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ABSTRACT OF THE DISSERTATION

Improving Statistical Rigor in Single-cell and Spatial Omics

by

Dongyuan Song

Doctor of Philosophy in Bioinformatics

University of California, Los Angeles, 2024

Professor Jingyi Li, Chair

The recent technological revolution in single-cell and spatial omics has provided unprece-

dented multi-modal views of individual cells, transforming our understanding of cell biology

in health and disease. Numerous computational methods have been developed to analyze

data generated from these technologies. However, the statistical rigor of existing computa-

tional methods is often questionable: many computational methods are complicated “black-

box” algorithms (e.g., deep-learning-based methods). Therefore, it remains challenging to

obtain correct statistical interpretation (e.g., well-calibrated p-values), and to avoid misin-

terpretation of observed data (e.g., exaggerated false discoveries). Due to the existence of

numerous methods, the field crucially needs precise, statistically robust, and interpretable

methods. During my Ph.D., I have been focusing on combining statistics and computational

biology to provide accurate statistical interpretation to computational analyses in single-cell

and spatial omics. This dissertation aims to address this statistical rigor issue through three

main themes.

My first theme concentrates on the probabilistic generative models for high-dimensional

single-cell and spatial multi-omics data. The realistic simulation of single-cell and spatial

multi-omics data plays a critical role in both evaluating the performance of computational

tools and facilitating the exploration of experimental designs. However, the complex topology

of cells and the high-dimension features pose significant challenges to this endeavor. To

overcome this challenge, I developed scDesign3, the first unified framework for realistic in
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silico data generation of both single-cell and spatial omics [1].

My second theme focuses on differential expression (DE) tests and false discovery rate

(FDR) control based on inferred covariates. Identifying differentially expressed (DE) genes

between or between cell states is a crucial task in investigating the underlying molecular

mechanisms in cells. However, in single-cell RNA sequencing (scRNA-seq) analysis, the

latent cell states are usually inferred from the data (e.g., inferred cell types by cluster-

ing or continuous trajectories by pseudotime inference). Therefore, conventional statistical

tests can behave incorrectly if we ignore the fact that the covariates are inferred rather than

observed. Hence, I developed PseudotimeDE, a robust DE method that accounts for pseudo-

time inference uncertainty and yields well-calibrated p-values [2]. Separately, post-clustering

DE was another related issue that drew our attention. This two-step procedure uses the

same data twice: once to define cell clusters as potential cell types, and then to identify DE

genes as potential cell-type marker genes. This practice, often known as “double dipping,”

can lead to the erroneous identification of false-positive cell-type marker genes, particularly

when the cell clusters themselves are not well-defined. To overcome this challenge, I pro-

posed ClusterDE, a post-clustering DE method for controlling the FDR of identified DE

genes regardless of the clustering quality by using “synthetic null data” [3].

My third theme aims at feature selection and subsampling in large-scale scRNA-seq

data. The large number of genes („20,000) and increasing number of measured cells (ą 1

million) in scRNA-seq datasets remain a challenge for data analysis. A practical solution to

this computational bottleneck involves the strategic selection of a subset of cells or genes.

We developed scSampler, a fast diversity-preserving cell subsampling inspired by space-

filling design in the field of experimental design [4]. scSampler selects a small subset of

cells to accurately represent the primary variability in the entire dataset. In addition, we

developed scPNMF, an unsupervised gene selection method through matrix factorization

[5]. This method effectively selects a significantly smaller subset of genes („100) while still

achieving robust discrimination in cell-type identification. We developed scGTM, a flexible

and interpretable model that captures the trend of gene expression along the pseudotime of

cells to select genes with specific expression patterns [6].
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CHAPTER 1

Introduction

The single-cell and spatial omics technologies are at the forefront of biotechnology, offering

unprecedented insights into complex biological systems. In the history of technology devel-

opment, the first attempt is single-cell RNA sequencing (scRNA-seq), which measures the

whole transcriptomic profiles of each individual cell [7, 8]. At the same time, new tech-

nologies are developed for measuring other types of omics at single-cell resolution, such as

single-cell chromatin accessibility (e.g., scATAC-seq [9] and sci-ATAC-seq [10]), single-cell

DNA methylation [11] and single-cell protein abundance (e.g., single-cell mass cytometry

[12]). Moreover, to provide a comprehensive view of cellular function and regulation, single-

cell multi-omics technologies are invented to simultaneously measure more than one feature

modality, such as SNARE-seq (gene expression plus chromatin accessibility) [13] and CITE-

seq (gene expression plus surface protein abundance) [14]. In addition, spatial omics takes

this a step further by not only measuring omics features of individual cells but also preserv-

ing the spatial locations of these cells within tissues at different levels of resolutions (e.g.,

10x Visium [15], Slide-seq [16], Slide-seq V2 [17], and MERFISH [18]).

The rapid development of various experimental technologies has led to the explosion of

computational tools; thousands of methods have been developed to address different analytic

tasks [19]. Some representative tasks include cell clustering to identify discrete cell types or

states [20], trajectory inference to model continuous transitions [21], and differential expres-

sion analysis for detecting statistically significant gene changes [22]. One challenge in the

current field is the lack of statistical rigor. First, it remains unclear how we should simulate

single-cell and spatial omics data to check and benchmark existing computational methods

from different statistical perspectives. Second, the statistical interpretation of differential
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gene analysis is often questionable, such as invalid p-values and exaggerated false discovery

rate (FDR). Lastly, the increasing number of measured cells in newer single-cell datasets

greatly increases computational time, making many existing computational methods not

scalable.

This dissertation will focus on my contribution to improving the statistical rigor in single-

cell and spatial omics during my doctoral studies. We selected three representative publica-

tions as the solutions to the above three challenges. We first discussed the use of scDesign3 to

generate realistic in silico data with a unified statistical framework. Next, we discuss the use

of PseudotimeDE to generate well-calibrated p values of differential expression tests in tra-

jectory analysis. Lastly, we discussed the use of scSampler for large-scale data subsampling

to accelerate downstream analysis.

1.1 scDesign3: generation of realistic in silico data for multimodal

single-cell and spatial omics

In the single-cell and spatial omics field, computational challenges include method bench-

marking, data interpretation, and in silico data generation. To address these challenges,

in Chapter 2, we propose an all-in-one statistical simulator, scDesign3, to generate realistic

single-cell and spatial omics data, including various cell states, experimental designs, and

feature modalities, by learning interpretable parameters from real datasets. Furthermore,

using a unified probabilistic model for single-cell and spatial omics data, scDesign3 can in-

fer biologically meaningful parameters, assess the goodness-of-fit of inferred cell clusters,

trajectories, and spatial locations, and generate in silico negative and positive controls for

benchmarking computational tools.
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1.2 PseudotimeDE: inference of differential gene expression along

cell pseudotime with well-calibrated p-values from single-cell

RNA sequencing data

To investigate the molecular mechanisms underlying cell state changes, a crucial analysis is

to identify differentially expressed (DE) genes along the pseudotime inferred from single-cell

RNA-sequencing data. However, existing methods do not account for pseudotime infer-

ence uncertainty, and they have either ill-posed p-values or restrictive models. In Chap-

ter 3, we propose PseudotimeDE, a DE gene identification method that adapts to various

pseudotime inference methods, accounts for pseudotime inference uncertainty, and produces

well-calibrated p-values. Comprehensive simulations and real-data applications verify that

PseudotimeDE outperforms existing methods in false discovery rate control and power.

1.3 scSampler: fast diversity-preserving subsampling of large-scale

single-cell transcriptomic data

The number of cells measured in single-cell transcriptomic data has grown rapidly in recent

years. For such large-scale data, subsampling is a powerful and often necessary tool for

exploratory data analysis. However, the easiest random subsampling is not ideal from the

perspective of preserving rare cell types. Therefore, diversity-preserving subsampling is re-

quired for a fast exploration of cell types in a large-scale dataset. In Chapter 4, we propose

scSampler, an algorithm for fast diversity-preserving subsampling of single-cell transcrip-

tomic data. Using simulated and real data, we show that scSampler consistently outperforms

existing subsampling methods in terms of both the computational time and the Hausdorff

distance between the full and subsampled datasets.
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1.4 Summary

During my doctoral study, I developed the aforementioned computational methods that aim

to improve the statistical rigor and computational speed in single-cell and spatial omics. The

details of these projects will be described in Chapter 2–4 of this dissertation.
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CHAPTER 2

scDesign3: generation of realistic in silico data for

multimodal single-cell and spatial omics

2.1 Introduction

Single-cell and spatial omics technologies have provided unprecedented multi-modal views

of individual cells. As the earliest single-cell technologies, single-cell RNA-seq (scRNA-seq)

enabled the measurement of transcriptome-wide gene expression levels and the discovery

of novel cell types and continuous cell trajectories [7, 23]. Later, other single-cell omics

technologies were developed to measure additional molecular feature modalities, including

single-cell chromatin accessibility (e.g., scATAC-seq [9] and sci-ATAC-seq [10]), single-cell

DNA methylation [11], and single-cell protein abundance (e.g., single-cell mass cytometry

[12]). More recently, single-cell multi-omics technologies were invented to simultaneously

measure more than one feature modality, such as SNARE-seq (gene expression and chromatin

accessibility) [13] and CITE-seq (gene expression and surface protein abundance) [14]. In

parallel to single-cell omics, spatial transcriptomics technologies were advanced to profile

gene expression levels with spatial location information of cell neighborhoods (i.e., multi-

cell resolution; e.g., 10x Visium [15] and Slide-seq [16]), individual cells (i.e., single-cell

resolution; e.g., Slide-seqV2 [17]), or sub-cellular components (i.e., sub-cellular resolution;

e.g., MERFISH [18]).

Thousands of computational methods have been developed to analyze single-cell and

spatial omics data for various tasks [24], making method benchmarking a pressing challenge

for method developers and users. Fair benchmarking relies on comprehensive evaluation

metrics that reflect real data analytical goals; however, meaningful metrics usually require
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ground truths that are rarely available in real data. (For example, most real datasets contain

“cell types” obtained by cell clustering and manual annotation without external validation;

using such “cell types” as ground truths would biasedly favor the clustering method used in

the original study.) Therefore, fair benchmarking demands in silico data that contain ground

truths and mimic real data, calling for realistic simulators.

The demand for realistic simulators motivated two recent benchmark studies, in which 12

and 16 scRNA-seq simulators were evaluated [25, 26]. Due to the complexity of scRNA-seq

data, these benchmarked simulators all require training on real scRNA-seq data, and they

are more realistic than the de novo simulators that use no real data but generate synthetic

data from theoretical models [26].

Although the benchmark studies found that the simulators scDesign2 [27], ZINB-WaVE

[28], and muscat [29] can generate realistic scRNA-seq data from discrete cell types [25, 26],

few simulators can generate realistic scRNA-seq data from continuous cell trajectories by

mimicking real data [26, 30–33]. Moreover, realistic simulators are lacking for single-cell

omics other than scRNA-seq, not to mention single-cell multi-omics and spatial transcrip-

tomics. (To our knowledge, simATAC is the only scATAC-seq simulator that learns from

real data, but it can only generate discrete cell types [34].) Hence, a large gap exists between

the diverse benchmarking needs and the limited functionalities of existing simulators.

To fill in the gap, we introduce scDesign3, a realistic and most versatile simulator to date.

As Fig. 2.1a shows, scDesign3 can generate realistic synthetic data from diverse settings,

including cell latent structures (discrete cell types and continuous cell trajectories), feature

modalities (e.g., gene expression, chromatin accessibility, methylation, protein abundance,

and multi-omics), spatial locations, and experimental designs (batches and conditions). Note

that the predecessor scDesign2 is a special case of scDesign3 for generating scRNA-seq data

from discrete cell types; a detailed comparison of scDesign3 with the previous two versions is

in Table 2.1. To our knowledge, scDesign3 offers the first probabilistic model that unifies the

generation and inference for single-cell and spatial omics data. Equipped with interpretable

parameters and a model likelihood, scDesign3 is beyond a versatile simulator and has unique

advantages for generating customized in silico data, which can serve as negative and positive
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controls for computational analysis, and for assessing the goodness-of-fit of inferred cell

clusters, trajectories, and spatial locations in an unsupervised way (Fig. 2.2a).

2.2 scDesign3 methodology

2.2.1 Mathematical notations of scDesign3’s training data

The training data of scDesign3 contain three matrices: a cell-by-feature matrix (e.g., features

are genes or chromatin regions), a cell-by-state-covariate matrix (e.g., cell-state covariates

include the cell type, pseudotime, or spatial coordinate), and an optional cell-by-design-

covariate matrix (e.g., design covariates include the batch or condition).

Mathematically, first, we denote by Y “ rYijs P Rnˆm the cell-by-feature matrix with n

cells as rows, m features as columns, and Yij as the measurement of feature j in cell i. For

single-cell sequencing data, Y is often a count matrix (i.e., Y P Nnˆm, with Yij indicating the

read or unique molecular identifier (UMI) count of feature j in cell i); then the sequencing

depth (i.e., the total number of reads or UMIs) is N “
řn

i“1

řm
j“1 Yij.

Second, we denote by X “ rx1, ¨ ¨ ¨ ,xnsT P Rnˆp the cell-by-state-covariate matrix with

n cells as rows and p cell-state covariates as columns. In X, the i-th row xi P Rp is cell i’s

state covariate vector. Typical cell-state covariates include the cell type (p “ 1 categorical

variable), the cell pseudotime in p lineage trajectories (p continuous variables), and the 2-

or 3-dimensional cell spatial locations (p “ 2 or 3 continuous variables).

Third, we denote by Z “ rz1, ¨ ¨ ¨ , znsT P Rnˆq the cell-by-design-covariate matrix with

n cells as rows and q design covariates as columns. In Z, the i-th row zi P Rq is cell i’s

design covariate vector. Example design covariates are categorical variables such as the

batch and condition. Note that Z is optional: it is not required if cells are from a single

condition and measured in a single batch. To simplify the discussion, in the following text,

we write Z “ rb, cs, where b “ pb1, . . . , bnqT has bi P t1, . . . , Bu representing cell i’s batch,

and c “ pc1, . . . , cnqT has ci P t1, . . . , Cu representing cell i’s condition.
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2.2.2 Modeling features’ marginal distributions

For each feature j “ 1, . . . ,m in every cell i “ 1, . . . , n, the measurement Yij—conditional

on cell i’s state covariates xi and design covariates zi “ pbi, ciq
T—is assumed to follow a

distribution Fjp¨ | xi, zi ; µij, σij, pijq, which is specified as the generalized additive model

for location, scale and shape (GAMLSS) [35] (i.e., the distribution family Fj depends on

feature j only, but the parameters µij, σij, and pij depend on both feature j and cell i):
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Yij | xi, zi
ind
„ Fjp¨ | xi, zi ; µij, σij, pijq

θjpµijq “ αj0 ` αjbi ` αjci ` fjcipxiq

logpσijq “ βj0 ` βjbi ` βjci ` gjcipxiq

logitppijq “ γj0 ` γjbi ` γjci ` hjcipxiq

, (1)

where θjp¨q denotes feature j’s specific link function of the mean parameter µij, depending

on Fj (Table 2.3); σij denotes the scale parameter (e.g., standard deviation or dispersion);

pij denotes the zero-inflation proportion parameter. Note that µij, σij, and pij do not

always co-exist, depending on the form of Fj (Table 2.3). To ensure model identifiability,

for j “ 1, . . . ,m, we set αjbi “ βjbi “ γjbi “ 0 when bi “ 1 and αjci “ βjci “ γjci “ 0 when

ci “ 1.

θjpµijq is assumed to have feature j’s specific intercept αj0, batch bi’s effect αjbi (specific

to feature j), condition ci’s effect αjci (specific to feature j), and cell-state covariates xi’s

effect fjcipxiq (specific to feature j and condition ci).

logpσijq is assumed to have feature j’s specific intercept βj0, batch bi’s effect βjbi (specific

to feature j), condition ci’s effect βjci (specific to feature j), and cell-state covariates xi’s

effect gjcipxiq (specific to feature j and condition ci).

logitppijq is assumed to have feature j’s specific intercept γj0, batch bi’s effect γjbi (specific

to feature j), condition ci’s effect γjci (specific to feature j), and cell-state covariates xi’s

effect hjcipxiq (specific to feature j and condition ci).

For θjpµijq, logpσijq, and logitppijq, the interaction effects are considered between the
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condition and cell-state covariates, but not between the batch and cell-state covariates. This

modeling choice is made based on empirical observations and the simplicity preference [36].

Note that if only the mean parameter µij is assumed to depend on the state covariates xi,

batch bi, and condition ci, then the GAMLSS degenerates to a generalized additive model

(GAM) [37].

Depending on the modality of feature j (e.g., a gene’s UMI count), scDesign3 specifies Fj

to be one of the six distributions: Gaussian (Normal), Bernoulli, Poisson, Negative Binomial

(NB), Zero-inflated Poisson (ZIP), and Zero-inflated Negative Binomial (ZINB); see Table

2.3 for the specifications. Different specifications of Fj correspond to different link functions

θjp¨q and parameters; see Table 2.3 for the details.

Depending on cell i’s cell-state covariates xi, scDesign3 specifies the functions fjcip¨q,

gjcip¨q, and hjcip¨q in the corresponding forms. See Table S4 for the details. Below are the

three typical forms of fjcip¨q.

(1) When the cell-state covariate is the cell type (out of a total of KC cell types) and

X “ px1, . . . , xnqT is a 1-column matrix with xi P t1, . . . , KCu,

fjcipxiq “ αjcixi
,

which corresponds to cell-type xi’s effect on feature j in condition ci. Note that for identifi-

ability, αjcixi
“ 0 if ci “ 1 or xi “ 1.

(2) When the cell-state covariates are the cell pseudotimes in p lineage trajectories, i.e.,

xi “ pxi1, . . . , xipqT with xil indicating cell i’s pseudotime in the l-th lineage trajectory,

fjcipxiq “

p
ÿ

l“1

K
ÿ

k“1

bjcilkpxilqβjcilk ,

where
řK

k“1 bjcilkp¨qβjcilk is a cubic spline function for pseudotime in the l-th lineage. This

formulation means that feature j under condition ci has a specific smooth pattern in lineage

l. The exact choice K, the dimension of the basis governing the flexibility of fjci , is not

critical as long as K is not too small (because automatic penalization would be used in the
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estimation of fjci by the R package mgcv, which is used in the R package gamlss; see [37]);

we set K “ 10 as default; K cannot be larger than the number of data points.

(3) When the cell-state covariates are 2-dimensional spatial locations, i.e., xi “ pxi1, xi2q
T

indicating cell i’s 2-dimensional spatial coordinates,

fjcipxiq “ fGP
jci

pxi1, xi2, Kq ,

a low-rank Gaussian process smoother described in [37, 38], where K is the dimension of the

basis governing the flexibility of fjci . This formulation means that feature j under condition

ci has a smooth 2-dimensional function (i.e., a surface). The exact choice K is not critical as

long as K is large (because automatic penalization would be used in the estimation of fjci

by the R package mgcv, which is used in the R package gamlss; see [37]); we set K “ 400 as

default; K cannot be larger than the number of data points.

The distribution of pYij | xi, ziq in Equation (1) is fitted by the function gamlss() in

the R package gamlss (version 5.4-3) or the function gam() in the R package mgcv (version

1.8-40). The fitted distribution is denoted as F̂jp¨ | xi, ziq, i “ 1, . . . , n; j “ 1, . . . ,m.

