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• 	 ABSTRACT 

Expressions are presented for the electric and magnetic fields 

due to a pulse of charge, which may be oscillating transversely while 

moving down an infinitely long highly conducting pipe of circular cross 

section. The expressions are evaluated at large distances from the 

• 

	

	 pulse and the fields are shown to decrease algebraically in the 

distance behind the pulse. In the absence of transverse oscillations 

• 	 :1 	the longitudinal electric field varies as the inverse three-halves 

power of the distance; in the presence of oscillations the dominant 

field ciponent is the transverse magnetic field, which decreases as 

the inverse one-half power. In the long-range limit the amplitude of 

the fields is proportional to the square root of the wall resistivity. 

The phase of the field associated with the oscillating pulse is shown 

to be the phase of the pulse at the time when it passed. the point of 

observation. 

* Research' supported by the United States Atomic EnergyCommission. 

Iesent address: Stanford Linear Accelerator Center, Stanford 

• 	 University, Stanford, california. 

• 	 • 	
: 	• 	 •• 
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flODUCTION 

It has been shown that the finite conductiv -ity of the galls of 

an accelerator vacuum chamber can lead to unstable coherent oscillations 

of azimuthally uniform beams. 1' 2  The question of stability arises 

for a longitudinally bunched beam in which the distance between bunches 

is large compared with the radius of the vacuum pipe. If the electric 

and magnetic fields fall off fast enough with distance from the bunch, 

the motion of separate bunches would be independent of one another. 

It has been shown that the local self, fields of a bunch do not lead 

to unstable motion. 3  Therefore one might expect to stabilize coherent 

beam oscillations by bunching the beam longitudinally. 

If the vacuum chamber walls are infinitely conducting, the 

• 	 fields fall off exponentially in a distance of the order of the pipe 

radius (which is typically small compared with the distance between 

bunches), and therefore a longitudinal bunching of a unifOrm beam 

would stabilize the coherent motion. 

It is the purpose of this paper to obtain expressions for the 

• 

	

	 fields at large distances from. a moving bunch of charge surrounded 

by walls with finite conductivity. These fields are the basic 

• 

	

	
ingredients in an analysis of the coherent motion of a bunched 

beam. We limit our analysis to.obtaining the fields at distances 

• large compared with the pipe radius and the bunch length. The 

conductivity of the wall is such that the displacement current in 

the wall can be neglected compared with the conduction current. 



-2- 

A discussion is given of the dependence of the fields upon 

distance from the pulse, with particular attention to the different 

functional dependences which occur at various distances. Over a 

very large range the fields are shown to fall off algebraically, and 

in agreement with the independent resuitsof a number of workers; 
5,6  

the most important aspect of the work reported here is a careful 

delineation of the range of validity of these previously obtained 

formulas. 

The important results for the analysis of the coherent 

motion of azimuthally bunched beams are that: (i), the dominant 

term in the longitudinal force of one bunch on a subsequent bunch 

decreases algebraically with the distance z between bunches as 

• 	Jz I -3/2 (Eq. 1 .l6a); and (ii), the dninant terra in the transverse 

force has a phase that depends only upon position (as measured in 

the laboratory), and an amplitude that decreases algebraically with 

distances between bunches as 	[Eq. (2.20)]. Suffice it to 

say, here, that bunched beams are not generally stable and the 

stability criteria are different from that for uniform beams. 

Discussion of all of this may be found in Ref. 1  and forthcoming 

papers based on the abstracts of Ref.. 24 

In the first section, the fields created by rectilinear 

longitudinal motion of a pulse of charge are obtained; in the second 

section the fields created by transverse oscillation of the pulse 

are derived. 

The general mathematical method which we employ, namely the 



-3- 

use of Fourier transforms, was suggested. by S. Weinberg's analysis 7  

• - 	
of a related problem. In Appendix A we discuss some mathematical 

questions associated with approximating Fourier integrals, and 
0 

summarize the transforms employed in this peper. Appendix B 

• 	 summarizes properties of Bessel functions which are required in the 

• 	 analysis. 



