiments

with rats Osorio et al [4] have found a characteristic time scale mixed in with a scale-free
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behavior in the distribution of inter-seizure intervals. However in our case this is most likely

a statistical fluctuation due to smallness of the sample.

Murder patterns of other serial killers are similar to that of Chikatilo. Figures 5 and 6 show

the cumulative number of murders committed by Yang Xinhai [12] and Moses Sithole [13].

One obvious difference of Yang Xinhai’s staircase from Chikatilo’s staircase is the higher

step heights: Yang Xinhai killed up to five people at a time. The distribution of step length,

however, is very similar as one can see from Figure 7. One noticeable difference with the

Chikatilo case is that we see two-day intervals between murders for Yang Xinhai and one-

day intervals for Moses Sithole. This, however, does not imply any real difference in murder

patterns but is most likely due to chance: no killer committed enough murders to accumulate

accurate intervals statistics. This is also obvious from how scattered the plots in Figure 2 and

7 look. We can partially overcome this problem by combining intervals from all three

killers. Figure 8 shows such plot. As one can see, it is far less scattered than the other plots,

although a strong deviation from a power law for short inter-murder intervals remains.
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Highlights

• Serial killers’ inter-murder intervals follow a power law with an exponent of

~1.5

• We hypothesize that they murder when neuronal excitation exceeds a threshold

• We model this neural activity as a branching process

• Simulations of our model agree with experimental data
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Figure 1.
Chikatilo’s staircase shows how the total number of his murders grew with time. The time

span begins with his first murder on 12/22/1978 and ends with his arrest on 10/20/1990. The

shortest interval between murders was three days and the longest − 986 days. The murder

dates were determined based on the date on disappearance of the person in question.
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Figure 2.
Distribution of step length (intervals between murders) in Zipfian (a) and probability density

(b) representations.
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Figure 3.
Results of numerical simulation of the stochastic serial killer model. The distribution of step

length is shown in Figure 2.

Simkin and Roychowdhury Page 9

J Theor Biol. Author manuscript; available in PMC 2015 August 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
Daily murder probability as a function of the number of days passed since the last murder.

The average murder rate is the total number of murders committed by Chikatilo divided by

the length of the period during which he committed those murders.
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Figure 5.
Cumulative number of murders committed by Yang Xinhai.
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Figure 6.
Cumulative number of murders committed by Moses Sithole.
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Figure 7.
Probability distribution of inter-murder intervals for Yang Xinhai (a) and Moses Sithole (b).
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Figure 8.
Probability distribution of combined inter-murder intervals for Andrei Chikatilo, Yang

Xinhai, and Moses Sithole.
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