2.2.3 Modeling features’ joint distribution

For cell i “ 1, . . . , n, we denote its measurements of the m features as a random vector Yi “

pYi1, . . . , YimqT, whose joint distribution—conditional on cell i’s state covariates xi and design

covariates zi—is denoted as F p¨ | xi, ziq : Rm Ñ r0, 1s. Section 2.2.2 specifies Fjp¨ | xi, ziq,

the distribution of pYij | xi, ziq, j “ 1, . . . ,m. In scDesign3, the joint cumulative distribution

function (CDF) F p¨ | xi, ziq is modeled from the marginal CDFs F1p¨ | xi, ziq, . . . , Fmp¨ | xi, ziq

using the copula Cp¨ | xi, ziq : r0, 1sm Ñ r0, 1s:

F pyi | xi, ziq “ C pF1pyi1 | xi, ziq, ¨ ¨ ¨ , Fmpyim | xi, ziq | xi, ziq ,

where yi “ pyi1, . . . , yimqT is a realization of Yi “ pYi1, . . . , YimqT.

The copula Cp¨ | xi, ziq can be (1) the Gaussian copula or (2) the vine copula, specified
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below.

The Gaussian copula is defined as

C pF1pyi1 | xi, ziq, ¨ ¨ ¨ , Fmpyim | xi, ziq | xi, ziq

“ Φm

`

Φ´1
pF1pyi1 | xi, ziqq, ¨ ¨ ¨ ,Φ´1

pFmpyi1 | xi, ziqq; Rpxi, ziq
˘

,

where Φ´1 denotes the inverse of the CDF of the standard Gaussian distribution, Φmp¨;Rpxi, ziqq

denotes the CDF of an m-dimensional Gaussian distribution with a zero mean vector and a

covariance matrix equal to the correlation matrix Rpxi, ziq.

An issue with the Gaussian copula is that the likelihood calculation is not straightforward

in the high-dimensional case when m is large and the sample correlation matrix R̂pxi, ziq, as

an estimator of Rpxi, ziq, is not invertible. Then, the likelihood cannot be computed based

on R̂pxi, ziq. To address this issue, we consider the vine copula.

The vine copula is a way to “decompose” a high-dimensional copula into a sequence

of bivariate copulas, in which every pair of features is modeled as a bivariate Gaussian

distribution. In short, the vine copula provides a regular vine (R-vine) structure that uses

conditioning to sequentially decompose an m-dimensional copula into a sequence of bivariate

copulas; then the m-dimensional copula density function is approximated by the product of

the bivariate copula density functions [39]. The vine copula is advantageous to the Gaussian

copula because it enables the likelihood calculation in the high-dimensional case.

To estimate Cp¨ | xi, ziq as either the Gaussian or vine copula, we use the plug-in approach

that takes the estimated F̂1p¨ | xi, ziq, . . . , F̂mp¨ | xi, ziq from Section 2.2.2. Specifically,

when F̂jp¨ | xi, ziq is a continuous distribution, each observed yij is transformed as uij “

F̂jpyij | xi, ziq. When F̂jp¨ | xi, ziq is a discrete distribution with the support on non-negative

integers (e.g., the Poisson distribution), u1j, . . . , unj follow a discrete distribution. Since the

Gaussian and vine copulas assume that features follow continuous distributions, we use the
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distributional transformation as in [27]:

uij “ p1 ´ vijqF̂jpyij ´ 1 | xi, ziq ` vijF̂jpyij | xi, ziq , yij “ 1, 2, . . . ,

where vij’s are sampled independently from Uniformr0, 1s, i “ 1, . . . , n; j “ 1, . . . ,m. To

unify and simplify our notations, we write uij “ F̃jpyij | xi, ziq, where F̃jp¨ | xi, ziq is the

CDF of a continuous distribution.

Then Cp¨ | xi, ziq is estimated from u1, . . . ,un, where ui “ pui1, . . . , uimqT. For the Gaus-

sian copula, we use the function cora() in the R package Rfast (version 2.0.6); specifically,

R̂pxi, ziq is the sample correlation matrix of tΦ´1pujq : pxj, zjq is in a subset of pxi, ziqu,

where Φ´1puiq “ pΦ´1pui1q, . . . ,Φ
´1puimqqT. For the vine copula, we use the function

vinecop() in R package rvinecoplib (version 0.6.2.1.1).

Then the estimated joint distribution F̂ p¨ | xi, ziq is

F̂ pyi | xi, ziq “ Ĉ
´

F̃1pyi1 | xi, ziq, ¨ ¨ ¨ , F̃mpyim | xi, ziq
ˇ

ˇ

ˇ
xi, zi

¯

. (2)

2.2.4 Model likelihood, AIC, and BIC

Given Equation (2), the estimated probability density function of cell i’s m-dimensional

feature vector yi, conditional on the cell-state covariates xi and the design covariates zi, is

f̂pyi | xi, ziq “ ĉ
´

F̃1pyi1 | xi, ziq, ¨ ¨ ¨ , F̃mpyim | xi, ziq
ˇ

ˇ

ˇ
xi, zi

¯

m
ź

j“1

f̃jpyij | xi, ziq ,
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where ĉp¨ | xi, ziq is the probability density function of Ĉp¨ | xi, ziq, and f̃jp¨ | xi, ziq is the

probability density function of F̃jp¨ | xi, ziq. Hence, the log-likelihood is

ℓ “

n
ÿ

i“1

log f̂pyi | xi, ziq

“

n
ÿ

i“1

log ĉ
´

F̃1pyi1 | xi, ziq, ¨ ¨ ¨ , F̃mpyim | xi, ziq
ˇ

ˇ

ˇ
xi, zi

¯

`

n
ÿ

i“1

m
ÿ

j“1

log f̃jpyij | xi, ziq

“ ℓCopula
` ℓMarginal ,

so the log-likelihood ℓ can be written as the sum of a copula log-likelihood

ℓCopula
“

n
ÿ

i“1

log ĉ
´

F̃1pyi1 | xi, ziq, ¨ ¨ ¨ , F̃mpyim | xi, ziq
ˇ

ˇ

ˇ
xi, zi

¯

and a marginal log-likelihood

ℓMarginal
“

n
ÿ

i“1

m
ÿ

j“1

log f̃jpyij | xi, ziq .

Given k model parameters and n cells (i.e., the sample size n is the number of cells), the

Akaike information criterion (AIC) and Bayesian information criterion (BIC) are

AIC “ 2k ´ 2ℓ ;

BIC “ 2k logpnq ´ 2ℓ ,

so smaller AIC and BIC values indicate better goodness-of-fit of a model to data.

Because of the likelihood decomposition, the AIC and BIC are also decomposable

AIC “ AICCopula
` AICMarginal ;

BIC “ BICCopula
` BICMarginal ,

where AICCopula and BICCopula only include the number of parameters in ĉp¨ | xi, ziq, and

AICMarginal and BICMarginal only include the total number of parameters in f̃1p¨ | xi, ziq, . . . , f̃mp¨ | xi, ziq.
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2.2.5 Synthetic data generation by scDesign3

To generate a synthetic cell-by-feature matrix Y1 P Rn1ˆm, which contains n1 synthetic cells

and the same m features as in the training data, scDesign3 allows the specification of a

cell-by-state-covariate matrix X1 P Rn1ˆp and an optional cell-by-design-covariate matrix

Z1 P Nn1ˆq (depending on whether the training data have Z) for the n1 synthetic cells. Note

that X1 and Z1 can be specified by users, generated by resampling the rows of X and Z, or

sampled from some generative models of the rows of X and Z.

Given X, Z, and the fitted distributions in Sections 2.2.2 and 2.2.3, scDesign3 samples

n1 synthetic cells in the following steps.

First, for each synthetic cell i1, given its cell-state covariates xi1 and design covariates

zi1 , we independently sample an m-dimensional vector (with values in r0, 1s) from the m-

dimensional copula estimated in Section 2.2.3:

pUi11, . . . , Ui1mq
T

„ Ĉp¨ | xi1 , zi1q , i1
“ 1, . . . , n1 .

Second, based on the m features’ fitted marginal distributions in Section 2.2.2, we cal-

culate the conditional distribution of Yi1j, the measurement of feature j in synthetic cell i1,

given the synthetic cell’s cell-state covariates xi1 and design covariates zi1 “ pbi1 , ci1qT, where

bi1 P t1, . . . , Bu and ci1 P t1, . . . , Cu:

Yi1j | xi1 , zi1 „ F̂jp¨ | xi1 , zi1q “ Fjp¨ | xi1 , zi1 ; µ̂i1j, σ̂i1j, p̂i1jq ,

where
$

’

’

’

’

’

&

’

’

’

’

’

%

θpµ̂i1jq “ α̂j0 ` α̂jbi1 ` α̂jci1 ` f̂jci1 pxi1q ,

logpσ̂i1jq “ β̂j0 ` β̂jbi1 ` β̂jci1 ` ĝjci1 pxi1q ,

logitpp̂i1jq “ γ̂j0 ` γ̂jbi1 ` γ̂jci1 ` ĥjci1 pxi1q .

Note that µ̂i1j, σ̂i1j, and p̂i1j may not be all required, depending on the form of Fj (Table

2.3).
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Then the m-dimensional feature vector of synthetic cell i1 is pYi11, . . . , Yi1mqT, where

Yi1j “ F̂´1
j pUi1j | xi1 , zi1q , j “ 1, . . . ,m .

Thanks to the parametric form of F̂jp¨ | xi1 , zi1q, users can generate the synthetic data

in their demand by modifying the parameters. For instance, if users want the expected

sequencing depth of Y1 to change from N (the sequencing depth of Y) to N 1, they can scale

the mean parameter:

Yi1j | xi1 , zi1 „ Fj

ˆ

¨

ˇ

ˇ

ˇ

ˇ

xi1 , zi1 ;
N 1

N
µ̂i1j, σ̂i1j, p̂i1j

˙

.

If users want to remove the batch effects, they can set

α̂jbi1 “ β̂jbi1 “ γ̂jbi1 “ 0 ,

for all i1 “ 1, . . . , n1; j “ 1, . . . ,m.

If users want to remove the condition effects, they can set

α̂jci1 “ β̂jci1 “ γ̂jci1 “ 0 ;

f̂jci1 p¨q “ f̂j1p¨q ;

ĝjci1 p¨q “ ĝj1p¨q ;

ĥjci1 p¨q “ ĥj1p¨q ,

for all i1 “ 1, . . . , n1; j “ 1, . . . ,m.

2.2.6 The comparison of scDesign, scDesign2, and scDesign3

Table 2.1 lists a detailed comparison of scDesign3 with the previous two versions scDesign

[40] and scDesign2 [27]. Note that scDesign2 is a special case of scDesign3 for generating

scRNA-seq data from discrete cell types.
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2.3 Results

2.3.1 scDesign3 functionality 1: simulation

We verified scDesign3 as a realistic and versatile simulator in four exemplar settings where

existing simulators have gaps: (1) scRNA-seq data of continuous cell trajectories, (2) spatial

transcriptomics data, (3) single-cell epigenomics data, and (4) single-cell multi-omics data

(Fig. 2.1). Under each setting, we show that the synthetic data of scDesign3 resemble the

test data (i.e., left-out real data unused for training), confirming that the scDesign3 model

fits well but does not overfit the training data.

In the first setting about continuous cell trajectories, scDesign3 mimics three scRNA-seq

datasets containing single or bifurcating cell trajectories (datasets EMBRYO, MARROW,

and PANCREAS in Table 2.2). Fig. 2.1b–c and Figs. 2.3–2.5c–d show that scDesign3 gen-

erates realistic synthetic cells that resemble left-out real cells, as evidenced by high values

(ě 1.75) of mLISI (mean Local Inverse Simpson’s Index), which indicates the degree of sim-

ilarity between synthetic and real cells and has a lower bound of 1 and a perfect value of

2 [41]. Moreover, scDesign3 preserves eight gene- and cell-specific characteristics, including

gene expression mean and variance, gene detection frequency, cell library size, cell-cell dis-

tance, cell detection frequency, cell-cell correlation, and, in particular, gene-gene correlation

(Figs. 2.3–2.5a–b). Since no existing simulators can generate cells in continuous trajectories

by learning from real data, we benchmarked scDesign3 against ZINB-WaVE, muscat, and

SPARSIM—three top-performing simulators for generating discrete cell types in previous

benchmark studies [25, 26]—and a deep-learning-based simulator scGAN [42]. The results

show that scDesign3 outperforms these four simulators in generating more realistic synthetic

cells (by achieving higher mLISI values) and in better preserving the eight gene- and cell-

specific characteristics, especially cell-cell distances and gene-gene correlations (Fig. 2.1b–c

and Figs. 2.3–2.5). In addition, scDesign3 can output the pseudotime truths of synthetic

cells for benchmarking purposes, a functionality unavailable in existing simulators to our

knowledge.

In the second setting about spatial transcriptomics, scDesign3 emulates four spatial tran-
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scriptomics datasets generated by the 10x Visium and Slide-seq technologies (datasets VI-

SIUM, SLIDE, OVARIAN, and ACINAR in Table 2.2). First, Fig. 2.1d–e and Fig. 2.6

show that scDesign3 recapitulates the expression patterns of spatially variable genes (by

achieving high correlations between the corresponding synthetic and real spatial patterns).

Second, Figs. 2.7–2.10a–b show that scDesign3 preserves the eight gene- and cell-specific

characteristics. Third, Figs. 2.7–2.10c–d use PCA and UMAP embeddings to confirm that

the synthetic data of scDesign3 resemble the test data (mLISI values ě 1.87). Fourth,

scDesign3 mimics spatial transcriptomics data so that each of three prediction algorithms

(gradient boosting machine, random forest, and support vector machine) has highly con-

sistent prediction errors (average Pearson correlation ą 0.99) between the models trained

on real data and scDesign3 synthetic data separately (Fig. 2.11); moreover, the scDesign3

model can fit complex spatial patterns in less-structured tissues such as cancer tissues (Fig.

2.12). Notably, in these examples, scDesign3 generates spatial transcriptomics data from

spatial locations without cell type annotations (i.e., scDesign3-spatial; see Section 2.2.2).

Figs. 2.7–2.10 show that these synthetic data of scDesign3 are similarly realistic compared

to the synthetic data scDesign3 generates under an ideal scenario where annotated cell types

are available (i.e., scDesign3-ideal; see Section 2.2.2). These results confirm scDesign3’s abil-

ity to recapitulate cell heterogeneity without needing cell type annotations. Moreover, by

fitting a model for spatial transcriptomics data, scDesign3 can estimate a smooth function

for every gene’s expected expression levels at spatial locations, a functionality unachievable

by existing scRNA-seq simulators.

In addition, when trained on a pair of scRNA-seq data and multi-cell-resolution spatial

transcriptomics data (where each spot contains multiple cells), scDesign3 can generate real-

istic multi-cell-resolution spatial transcriptomics data with cell-type proportions specified at

each spot (i.e., ground truths) (Fig. 2.1f; Fig. 2.13a). Using this functionality to benchmark

cell-type deconvolution algorithms for spatial transcriptomics data, we found that CARD

[43] and RCTD [44] outperformed SPOTlight [45] in estimating the absolute cell-type pro-

portions, though the three algorithms performed similarly well in estimating each cell type’s

relative proportions within a tissue slice (Fig. 2.13b).
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In the third setting about single-cell epigenomics, scDesign3 resembles two single-cell

chromatin accessibility datasets profiled by the 10x scATAC-seq and sci-ATAC-seq protocols

(datasets ATAC and SCIATAC in Table 2.2). For both protocols, scDesign3 generates real-

istic synthetic cells (with each cell represented as a vector of genomic regions’ read counts)

despite the higher sparsity of single-cell ATAC-seq data compared to scRNA-seq data (Fig.

2.1g; Fig. 2.1h left; Figs. 2.14-2.15). Moreover, coupled with our newly proposed read

simulator scReadSim [46], scDesign3 extends the simulation of synthetic cells from the count

level to the read level, unblocking its application for benchmarking read-level bioinformatics

tools (Fig. 2.1h right).

In the fourth setting about single-cell multi-omics, scDesign3 mimics a CITE-seq dataset

(dataset CITE in Table 2.2) and simulates a multi-omics dataset from separately measured

RNA expression and DNA methylation modalities (dataset SCGEM in Table 2.2). First,

scDesign3 resembles the CITE-seq dataset by simultaneously simulating the expression lev-

els of 1000 highly variable genes and 10 surface proteins. Fig. 2.1i shows that the RNA

and protein expression levels of three exemplary surface proteins are highly consistent be-

tween the synthetic data of scDesign3 and the test data. Moreover, scDesign3 recapitulates

the correlations between the RNA and protein expression levels of the 10 surface proteins

(Fig. 2.16b). Second, scDesign3 simulates a single-cell multi-omics dataset with joint RNA

expression and DNA methylation modalities by learning from (1) two single-omics datasets

measuring the two modalities separately (Fig. 2.1j left) and (2) joint low-dimensional embed-

dings of the two single-omics datasets. This synthetic multi-omics dataset preserves the cell

trajectory in the two single-omics datasets (Fig. 2.1j right). The functionality to generate

multi-omics data from single-omics data allows scDesign3 to benchmark the computational

methods that integrate modalities from unmatched cells [47].

2.3.2 scDesign3 functionality 2: interpretation

Providing the first universal probabilistic model for single-cell and spatial omics data, scDe-

sign3 has broad applications beyond generating realistic synthetic data. We summarize the
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prominent applications of the scDesign3 model in three aspects: model parameters, model

selection, and model alteration (Fig. 2.2a).

First, the scDesign3 model has an interpretable parametric structure consisting of genes’

marginal distributional parameters and pairwise gene correlations. In addition to being

interpretable, the scDesign3 model is flexible to incorporate cell covariates (such as cell type,

pseudotime, and spatial locations) via the use of generalized additive models (see Section

2.2.2), making the scDesign3 model fit well to various single-cell and spatial omics data—a

property confirmed by scDesign3’s realistic simulation in the aforementioned four settings

(Fig. 2.1). The combined interpretability and flexibility enables scDesign3 to estimate the

possibly non-linear relationship between every gene’s mean expression and cell covariates,

thus allowing statistical inference of gene expression changes between cell types, along cell

trajectories (Fig. 2.2b), and across spatial locations (Fig. 2.2c).

Besides inferring every gene’s expression characteristics, scDesign3 also estimates pairwise

gene correlations conditional on cell covariates, thus providing insights into the possible gene

regulatory relationships within each cell type, at a cell differentiation time, or in a spatial

region. Specifically, scDesign3 estimates gene correlations by two statistical techniques,

Gaussian copula and vine copula, which have complementary advantages (see Section 2.2.3):

Gaussian copula is fast to fit but only outputs a gene correlation matrix; vine copula is

slow to fit but outputs a hierarchical gene correlation network (a “vine” with the top layer

indicating the most highly correlated genes, i.e., “hub genes”) and thus more interpretable.

As an example application to a dataset containing four human peripheral blood mononu-

clear cell (PBMC) types (ZHENGMIX4 in Table 2.2), Fig 2.2d shows that Gaussian copula

reveals similar gene correlation matrices for similar cell types (regulatory T cells vs. naive

cytotoxic T cells) and distinct gene correlation matrices for distinct cell types (CD14+ mono-

cytes vs. naive cytotoxic T cells). Moreover, vine copula discovers canonical cell-type marker

genes as hub genes: LYZ for CD14+ monocytes and CD79A for B cells.

Second, scDesign3 outputs the model likelihood, enabling likelihood-based model selec-

tion criteria such as Akaike information criterion (AIC) and Bayesian information criterion
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(BIC). This model selection functionality allows scDesign3 to evaluate the “goodness-of-fit”

of a model to data and to compare competing models with the same types of cell covariates.

A noteworthy application of this functionality is to evaluate how well does an inferred latent

variable (e.g., cell cluster assignment, cell pseudotime, and cell spatial location) describe

data, thus enabling us to evaluate inferred cell clusters, pseudotimes, and spatial locations

from the goodness-of-fit perspective in the absence of ground truths or external knowledge.

Although scDesign3 AIC and BIC rely on the scDesign3 model and do not represent the

ground truth, we demonstrate that scDesign3 AIC and BIC are useful “unsupervised” crite-

ria for assessing how well do inferred cell clusters, pseudotimes, and spatial locations agree

with data under the scDesign3 model.