I. PURELY LONGITUDINAL MOTION 

1. Derivation of the Fields 

In this section we obtain the expressions for the electric and 

magnetic fields arising from a bunch of charge in purely longitudinal 

motion. The pulse of charge moves in the z directionvith veloc±ty 

v Inside an infinitely long straight pipe of circular cross section 

and wall conductivity a . The inner and outer radii of the pipe 

are b and d , respectively. The pulse of charge has constant radial 

density inside a radius a.. The charge and current density are 

taken as 

p0 (r,z,t) = n0  f(z-v t) rt(a -r) , 	 (l.la) 

= v00(r,z,t) , 	 (l.lb) 

(l.lc) 

where cylindrical coordinates are used, and .11(x) is the Iteaviside 

unit •step function that is unity for positive argument andzero for 

negative argument. The function f(x) is normalized such that 

00 

f f(x) dx = . 1 . 	 (1.2) 

-00 

Consequently it an0  = eN , with N the number of particles in the 

pulse. 	 . 	. 

61- 



-5- 

Due to the symmetry of p0  and. J0  , only E,. Er  and. B8  

are nonzero. It will be useful to use Fourier transformations 

in solving for the fields, and the convention will be adopted that a 

tilde above a quantity designates the transform as defined by 

f(z v t) 	

: 	

( k) e1 k - v t) 	 (1.3a) 

00 

E(z-vt)= f z eik_vt) 	 (1b) 

analogous expressions hold for Er and B 8  . 

We define the following regions: 

Region 1 	0 <r. <a , 

Region2 	a<r<b, 

Region 3 	b <r <ci , 

Region 4 	 d <r 

From Maxwell's equations and Ohm's law we obtain the relationships 

between the field co'nponents in the various regions In regions 

1,2, and 4 we have 

/ E 	= - 	.-. 	, 	 i 1. 
ci 

q 

with 	 q
2 = - 	

and 72 = 	- (v/c)2]1 



In region 3 (inside the metal) we 1-iave 

ik E -  r 	2- 

	

a 	Cr. 

= 	1t,ra/c) 

where 	 a = q + Rik and R = 

In region 1, the equation for E takes the form 

1 	2 	 17cn0f(k) 
-- kr — ; +q E = 1 	. 	ic. r 	\\ rJ 	Z 	 2 

• In regions 2 and 4 we have 

• 	 1 	
(r 	+q2 	= 

	

r r \\ 	r) 	Z 

(l.5b) 

(i.6a) 

(i. 6b) 

and in region 3 

•l. 	( - 	
) 	

2 - tr 
	

I+ a E 
Z 	

0 . 	 ( i.6c) 
r\\ !6-r 

Equations (1.6) are zero-order Bessel equatins, or siiiply re1atd 

to Bessel's equation. Various properties of. the solution to Bessel's 

equation, that are used in this work, are given in Appendix B 

At this point it is necessary to clarify our definition of q 

and a.. So far, only q2  and a2  have been defined and we are left 

with a choiä of sign for q and a . The sign convention is arbitrary, 

I. 
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however, it is. convenient to choose the sign in such a way that the 

imaginary part of q and a is always positive. 

-) 	 The expressions for ,  E that are finite everywhere are 

Region 1: 	= C1  .J(qr) + 	
, 	 (1.7a) 

1k 

2 
r 	2itn0qaf 

Region 2: E = - 	 N1 (qa)j J0 (qr) 
1k 

2 2nqaf 	1 + 	 0 	J1(qa )  N0(qr) , 	 ( 1 .7b) 
L 	1k 	 - 	 . 	 . 

R.egion 3: 	
. 

= C3  J() + C N0() , 	 . 	 (1.7c) 

Region :. 	 = C5 	(qr) 	 . 	 (1.7d) 

In these expressions.J(x), N(x) and H(x) are defined, in 

Appendix B , by Eqs. .(B.2), (B.3), and (B.l.). The constants C , 

I = 

 

1,3,4,5. are to be determined from the continuity conditions of 

the fields at the boundaries between the various regiOns. The 

• 	 boundary conditions at. r = a are already satisfied by the expressions . 

for E , while the continuity of E and Be  at r = b gives 	. . 

2 	 2 r 	21tnaf 	 ika b. 
C 	= - . [Cl 

- 	. 	

N (q.a)] [ab J (qb)N (ab) 
1k 	 0 	1 	

q ( ikt3 

2 	- 2tn0qaf 
X 1 (q') N0(ab)] 

~ [ 	

1k 	
J1(qa)] [abN0 (q.b) N1 (ab) 

ika2 b 	 . 	 . 	 .. 

- N1  (qb) N (ab)] 	, 	
(1 8a) 

q(ikJ3 	14w/c) 	 . 



RM 

and 

2ir 
2
n qaf 

c = 	I'Cl 
- 	

N1(a)] [ab J 0(qb) 31 (ab)  Tr 	 ik 

2 
2itnqaf 

	

X J1 (qb) J0(ab)] + 	
1k 	

11(qa)] I ab N0 (qb) J1 (ab) 

1ka2b 

	

- 	 N1(b)J0 (ab)] 	, 	(i.8) 

	

q(ik - Ilto/c) 	 J 

where we have employed Eq. (B.8). The boundary conditions at 

r = d are used to obtain 

[ad
ika 2 d 	 (,\

C3 J (ad) H ' 1(qd) - 	 3 (ad) rr 1 (qd) 
q(ik - ta/c) 

= c 4 [ad N1(ad)H0(qd) - 	ikJ3 ad 	N0(ad)(qd)] . 	(1.9) 
q(1k - 4tci/c) 

Equations (1.8) and (1.9) are solved for C 1  , C3  , and C 

and these constants are then substituted into Eqs. (1.7)  to obtain the 

expression for E . When this general expression is inserted into 

Eq. (1.3b) the resulting Fourier integral is much too complicated to 

be performed analytically. Numerical integration would yield the 

complete expression for E (z - Vt) valid for all values of z and t 

In the following subsection we shall restrict ourselves to large 

values of (z - Vt), and present results of the integration for three 

simplified geOmetries. 

1k cx2b 

q(ik - 
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2. Field Expressions.for Certain Geometries 

(i) Wall renioved (b - oo Or a 0) 

In this example the fields are those of a pulse of charge in 

• 	free space so that C 4  = I C3  . On the cylinder axis (r 

• 	Eq. (la) yields 

- i 	qa 	aa)] , 	 (i.io) 

where use has been made of Eqs. (B.9) and (B.lo) to sip1ify the 

coefficient C1  . Equation (1.10) is to be substituted into the 

• 	 • Fourier integral Eq. (1.3b) in order to determine E(z - 	. For 

the region Iz - v-tJ >> a we may invoke Appendix A - Case 2 to 

conclude that ka <<1 ; consequently we may employ the approximation 

of Eq (B 5) and obtain 

I n0a2  k In Ikai  

In obtaining this expression we have made use of the fact that, for 

Jz - vtj large compared with the length of the bunch, the field is 

independent of the form of f(z - Vt) and we may replace f(k) by 

f(0) = 

We now use the results of Table I (Appendix A) to obtain 

Sign(z 
E (z 	vt) = 	 , 	• 	 (1.12) Z 	

(z - 
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where N is the number of particles in the bunch. This is the 

result one would obtain from a more elementary treatment; the 

factor 	originates in the Lorentz contract. [The same result 

could be obtained, directly from Eq. (1.10), by invoking Appendix A - 

Case i.] 

(ii) Wall of infinite thickness (d. -, o) 

In this example an infinitely thick conducting wall surrounds 

the pulse. Because of the relativistic velocity of the beam and the 

high conductivity of the wall, conduction-current terms dominate inside 

the metal. Consequently, for example, a2 	R i k , so that 

ika2 	 2 2 
- 	7 q 

q(ik - La/c) 
(1.13) 

With this approximation and taking d. - 	we obtain in the region 

r <b 

n0  a2 2 
 k 	H(1)(b) 

= i 	 (i,JJi.) 
(1) 

ab 	111 	(ab) 

where we have again restricted ourselves to a distance Fz - vtj 

much greater than both the vacuum chamber 1 s Inner radius and the.pulse 

length, so that (by Appendix A - Case 2) k b << 1 and f 
elt 

In obtaining Eq. (1.1 14) we have employed Eqs. (B.2), (B.3), and (B.14). 