For cell clustering, we benchmarked scDesign3 BIC against the “supervised” adjusted

Rand index (ARI), which requires true cell cluster labels, and a newly proposed unsuper-

vised criterion, clustering deviation index (CDI) [48], on eight datasets with known cell types

in a published benchmark study [49]. The results show that scDesign3 BIC has good agree-

ment with ARI (mean Spearman correlation ă ´0.7) and has better or similar performance

compared to CDI’s performance on six out of the eight datasets (Fig. 2.17b).

For pseudotime inference, scDesign3 BIC is strongly correlated (mean Spearman correla-

tion ă ´0.7) with the “supervised” R2, which measures the consistency between the true and

inferred (or perturbed) pseudotimes, on multiple synthetic datasets with true pseudotimes

(Fig. 2.2e top; Fig. 2.17a). Further, scDesign3 BIC agrees with UMAP visualization: com-

pared to TSCAN and Monocle3, the pseudotime inferred by Slingshot has the best (smallest)

BIC and best agrees with the low-dimensional representation of the cell manifold (Fig. 2.2e

bottom).

For spatial location inference, we benchmarked scDesign3 AIC against the mean cosine

similarity (a supervised metric that measures the similarity between inferred and true spatial

locations) using 2 sets of inferred spatial locations and 10 sets of perturbed spatial locations.

We find scDesign3 AIC and the mean cosine similarity negatively correlated (mean Spearman

correlation ď ´0.7) on two spatial transcriptomics datasets MOUSE-CORTEX and MOUSE-

VISUAL (Table 2.2), suggesting that scDesign3 AIC is an effective assessment criterion of
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spatial locations’ goodness-of-fit (Fig. 2.17c). Note that scDesign3 AIC outperforms BIC in

this case, possibly due to the reason that genes’ spatial patterns are complex and thus need

complex models.

Third, scDesign3 has a model alteration functionality enabled by its transparent prob-

abilistic modeling and interpretable parameters: given the scDesign3 model parameters es-

timated on real data, users can alter the model parameters to reflect a hypothesis (i.e., a

hypothetical truth) and generate the corresponding synthetic data that bear real data char-

acteristics. Hence, users can flexibly generate synthetic data with varying ground truths for

comprehensive benchmarking of computational methods.

We argue that this functionality is a vital advantage scDesign3 has over deep-learning

based simulators [42], which cannot be easily altered to reflect a specific hypothesis. We

demonstrate how to use this model alteration functionality in three examples. In the first

example, scDesign3 generates synthetic data with different cell-type-specific condition ef-

fects (Fig. 2.2f). In the real data (CONDITION in Table 2.2), gene IFI6 ’s expression is

up-regulated after stimulation in both CD16+ monocytes and B cells (Fig. 2.2f top-left).

With scDesign3’s fitted model, users can alter IFI6 ’s mean parameters to make IFI6 ’s ex-

pression up-regulated by stimulation in both cell types (Fig. 2.2f top-right), unchanged by

stimulation in both cell types (Fig. 2.2f bottom-left), or up-regulated by stimulation in

CD16+ monocytes only (Fig. 2.2f bottom-right). In the second example, scDesign3 gener-

ates synthetic datasets with or without batch effects (Fig. 2.2g). Trained on a real dataset

(BATCH in Table 2.2) containing two batches with batch effects (Fig. 2.2g left), scDesign3’s

model, if without alteration, can generate synthetic data retaining the batch effects (Fig.

2.2g middle), or it can have the batch parameter altered to generate synthetic data without

batch effects (Fig. 2.2g right). In the third example, scDesign3 generates synthetic data un-

der two hypotheses: the null hypothesis (H0) that only one cell type exists and the alternative

hypothesis (H1) that two cell types exist (Fig. 2.2h). Given a real dataset (ZHENGMIX4 in

Table 2.2) containing two cell types (Fig. 2.2h left), the scDesign3 model can be fitted in two

ways: under H1, the model is fitted using the cell type information (Fig. 2.2h middle); under

H0, the model is fitted by assuming all cells are of one type (Fig. 2.2h right). The two fitted
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models can generate the corresponding synthetic data under H1 and H0. Particularly, the

synthetic data under H0 can serve as the negative control for benchmarking computational

pipelines that use cell clustering to identify the possible existence of cell types.

2.4 Discussion

In summary, scDesign3 accommodates various cell statuses, diverse omics modalities, and

complex experimental designs. Although the scDesign3 model should not be treated as

the true model, its interpretable parameters precede functionalities besides data simulation.

First, scDesign3 model parameters offer a comprehensive interpretation of real data. Second,

scDesign3 allows likelihood-based model selection to assess the goodness-of-fit of inferred

cell clusters, trajectories, and spatial locations. Of course, this unsupervised model-based

assessment cannot replace supervised metrics or compare models with different types of cell

latent structures (e.g., cell clusters vs. trajectories). Third, scDesign3 can generate synthetic

data under specific hypotheses by having its model parameters altered.

2.5 Code and Data Availability

The scDesign3 package is available at https://github.com/SONGDONGYUAN1994/scDesign3.

The comprehensive tutorials are available at https://songdongyuan1994.github.io/scDesign3/

docs/index.html. In the tutorials, we described the input and output formats, model pa-

rameters, and exemplary datasets for each functionality of scDesign3. The source code

for reproducing the results is available in the Zenodo repository at https://doi.org/10.

5281/zenodo.7110761. All datasets used in the study are publicly available. Table S2 lists

the datasets from 17 published studies (sources included). The pre-processed datasets are

available in the Zenodo repository at https://doi.org/10.5281/zenodo.7110761.
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Figure 2.1: scDesign3 generates realistic synthetic data of diverse single-cell and spatial omics technologies.

25



a, An overview of scDesign3’s simulation functionalities: cell states (e.g., discrete types, continuous trajectories, and spatial
locations); multi-omics modalities (e.g., RNA-seq, ATAC-seq, and CITE-seq); experimental designs (e.g., batches and condi-
tions). b–c, scDesign3 outperformed existing simulators scGAN, muscat, SPARSim, and ZINB-WaVE in simulating scRNA-seq
datasets with a single trajectory (b) and bifurcating trajectories (c). Larger mLISI values represent better resemblance between
synthetic data and test data. d–e, scDesign3 simulated realistic gene expression patterns in spatial transcriptomics datasets
measured by 10x Visium (d) and Slide-seq (e). Large Pearson correlation coefficients (r) represent similar spatial patterns in
synthetic and test data. f, using paired scRNA-seq data and spatial transcriptomics data (MOB-SC and MOB-SP in Table 2.2)
as input, we defined the “ground-truth” cell-type proportions at each spot (left). Each color represents a cell type. With the
cell-type proportions, scDesign3 generated synthetic spatial transcriptomics data in which every spot is a mixture of synthetic
single cells, given the spot’s cell-type proportions. The four cell-type marker genes exhibit similar spatial expression patterns
in real data (right top) and synthetic data (right bottom). Large r values represent similar expression patterns in synthetic
and test data. g, scDesign3 simulated a realistic scATAC-seq dataset at the count level. h, scDesign3 simulated a realistic
sci-ATAC-seq dataset at both the count level (left: UMAP visualizations of real and synthetic cells based on peak counts) and
the read level when coupled with scReadSim [46] (right: pseudobulk read coverages). i, scDesign3 simulated realistic CITE-seq
data. Four genes’ protein and RNA abundances are shown on the cell UMAP embeddings in test data (top) and synthetic data
(bottom). Large r values represent similar expression patterns in synthetic and test data. j, scDesign3 generated a multi-omics
(RNA expression + DNA methylation) dataset (right) by learning from two real single-omics datasets with RNA expression or
DNA methylation only (left). The synthetic data preserved the linear cell topology.
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Figure 2.2: scDesign3 enables comprehensive interpretation of real data.

a, Summary of scDesign3’s interpretation functionalities. b, scDesign3 estimated six genes’ expression trends along cell pseu-
dotime (PANCREAS in Table 2.2). c, scDesign3 estimated six genes’ spatial expression trends (VISIUM in Table 2.2). d,
scDesign3 estimated cell-type-specific gene correlations (ZHENGMIX4 in Table 2.2): correlation matrices by Gaussian copula
(top); vine representations by vine copula (bottom), with genes in the first layer (roughly the genes strongly correlated) labeled.
e, scDesign3’s unsupervised assessment of goodness-of-fit. On synthetic scRNA-seq data with true pseudotimes (based on EM-
BYRO in Table 2.2), scDesign3 BIC and R2 were evaluated on inferred pseudotimes of TSCAN (blue), Monocle3 (green), and
Slingshot (orange), with perturbed true pseudotimes (black) as reference. Top: relative BIC (rBIC “ BIC minus the smallest
BIC) vs. R2; the p-value (p) is from the one-sided test of Spearman’s rank correlation ρ (H0 : ρ “ 0; H1 : ρ ă 0). Bottom:
UMAP visualization of the three methods’ inferred pseudotimes. f, In the CONDITION dataset (Table 2.2), gene IFI6 was
up-regulated in both CD16+ monocytes and B cells from control (green) to stimulation (red). scDesign3 simulated data where
IFI6 was up-regulated in both cell types (cond``), unchanged in both cell types (cond), or up-regulated in CD16+ monocytes
only (cond`). The box center lines, bounds, and whiskers denote the medians, first and third quartiles, and minimum and
maximum values within 1.5ˆ the interquartile range of the box limits, respectively (the control and stimulation conditions have
ncontrol “ 1772 and nstimulation “ 2188 cells, respectively). The p-values (p) are from the two-sided Wilcoxon rank-sum test. g,
The BATCH dataset (Table 2.2) contains two batches (left). scDesign3 preserved the batch effects in synthetic data generation
(batch`) or generated synthetic data without batch effects (batch´). h, The ZHENGMIX4 dataset (Table 2.2) contains two
cell types (left). scDesign3 resembled the real data under the alternative hypothesis (H1 : two cell types existed) (middle) or
generated synthetic data under the null hypothesis (H0: one cell type existed) (right).
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Figure 2.3: Benchmarking scDesign3 against four existing scRNA-seq simulators (scGAN, muscat, SPARSim, and ZINB-
WaVE) for generating scRNA-seq data from a single trajectory (mouse pancreatic endocrinogenesis).

a, Distributions of eight summary statistics in the test data and the synthetic data generated by scDesign3 and the four
simulators. Each number on top of a violin plot (the distribution of a summary statistic in a synthetic dataset) is the Kolmogorov-
Smirnov (KS) distance between the synthetic data distribution (indicated by that violin plot) and the test data distribution. A
smaller number indicates better agreement between the synthetic data and the test data in terms of that summary statistic’s
distribution. b, Heatmaps of the gene-gene correlation matrices (showing top 100 highly expressed genes) in the test data
and the synthetic data generated by scDesign3 and the four simulators. The Pearson’s correlation coefficient r measures the
similarity between two correlation matrices, one from the test data and the other from the synthetic data. c, PCA visualization
(top two PCs) of the test data and the synthetic data generated by scDesign3 and the four simulators. The color labels each
cell’s pseudotime value; note that only the synthetic data by scDesign3 outputs the pseudotime truths. An mLISI value close
to 2 means that the synthetic data resemble the real data well in the low-dimensional space. d, UMAP visualization of the real
data and the synthetic data generated by scDesign3 and the four simulators.
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Figure 2.4: Benchmarking scDesign3 against four existing scRNA-seq simulators (scGAN, muscat, SPARSim, and ZINB-
WaVE) for generating scRNA-seq data from a single trajectory (human preimplantation embryos).

a, Distributions of eight summary statistics in the test data and the synthetic data generated by scDesign3 and the four
simulators. Each number on top of a violin plot (the distribution of a summary statistic in a synthetic dataset) is the Kolmogorov-
Smirnov (KS) distance between the synthetic data distribution (indicated by that violin plot) and the test data distribution. A
smaller number indicates better agreement between the synthetic data and the test data in terms of that summary statistic’s
distribution. b, Heatmaps of the gene-gene correlation matrices (showing top 100 highly expressed genes) in the test data
and the synthetic data generated by scDesign3 and the four simulators. The Pearson’s correlation coefficient r measures the
similarity between two correlation matrices, one from the test data and the other from the synthetic data. c, PCA visualization
(top two PCs) of the test data and the synthetic data generated by scDesign3 and the four simulators. The color labels each
cell’s pseudotime value; note that only the synthetic data by scDesign3 outputs the pseudotime truths. An mLISI value close
to 2 means that the synthetic data resemble the real data well in the low-dimensional space. d, UMAP visualization of the real
data and the synthetic data generated by scDesign3 and the four simulators.
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Figure 2.5: Benchmarking scDesign3 against four existing scRNA-seq simulators (scGAN, muscat, SPARSim, and ZINB-
WaVE) for generating scRNA-seq data from bifurcating trajectories (myeloid progenitors in mouse bone marrow).

a, Distributions of eight summary statistics in the test data and the synthetic data generated by scDesign3 and the four
simulators. Each number on top of a violin plot (the distribution of a summary statistic in a synthetic dataset) is the Kolmogorov-
Smirnov (KS) distance between the synthetic data distribution (indicated by that violin plot) and the test data distribution. A
smaller number indicates better agreement between the synthetic data and the test data in terms of that summary statistic’s
distribution. b, Heatmaps of the gene-gene correlation matrices (showing top 100 highly expressed genes) in the test data
and the synthetic data generated by scDesign3 and the four simulators. The Pearson’s correlation coefficient r measures the
similarity between two correlation matrices, one from the test data and the other from the synthetic data. c, PCA visualization
(top two PCs) of the test data and the synthetic data generated by scDesign3 and the four simulators. The color labels each
cell’s pseudotime value; note that only the synthetic data by scDesign3 outputs the pseudotime truths. An mLISI value close
to 2 means that the synthetic data resemble the real data well in the low-dimensional space. d, UMAP visualization of the real
data and the synthetic data generated by scDesign3 and the four simulators.
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Figure 2.6: scDesign3 simulates realistic gene expression patterns for cancer transcriptomics datasets.

Human ovarian cancer (a) and human prostate cancer, acinar cell carcinoma (b). The tissue samples are measured with
both H&E (hematoxylin and eosin stain, left) and spatial transcriptomics (right, three cancer-related genes). Large Pearson
correlation coefficients (r) represent similar spatial patterns in synthetic and test data.
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Figure 2.7: scDesign3 simulates 10x Visium spatial transcriptomics data (sagital mouse brain slices).

a, Distributions of eight summary statistics in the test data and the synthetic data generated by scDesign3 using cell type labels
(scDesign3-ideal) and spatial locations (scDesign3-spatial), respectively. Each number on top of a violin plot (the distribution
of a summary statistic in a synthetic dataset) is the Kolmogorov-Smirnov (KS) distance between the synthetic data distribution
(indicated by that violin plot) and the test data distribution. A smaller number indicates better agreement between the
synthetic data and the test data in terms of that summary statistic’s distribution. b, Heatmaps of the gene-gene correlation
matrices (showing top 100 highly expressed genes) in the test data and the synthetic data generated by scDesign3-ideal and
scDesign3-spatial. The Pearson’s correlation coefficient r measures the similarity between two correlation matrices, one from
the test data and the other from the synthetic data. c, PCA visualization (top two PCs) of the real data and the synthetic data
generated by scDesign3-ideal and scDesign3-spatial. The color labels each cell’s cell type (cluster). Since the scDesgin3-spatial
data only uses spatial locations, it does not rely on cell types. An mLISI value close to 2 means that the synthetic data resemble
the real data well in the low-dimensional space. d, UMAP visualization of the real data and the synthetic data generated by
scDesign3-ideal and scDesign3-spatial. In summary, scDesign3 realistically simulates 10x Visium data based on spatial locations
without needing cell type annotations.
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Figure 2.8: scDesign3 simulates Slide-seq spatial transcriptomics data (coronal cerebellum).

a, Distributions of eight summary statistics in the test data and the synthetic data generated by scDesign3 using cell type labels
(scDesign3-ideal) and spatial locations (scDesign3-spatial), respectively. Each number on top of a violin plot (the distribution
of a summary statistic in a synthetic dataset) is the Kolmogorov-Smirnov (KS) distance between the synthetic data distribution
(indicated by that violin plot) and the test data distribution. A smaller number indicates better agreement between the
synthetic data and the test data in terms of that summary statistic’s distribution. b, Heatmaps of the gene-gene correlation
matrices (showing top 100 highly expressed genes) in the test data and the synthetic data generated by scDesign3-ideal and
scDesign3-spatial. The Pearson’s correlation coefficient r measures the similarity between two correlation matrices, one from
the test data and the other from the synthetic data. c, PCA visualization (top two PCs) of the real data and the synthetic
data generated by scDesign3-ideal and scDesign3-spatial. The color labels each cell’s cell type (cluster). Since scDesgin3-spatial
only uses spatial locations, it does not rely on cell types. An mLISI value close to 2 means that the synthetic data resemble
the real data well in the low-dimensional space. d, UMAP visualization of the real data and the synthetic data generated by
scDesign3-ideal and scDesign3-spatial. In summary, scDesign3 realistically simulates Slide-seq data based on spatial locations
without needing cell type annotations.
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Figure 2.9: scDesign3 simulates 10x Visium cancer spatial transcriptomics data (human ovarian cancer).

a, Distributions of eight summary statistics in the test data and the synthetic data generated by scDesign3 using cell type labels
(scDesign3-ideal) and spatial locations (scDesign3-spatial), respectively. Each number on top of a violin plot (the distribution
of a summary statistic in a synthetic dataset) is the Kolmogorov-Smirnov (KS) distance between the synthetic data distribution
(indicated by that violin plot) and the test data distribution. A smaller number indicates better agreement between the
synthetic data and the test data in terms of that summary statistic’s distribution. b, Heatmaps of the gene-gene correlation
matrices (showing top 100 highly expressed genes) in the test data and the synthetic data generated by scDesign3-ideal and
scDesign3-spatial. The Pearson’s correlation coefficient r measures the similarity between two correlation matrices, one from
the test data and the other from the synthetic data. c, PCA visualization (top two PCs) of the real data and the synthetic data
generated by scDesign3-ideal and scDesign3-spatial. The color labels each cell’s cell type (cluster). Since the scDesgin3-spatial
data only uses spatial locations, it does not rely on cell types. An mLISI value close to 2 means that the synthetic data resemble
the real data well in the low-dimensional space. d, UMAP visualization of the real data and the synthetic data generated by
scDesign3-ideal and scDesign3-spatial. In summary, scDesign3 realistically simulates 10x Visium data based on spatial locations
without needing cell type annotations.
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Figure 2.10: scDesign3 simulates 10x Visium cancer spatial transcriptomics data (human prostate cancer, acinar cell carci-
noma).

a, Distributions of eight summary statistics in the test data and the synthetic data generated by scDesign3 using cell type labels
(scDesign3-ideal) and spatial locations (scDesign3-spatial), respectively. Each number on top of a violin plot (the distribution
of a summary statistic in a synthetic dataset) is the Kolmogorov-Smirnov (KS) distance between the synthetic data distribution
(indicated by that violin plot) and the test data distribution. A smaller number indicates better agreement between the
synthetic data and the test data in terms of that summary statistic’s distribution. b, Heatmaps of the gene-gene correlation
matrices (showing top 100 highly expressed genes) in the test data and the synthetic data generated by scDesign3-ideal and
scDesign3-spatial. The Pearson’s correlation coefficient r measures the similarity between two correlation matrices, one from
the test data and the other from the synthetic data. c, PCA visualization (top two PCs) of the real data and the synthetic data
generated by scDesign3-ideal and scDesign3-spatial. The color labels each cell’s cell type (cluster). Since the scDesgin3-spatial
data only uses spatial locations, it does not rely on cell types. An mLISI value close to 2 means that the synthetic data resemble
the real data well in the low-dimensional space. d, UMAP visualization of the real data and the synthetic data generated by
scDesign3-ideal and scDesign3-spatial. In summary, scDesign3 realistically simulates 10x Visium data based on spatial locations
without needing cell type annotations.
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Figure 2.11: scDesign3 mimics spatial transcriptomics data so that prediction algorithms have similar prediction performance
when trained on real data or scDesign3 synthetic data.

In detail, we first split each of four spatial transcriptomics datasets (VISIUM, SLIDE, OVARIAN, and ACINAR) into two
datasets (training and testing) by randomly splitting the spatial locations into two halves. Second, we use each of the four
training datasets to fit scDesign3 and generate the corresponding synthetic dataset. Third, on each pair of training dataset and
synthetic dataset (among a total of four pairs), we train each of three prediction algorithms (gbm: gradient boosting machine;
randomForest: random forest; svmRadial: support vector machine with the radial kernel) to predict each gene’s expression at
a spatial location (input: spatial location; output: the gene’s log(count+1) expression level at the location), obtaining a pair
of prediction models for each gene. Fourth, we apply each pair of prediction models to the corresponding testing dataset and
calculate each model’s root-mean-squared error (RMSE) for predicting each gene, obtaining a pair of RMSEs. As a result, in
each panel, we plot the RMSEs for each prediction algorithm (row) and dataset (column), with each dot in the panel representing
a gene. We observe that all genes’ RMSEs are highly similar, reflecting that scDesign3 synthetic data well mimic real data.
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Figure 2.12: The effect of K on simulating spatial transcriptomics data.

The rows represent three cancer-related genes; column 1 represents real test data; columns 2- 8 represent scDesign3 synthetic
data generated using varying input basis numbers K. A large Pearson correlation coefficient (r) represents similar spatial
patterns in synthetic and test data. The effective degrees of freedom (edf) represent the wiggliness of the fitted surface. With
a larger K, scDesign3 is able to fit more complex patterns. The overfitting issue is accounted for by the automatic smoothness
estimation [37]: when K is sufficiently large, edf (model complexity) and r (model goodness-of-fit) both become stable.
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Figure 2.13: scDesign3 simulates spot-resolution spatial transcriptomics data for benchmarking cell-type deconvolution meth-
ods.

a, the scDesign3 spot simulation mimics the real data well by showing similar expression patterns for the four cell-type marker
genes. b, Using scDesign3 synthetic data, we benchmark three spatial deconvolution methods (CARD [44], RCTD [43], and
SPOTlight [45]). For each of four cell types (columns), we use two metrics—Pearson correlation (r) and root-mean-square
error (RMSE)—to compare the estimated proportions by each deconvolution method (rows 2–4) to the true proportions (top
row). Large r values represent similar spatial patterns of proportions, while small RMSE values represent similar values of
proportions. Although all three methods well capture the spatial patterns of each cell type’s proportions (evidenced by large r
values), CARD and RCTD outperform SPOTlight by estimating cell-type proportions more accurately (evidenced by smaller
RMSE values).
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Figure 2.14: scDesign3 simulates scATAC-seq data (human PBMCs).

a, Distributions of eight summary statistics in the test data and the synthetic data generated by scDesign3 using cell type
labels. Each number on top of a violin plot (the distribution of a summary statistic in a synthetic dataset) is the Kolmogorov-
Smirnov (KS) distance between the synthetic data distribution (indicated by that violin plot) and the test data distribution. A
smaller number indicates better agreement between the synthetic data and the test data in terms of that summary statistic’s
distribution. b, Heatmaps of the peak-peak correlation matrices in the test data and the synthetic data generated by scDesign3.
The Pearson’s correlation coefficient r measures the similarity between two correlation matrices, one from the test data and
the other from the synthetic data. c, PCA visualization (top two PCs) of the test data and the synthetic data generated by
scDesign3. The color labels each cell’s cell type. An mLISI value close to 2 means that the synthetic data resemble the test
data well in the low-dimensional space. d, UMAP visualization of the test data and the synthetic data generated by scDesign3.
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Figure 2.15: scDesign3 simulates sci-ATAC-seq data (mouse bone marrow).

a, Distributions of eight summary statistics in the test data and the synthetic data generated by scDesign3 using cell type
labels. Each number on top of a violin plot (the distribution of a summary statistic in a synthetic dataset) is the Kolmogorov-
Smirnov (KS) distance between the synthetic data distribution (indicated by that violin plot) and the test data distribution. A
smaller number indicates better agreement between the synthetic data and the test data in terms of that summary statistic’s
distribution.b, Heatmaps of the peak-peak correlation matrices in the test data and the synthetic data generated by scDesign3.
The Pearson’s correlation coefficient r measures the similarity between two correlation matrices, one from the test data and
the other from the synthetic data. c, PCA visualization (top two PCs) of the test data and the synthetic data generated by
scDesign3. The color labels each cell’s cell type. An mLISI value close to 2 means that the synthetic data resemble the test
data well in the low-dimensional space. d, UMAP visualization of the test data and the synthetic data generated by scDesign3.
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Figure 2.16: scDesign3 simulates CITE-seq data (human PBMCs).

a, Distributions of eight summary statistics in the test data and the synthetic data generated by scDesign3. The CITE-seq
dataset simultaneously measures each cell’s gene expression and surface protein abundance by Antibody-Derived Tags (ADTs).
Each number on top of a violin plot (the distribution of a summary statistic in a synthetic dataset) is the Kolmogorov-
Smirnov (KS) distance between the synthetic data distribution (indicated by that violin plot) and the test data distribution. A
smaller number indicates better agreement between the synthetic data and the test data in terms of that summary statistic’s
distribution. b, Heatmaps of the gene and protein correlation matrices (10 proteins with names starting with “ADT” and
their corresponding genes) from test data and the synthetic data generated by scDesign3. The Pearson’s correlation coefficient
r measures the similarity between two correlation matrices, one from the test data and the other from the synthetic data.
scDesign3 recapitulates the correlations between the RNA and protein expression levels of the 10 surface proteins. c, PCA
visualization (top two PCs) of the test data and the synthetic data generated by scDesign3. The color labels each cell’s cell
type. An mLISI value close to 2 means that the synthetic data resemble the real data well in the low-dimensional space. d,
UMAP visualization of the real data and the synthetic data generated by scDesign3.
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Figure 2.17: scDesign3 provides an unsupervised quantification of the goodness-of-fit of pseudotime, clusters, and inferred
locations.

For visual clarity, we plot the relative BIC/AIC (rBIC/rAIC) by re-scaling scDesign3’s marginal BIC/AIC to r0, 1s. a, The
scDesign3 rBIC (unsupervised) is negatively correlated with the R2 (supervised) between the perturbed pseudotime plus three
inferred pseudotime and the true pseudotime in each of the eight datasets. The true pseudotime is the ground truth used for
generating the synthetic data. b, Comparison of scDesign3 rBIC and Clustering Deviation Index (CDI) rBIC. The scDesign3
rBIC (unsupervised) negatively correlates with the ARI (supervised). The scDesign3 rBIC has better or similar performance
than CDI’s performance on six out of the eight datasets. The color scale shows the number of clusters, and the shapes
represent clustering algorithms. c, The scDesign3 rAIC (unsupervised) is negatively correlated with the mean cosine similarity
(supervised) between the perturbed locations plus two inferred locations, and the true locations in each of the two spatial
datasets. The true locations are the ground truth used for generating the semi-synthetic data. Due to the high complexity of
spatial patterns, the AIC outperforms BIC since it less penalizes the model complexity.
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2.8.2 Supplementary tables

Table 2.1: Comparison of scDesign, scDesign2, and scDesign3

PropertyVersion scDesign scDesign2 scDesign3

Cell covariate
Cell types1 Cell types Cell types

Cell trajectories
Spatial locations

Feature type

RNA expr.2 RNA expr. RNA expr.
Chromatin accessibil-
ity
Protein expr.
DNA methylation

Feature correlation
N/A Gaussian copula Gaussian copula

Vine copula

Multi-modality
N/A N/A Multi-omics3

Multiple omics4

Experimental design
N/A N/A Multiple conditions

Multiple batches

Feature distribution
Gamma- Poisson, ZIP Poisson, ZIP
Normal NB, ZINB NB, ZINB
mixture Bernoulli, Normal

Feature mean function Step function5 Step function Step function,
1D smooth function6

2D smooth surface7

Model selection N/A N/A AIC, BIC

Unique properties of scDesign3 are highlighted in boldface.

1: scDesign allows cell types to be connected by artificial paths.
2: The acronym “expr.” stands for “expression.”
3: “Multi-omics” means a cell is measured with multiple modalities.
4: “Multiple omics” means a cell is measured with only one modality and more than one modality is
measured on different cells; in this case, scDesign3 requires all cells to be aligned to a common latent space
by an integration method.
5: Step function is a function of cell type and outputs a constant for each cell type.
6: 1D smooth function is a function of cell pseudotime and is modeled by the spline.
7: 2D smooth surface is a function of 2D cell spatial location and is modeled by the Gaussian process.
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Table 2.5: Comparison of scDesign3 and four other simulators for generating scRNA-seq data of discrete cell types (performance
metrics were averaged from datasets PANCREAS, EMBYRO, and MARROW)

Metric scDesign3 scGAN SPARSim muscat ZINB-WaVE

PCA mLISI 1.821 0.50 0.99 1.01 1.30
UMAP mLISI 1.89 1.39 1.37 1.46 1.46
KS distance of mean log expr.2 0.03 0.42 0.19 0.04 0.02
KS distance of var log expr. 0.09 0.72 0.30 0.08 0.04
KS distance of gene detection freq.3 0.03 0.29 0.17 0.04 0.01
KS distance of gene corr.4 0.05 0.12 0.33 0.17 0.14
KS distance of log library size 0.09 1.00 0.04 0.10 0.04
KS distance of cell distance 0.18 0.68 0.48 0.44 0.35
KS distance of cell detection freq. 0.12 0.68 0.56 0.16 0.04
KS distance of cell corr. 0.06 0.09 0.11 0.09 0.06
Corr. of corr. matrices 0.97 0.87 0.88 0.91 0.96

1: The underlines highlight the best result(s) of each metric.
2: The acronym “expr.” stands for “expression.”
3: The acronym “freq.” stands for “frequency.”
4: The acronym “corr.” stands for “correlation.”
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CHAPTER 3

PseudotimeDE: inference of differential gene

expression along cell pseudotime with well-calibrated

p-values from single-cell RNA sequencing data

3.1 Introduction

In recent years, single-cell RNA-sequencing (scRNA-seq) technologies have undergone rapid

development to dissect transcriptomic heterogeneity and to discover cell types or states in

complex tissues [20, 64]. Embracing the capacity to measure transcriptomes of numerous

cells simultaneously, scRNA-seq provides a powerful means to capture continuous cell-state

transition across cells, and it has been used to study key cellular processes such as immune

response [65] and cell development [66]. For example, a study of human fibroblasts iden-

tified distinct fibroblast subtypes responsible for mediating inflammation or tissue damage

in arthritis [67]; a study of maternal-fetal interface tissue revealed new cell states and the

importance of this tissue in maternal immune tolerance of paternal antigens [68]; a study of

thymic development elucidated new principles of näıve T cell repertoire formation [69].

Pseudotime inference, also known as trajectory inference, is one of the most thriving

scRNA-seq data analysis topics. The concept of “pseudotime” was first proposed in 2014

[70], and since then, more than 40 pseudotime inference methods have been developed [21].

Pseudotime inference aims to infer the ordering of cells along a lineage based on the cells’

gene expression profiles measured by scRNA-seq, and the inferential target is “pseudotime,”

a time-like variable indicating the relative position a cell takes in a lineage. By establishing a

temporal dimension in a static scRNA-seq dataset, pseudotime inference allows the probing
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of individual genes’ expression dynamics along with continuous cell-state changes. If a gene’s

mean expression changes along pseudotime, the gene is referred to as differentially expressed

(DE) and is likely to play an important role in the underlying cellular process that gives rise

to the pseudotime. Identifying DE genes is the most crucial analysis after pseudotime infer-

ence because genes are the most fundamental functional units for understanding biological

mechanisms.

Several methods have been developed to identify DE genes along inferred cell pseudo-

time. Popular pseudotime inference methods—TSCAN [71], Slingshot [72], Monocle [70],

and Monocle2 [73]—include a built-in functionality for identifying DE genes after pseudo-

time inference. Their common approach is to use the generalized additive model (GAM)

[74–76] to fit each gene’s expression level in a cell as a smooth-curve function of the cell’s in-

ferred pseudotime. However, these built-in methods for DE gene identification are restricted

as an add-on and downstream step of the pseudotime inference method in the same software

package, and they cannot take external, user-provided pseudotime as input. Therefore, if

users would like to use a new pseudotime inference method, they cannot use these built-in

DE methods.

To our knowledge when we finished the project, only two DE gene identification methods

can take any user-provided pseudotime. The first and state-of-the-art one is tradeSeq, which

uses the negative binomial generalized additive model (NB-GAM) to model the relationship

between each gene’s expression in a cell and the cell’s pseudotime [77]. Its p-value calculation

is based on a chi-squared distribution, an inaccurate approximation to the null distribution.

As a result, its p-values lack the correct probability interpretation. This issue is noted in the

tradeSeq paper: “Rather than attaching strong probabilistic interpretations to the p-values

(which, as in most RNA-seq applications, would involve a variety of hard-to-verify assump-

tions and would not necessarily add much value to the analysis), we view the p-values simply

as useful numerical summaries for ranking the genes for further inspection.” Hence, the un-

calibrated p-values of tradeSeq cannot be used for p-value-based statistical procedures such

as the type I error control and the false discovery rate (FDR) control. The second method

is Monocle3, better known as a pseudotime inference method [23], yet it also allows DE
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gene identification based on user-provided cell covariates via regression analysis. For clarity,

we refer to the pseudotime inference and differential expression functionalities in Mono-

cle3 as “Monocle3-PI” and “Monocle3-DE,” respectively. (Note that by “Monocle3-DE,”

we mean the “regression analysis fit models(),” not the “graph-autocorrelation analysis

graph test(),” in the Monocle3 R package; only the former works for user-provided pseu-

dotime.) Monocle3-DE uses the generalized linear model (GLM) to identify DE genes for

a user-provided covariate, e.g., pseudotime. However, GLM is more restrictive than GAM

in that GLM assumes the logarithmic transformation of a gene’s expected read count in a

cell is a strictly linear function of the cell’s pseudotime, while this assumption does not hold

for many genes [78]. Hence, Monocle3-DE would miss those complex relationships between

gene expression and pseudotime that do not satisfy its GLM assumption. In other words,

Monocle3-DE’s restrictive GLM assumption impairs its power in identifying DE genes.

Besides the scRNA-seq methods we mentioned above, there are methods developed for

identifying physical-time-varying DE genes from bulk RNA-seq time-course data. Among

those methods, the ones allowing for continuous time can in principle be used to identify DE

genes along pseudotime. Two examples of such methods are NBAMSeq [79] and ImpulseDE2

[80]. NBAMSeq is similar to tradeSeq in the use of NB-GAM, but it uses the Bayesian shrink-

age method in DESeq2 [81] to estimate gene variances, while tradeSeq does not. ImpulseDE2

[80], a method favorably rated in a benchmark study for bulk RNA-seq data [82], models gene

differential expression by a unique “impulse” model. A later study modified ImpulseDE2 to

identify DE genes along pseudotime from scRNA-seq data [77]. However, the performance

of NBAMSeq and ImpulseDE2 on scRNA-seq data lacks benchmarking. Loosely related,

many methods can identify DE genes between discrete cell clusters, groups, or conditions

[22, 83–86]; however, these methods are inapplicable to finding DE genes along continuous

pseudotime.

More importantly, the existing methods that identify DE genes along pseudotime have

a common limitation: they ignore the uncertainty of inferred cell pseudotime, which they

consider as one fixed value per cell. This issue arises from the fact that most pseudotime

inference methods only return point estimates of cell pseudotime without uncertainty quan-
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tification (i.e., every cell only receives an inferred pseudotime without a standard error),

with few exceptions [87, 88]. Hence, downstream DE gene identification methods treat these

point estimates as fixed and ignore their uncertainty. However, this ignorance of uncertainty

would result in invalid p-values, leading to either failed FDR control or power loss. This

critical problem has been noted in several pseudotime inference method papers [71, 72, 87]

and in the tradeSeq paper [77], yet it remains an open challenge to our knowledge.

Motivated by the ill-posed p-value issue of existing pseudotime-based differential expres-

sion methods, we propose PseudotimeDE, the first method that accommodates user-provided

pseudotime inference methods, takes into account the random nature of inferred pseudotime,

and outputs well-calibrated p-values. PseudotimeDE uses subsampling to estimate pseudo-

time inference uncertainty and propagates the uncertainty to its statistical test for DE gene

identification. As the most notable advantage of PseudotimeDE over existing methods,

PseudotimeDE’s well-calibrated p-values ensures the reliability of FDR control and other

downstream analyses, as well as avoiding unnecessary power loss due to overly-conservative

p-values.
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3.2 PseudotimeDE methodology

3.2.1 Mathmatical notations of PseudotimeDE

We denote by Y “ pYijq an n ˆ m gene expression count matrix, whose rows and columns

correspond to n cells and m genes, respectively; that is, Yij is the read count of gene j in

cell i. Taking Y as input, a pseudotime inference method would return a pseudotime vector

T “ pT1, . . . , Ti, . . . , TnqT, where Ti P r0, 1s denotes the normalized inferred pseudotime of

cell i (i.e., the cells with the smallest and largest pseudotime have Ti “ 0 and 1, respectively;

normalization is used for visualization simplicity). Note that Ti is a random variable due to

the random-sampling nature of the n cells and the possible uncertainty introduced by the

pseudotime inference method.

3.2.2 Uncertainty estimation

To estimate the uncertainty of pseudotime T, we subsample 80% cells (rows) in Y for B

times. Although there are some theoretical results about the optimal subsample size [89],

they do not apply to our problem setting. Hence, we simply choose 80% because it is widely

used [90, 91], similar to the popularity of 5-fold cross validation in machine learning [92].

Simulation results also supports that 80% is a reasonable choice, and PseudotimeDE is ro-

bust to various subsampling proportions (Fig. 3.28). It is worth noting that the bootstrap

technique is inapplicable for our problem because it leads to repeated sampling of the same

cell, causing issues with some pseudotime inference methods such as Monocle2. If the cells

have pre-defined groups (i.e., cell types), we use the stratified sampling by first subsampling

80% cells within each group and then combining these within-group subsamples into one

subsample. By default, we set B “ 1000. For each subsample Yb “ pY b
ijq, an n1 ˆ m matrix

where n1 “ t.8nu, we perform pseudotime inference with the same parameters used for the

original dataset Y. As a result, we obtain B subsample-based realizations of pseudotime T:
␣

T1, ¨ ¨ ¨ ,Tb, ¨ ¨ ¨ ,TB
(

, where Tb P r0, 1sn
1

, and each cell appears in approximately 80% of

these B realizations. Note that we have to apply pseudotime inference to each subsample
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before permutation to account for pseudotime inference uncertainty; otherwise, if each sub-

sample’s pseudotime is just a subsample of all cells’ pseudotime, we are essentially treating all

cells’ pseudotime as fixed, and the uncertainty in pseudotime inference is ignored. Here is the

mathematical explanation. Given that we have n cells with inferred pseudotime as T1, . . . , Tn,

if we use direct subsampling, then in the b-th subsampling, the subsampled n1 cells’ pseudo-

time is just a size-n1 subsample of tT1, . . . , Tnu. Instead, in PseudotimeDE, the subsampled

n1 cells’ inferred pseudotime T b
1 , . . . , T

b
n1 may be n1 values that are not in T1, . . . , Tn. In other

words, the uncertainty in pseudotime inference is reflected in T b
1 , . . . , T

b
n1 .