Even with this restriction there are two regions of interest. 

The first is the region In which 1z - 	I <<R b2  (R 108 cm. 	for 

copper) and.he second is the region in which Jz -vtj >>R b2 
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For fz - vtl <<R b2  we employ Appendix A - Case 3, noting that 

most of the contribution to the Fourier integral [Eq. (i.3b)] occurs 

for values of a b >> I ; for 1z -  vtf >>R b2  we have the situa-

tion of Appendix A - Case 1 , and may take a b <<1 . We use these 

facts, along with the proper approximations fitm Appendix B , to obtain 

the following approximate expressions for E(k) 

2 	1 

	

' 
Z () 	

eNP 	1k1 2 i + sign(k)], Fz - vtf<<Rb2  , 	(l.la) 
irb (2R) 12 

(k) = -i e 	k [nIkbi - i 	Sign(k)], !Z - 	>> Rb2  , 	(1.15b)2 Tr 

where a term proportional to k has been omitted in Eq. (1 .15b) 

since it contributes to E(z,.t) only in the region of the pulse. 

We now use the results of Table I (Appendix A) to obtain 

2 	S(s,t) 	
2 E (z,t) = 	eN 1 	/ 	

Jz - vtl <<Rb , 	(1.16a) 

	

Z 	
(itR)b 	1s13/2 

E(z,t) = eN2 	st) , 	lz - v-ti >>Rb2  , 	(1 16b) 

where s = (z - vt) and S(z,t.) is defined as zero for z > vt and 

unity for z < vt .. Thus we see that the field at large distance from 

the pulse is zero In front of the pulse but falls off algebraically 

behind the bunch Equation (1.16) presents only the term with the 

slowest fallff and completely ignores the fields with a falloff 

distance of he order of the pipe's inner radius or the pulse length. 
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(iii) Thin wall [(a - b) <b] 

In order to simplify the algebra we will restrict ourselves, 

in this example, to a bunch that fills the pipe, and to an observation 

•point at the pipe radius. Thus we take r = a b . [Actually, as is 

suggested by Eqs. (1.16), we expect our results to be valid even 

without these restrictions, but we have not studied the more general 

case.] As with examples (ii) we ignore the displacement current and 

obtain 

2 
= 	eNk z 

(1.17) 

ad £n fkd[N0 (ab) J1 (ad) - J0 (rb) N(ad)] 

ad In Ikd[N1 (ab)J1 (ad)_ J1 (ab)N1 (ad)J-a13 2y2 [N1 (ab)J0 (ad)- J1 (ab)i 0 (ad)] 

where again we have restricted ourselves to large distances, so that 

- vtJ >> d , and have consequently (Appendi.x A -Case 2) used the 

expansions of Eq. (B.2) and (B.3) that are valid for kd .<< 1 

The electric field E(z,t) can be obtained by evaluating the 

Fourier inversion [Eq. (1.3b)] with Eq. (1.17) for ' (k) 

We will restrict our attention, here, to two regions in which 

the integral can be readily approximated. The first region, 

Iz - v-ti <<R(d. - b)2  , has the major contribution to the Fourier 

integral occuriing for values of . a(d -. b) >> 1 , so ' (k) can be 

approximated by (Again, Appendix A - Case 3) 

I 
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E (k) = 	e N 	
lklV2 [i + Sign(k)]  z 	 'o ()l72 

where use has been made of Eq. (B.6) and the fact that 

4 

cos[(i ± l)x] 	- sinl(i ± l)xJ 

for large x 	The second region considered is Jz - rtF >>Rd2  ; 

by Appendix A - Case 1 we may take ad 2 << 1, and E z (k) is 

approximated by 

ieTk 
E(k) = 	2 In jkdj  

7t7 

where use has been made of Eqs. (13.2) and (B.3). We now use Table I, 

to•obtajn 

E(z,t) = 	e N f3 	S(z,t) , 	lz - 	<< R(d - b)2, 	(1.20) .  
()l72 b 	I s l3/'2  

and 

E(z,t) = eN Sign(z - vt) 	
- vtj >>Rd2 	 (121) 