3.2.3 PseudotimeDE model

We use the negative binomial–generalized additive model (NB-GAM) as the baseline model

to describe the relationship between every gene’s expression in a cell and the cell’s pseudo-

time. For gene j (j “ 1, . . . ,m), its expression Yij in cell i and the pseudotime Ti of cell i

(i “ 1, . . . , n) are assumed to follow

$

’

&

’

%

Yij „ NBpµij, ϕjq ,

logpµijq “ βj0 ` fjpTiq ,

where NBpµij, ϕjq denotes the negative binomial distribution with mean µij and dispersion

ϕj, and fjpTiq “
řK

k“1 bkpTiqβjk is a cubic spline function. The number of knots k is pre-

defined as 6 and usually has little effect on results [93]. For gene j, PseudotimeDE fits the

NB-GAM to pY1j, . . . , Ynjq
T and T “ pT1, . . . , TnqT using the R package mgcv (version 1.8.31),

which estimates model parameters by penalized-restricted maximum likelihood estimation.

To account for excess zeros in scRNA-seq data that may not be explained by the NB-

GAM, we introduce a hidden variable Zij to indicate the “dropout” event of gene j in cell

i, and the resulting model is called the zero-inflated negative binomial–generalized additive
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model (ZINB-GAM):

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Zij „ Berppijq ,

Yij|Zij „ Zij ¨ NBpµij, ϕjq ` p1 ´ Zijq ¨ 0 ,

logpµijq “ βj0 ` fjpTiq ,

logitppijq “ αj0 ` αj1 logpµijq .

For gene j, PseudotimeDE fits the ZINB-GAM to pY1j, . . . , Ynjq
T and T “ pT1, . . . , TnqT

using the expectation-maximization (EM) algorithm, which is partially based on R package

zigam [94]. To use PseudotimeDE, users can specify whether to use the ZINB-GAM or

NB-GAM. If users do not provide a specification, PseudotimeDE will automatically choose

between the two models for each gene by the Akaike information criterion (AIC). By default,

PseudotimeDE uses NB-GAM unless the AIC of ZINB-GAM exceeds the AIC of NB-GAM

by at least 10, a threshold suggested by [95].

3.2.4 Statistical test and p-value calculation

To test if gene j is DE along cell pseudotime, PseudotimeDE defines the null and alternative

hypotheses as

H0 : fjp¨q “ 0 vs. H1 : fjp¨q ‰ 0

We denote the estimate of pfjpT1q, . . . , fjpTnqq
T by f̂ j, whose estimated covariance matrix

(of dimensions n ˆ n) is denoted by V̂fj . Then the test statistic is

Sj “ f̂
T

j V̂
r´

fj
f̂ j ,

where V̂
r´

fj
is the rank-r pseudoinverse of V̂fj , where r is determined in the way described

in [96]. When the Ti’s are fixed, the asymptotic null distribution of Sj is described in [96],

and the p-value can be calculated by the R package mgcv.

A key novelty of PseudotimeDE is its accounting for the uncertainty of inferred pseudo-
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time. When the Ti’s are random, the asymptotic null distribution of Sj given that Ti’s are

fixed [96] and the p-value calculation in the R package mgcv no longer apply. To address

this issue and estimate the null distribution, PseudotimeDE uses the following permuta-

tion procedure: (1) PseudotimeDE randomly permutes each subsample-based realization

Tb “ pT b
1 , . . . , T

b
n1q

T into T˚b “ pT ˚b
1 , . . . , T ˚b

n1 qT; (2) PseudotimeDE fits the above model to

pY b
1j, . . . , Y

b
n1jq

T and T˚b, and calculates the test statistic Sj’s value as s
b
j using the R package

mgcv; (3) PseudotimeDE performs (1) and (2) for b “ 1, . . . , B and collects the resulting

ts1j , . . . , s
B
j u as the null values of the test statistic Sj.

Then PseudotimeDE estimates the null distribution of Sj in two ways. Based on the

estimated null distribution in either way and the observed test statistic value sj, which is

calculated from the original dataset by the R package mgcv, PseudotimeDE calculates a

p-value for gene j.

1. Empirical estimate. PseudotimeDE uses the empirical distribution of ts1j , . . . , s
B
j u

as the estimated null distribution. Following the suggestion in [97], PseudotimeDE

calculates the p-value of gene j as

pemp
j “

řB
b“1 Ipsbj ě sjq ` 1

B ` 1
,

where Ip¨q is the indicator function. We refer to this p-value as the “empirical p-value.”

2. Parametric estimate. The resolution of pemp
j depends on the number of permutations

B, because the smallest value pemp
j may take is 1{pB`1q. Although users often cannot

afford a too large B due to limited computational resources, they still desire a high

resolution of p-values to control the FDR to a small value (e.g., 5%) when the number

of tests (i.e., the number of genes in DE gene identification) is large. To increase the

resolution of p-values, PseudotimeDE fits a parametric distribution to ts1j , . . . , s
B
j u and

uses the fitted distribution as the estimated null distribution. Driven by the empirical

distribution of ts1j , . . . , s
B
j u, PseudotimeDE considers two parametric distributions: (1)

a gamma distribution Γpα, βq with α, β ą 0 and (2) a two-component gamma mixture
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model γΓpα1, β1q ` p1´ γqΓpα2, β2q with 0 ă γ ă 1 and α1, β1, α2, β2 ą 0. After fitting

both distributions to ts1j , . . . , s
B
j u using the maximum likelihood estimation (gamma

distribution fit by the R package fitdistrplus (version 1.0.14) [98] and gamma mix-

ture model fit by the R package mixtools (version 5.4.5) [99]), PseudotimeDE chooses

between the two fitted distributions by performing the likelihood ratio test (LRT) with

3 degrees of freedom (i.e., difference in the numbers of parameters between the two

distributions). If the LRT p-value is less or equal than 0.01, PseudotimeDE uses the

fitted two-component gamma mixture model as the parametric estimate of the null

distribution of Sj; otherwise, PseudotimeDE uses the fitted gamma distribution. The

Anderson-Darling goodness-of-fit test verifies that such a parametric approach fits the

empirical distributions well (Fig. 3.29). Denoting the cumulative distribution function

of the parametrically estimated null distribution by F̂jp¨q, PseudotimeDE calculates

the p-value of gene j as

pparamj “ 1 ´ F̂jpsjq ,

where is referred to as the “parametric p-value.”

PseudotimeDE outputs both pemp
j and pparamj for gene j, j “ 1, . . . ,m. Empirical evidence

shows that parametric p-values agree with empirical p-values well across the r0, 1s interval

(Fig. 3.27). All the findings in the Results section are based on pparam1 , . . . , pparamm due to

their higher resolution.

3.3 Results

3.3.1 Overview of the PseudotimeDE method

The statistical method of PseudotimeDE consists of four major steps: subsampling, pseu-

dotime inference, model fitting, and hypothesis testing (Fig. 3.1). The first two steps are

performed at the cell level and include all informative genes (whose selection depends on the

pseudotime inference method, e.g., Slingshot and Monocle3-PI), while the last two steps are

performed on every gene that is potentially DE.
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1. In the subsampling step, PseudotimeDE subsamples 80% of cells from the original

dataset to capture the uncertainty of pseudotime inference, the same technique as

used in [21, 72, 100].

2. In the pseudotime inference step, PseudotimeDE applies a user-specified pseudotime

inference method to the original dataset and each subsample, so that every cell receives

its inferred pseudotime in the original dataset and all the subsamples that include it.

To construct null cases where genes are non-DE for later hypothesis testing, Pseudo-

timeDE permutes the inferred pseudotime in each subsample, independent of other

subsamples.

3. In the model fitting step, PseudotimeDE fits NB-GAM or zero-inflated negative bino-

mial GAM (ZINB-GAM) to every gene in the original dataset to obtain a test statistic

that indicates the effect size of the inferred pseudotime on the gene’s expression.

4. In the hypothesis testing step, for every gene, Pseudotime fits the same model used

for the original dataset to the permuted subsamples to obtain approximate null values

of the gene’s test statistic (the null values are approximate because the subsamples

do not have the same number of cells as in the original dataset). To save the num-

ber of subsamples needed and to improve the p-value resolution, Pseudotime fits a

Gamma distribution or a mixture of two Gamma distributions to these null values.

It subsequently uses the fitted parametric distribution as the approximate null distri-

bution of the test statistic. Finally, PseudotimeDE calculates a right-tail p-value for

the gene from the gene’s test statistic in the original dataset and the approximate null

distribution.

3.3.2 Simulations verify that pseudotimeDE outperforms existing methods in

the validity of p-values and the identification power

We use a widely-used simulator dyntoy [21, 77] to generate four synthetic scRNA-seq

datasets, among which three are single-lineage datasets with low-, medium- and high-dispersion

levels, and the other is a bifurcation dataset. Since the single-lineage high-dispersion dataset
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best resembles the real scRNA-seq data (Fig. 3.9-3.10), we use it as our primary case. We

apply two pseudotime inference methods—Slingshot and Monocle3-PI—to each synthetic

dataset to infer cell pseudotime.

First, we find that PseudotimeDE successfully captures the underlying uncertainty of in-

ferred pseudotime. The first layer—“linear uncertainty”—reflects the randomness of inferred

cell pseudotime within a cell lineage (Fig. 3.2a & c). Fig. 3.2b & d show the distributions of

individual cells’ inferred pseudotime by Slingshot and Monocle3-PI, respectively, across 1000

subsampled datasets, confirming that linear uncertainty is specific to pseudotime inference

methods. Between the two methods, Monocle3-PI demonstrates greater linear uncertainty.

The second layer—“topology uncertainty”—reflects the randomness of lineage construction.

The synthetic bifurcation dataset contains two cell lineages. Slingshot correctly constructs

the bifurcation topology from the original dataset and the 1000 subsampled datasets. While

Monocle3-PI captures the bifurcation topology from the original dataset (Fig. 3.2e), it fails

to capture the topology from over 50% of subsamples (Fig. 3.2f shows randomly picked 10

subsamples), demonstrating its greater topology uncertainty than Slingshot’s.

After confirming pseudotime inference uncertainty, we benchmark PseudotimeDE against

four DE gene identification methods: tradeSeq, Monocle3-DE, NBAMSeq, and ImpulseDE2.

The first two methods, tradeSeq and Monocle3-DE, are the state-of-the-art for scRNA-seq

data analysis and thus serve as the main competitors of PseudotimeDE. In our benchmark,

we first evaluate these methods in terms of the validity of their p-values, which should

be uniformly distributed between 0 and 1 under the null hypothesis (i.e., a gene is not

DE). Our results show that, among the five methods, PseudotimeDE generates the best-

calibrated p-values that follow the expected uniform distribution most closely (Fig. 3.3a

& f and Figs. 3.11–3.13a & f). Among the existing four methods, only Monocle3-DE

provides roughly calibrated p-values, while tradeSeq, NBAMSeq, and ImpulseDE2 output

p-values that are much deviated from the expected uniform distribution. This observation is

confirmed by the Kolmogorov-Smirnov test, which evaluates how closely p-values follow the

uniform distribution. Since the identification of DE genes relies on a small p-value cutoff,

the smaller p-values are more important than the larger ones. Hence, we re-plot the p-values
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on ´ log10 scale to closely examine the calibration of small p-values (Fig. 3.3b & g and

Figs. 3.11–3.13b & g). Again, PseudotimeDE returns the best-calibrated p-values, while the

other four methods generate overly small p-values that would inflate false discoveries. This

is reflected in our results: at a target 5% FDR threshold, PseudotimeDE leads to the best

FDR control among all methods (Fig. 3.3c & h and Figs. 3.11–3.13c & h).

Next, we compare these methods in terms of their ability to distinguish DE genes from

non-DE genes, ability measured by the area under the receiver operating characteristic curve

(AUROC) values (Fig. 3.3d & i and Figs. 3.11–3.13d & i). PseudotimeDE achieves the high-

est AUROC values. Among the other four methods, tradeSeq and NBAMSeq have slightly

lower AUROC values than PseudotimeDE’s, and Monocle3-DE and ImpulseDE2 have much

lower AUROC values than the other three methods’. The reason is that PseudotimeDE,

tradeSeq, and NBAMSeq all use the flexible model NB-GAM, while Monocle3-DE and Im-

pulseDE2 use much more restrictive models, which limit their power.

Realizing that the ill-calibrated p-values of the existing four methods invalidate their

FDR control, we compare all five methods in terms of their power under an actual 5%

false discovery proportion (FDP, defined as the proportion of false discoveries among the

discoveries in one synthetic dataset) instead of the nominal 5% FDR. Our results show that

PseudotimeDE achieves the highest power on all datasets except for the bifurcation dataset,

where PseudotimeDE has slightly lower power than tradeSeq’s (Fig. 3.3e & j and Figs. 3.11–

3.13e & j). These results demonstrate the high power of PseudotimeDE and its effective FDR

control, which is lacking in existing methods. In summary, our simulation results verify that

PseudotimeDE outperforms existing methods in terms of generating well-calibrated p-values,

which are essential for FDR control, and identifying DE genes with high power. Notably, the

two bulk RNA-seq methods, NBAMSeq and ImpulseDE2, yield worse results than the three

scRNA-seq methods do. Hence, we only focus on the scRNA-seq methods in the following

three real data applications.
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3.3.2.1 Real data example 1: dendritic cells stimulated with lipopolysaccharide

In the first application, we compare PseudotimeDE with tradeSeq and Monocle3-DE on a

dataset of mouse dendritic cells (DCs) after stimulation with lipopolysaccharide (LPS, a

component of gram-negative bacteria) [101]. In this dataset, gene expression changes are

expected to be associated with the immune response process. We first apply Slingshot

and Monocle3-PI to this dataset to infer cell pseudotime, and then we input the inferred

pseudotime into PseudotimeDE, tradeSeq, and Monocle3-DE for DE gene identification.

Consistent with our simulation results, the p-values of tradeSeq are ill-calibrated: their

bimodal distributions indicate that they do not follow the uniform distribution under the

null hypothesis; instead, many of them are inflated, and this inflation would lead to power loss

in DE gene identification (Fig. 3.4a & e). Indeed, at a nominal Benjamini-Hochberg (BH)

adjusted p-value ď 0.01 threshold (which corresponds to controlling the FDR ď 1% when p-

values are valid), tradeSeq identifies the smallest number of DE genes, while PseudotimeDE

identifies the most DE genes, followed by Monocle3-DE. Notably, most of the DE genes

identified by tradeSeq are also identified by PseudotimeDE (Fig. 3.4b & f), a result consistent

with the over-conservativeness of tradeSeq due to its inflated p-values. Unlike tradeSeq,

Monocle3-DE does not exhibit the inflated p-value issue; however, it uses a more restrictive

model than PseudotimeDE and tradeSeq do. Hence, we use functional analyses to investigate

whether Monocle3-DE misses certain DE genes due to its restrictive modeling. We also

investigate whether the additional DE genes found by PseudotimeDE but missed by tradeSeq

or Monocle3-DE are biologically meaningful.

Our first strategy is to perform gene ontology (GO) analysis on the DE genes identified by

each method and compare the enriched GO terms. We find that more GO terms are enriched

(with enrichment p-values ă 0.01) in the DE genes identified by PseudotimeDE (Fig. 3.14a

& c), and that the PseudotimeDE-specific GO terms are related to immune responses (Fig.

3.14b & d). However, comparing enriched GO terms does not directly reflect the difference

of DE genes identified by different methods. Hence, our second strategy is to probe the

functions of the DE genes that are uniquely identified by one method in pairwise comparisons
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of PseudotimeDE vs. tradeSeq and PseudotimeDE vs. Monocle3-DE. We first perform GO

analysis on each set of uniquely identified DE genes. For a fair comparison of two methods,

we remove the overlapping DE genes found by both methods from the background gene list

in GO analysis. Our results show that many more GO terms are enriched (with enrichment

p-values ă 0.01) in Pseudotime-specific DE genes than in tradeSeq- or Monocle3-DE-specific

DE genes (Fig. 3.4c & g). Moreover, many of those PseudotimeDE-specific GO terms are

directly related to the immune responses of DCs to LPS stimulation, including the GO terms

“cellular response to lipopolysaccharide” and “defense response to Gram-negative bacterium”

(Fig. 3.4d & h). To focus more on immune responses, we next perform enrichment analysis

using the immunologic signatures (C7) in the Molecular Signatures Database (MSigDB)

[102]. Our results show that only PseudotimeDE-specific DE genes have enriched MSigDB

C7 terms (with BH adjusted p values ă 0.01), while tradeSeq- and Monocle3-DE-specific

DE genes have almost no enrichment (Fig. 3.14a & c). More importantly, many enriched

terms in PseudotimeDE-specific DE genes were found by previous studies of DCs stimulated

with LPS (see examples in Fig. 3.14b & d); this is direct evidence that supports the validity

of PseudotimeDE-specific DE genes. For illustration purpose, we visualize the expression

levels of some known and novel DE genes identified by PseudotimeDE using UMAP, and

clear DE patterns are observed (Fig. 3.16–3.17). In conclusion, our functional analyses

verify that PseudotimeDE identifies biologically meaningful DE genes missed by tradeSeq

and Monocle3-DE, confirming that PseudotimeDE has high power in addition to its well-

calibrated p-values.

3.3.2.2 Real data example 2: pancreatic beta cell maturation

In the second application, we compare PseudotimeDE with tradeSeq and Monocle3-DE on a

dataset of mouse beta cell maturation process [103]. We first apply Slingshot and Monocle3-

PI to this dataset to infer cell pseudotime, and then we input the inferred pseudotime into

PseudotimeDE, tradeSeq, and Monocle3-DE for DE gene identification. Consistent with

previous results, the p-values of tradeSeq follow a bimodal distribution, suggesting that

many of them are incorrectly inflated (Fig. 3.5a & f). At the nominal BH-adjusted p-value
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ď 0.01 level, PseudotimeDE identifies the second most DE genes, fewer than Monocle3-DE’s

identified DE genes and much more than tradeSeq’s (Fig. 3.5b & g). As the numbers of

identified DE genes cannot reflect these methods’ performance, we use three approaches to

evaluate the DE genes identified by each method.

We first perform GO analysis on each set of uniquely identified DE genes, using the same

pairwise comparisons of PseudotimeDE vs. tradeSeq and PseudotimeDE vs. Monocle3-DE

as for the LPS-dendritic data. Our results show that more GO terms are enriched (with en-

richment p-values ă 0.01) in PseudotimeDE-specific DE genes than in tradeSeq- or Monocle3-

DE-specific DE genes (Fig. 3.5c & h). Moreover, many of those PseudotimeDE-specific GO

terms are directly related to pancreatic beta cell development, e.g., “positive/negative regu-

lation of Notch signaling pathway” [104] and “endocrine pancreas development” (Fig. 3.5c

& h). As a complementary result, we also perform GO analysis on the DE genes identified

by each method. We find that the GO terms, which are only enriched in the DE genes

identified by PseudotimeDE, are related to beta cell development and thus more biologically

meaningful than the GO terms that are only enriched in the DE genes identified by tradeSeq

or Monocle3-DE (Fig. 3.18b & d).

Second, we utilize the DE genes identified from bulk RNA-seq data in the original pa-

per [103] to evaluate the DE gene rankings established by PseudotimeDE, tradeSeq, and

Monocle3-DE from scRNA-seq data. Taking the bulk DE genes as a gene set, we perform

the gene-set enrichment analysis (GSEA) [102] on all genes’ ´ log10 p-values output by Pseu-

dotimeDE, tradeSeq, and Monocle3-DE. Among the three methods, PseudotimeDE leads to

the highest normalized enrichment score (NES), suggesting that the bulk DE genes are most

enriched in the top-ranked DE genes found by PseudotimeDE.

Third, we examine a highly credible DE gene Slc39a10 [103, 105] and a verified non-DE

gene Sst [103] as representative examples. For Slc39a10, both PseudotimeDE and Monocle3-

DE yield small p-values (ă 10´6), while tradeSeq outputs a p-value ą 0.1 and thus misses it

(Fig. 3.5e & g). For Sst, PseudotimeDE yields the largest p-value (ą 0.001), while tradeSeq

and Monocle3-DE yield extremely small p-values (ă 10´10) and thus mistaken it as a DE

gene. Hence, PseudotimeDE has the best performance on these two representative genes.
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For illustration purpose, we visualize the expression levels of some known and novel DE

genes identified by PseudotimeDE using UMAP, and clear DE patterns are observed (Figs.

3.19-3.20).

3.3.2.3 Real data example 3: bone marrow differentiation

In the third application, we compare PseudotimeDE with tradeSeq and Monocle3-DE on

a dataset of mouse bone marrow differentiation [55]. We apply Slingshot with UMAP for

dimensionality reduction to infer cell pseudotime as described in the tradeSeq paper [77].

Slingshot constructs the reported bifurcation topology (in the tradeSeq paper) on the original

dataset (Fig. 3.6a), but it infers trifurcation topology, instead of bifurcation topology, on

40% of subsamples (Fig. 3.6b shows randomly picked ten subsamples). Note that the third

lineage consisting of the cell type megakaryocyte (MK) was reported in the Monocle2 paper

(ref. [73]), suggesting the observed topology uncertainty may be biologically meaningful.

For a fair comparison, we only make PseudotimeDE use the subsamples with inferred

bifurcation topology, because both tradeSeq and Monocle3-DE use the inferred bifurcation

topology from the original data to identify DE genes. Consistent with previous results,

the tradeSeq p-values follow a bimodal distribution that is unexpected for well-calibrated

p-values. At a nominal BH-adjusted p-value ď 0.01 threshold, the three methods identify

highly similar DE genes (Fig. 3.6e & g). For instance, PseudotimeDE and tradeSeq share

about 80% of their identified DE genes (Jaccard index). From the few method-specific DE

genes, functional analyses cannot indicate which method performs better. Therefore, we

use GSEA instead to evaluate methods’ p-values. Surprisingly, although the three methods

identify highly similar DE genes, their p-values lead to vastly different GSEA results. At the

q ă 0.25 level, PseudotimeDE and Monocle3-DE yield hundreds of enriched gene sets, while

tradeSeq only yields a few or no enriched gene sets (Fig. 3.6f & h). This result indicates that,

besides the ranking of p-values, the nominal values of p-values are also crucial for downstream

analysis such as GSEA. Hence, the well-calibrated p-values make PseudotimeDE superior to

existing methods for DE gene identification and downstream analyses.
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3.3.2.4 Real data example 4: natural killer T cell subtypes

In the fourth application, we compare PseudotimeDE with tradeSeq and Monocle3-DE on

a dataset of natural killer T cell (NKT cell) subtypes [106]. We apply Slingshot with PCA

for dimensionality reduction to infer cell pseudotime and construct the trifurcation topology

(Fig. 3.7a) reported in the original study. We apply the three DE methods to identify

DE genes in each of the three lineages. Consistent with the previous results, the p-values of

tradeSeq follow a bimodal distribution, suggesting that many of them are incorrectly inflated

(Fig. 3.7b).

For validation purpose, we utilize the lineage-specific DE genes identified from bulk RNA-

seq data in the original study [106] to evaluate the DE gene rankings established by Pseu-

dotimeDE, tradeSeq, and Monocle3-DE from scRNA-seq data. Specifically, we perform the

GSEA using the bulk DE gene sets in the same way as for the pancreatic beta cell maturation

dataset. The GSEA shows that PseudotimeDE’s p-values best agree with the lineage-specific

DE genes from bulk data and thus most distinguish the three lineages. For example, for the

NKT1 lineage, PseudotimeDE’s small p-values are exclusively enriched in the “NKT1 bulk”

gene set, while tradeSeq and Monocle3-DE have small p-values enriched in at least two

lineage-specific DE gene sets (Fig. 3.7c). This result confirms that, compared with the DE

genes identified by the other two DE methods, the top DE genes identified by PseudotimeDE

are more biologically meaningful.

3.3.2.5 Real data example 5: cell cycle phases

In the fifth application, we compare PseudotimeDE with tradeSeq and Monocle3-DE on a

dataset of human induced pluripotent stem cells (iPSCs) measured with cell cycle phases

(FUCCI labels) [107]. The original study has reported 101 cyclic genes whose expression

levels have large proportions of variance explained (PVE) explained by cells’ FUCCI labels

[107]; that is, cells’ FUCCI labels are regarded as the predictor, a gene’s expression levels in

the same cells are regarded as the response, and a PVE is calculated from a nonparametric

smoothing fit; hence, the larger the PVE, the better the gene’s expression levels can be
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predicted by the cell cycle phases. The original study has also developed an R package peco

to infer cell cycle phases from scRNA-seq data.

In our study, we first construct a benchmark dataset by treating the 101 cyclic genes

as true DE genes and using the same genes with expression levels randomly shuffled across

cells as the true non-DE genes; hence, our positive and negative sets both contain 101 genes.

Then we apply the R package peco to this dataset to infer each cell’s cycle phase, which is

equivalent to pseudotime; that is, we use peco as the pseudotime inference method. Finally,

we apply the three DE methods.

Our results show that, for the true non-DE genes, only PseudotimeDE generates valid p-

values that approximately follow the Uniformr0, 1s distribution (Fig. 3.8a & c). For the true

DE genes, PseudotimeDE’s (´ log10 transformed) p-values, one per gene, have the highest

correlation with these genes’ PVE, indicating that PseudotimeDE successfully identifies the

top DE genes as those with the strongest cyclic trends (Fig. 3.8b). PseudotimeDE also yields

successful FDR control, the highest AUROC value, and the highest power, among the three

DE methods (Fig. 3.8d, e and f). Therefore, we conclude that PseudotimeDE outperforms

tradeSeq and Monocle3-DE in identifying cell cycle-related genes from this iPSC scRNA-seq

dataset.

3.4 Discussion

We propose a statistical method PseudotimeDE to identify DE genes along inferred cell

pseudotime. PseudotimeDE focuses on generating well-calibrated p-values while taking into

account the randomness of inferred pseudotime. To achieve these goals, PseudotimeDE first

uses subsampling to estimate the uncertainty of pseudotime. Second, PseudotimeDE fits the

NB-GAM or ZINB-GAM to both the original dataset and the permuted subsampled datasets

to calculate the test statistic and its approximate null values. Next, PseudotimeDE fits a

parametric distribution to estimate the approximate null distribution of the test statistic.

Finally, PseudotimeDE calculates p-values with a high resolution. PseudotimeDE is flexible

to accommodate cell pseudotime inferred in a standard format by any method. Its use of
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NB-GAM and ZINB-GAM allows it to capture diverse gene expression dynamics and to

accommodate undesirable zero inflation in data.

Comprehensive studies on simulated and real data confirm that PseudotimeDE yields

better FDR control and higher power than four existing methods (tradeSeq, Monocle3-

DE, NBAMSeq, and ImpulseDE2) do. On simulation data, PseudotimeDE generates well-

calibrated p-values that follow the uniform distribution under the null hypothesis, while

existing methods except Monocle3-DE have p-values violating the uniform assumption. Well-

calibrated p-values guarantee the valid FDR control of PseudotimeDE. Moreover, thanks to

its use of flexible models NB-GAM and ZINB-GAM, PseudotimeDE has higher power than

Monocle3-DE, which uses a more restrictive model GLM and thus has less power. Pseudo-

timeDE also outperforms the other three methods–tradeSeq, NBAMSeq, and ImpulseDE2—

that generate ill-calibrated p-values in terms of power. On three real scRNA-seq datasets,

the DE genes uniquely identified by PseudotimeDE embrace better biological interpretability

revealed by functional analyses, and the p-values of PseudotimeDE lead to more significant

GSEA results.

An interesting and open question is what pseudotime inference method works the best

with PseudotimeDE. While we observe that PseudotimeDE has higher power with Slingshot

than with Monocle3-PI in simulation studies, we realize that the reason may be associated

with the simulation design (e.g., the lineage structures), and thus we cannot draw a conclu-

sion from this observation. Due to the diversity of biological systems and the complexity

of pseudotime inference [21], we decide to leave the choice of pseudotime inference methods

open to users, and this is the advantage of PseudotimeDE being flexible to accommodate

inferred pseudotime by any methods. In practice, we encourage users to try popular pseudo-

time inference methods and use PseudotimeDE as a downstream step to identify DE genes,

so that they can analyze the identification results and decide which pseudotime inference

method is more appropriate for their dataset.

The zero inflation, or “dropout” issue, remains perplexing and controversial in the single-

cell field [108–112]. The controversy is regarding whether excess zeros that cannot be ex-

plained by Poisson or negative binomial distributions are biological meaningful or not. Facing
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this controversy, we provide two models in PseudotimeDE: NB-GAM and ZINB-GAM, the

former treating excess zeros as biologically meaningful and the latter not. Specifically, the

negative binomial distribution in NB-GAM is fitted to all gene expression counts including

excess zeros, while the fitting of the negative distribution in ZINB-GAM excludes excess

zeros, which ZINB-GAM implicitly treats as non-biological zeros. PseudotimeDE allows the

choice between the two models to be user specified or data driven. From our data analysis,

we realize that the choice often requires biological knowledge of the dataset to be analyzed.

Specifically, on the LPS-dendritic cell dataset and pancreatic beta cell maturation dataset,

we observe that ZINB-GAM leads to power loss: some potential DE genes cannot be iden-

tified by ZINB-GAM because zero counts contain useful information (Figs. 3.23-3.25). Our

observation is consistent with another recent study [110], whose authors observed that “zero-

inflated models lead to higher false-negative rates than identical non-zero-inflated models.”

Hence, our real data analysis results are based on NB-GAM. However, realizing the complex-

ity of biological systems and scRNA-seq protocols, we leave the choice between NB-GAM

and ZINB-GAM as an option for users of PseudotimeDE, and we encourage users to plot

their known DE genes as in Figs. 3.23-3.25 to decide which of NB-GAM and ZINB-GAM

better captures the gene expression dynamics of their interest.

The current implementation of PseudotimeDE is restricted to identifying the DE genes

that have expression changes within a cell lineage. While methods including GPfates [113],

Monocle2 BEAM [114], and tradeSeq can test whether a gene’s expression change is asso-

ciated with a branching event leading to two lineages, they do not consider the uncertainty

of lineage inference. How to account for such topology uncertainty is a challenging open

question, as we have seen in Figs. 3.2f and 3.6b that the inferred lineage may vary from

a bifurcation topology to a trifurcation topology on different subsets of cells. A possible

direction is to use the selective inference [115, 116], and we will leave the investigation of

this question to future research. Due to this topology uncertainty issue, PseudotimeDE is

most suitable for single-cell gene expression data that contain only one cell lineage (includ-

ing cyclic data) or a small number of well separated cell lineages (e.g., bifurcation). The

reason is that these data can maintain stable inferred cell topology after subsampling, an
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essential requirement of PseudotimeDE. That said, PseudotimeDE is not designed for data

with many equivocal cell lineages or a complex cell hierarchy, the data that cannot maintain

stable inferred cell topology across subsamples, because for such data, it is difficult to find

one-to-one matches between cell lineages inferred from a subsample and those inferred from

the original data. Then, a practical solution for such data is to first define a cell lineage of

interest and then apply PseudotimeDE to only the cells assigned to this lineage.

There are other open questions to be explored. An important question is: when do we

want to identify DE genes along pseudotime? As we have shown in Section 3.3, inferred

pseudotime can be highly uncertain. As biologists often sequence cells at multiple physical

time points if they want to investigate a biological process, a straightforward analysis is to

identify the DE genes that have expression changes across the physical time points. Then we

have two definitions of DE genes: the genes whose expression changes across pseudotime vs.

physical time. Understanding which definition is more biologically relevant is an open ques-

tion. Another question is whether it is possible to integrate pseudotime with physical time

to identify biologically relevant DE genes. Answering either question requires a statistical

formulation that is directly connected to a biological question.

Another question is how to explore gene-gene correlations along cell pseudotime. Current

DE methods only detect marginal gene expression changes but ignore gene-gene correlations.

It remains unclear whether gene-gene correlations are stable or varying along cell pseudo-

time. Hence, a new statistical method to detect gene-gene correlation changes along inferred

pseudotime may offer new biological insights into gene co-expression and regulation at the

single-cell resolution.

3.5 Code and data availability

The R package PseudotimeDE is available at https://github.com/SONGDONGYUAN1994/

PseudotimeDE. The tutorials of PseudotimeDE are available at https://songdongyuan1994.

github.io/PseudotimeDE/docs/index.html. The source code and data for reproducing

the results are available at: http://doi.org/10.5281/zenodo.8161964. The pre-processed
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datasets are available at https://figshare.com/articles/dataset/PseudotimeDE_datasets/

23596764.
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Figure 3.1: An illustration of the PseudotimeDE method.

The core of PseudotimeDE is to obtain a valid null distribution of the DE gene test statistic Sj . To achieve that, PseudotimeDE
subsamples 80% cells from the original scRNA-seq data. Then on each subsample, PseudotimeDE performs pseudotime inference
(using a user-specified method such as Slingshot and Monocle3-PI) and permutes the inferred pseudotime across cells. Next,
PseudotimeDE fits a model (NB-GAM or ZINB-GAM) to the permuted subsamples to obtain the values of Sj under the null
hypothesis and uses these values to approximate the null distribution of Sj . In parallel, PseudotimeDE fits the same model
to the original dataset and calculates the observed value of Sj . Finally, PseudotimeDE derives the p-value from the observed
value and the null distribution of Sj . Detail is described in Methods.
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Figure 3.2: PseudotimeDE captures the uncertainty in pseudotime inference.

(a) Visualization of synthetic single-lineage cells marked with inferred pseudotime by Slingshot (using PCA). The black curve
denotes the inferred lineage. (b) The distributions of individual cells’ inferred pseudotime by Slingshot across subsamples. In
the vertical axis, cells are ordered by their true time in the lineage used in simulation; for every cell (a vertical coordinate),
black dots have horizontal coordinates corresponding to the cell’s inferred pseudotime in the subsamples that include the cell.
The more horizontally spread out the black dots, the greater uncertainty the pseudotime inference has. (c) Visualization of
synthetic single-lineage cells marked with inferred pseudotime by Monocle3-PI (using UMAP). The black curve denotes the
inferred lineage. Compared with (a), the inferred lineage is more wiggling. (d) The distributions of individual cells’ inferred
pseudotime by Monocle3-PI across subsamples. Compared with (b), the uncertainty in pseudotime inference is greater. (e)
Visualization of synthetic bifurcating cells marked with inferred pseudotime by Monocle3-PI (using UMAP). Monocle3-PI
recovers the bifurcation topology. (f) Visualization of ten subsamples of the cells in (e), marked with inferred pseudotime by
Monocle3-PI (using UMAP) on each subsample. Four out of the ten subsamples do not have the bifurcation topology correctly
inferred (labeled with red “F”), revealing the uncertainty in pseudotime inference by Monocle3-PI. In panels (a), (c), (e) and
(f), inferred pseudotime is represented by a color scale from 0 (the earliest pseudotime) to 1 (the latest pseudotime).
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Figure 3.3: PseudotimeDE outperforms four state-of-the-art methods (tradeSeq, Monocle3-DE, NBAMSeq, and ImpulseDE2)
for identifying DE genes along cell pseudotime.

Left panels (a)–(e) are based on pseudotime inferred by Slingshot; right panels (f)–(j) are based on pseudotime inferred by
Monocle3-PI. (a) & (f) Distributions of non-DE genes’ observed p-values by five DE methods with inferred pseudotime. Top:
quantile-quantile plots that compare the empirical quantiles of the observed p-values against the expected quantiles of the
Uniformr0, 1s distribution. Bottom: histograms of the observed p-values. The p-values shown on top of histograms are from
the Kolmogorov-Smirnov test under the null hypothesis that the distribution is Uniformr0, 1s. The larger the p-value, the more
uniform the distribution is. Among the five DE methods, PseudotimeDE’s observed p-values follow most closely the expected
Uniformr0, 1s distribution. (b) & (g) Quantile-quantile plots of the same p-values as in (a) and (f) on the negative log10
scale. PseudotimeDE returns better-calibrated small p-values than the other four methods do. (c) & (h) FDPs of the five DE
methods with the target FDR 0.05 (BH adjusted-p ď 0.05). PseudotimeDE yields the FDP closest to 0.05. (d) & (i) ROC
curves and AUROC values of the five DE methods. PseudotimeDE achieves the highest AUROC. (e) & (j) Power of the five
DE methods under the FDP = 0.05 cutoff. PseudotimeDE achieves the highest power.
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Figure 3.4: Application of PseudotimeDE, tradeSeq, and Monocle3-DE to the LPS-dendritic cell dataset.

Left panels (a)–(d) are based on pseudotime inferred by Slingshot; right panels (e)–(h) are based on pseudotime inferred by
Monocle3-PI. (a) & (e) Histograms of all genes’ p-values by the three DE methods. The bimodal distributions of tradeSeq’s
p-values suggest a violation of the requirement that p-values follow the Uniformr0, 1s distribution under the null hypothesis. (b)
& (f) Venn plots showing the overlaps of the significant DE genes (BH adjusted-p ď 0.01) identified by the three DE methods.
PseudotimeDE’s DE genes nearly include tradeSeq’s. (c) & (g) Numbers of GO terms enriched (p ă 0.01) in the significant
DE genes specifically found by PseudotimeDE or tradeSeq/Monocle3-DE in pairwise comparisons between PseudotimeDE and
tradeSeq/Monocle3-DE in (b) & (f). Many more GO terms are enriched in the PseudotimeDE-specific DE genes than in the
tradeSeq- or Monocle3-DE-specific ones. (d) & (h) Example GO terms enriched in the Pseudotime-specific DE genes in (c) &
(g). Many of these terms are related to LPS, immune process, and defense to bacterium.
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Figure 3.5: Application of PseudotimeDE, tradeSeq, and Monocle3-DE to the pancreatic beta cell maturation dataset.

Left panels (a)–(e) are based on pseudotime inferred by Slingshot; right panels (f)–(j) are based on pseudotime inferred by
Monocle3-PI. (a) & (f) Histograms of all genes’ p-values by the three DE methods. The bimodal distributions of tradeSeq’s
p-values suggest a violation of the requirement that p-values follow the Uniformr0, 1s distribution under the null hypothesis. (b)
& (g) Venn plots showing the overlaps of the significant DE genes (BH adjusted-p ď 0.01) identified by the three DE methods.
PseudotimeDE’s DE genes nearly include tradeSeq’s. (c) & (h) Numbers of GO terms enriched (p ă 0.01) in the significant
DE genes specifically found by PseudotimeDE or tradeSeq/Monocle3-DE in pairwise comparisons between PseudotimeDE and
tradeSeq/Monocle3-DE in (b) & (g). Many more GO terms are enriched in the PseudotimeDE-specific DE genes than in the
tradeSeq- or Monocle3-DE-specific ones. (d) & (i) Example GO terms enriched in the Pseudotime-specific DE genes in (c)
& (h). Many of these terms are related to related to insulin, beta cell regulation, and pancreas development. (e) & (j) Two
examples genes: Slc39a10 (DE) and Sst (non-DE). For Slc39a10, both PseudotimeDE and Monocle3-DE yield small p-values
(p ă 1e´ 6), while tradeSeq does not (p ą 0.1). For Sst, PseudotimeDE yields larger p-values than tradeSeq and Monocle3-DE
do. Dashed blue lines are the fitted curves by NB-GAM.
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Figure 3.6: Application of PseudotimeDE, tradeSeq, and Monocle3-DE to the mouse bone marrow dataset.