II. TRA1SVERSE OSCILLATIONS WITH UNIFORM LONGITUDINAL MOTION 

1. Exact Formulas for the Fields 

In this section we solve for the electric and magentic field 

due to a pulse of charge oscillating transversely, in the x direction 

with amplitude 	and frequency u, while traveling longitudinally, 

in the z direction with constant velocity v . As in the preceding 

section, the charge is surrounded by an infinitely long straight 

pipe with circular cross section, conductivity cr , and inner radius 

b . The outer wall radius is taken to be infinite. 

The amplitude 	is assumed small compared to the beam 

radius a so that we may take the charge and current distribution 

tobe 

p = p0 + p1 	 (2.la) 

and 

+, 	, 	 (2.lb) 
• 	 .• 	 , 	 ,.1 	 'il 

where p0  and , 	are defined by Eq. (i..i), and 

Wt p1 (i',z,t) = n0 	cos e 5(r - a) f(z - vt) e 1 	, 	 (2.2a) 

n0  f(z - vt) e 1' ticzH(a - r) [_ cos e 	+ sin 8 

+ v 	- a) cos 0 e } 
	

, 	 (2 2b) 



with 11(x) the Ileaviside step function, and 6(x) the Dirac delta 

function. 

The field due to the sources p0  and J0  has been presented 

in Section I ; we will consider only the fields due to the sources 

and J In this section. The total field will, of course, be the 

superposition of the fields due to each set of sources. 

Again It will be useful to use Fourier transformtjons In 

solving for the fields. The definition, Eq. (1.3a), Is still valid 

for 	(k), but we shall replace Eq. ( 1 .3b) by 

E(t,z - 	 = cos e 	 dk , 	(2.3) 

where we have explicitly introduced, both the theta-dependent and 

the. frequency_dependent terms in the definitions to simplify the 

subsequent expressions for the transformed field components, all of 

which occur in this problem. We have E r  , E , and Be proportional 

to cos e , while E6 , Br and B are proportional to sin e 

From xwell's equation and Ohm's law we obtain relationships 

between the various canponents. Inside the pipe (r < b) we have 
___ 	

2 v r = 1k - + 1k r 
	

B - r k 	 11(a - r) , 	(2.4a) 

2 	
= 1k 	 ~ 	 1 k2 	n0  H( a - r), 	 (2 b) 

and 
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2 	
e - 	z 	ik() 	

+ 
k n0fH(a - r), 

2 2 

where P= 	and v2  = - k2[i - ( 
+ 	)2J 	

. 	Inside the metal 

(r>b) we have 

1k 1k 

(2.5a) 

(2.7b) 

'•. r = 	 + 	 B 	, 	 (2.6a) 

r" 

	

 

dE 	
1k 

X Be = [1k(•+ 	) - Iro/c] -- .+ 	- B 	,. 	 (2.6b) 

'1 

1k"-' X E8  = - -- E - ik( + 	) - 	. 	 (2.6c) 

E  
B, = [ik( + 	- 1o/cJ 	-

z 	z + 1k 	 (2.6d) 

with 2 = v + (4,r nw/c) 	
+ 

By means of Eqs. (2. 1 ), (2.), and (2.6) we see that we can 

determine the exWessions for the components Er  Be and Br 

from expressions for the components E and B . The transverse. 

fields found from E , and the transverse fields found from B ' 

are two independent solutions to Maxwellts equations. 

Inside of the pipe (r <i), the equation for E and B 

4 



- 17- 

r 	Cr  (2 	1 +  

inside the metal 	(r >b) we have 

[1 + 	21)](Ez) 
=  

Equations (2.7)  and (2.8) are Bessel's equations. 	In addition to 

satisfying Equations (2. 1 ) through (2.8), the transformed expressions 

must satisfy the proper boundary condition at r = a 	and 	r = 

At 	r = a 	we have 	B 	 ,E , E 	and. 	B 	 all e continuous, and 

+ a 
+ 	 - B6 (r = a ) - Be(r = a ) = It/c  f a 	

, 
= 	nf , (2.) 

and 
a+ 

f r=rn (2o) 

At 	r = b 	we have 	B 	,E , E 	, .B 	and 	B e 	e r all continuous. 