(a) UMAP visualization and inferred pseudotime by Slingshot. Pre-defined cell types are marked by colors. Slingshot returns
a bifurcation topology, denoted as lineage 1 (left) and lineage 2 (right). (b) UMAP visualization and inferred pseudotime by
Slingshot on ten random subsamples. Four out of ten subsamples do not yield bifurcation topology but trifurcation topology,
where the third lineage mainly contains the cell type “MK” and was reported in [73]. (c) Histograms of all genes’ p-values
calculated by the three DE methods in the first lineage. (d) Histograms of all genes’ p-values calculated by the three DE methods
in the second lineage. (e) Venn plot showing the overlaps of the significant DE genes (BH adjusted-p ď 0.01) identified by the
three DE methods in lineage 1. PseudotimeDE and tradeSeq share 77.6% (Jaccard index) DE genes. (f) Numbers of enriched
gene sets (q ă 0.25) by GSEA using the p-values in lineage 1 by the three DE methods. Although the DE genes are similar
in (e), PseudotimeDE yields 270 enriched gene sets, while tradeSeq only yields 9. (g) Venn plot showing the overlaps of the
significant DE genes (BH adjusted-p ď 0.01) identified by the three DE methods in lineage 2. Similar to lineage 1 in (g),
PseudotimeDE and tradeSeq share 77.2% (Jaccard index) DE genes. (h) Numbers of enriched gene sets (q ă 0.25) by GSEA
using the p-values in lineage 2 by the three DE methods. PseudotimeDE and Monocle3-DE yield hundreds of enriched gene
sets, while tradeSeq does not yield any enriched gene sets.
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Figure 3.7: Application of PseudotimeDE, tradeSeq, and Monocle3-DE to the natural killer T cell dataset.

(a) PCA visualization and inferred pseudotime by Slingshot. Pre-defined NKT subtypes are marked by colors. Slingshot
returns a trifurcation topology, where the three lineages are NKT0 to NKT1, NKT0 to NKT17, and NKT0 to NKT2. (b)
Histograms of all genes’ p-values in the three lineages calculated by the three DE methods. (c) Heatmaps of normalized
enrichment scores (NESs, marked by colors) and their corresponding p-values (in numbers) from the GSEA. Each NES value
and its corresponding p-value are calculated for each DE method and each lineage, based on the p-values of a DE method for
a lineage and that lineage’s DE genes found from bulk RNA-seq data, denoted by “NKT1 bulk”, “NKT17 bulk,” or “NKT2
bulk” [106]. Note that among the three DE methods, PseudotimeDE outputs p-values that best agree with the lineage-specific
DE genes from bulk data and thus most distinguish the three lineages. For instance, for the NKT1 lineage, PseudotimeDE’s
small p-values are enriched in the “NKT1 bulk” gene set only, while tradeSeq and Monocle3-DE have small p-values enriched
in at least two lineage-specific DE gene sets.
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Figure 3.8: Application of PseudotimeDE, tradeSeq, and Monocle3-DE to the cell cycle phase dataset.

(a) Distributions of non-DE genes’ p-values by three DE methods with inferred pseudotime. Top: quantile-quantile plots that
compare the empirical quantiles of non-DE genes’ p-values against the expected quantiles of the Uniformr0, 1s distribution.
Bottom: histograms of non-DE genes’ p-values. The p-values shown on top of histograms are from the Kolmogorov-Smirnov
test under the null hypothesis that the distribution is Uniformr0, 1s. The larger the p-value, the more uniform the distribution
is. Among the three DE methods, PseudotimeDE’s p-values follow most closely the expected Uniformr0, 1s distribution. (b)
Distributions of DE genes’ p-values by three DE methods with inferred pseudotime. Top: scatter plots of DE genes’ p-values
against the proportions of variance explained (PVE), which measure the strengths of genes’ inferred cyclic trends in the
original study [107]. PseudotimeDE’s p-values (´ log10 transformed) have the highest correlation with the PVE, indicating
that PseudotimeDE identifies the genes with the strongest cyclic trends as the top DE genes. Bottom: histograms of all genes’
p-values. Blue and red colors represent the p-values of DE genes and non-DE genes (same as in (a) bottom), respectively.
PseudotimeDE yields the best separation of the two gene groups’ p-values. (c) Quantile-quantile plots of the same p-values as
in (a) on the negative log10 scale. PseudotimeDE returns the best-calibrated p-values. (d) FDPs of the three DE methods with
the target FDR 0.05 (BH adjusted-p ď 0.05). (e) ROC curves and AUROC values of the three DE methods. PseudotimeDE
achieves the highest AUROC. (f) Power of the three DE methods under the FDP = 0.05 cutoff. PseudotimeDE achieves the
highest power.
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3.8 Supplementary materials

3.8.1 Pseudotime inference methods

We apply two state-of-the-art methods, Slingshot and Monocle3-PI, to inferring the cell

pseudotime of each dataset. For single-lineage data, we specify the start cluster in Slingshot

and the start node in Monocle3-PI. For bifurcation/trifurcation data, we specify the start

cluster/node and the end clusters/nodes in Slingshot/Monocle3-PI. By default, the dimen-

sionality reduction methods used for pseudotime inference are PCA and UMAP for Slingshot

and Monocle3-PI, respectively. The R Bioconductor package slingshot (version 1.4.0) and

the R package monocle3 (version 0.2.0) are used.

3.8.2 DE analysis methods

We compare PseudotimeDE with four existing methods for identifying DE genes along

pseudotime/time-course from scRNA-seq data (tradeSeq and Monocle3-DE) or bulk RNA-

seq data (ImpulseDE2 and NBAMSeq). All these methods take a count matrix Y and

a pseudotime vector T as input, and they return a p-value for each gene. For trade-

Seq, we use the functions fitGAM and associationTest (https://statomics.github.

io/tradeSeq/articles/tradeSeq.html). The number of knots parameter K in trade-

Seq is chosen by 100 random genes based on the tradeSeq vignette. For Monocle3-DE, we

use the function fit models (https://cole-trapnell-lab.github.io/monocle3/docs/

differential/). Since ImpulseDE2 cannot be applied to scRNA-seq data directly, we fol-

low the modified implementation of ImpulseDE2 in the tradeSeq paper (https://github.

com/statOmics/tradeSeqPaper). The R Bioconductor packages tradeSeq (version 1.3.15),

monocle3 (version 0.2.0), ImpulseDE2 (version 1.10.0), and NBAMSeq (version 1.10.0) are

used.
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3.8.3 Functional (gene ontology and gene-set enrichment) analyses

We use the R package topGO (version 2.38.1) [117] to perform the gene-ontology (GO) en-

richment analysis on identified DE genes. We use the R package clusterProfiler (version

3.14.3) [118] to perform the gene-set enrichment analysis (GSEA) analysis on ranked gene

lists, where genes in each list are ranked by their ranking sores defined as ´ log10 transformed

p-values (the gene with the smallest p-value is ranked the top); p-values that are exactly zeros

are replaced by one-tenth of the smallest non-zero p-value. If unspecified, the GO terms are

“biological process (BP)” terms.

3.8.4 Simulation study

We use the R package dyntoy (0.9.9) to generate single-lineage data and bifurcation data.

For single-lineage data, we generate three datasets with increasing dispersion levels (low

dispersion, medium dispersion, and high dispersion). Each single-lineage dataset consists of

500 cells and 5000 genes (with 20% as DE genes). For bifurcation data, we use the medium

dispersion level. The bifurcation dataset consists of 750 cells and 5000 genes (with 20% as

DE genes).

3.8.5 Case studies

LPS-dendritic cell dataset: this Smart-seq dataset contains primary mouse dendritic

cells (DCs) stimulated with lipopolysaccharide (LPS) [101], available at Gene Expression

Omnibus (GEO) under accession ID GSE45719. In our analysis, we use the the cells from

1h, 2h, 4h, and 6h in the pre-processed data from the study that benchmarked pseudotime

inference methods [21]. After the genes with ą 90% zeros are removed, the final dataset

consists of 4016 genes and 390 cells, which are expected to be in a single lineage. When

applying tradeSeq, we use the recommended ZINB-WaVE [28] + tradeSeq procedure to

account for potential zero-inflation. The R Bioconductor package zinbwave (version 1.8.0)

is used.
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Pancreatic beta cell maturation dataset: this Smart-seq2 dataset measures the mat-

uration process of mouse pancreatic beta cells [103], available at GEO under accession ID

GSE87375. We use the cells from cell type “beta” in the pre-processed data from the study

that benchmarked pseudotime inference methods [21]. After the genes with ą 90% zeros are

removed, the final dataset consists of 6121 genes and 497 cells, which are expected to be in a

single lineage. When applying tradeSeq, we use the recommended ZINB-WaVE + tradeSeq

procedure to account for potential zero-inflation. The R Bioconductor package zinbwave

(version 1.8.0) is used.

Mouse bone marrow dataset: this MARS-seq dataset contains myeloid progenitors in

mouse bone marrow [55], available at GEO under accession ID GSE72859. We use the pre-

processed data provided by the tradeSeq vignette. After the genes with ą 90% zeros are

removed, the final dataset consists of 3004 genes and 2660 cells. We follow the procedure of

combining UMAP and Slingshot to infer pseudotime as described in tradeSeq paper [77]

Natural killer T cell dataset: this Smart-seq2 dataset measures four natural killer T cell

(NKT cell) subtypes in mouse [106], available at GEO under accession ID GSE74597. We use

the pre-processed data from the study that benchmarked pseudotime inference methods [21].

After the genes with ą 90% zeros are removed, the final dataset consists of 5270 genes and

197 cells, which are expected to have three lineages. We use PCA + Slingshot to infer the

pseudotime. When applying tradeSeq, we use the recommended ZINB-WaVE + tradeSeq

procedure to account for potential zero-inflation. The R Bioconductor package zinbwave

(version 1.8.0) is used.

Cell cycle phase dataset: this Fluidigm protocol dataset measures human induced pluripo-

tent stem cells (iPSCs) [107]. The iPSCs are FUCCI-expressing so that their cell cycle phases

can be tracked. The authors also developed an R package peco for predicting cell cycle phases

from single-cell gene expression data. We use the example dataset provided by peco, which

consists of 101 known cell cycle-related genes (DE genes). To construct null cases, we ran-

domly shuffle the 101 DE genes’ expression levels across cells to create 101 non-DE genes.

The final dataset consists of 202 genes and 888 cells. We use the R package peco (version

1.1.21) to infer cell cycle phases.
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3.8.6 Supplementary figures
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Figure 3.9: PCA visualization of datasets.

PCA visualization of all synthetic and real datasets used in this paper. Panels (a)–(d) are synthetic datasets, where the
groups correspond to time points. Panels (e)–(h) are real datasets, where the groups correspond to time points in (e) & (f)
or annotated cell types in (g) & (h). Panel (i) is a real dataset with external cell cycle information, where the FUCCI phase
indicates experimentally measured cell cycle phase.

81



−2

0

2

−2 −1 0 1 2
UMAP1

U
M

A
P

2

group

T0

T1

T2

T3

Simulation:
Single−lineage, high dispersion

a

−5.0

−2.5

0.0

2.5

5.0

−1 0 1 2
UMAP1

U
M

A
P

2

group

T0

T1

T2

T3

Simulation:
Single−lineage, median dispersion

b

−4

0

4

−3 −2 −1 0 1 2
UMAP1

U
M

A
P

2

group

T0

T1

T2

T3

Simulation:
Single−lineage, low dispersion

c

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5
UMAP1

U
M

A
P

2

group

M1

M2

M3

M4

Simulation:
Bifurcation, median dispersion

d

−4

0

4

8

−2 0 2
UMAP1

U
M

A
P

2

group

LPS#1h

LPS#2h

LPS#4h

LPS#6h

Real data:
LPS−dendritic cell

e

−8

−4

0

4

−2 −1 0 1 2
UMAP1

U
M

A
P

2

group

beta−cell E17.5

beta−cell P0

beta−cell P15

beta−cell P18

beta−cell P3

beta−cell P60

beta−cell P9

Real data:
Pancreatic beta cell maturation

f

−4

0

4

8

−4 0 4
UMAP1

U
M

A
P

2

group

Basophils

Erythrocyte

GMP

Megakaryocytes

Monocytes

Multipotent progenitors

Neutrophils

Real data:
Mouse bone marrow

g

−3

0

3

−2.5 0.0 2.5 5.0
UMAP1

U
M

A
P

2

group

NKT0

NKT1

NKT17

NKT2

Real data:
Natural killer T cell

h

−2

0

2

−2 0 2
UMAP1

U
M

A
P

2

2

4

6

FUCCI phase

Real data:
Cell cycle phase

i

Figure 3.10: UMAP visualization of datasets.

UMAP visualization of all synthetic and real datasets used in this paper. Panels (a)–(d) are synthetic datasets, where the
groups correspond to time points. Panels (e)–(h) are real datasets, where the groups correspond to time points in (e) & (f)
or annotated cell types in (g) & (h). Panel (i) is a real dataset with external cell cycle information, where the FUCCI phase
indicates experimentally measured cell cycle phase.
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Figure 3.11: Comparison of five methods (PseudotimeDE, tradeSeq, Monocle3-DE, NBAMSeq, ImpulseDE2) for identifying
DE genes along cell pseudotime on synthetic single-lineage data with low dispersion.

Left panels (a)–(e) are based on pseudotime inferred by Slingshot; right panels (f)–(j) are based on pseudotime inferred by
Monocle3-PI. (a) & (f) Distributions of non-DE genes’ observed p-values by five DE methods with inferred pseudotime. Top:
quantile-quantile plots that compare the empirical quantiles of the observed p-values against the expected quantiles of the
Uniformr0, 1s distribution. Bottom: histograms of the observed p-values. The p-values shown on top of histograms are from
the Kolmogorov-Smirnov test under the null hypothesis that the distribution is Uniformr0, 1s. The larger the p-value, the more
uniform the distribution is. Among the five DE methods, PseudotimeDE’s observed p-values follow most closely the expected
Uniformr0, 1s distribution. (b) & (g) Quantile-quantile plots of the same p-values as in (a) and (f) on the negative log10
scale. PseudotimeDE returns better-calibrated small p-values than the other four methods do. (c) & (h) FDPs of the five DE
methods with the target FDR 0.05 (BH adjusted-p ď 0.05). PseudotimeDE yields the FDP below 0.05 while other methods
do not. (d) & (i) ROC curves and AUROC values of the five DE methods. Since the dispersion of data is extremely low, all
methods achieves high AUROC. (e) & (j) Power of the five DE methods under the FDP = 0.05 cutoff. Due to the same low
dispersion reason, all methods achieves high power.
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Figure 3.12: Comparison of five methods (PseudotimeDE, tradeSeq, Monocle3-DE, NBAMSeq, ImpulseDE2) for identifying
DE genes along cell pseudotime on synthetic single-lineage data with median dispersion.

Left panels (a)–(e) are based on pseudotime inferred by Slingshot; right panels (f)–(j) are based on pseudotime inferred by
Monocle3-PI. (a) & (f) Distributions of non-DE genes’ observed p-values by five DE methods with inferred pseudotime. Top:
quantile-quantile plots that compare the empirical quantiles of the observed p-values against the expected quantiles of the
Uniformr0, 1s distribution. Bottom: histograms of the observed p-values. The p-values shown on top of histograms are from
the Kolmogorov-Smirnov test under the null hypothesis that the distribution is Uniformr0, 1s. The larger the p-value, the more
uniform the distribution is. Among the five DE methods, PseudotimeDE’s observed p-values follow most closely the expected
Uniformr0, 1s distribution. (b) & (g) Quantile-quantile plots of the same p-values as in (a) and (f) on the negative log10
scale. PseudotimeDE returns better-calibrated small p-values than the other four methods do. (c) & (h) FDPs of the five DE
methods with the target FDR 0.05 (BH adjusted-p ď 0.05).PseudotimeDE yields the FDP below 0.05 while other methods do
not. (d) & (i) ROC curves and AUROC values of the five DE methods. PseudotimeDE achieves the highest AUROC. (e) &
(j) Power of the five DE methods under the FDP = 0.05 cutoff. PseudotimeDE achieves the highest power.

84



Figure 3.13: Comparison of five methods (PseudotimeDE, tradeSeq, Monocle3-DE, NBAMSeq, ImpulseDE2) for identifying
DE genes along cell pseudotime on synthetic bifurcation data.

Pseudotime is inferred by Slingshot. Left panels (a)–(e) are based on lineage 1 of two lineages in bifurcation data; right
panels (f)–(j) are based on lineage 2. (a) & (f) Distributions of non-DE genes’ observed p-values by five DE methods with
inferred pseudotime. Top: quantile-quantile plots that compare the empirical quantiles of the observed p-values against the
expected quantiles of the Uniformr0, 1s distribution. Bottom: histograms of the observed p-values. The p-values shown on top
of histograms are from the Kolmogorov-Smirnov test under the null hypothesis that the distribution is Uniformr0, 1s. The larger
the p-value, the more uniform the distribution is. Among the five DE methods, PseudotimeDE’s observed p-values follow most
closely the expected Uniformr0, 1s distribution. (b) & (g) Quantile-quantile plots of the same p-values as in (a) and (f) on the
negative log10 scale. PseudotimeDE returns better-calibrated small p-values than the other four methods do. (c) & (h) FDPs
of the five DE methods with the target FDR 0.05 (BH adjusted-p ď 0.05). PseudotimeDE yields the FDP below 0.05 while
other methods do not. (d) & (i) ROC curves and AUROC values of the five DE methods. PseudotimeDE achieves the second
highest AUROC which is close to the highest value. (e) & (j) Power of the five DE methods under the FDP = 0.05 cutoff.
PseudotimeDE achieves the second highest power which is close to the highest value.
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Figure 3.14: GO analysis of DE genes identified in the LPS-dendritic cell dataset.

Left panels (a)–(b) are based on pseudotime inferred by Slingshot; right panels (c)–(d) are based on pseudotime inferred by
Monocle3-PI. (a) & (c) Numbers of GO terms enriched (p ă 0.01) in the significant DE genes found by each method in Fig.
3.4 (b) & (f). (b) & (d) Top 10 enriched GO terms for each DE method.
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Figure 3.15: MSigDB over-representation analysis of DE genes identified in the LPS-dendritic cell dataset.

Left panels (a)–(b) are based on pseudotime inferred by Slingshot; right panels (c)–(d) are based on pseudotime inferred by
Monocle3-PI. (a) & (c) Numbers of MSigDB terms enriched (BH adjusted-p ă 0.01) in the significant DE genes specifically
found by PseudotimeDE or tradeSeq/Monocle3-DE in pairwise comparisons between PseudotimeDE and tradeSeq/Monocle3-
DE in Fig. 3.4 (b) & (f). (b) & (d) Example MSigDB terms enriched in the Pseudotime-specific DE genes in (a) & (b). The
explanation of terms can be found from MSigDB. All listed terms are related to the response of dendritic cells (DC) stimulated
by LPS.

87



Figure 3.16: UMAP visualization of example DE genes identified by PseudotimeDE, using Slingshot as the pseudotime
inference method, in the LPS-dendritic cell dataset.

p-values returned by PseudotimeDE are reported for all the 16 example genes. (a) Examples of known DE genes, which have
been reported as highly confident DE genes in the original study [101]. (b) Examples of new DE genes, which are identified by
PseudotimeDE but found as non-DE by either tradeSeq or Monocle3-DE.
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Figure 3.17: UMAP visualization of example DE genes identified by PseudotimeDE, using Monocle3-PI as the pseudotime
inference method, in the LPS-dendritic cell dataset.

p-values returned by PseudotimeDE are reported for all the 16 example genes. (a) Examples of known DE genes, which have
been reported as highly confident DE genes in the original study [101]. (b) Examples of new DE genes, which are identified by
PseudotimeDE but found as non-DE by either tradeSeq or Monocle3-DE.

89



Figure 3.18: GO analysis of DE genes identified in the pancreatic beta cell maturation dataset.

Left panels (a)–(b) are based on pseudotime inferred by Slingshot; right panels (c)–(d) are based on pseudotime inferred by
Monocle3-PI. (a) & (c) Numbers of GO terms enriched (p ă 0.01) in the significant DE genes found by each method in Fig.
3.5 (b) & (f). (b) & (d) Top 10 significant GO terms from each DE method.
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Figure 3.19: UMAP visualization of example DE genes identified by PseudotimeDE, using Slingshot as the pseudotime
inference method, in the pancreatic beta cell maturation cell dataset.

p-values returned by PseudotimeDE are reported for all the 16 example genes. (a) Examples of known DE genes, which have
been reported as highly confident DE genes in the original study [103]. (b) Examples of new DE genes, which are identified by
PseudotimeDE but found as non-DE by either tradeSeq or Monocle3-DE.
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Figure 3.20: UMAP visualization of example DE genes identified by PseudotimeDE, using Monocle3-PI as the pseudotime
inference method, in the pancreatic beta cell maturation cell dataset.

p-values returned by PseudotimeDE are reported for all the 16 example genes. (a) Examples of known DE genes, which have
been reported as highly confident DE genes in the original study [103]. (b) Examples of new DE genes, which are identified by
PseudotimeDE but found as non-DE by either tradeSeq or Monocle3-DE.
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Figure 3.21: DE genes identified in the natural killer T cell dataset.

(a) Venn plots showing the overlaps of the significant DE genes (BH adjusted-p ď 0.05) identified by the three DE methods. (b)
Numbers of GO terms enriched (p ă 0.05) in the significant DE genes specifically found by PseudotimeDE or tradeSeq/Monocle3-
DE in pairwise comparisons between PseudotimeDE and tradeSeq/Monocle3-DE in (a).
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Figure 3.22: GO analysis of DE genes identified in the natural killer T cell dataset.

(a) Numbers of GO terms enriched (p ă 0.05) in the significant DE genes found by each method. (b) Top 10 enriched GO
terms for each DE method.
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Figure 3.23: Comparison of NB-GAM and ZINB-GAM on the LPS-dendritic cell dataset with Slingshot pseudotime.

Example fitted results of NB-GAM / ZINB-GAM on six genes from the LPS-dendritic cell dataset with pseudotime inferred
by Slingshot. NB-GAM yields small p-values (p ă 1e ´ 10) and ZINB-GAM yields large p-values (p ą 0.01). Dashed blue lines
and red lines are the fitted curves by NB-GAM and ZINB-GAM, respectively.
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Figure 3.24: Comparison of NB-GAM and ZINB-GAM on the LPS-dendritic cell dataset with Monocle3-PI pseudotime.

Example fitted results of NB-GAM / ZINB-GAM on six genes from the LPS-dendritic cell dataset with pseudotime inferred by
Monocle3-PI. NB-GAM yields small p-values (p ă 1e ´ 10) and ZINB-GAM yields large p-values (p ą 0.01). Dashed blue lines
and red lines are the fitted curves by NB-GAM and ZINB-GAM, respectively.

96



Nap1l5 Sfrp5 Ugt2b34

Cbs Glrb Mapk10

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

2.0

2.5

0

1

2

0.0

0.5

1.0

1.5

2.0

0

1

2

0.0

0.5

1.0

1.5

2.0

0

1

2

pseudotime

lo
g1

0(
co

un
t +

 1
)

Figure 3.25: Comparison of NB-GAM and ZINB-GAM on the pancreatic beta cell maturation dataset with Slingshot pseu-
dotime.

Example fitted results of NB-GAM / ZINB-GAM on six genes fromthe pancreatic beta cell maturation dataset with pseudotime
inferred by Slingshot. NB-GAM yields small p-values (p ă 1e ´ 10) and ZINB-GAM yields large p-values (p ą 0.01). Dashed
blue lines and red lines are the fitted curves by NB-GAM and ZINB-GAM, respectively.
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Figure 3.26: Comparison of NB-GAM and ZINB-GAM on the pancreatic beta cell maturation cell dataset with Slingshot
pseudotime.

Example fitted results of NB-GAM / ZINB-GAM on six genes from the pancreatic beta cell maturation with pseudotime inferred
by Monocle3-PI. NB-GAM yields small p-values (p ă 1e ´ 10) and ZINB-GAM yields large p-values (p ą 0.01). Dashed blue
lines and red lines are the fitted curves by NB-GAM and ZINB-GAM, respectively.
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Figure 3.27: Comparison of empirical p-value and parametric p-value.

Scatter plot of empirical p-values and parametric p-values. (a) Scatter plot based on synthetic high dispersion dataset and
pseudotime inferred by Slingshot. (b) Scatter plot based on LPS-dendritic cell dataset and pseudotime inferred by Slingshot.
The parametric p-values are perfectly correlated with empirical p-values, suggesting that the parametric model well captures
the estimated null distribution of test statistics.

Figure 3.28: Comparison of p-values using 1000 subsamples and p-values using 100 subsamples.

The p-values are based on based on synthetic high dispersion dataset and pseudotime inferred by Slingshot. (a) Scatter plot
of the original p-value using 1000 subsamples on negative ´ log10 scale and the mean of 50 p-values using 100 subsamples on
negative ´ log10 scale. The strict linearity (Pearson correlation coefficient R “ 0.98) suggests that using 100 subsamples yield
similar p-values as using 1000 subsamples on log scale. (b) Scatter plot of the original p-value using 1000 subsamples and the
geometric mean of 50 p-values using 100 subsamples. The strict linearity (Pearson correlation coefficient R “ 0.96) suggests
that using 100 subsamples yield similar p-values as using 1000 subsamples on raw scale.
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Figure 3.29: Goodness-of-fit of the parametric distribution.

The p-values are from Anderson-Darling (AD) test, which measures the goodness-of-fit of the gamma/two-component gamma
mixture distribution to the empirical null distribution generated by subsampling and permutation. (a) Histogram of AD test
p-values based on the synthetic high dispersion dataset and pseudotime inferred by Slingshot. The distribution is approximately
Uniformr0, 1s, indicating that the parametric distribution fits the empirical null distribution well. (b) Quantile-quantile plots
comparing the empirical null distribution and its corresponding parametric fit for four random genes. (c) Histogram of AD
test p-values based on the LPS-dendritic cell dataset and pseudotime inferred by Slingshot. The distribution is approximately
Uniformr0, 1s, indicating that the parametric distribution fits the empirical null distribution well. (d) Quantile-quantile plots
comparing the empirical null distribution and its corresponding parametric fit for four random genes.
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Figure 3.30: Robustness of PseudotimeDE to the subsampling proportion.

Results are based on the synthetic high dispersion dataset and pseudotime inferred by Slingshot. (a) Power of PseudotimeDE
using different subsampling proportions under FDR levels 0.01, 0.05, and 0.1. (b) FDP of PseudotimeDE using different
subsampling proportions under FDR levels 0.01, 0.05, and 0.1. (c) Scatter plots of the default p-values using 80% as the
subsampling proportion vs. the p-values using 50%, 60%, 70% or 90% as the subsampling proportion. The strong linearity
(Pearson correlation coefficient R ě 0.96) of p-values under different subsampling proportions confirms the robustness of
PseudotimeDE to the subsampling proportion.
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CHAPTER 4

scSampler: fast diversity-preserving subsampling of

large-scale single-cell transcriptomic data

4.1 Introduction

Single-cell RNA sequencing (scRNA-seq) technologies have undergone rapid development in

recent years. A remarkable achievement is the generation of large-scale datasets, and there

are even datasets containing a million cells (See Table 4.1). Such massive scRNA-seq datasets

have impeded exploratory data analysis (e.g., visualization) on standard computers.

An intuitive solution to this “big data” challenge is to subsample (downsample) a large-

scale dataset, i.e., to select a subset of representative cells. Random subsampling is fast

and unbiased, and it has been implemented in popular pipelines such as Seurat [119] and

Scanpy [120]. However, random subsampling may miss rare cell types and is thus not

ideal for preserving the transcriptome diversity. To overcome this drawback of random

subsampling, Hie et al. proposed the first algorithm Geosketch for “intelligently selecting

a subset of single cells”, which they called “sketching” [121]. Geosketch aims to evenly

sample cells across the transcriptome space by minimizing the Hausdorff distance between

the subsample and the original sample (i.e., the large-scale dataset) (Section 4.2). In the

follow-up algorithm Hopper, the authors improved the performance of Geosketch in terms of

minimizing the Hausdorff distance. Moreover, prior to Geosketch and Hopper and outside

of the single-cell field, this “intelligent subsampling” problem has been well studied in the

field of computer experiment design, in which the “space-filling designs” implement the idea

of even subsampling across the transcriptomic space [122]. The most popular space-filling

designs are the minimax distance design and the maximin distance design [123]. Geosketch
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and Hopper conceptually belong to the minimax distance design, which, however, is much

more computationally intensive than the maximin distance design [123]. Here we propose

scSampler, a Python package for fast diversity-preserving subsampling of large-scale single-

cell transcriptomic data. By “diversity-preserving sampling,” scSampler implements the

maximin distance design to make cells in the subsample as separative as possible. Using

8 simulated datasets and 10 real datasets, we show that scSampler outperforms existing

subsampling methods in minimizing the Hausdorff distance between the subsample and the

original sample. Moreover, scSampler is fast and scalable for million-level data.

4.2 scSampler methodology

scSampler is implemented in Python and can be installed by pip install scsampler. The

input is a matrix or an anndata object from scanpy pipeline. Denote the input matrix by

X P Rnˆp, whose columns correspond to p features (by default, top p PCs from a cell-by-gene

logpcount ` 1q matrix and scaled to r0, 1s) and whose rows correspond to n cells. Therefore,

X can also represent a set X “ tx1, ¨ ¨ ¨ , xnu, where xi P Rp. Our goal is to find a size ns

subset Xs Ă X , which satisfies:

max
Xs

min
xi,xjPXs

d pxi, xjq , (4.1)

where dp¨, ¨q is the Euclidean distance. The optimality in (4.1) can be achieved by minimizing

a scalar loss function:

min
Xs

ns´1
ÿ

i“1

ns
ÿ

j“i`1

1

dα pxi, xjq
, (4.2)

for a sufficiently large α [124]. It is found by [125] and in our numerical results that α “ 4p

is big enough and keeps the algorithm numerically stable, so we set α “ 4p by default. For

computational efficiency, scSampler can randomly split the original sample into subsets and

perform subsampling on each subset.
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4.2.1 scSampler algorithm

Algorithm 1 scSampler: sequential selection

Input: a sample (dataset) X , a required subsample size ns, and a split fold B
Output: a subsample Xs

Evenly split X into B random subsets X 1, ¨ ¨ ¨ ,X b ¨ ¨ ¨ ,XB

for each X b do
m “ 1
Randomly select a point x1 from X b

Initialize X b
s as a subsample with a single point x1 and remove x1 from X b

for each x P X b do
Compute ∆px|X b

s q “ 1{ rdpx1, xqs
α

end for
while m ă rns{Bs do
Find xm`1 by (4.3)
Include xm`1 in X b

s and remove it from X b

for each x P X b do
Update ∆px|X b

s q Ð ∆px|X b
s q ` 1{ rdpxm`1, xqs

α

end for
m Ð m ` 1

end while
end for
Xs “ YB

b“1X b
s =0

4.2.2 The sequential criterion

We want to generate a subsample, denoted by X b
s , with n0 “ rns{Bs points from each split

sample X b, b “ 1, . . . , B. We start with a random point x1 and select x2, . . . , xn0 sequentially.

Suppose we have already selected m points. Then the pm ` 1qth point is obtained as

xm`1 “ arg min
xPX b

#

m´1
ÿ

i“1

m
ÿ

j“i`1

1

rd pxi, xjqs
α `

m
ÿ

i“1

1

rd pxi, xqs
α

+

“ arg min
xPX b

∆px|X b
s q , (4.3)

where α “ 4p and

∆px|X b
s q “

m
ÿ

i“1

1

rd pxi, xqs
α .
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4.2.3 Other used metrics

4.2.3.1 Gini coefficient

The Gini coefficient measures the inequality of cell types. A smaller Gini coefficient means

that the cell types are more balanced in a sample. Here we denote the subsample as Xs, and

the cell type proportions in Xs are p1, ¨ ¨ ¨ , pc, ¨ ¨ ¨ , pC . Note that the C is the total number

of cell types in the original data. Therefore, if a cell c type is missing in the subsample, its

proportion pc “ 0. Then the Gini coefficient G is calculated as:

G “

řC
c“1p2c ´ C ´ 1qppcq

C
řC

c“1 ppcq

, (4.4)

where ppcq is the c-th smallest cell type proportion. The code for calculation is from https:

//github.com/oliviaguest/gini.

4.3 Results

4.3.1 scSampler outperforms other subsampling methods

To comprehensively benchmark scSampler—three variants: scSampler-sp1 (no sample split-

ting; the slowest), scSampler-sp4 (splitting the sample into 4 subsets), and scSampler-sp16

(splitting the sample into 16 subsets; the fastest)—against random sampling and two state-

of-the-art subsampling methods, Geosketch and Hopper, we use the scRNA-seq simulator

Splatter [126] to generate 8 simulated datasets and collect 10 real datasets (See Table 4.1).

On each dataset, we subsample 1000, 3000, 5000 and 10000 cells using each subsampling

method. Fig. 4.1a shows an example that illustrates the difference between random subsam-

pling and scSampler: compared to random sampling, scSampler selects more cells from small

cell clusters. Quantitatively, we compare subsampling methods by two measures: (1) the

Hausdorff distance between the subsample and the original sample, (2) computation time,

both of which are better if smaller (Fig. 4.1b). Fig. 4.1b summarizes the performance of

subsampling methods in the two measures. Notably, scSampler-sp1 consistently yields the

105

https://github.com/oliviaguest/gini
https://github.com/oliviaguest/gini


smallest Hausdorff distances across all datasets and all subsample sizes. Moreover, scSampler

is fast: on the largest cortex dataset (more than 1 million cells), scSampler-sp1 finishes in 15

minutes, and scSampler-sp16 takes only 1 minute and still outperforms Geosketch and Hop-

per by achieving a lower Hausdorff distance. Fig. 4.1c shows that scSampler is consistently

ranked the top (smaller ranks are better) across the 18 datasets.

To verify if rare cell types are better captured by scSampler than other methods, we calcu-

late the Gini coefficient of cell type proportions in each subsample; a smaller Gini coefficient

indicates more balanced cell types (Section 4.2.3.1). In more than 60% of the combinations

of 18 datasets and 4 subsmaple sizes, the fastest scSampler-sp16 leads to the smallest Gini

coefficient. Considering that the real datasets may not have accurately annotated cell types,

we examine the simulated datasets and find that scSampler-sp16 leads to the smallest Gini

coefficient in 90% of the combinations of 8 simulated datasets and 4 sample sizes, confirming

that scSampler well preserves rare cell types.

4.3.2 The computation time of scSampler with splitting

The computation time of Algorithm 1 without splitting the full dataset (i.e., B “ 1), denoted

by T , is Opnnsq. If the data is split into B subsets, the computation time on each subset is

Opnns{B
2q, so the total computation time, denoted by TB, is Opnns{Bq, which is 1{B of T .

The splitting procedure, although does not improve the asymptotic scalability in n if B is a

constant, can dramatically accelerate the computation in practice. To see this, Figure 4.2a

plots TB against B on four datasets for B “ 1, 2, 4, 8, 16, and 32, and shows that roughly

TB “ T {B. For example, on the dataset “splatter8,” when B “ 1, the computation time is

around 700 seconds, which decreases to around 350, 175, and 87.5 for B “ 2, 4, and 8. We

further plot TB against 1{B in Figure 4.2b, which shows that TB is roughly linear in 1{B,

that is, TB “ T ¨ p1{Bq “ T {B. All computations are carried out on a server running Ubuntu

20.04 system with an Intel Xeon E5-2687W v4 CPU and 256 GB memory.
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4.4 Discussion

We proposed scSampler, an unsupervised diversity-preserving subsampling methods for large-

scale single-cell transcriptomic data. Compared to the state-of-the-art subsampling methods,

scSampler finds subsamples with smaller Hausdorff distances to the original sample, indi-

cating its superiority in preserving transcriptome diversity. Moreover, scSampler is fast,

scalable to million-level data, and can be further accelerated by using random splits. As a

Python package, scSampler is open source and adaptive to the Scanpy pipeline.

4.5 Code and data availability

The R package and the tutorials of scSampler are available at:

https://github.com/SONGDONGYUAN1994/scsampler.
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4.7 Figures
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Figure 4.1: Benchmarking scSampler against other subsampling methods.

(a) UMAP visualization of selected cells in the original data by random subsampling and scSampler-sp1, respectively. (b)
Scatter plots of Hausdorff distance against computation time. (c) Summary of the performance of each methods. The table
shows the mean ranks and standard deviations across all datasets and subsample sizes.
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Figure 4.2: Computational time of scSampler

Computational time of four datasets against B and 1{B, respectively.
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4.8 Supplementary materials

4.8.1 Supplementary tables

Table 4.1: Overview of datasets used in scSampler

dataset # of cells # of HVGs # of cell types λ or reference
splatter1 100000 529 5 0.1
splatter2 100000 524 5 0.1
splatter3 100000 515 5 0.15
splatter4 100000 497 5 0.2
splatter5 100000 500 5 0.25
splatter6 200000 524 5 0.2
splatter7 500000 510 5 0.2
splatter8 1000000 517 5 0.2
heart 29552 2350 32 [127]
moffit 30332 1729 12 [18]
fetal 61006 3330 32 [68]
pbmc68k 68579 1488 10 [8]
bacher 104417 803 6 [128]
zeisel 160796 3389 39 [129]
mca 333778 3587 52 [130]
hcl 599926 1864 63 [131]
immune 606606 1566 34 [132]
cortex 1089022 2124 43 [133]
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CHAPTER 5

Summary and future directions

In this article, we discussed three challenges in single-cell and spatial omics and their com-

putational solutions. In this section, I summarise the three computational methods that I

developed and discuss some potential future directions.

5.1 scDesign3: generation of realistic in silico data for multimodal

single-cell and spatial omics

In Chapter 2, we proposed scDesign3, a realistic and versatile simulator for single-cell and

spatial multi-omics. scDesign3 can generate realistic synthetic data from diverse settings,

including different cell variations (discrete, continuous, and spatial), feature modalities, and

experimental design.

For future directions, one remaining question is the scalability of scDesign3. For the

current model, scDesign3 requires fitting regression models for each individual gene. If the

marginal regression model is complicated (e.g., in spatial omics), the marginal fitting can be

very time-consuming for thousands of genes. One solution is to propose a novel optimization

procedure for fitting a large number of regression models jointly with the same design matrix.
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5.2 PseudotimeDE: inference of differential gene expression along

cell pseudotime with well-calibrated p-values from single-cell

RNA sequencing data

In Chapter 3, we proposed PseudotimeDE, a novel statistical method to identify DE genes

along inferred cell pseudotime. PseudotimeDE focuses on generating well-calibrated p-values

while using subsampling and permutation to incorporate the randomness of inferred pseu-

dotime. We use comprehensive studies on simulated and real data to demonstrate that

PseudotimeDE yields better FDR control and higher power than other existing methods do.

For future directions, one remaining question is the “double-dipping” issue, which means

that the same dataset is used both for inferring latent variables and testing differential

expressed genes. Similar to the double-dipping problem in ClusterDE [3], it is possible that

there is no real biological trajectory in the dataset while a pseudotime inference algorithm

still returns a fake trajectory. Currently, PseudotimeDE still assumes the existence of a

biological trajectory and cannot handle the double-dipping issue. To solve this problem, we

will design a new frameworj to create a valid in silico control dataset without a trajectory

but still resembles the real dataset from different statistical aspects.

5.3 scSampler: fast diversity-preserving subsampling of large-scale

single-cell transcriptomic data

In Chapter 4, we proposed scSampler, a novel method for fast diversity-preserving subsam-

pling of large-scale single-cell transcriptomic data. The goal of scSampler is to make cells in

the subsample as separative as possible compared to the original sample. Using simulated

datasets and real datasets, we show that scSampler outperforms existing subsampling meth-

ods in minimizing the Hausdorff distance between the subsample and the original sample on

million-level data.

For future directions, we can extend the current sampling from single-cell transcriptomics
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to spatial transcriptomics. For the newest spatial transcriptomics technology (e.g., the 10X

Visium HD [134]), the number of measured locations can be million-level. Therefore, sub-

sampling may be applied on Visium HD data. The major challenge will be to take into

account both spatial locations and cell-type identities in the sampling process.
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