The solutions to Equation (2.7) that are valid inside the 

• 	 pipeare 

= 	C1  J1 (vr) z + Ø1(vr) H(r - a) 	, (2.10a) 
p 

and 

= 	D1J1 (vr) + r1 (vr) H(r - a)  
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with 	and 	1r 	given by .  

01 (vr) 	= 	M[N1 (vr) J1 (va)- J1 (vr) N1 (va)) (2.11a) 

and 

1 (vr) 	= 	P[N1() J1 (va) - J1 (vr) N1 (va)) 	, (2.11b) 

and the phases of 	v and X 	chosen in such a way that the imaginary 

arts are always positive. 	The constants 	M and P 	are determined by 

the boundary conditions at 	r = a . 	The continuity of E 	and  B 	is 

already included in the definition of 	
0
1 and 

'l 	of the remaining 

boundary conditions two are redundant, and we obtain the following 

equations: 

M 	= 	(22 a n09 fik) ( 	
- 

(2.a) 

and 

P 	= 	(21r 	a n0 f 1k) Pw  (2 12b) 

The expressions for 	•E 	and B 	in the metal are z 	z obtained 

from Eq. (2.8) and are given by 

E
z 	= 	[C J1 (vb) + 0 (vb)] 	 , (2.13a) 

( 1 )(xb) 

and 

B 	= z 	ID J1 (vb) + 	(vb)] 	 . 1 	1 (2.13b) 
1r' 	(x) 
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The continuity of E 	and. 	at 	r = b 	are included in Eq. 	(2.15) 

and the remaining boundary conditions yield explicit expressions 

for the constants C1  and D 	 •. 	These expressions are 

• C1 
= 	(Num) 	/(Den) 	

, 	 •(2.14a) 

and 
1 

D1 
= 	

(Num) D /(Den) 	, 	 (2.14b) 
1 

where 

(Num) • 	 C1 b? 
[J'(Vb) - 	 (v 	• 	' xbØ vb) 	- ____ 

2 J 	Jvb) 	ikc 	XH Xb)J vb 	w 	vJ v1) 	?Ii(?b) 

+ 	2 IJ'(vb) 	H'(Xb)l 
[vJ (vb )
Ø'(vb) 	H'(Xb)Ø(vb) - 	' 	

w' 	L vJ (vb 	r(xb) :1 	 r ( 	)J (vbj 

• 

• 	 • 
+ 	bJ (vb) 

r 	1 1IJ(vb) 	'(vb) 	Jt(vb) 	(vb)1 	 2 1c L 2 	 vJ (vb) 	- 	vJ (vb) 	J  J 
• 	

• 	( 	) um - -1f 
- 	1b2 L2 

	

1 	(vb) - 	 '(xb) 	
) 
f(vb) - 	 __ 

	

2 J 	J(vb) 	ikc 	i(5) 	v 	L vJ (vj ?.H(Xo )J (vb 

\2 
w' 

[J I (vb) 	'(xb)11r'(vb) 	(2.b)jr(vb) 
vJ(v 	- 	(b7JLvJvJ - II(b)J(vJ ' 

+ 

bJ (vb 
r 	1 11J(vbø'(vb) 	J'(vb)Ø(vb)1 	 2 1d L 	- 	J L - vJ (vb) 	vJ (vb) 	J J 	' 

f 

and 



IKOZ 

3 	1 ' 	1 	1 	a i(xb) 	 J' vb) 	H'(xb) Den = 	
- 	J 	 u() 	+ w [VJ v)  

	

2 	2

- ( + 
	)2 [J 	- 	]2 } 

	
(2 l) 

In Eqs. (2.14) the subscripts and superscripts oi'the Bessel, Neumann,and Hankel 

functions have been omitted for brevity. The prime denotes.differentia- 

tion with respect to argument. . 

2. Approximations 	. 

The expressions for C1  and D1  are exact; we now restrict 

ourselves to values of w that are considerably below the cut-off 

frequency for the pipe (i.e., frequencies such that yth << c). We 

will also assume that the conductivty is high, so that the displace-

ment current in the metal can be neglected. 

With these restrictions, which are easily fulfilled in an 

actual accelerator or storage ring, the exession for X reduces to 

= R 	 ik, 	 . 	(2.15) 

with R = 47r/c . Next we exind the extressjon for C1  and 

to first order in the quantity -l. 2, with the result'  

Cl.  = -' 	
+ bJ -, vbJ(vb) 

}' 	

. 	(2.16a) 

and 
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2P 	1 	vJ(vb)H'(b) 	XH(Xb) 	2 1 k P J(vb) D1  = 	
(vb) 	'(vb)Ho) 	+ H'(Xb) 	

vb2J'(vb) 

x 	{( + P ) J(vb) - vbJ'(vb) 	. 	 (2.16b) 

• 

	

	When Eqs. (2.16) are substituted into Eqs. (2.10) one obtains 

expressions for E and B inside the pipe. Equations (2.4) and 

• 	(2 .5) may then be used to obtain the expressions for the other 

components. These expressions for the transformed field components 

may be inverted by means of Eq. (2.3). 

If the value of (z - vt) Is much larger than either the 

radius of the pipe or the bunch length, the major contribution to 

the integral arises (Appendix A - Case 2) for such values of k that 

k b << 1 . As in the preceding section, we again replace f(k) by 

f(0) = 1/2i'r . The region of most physical interest is that in which 

the observation distance, (z - Vt), is large compered with the pipe 

radius and small canpared to the quantity Rb 2 (which is of the order 

of 109cm for a copper pipe of 3-cm radius). Restricting oiaselVes 

to the range 

p 
	 b << 1z - vtl <<Rb2 

	
(2.17) 

we may, by Appendix A - Case 2 and. Case 3 , take k >> R b 2  

Thus we have v b <<1 (we have already assumed yub/c <<i) and 

2'.b >> 1 , so that the expressions for the transfomed fields 'oeco"ie 
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=eN(b2-a2) (k - 
	

r  - 2eN 	r {i - i Sign(K)] JK11/2 

	

Tr 
Z 	

a b 	\\ 	C / 

(2.18a) 

= - eN(b2-a2) 
+ 	eN2 	

(i ) (2 r2 ) [i - i Sign(K)] IKh/2  

	

r 	
t a •b 	27t(2R) 2 b3  

+ (b2  +r2 ) [i + 1 Sign (K)] IK!3/2 	 (2 18b) 

= 	eN(b2 	
- 	eN 	

) (3 
	r2 ) [1 - I Sign(K)] I 

	

ra b 	2(2R)2b L 

(b2 - r2 ) [i + ± Sign (K)] .1K13/2 } 
	

(2 .18c) 

2  
= - 	

eN(b+a2) 	
r + 2.eN 	

r 	) [i + ± SIgn(K)] fKI1/2 

	

Z 	
. t a b 	 it(2R)ix 

+ 	- Islgn(K)] JKJh/2} 	 (2 18d) 

eN(b 	a ) 	2 	 . 	. B 	- . 
	2 2 	

eN 	
[i + ± Sign(K)] 	1K1 l/2 
	

(2.18e) 

	

r 	
ra b 

• 	B 	=B e (2.l8f) 

where K = 	k( + .) . We make the change of variables from 

k to K. as Indicated in Appendix A , this gives all of the field 	 41 

components a phase factor exp[-i(z - v-t)(cn/3c)]. Taking into account 

the additional phase factor exp (- I wt) that occurs in Eq. (2.3,), 	
r. 

we find the total phase of the field components to be - co z/v . Thus 

the phase df.the field is a function only of position, and does not 
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vary with time. By means of Table I (Append.ix A)Eqs. (2.18) may be 

inverted, and the resulting expressions for the field components are 8  

E = 2 e r S(z,t) e
1  cos e , (2.1) Z 	

(7tR)b3 	fz - vti3/ 

E = - eN 	S(z,t) 	 k3b 2  - r2 ) + 3(b2  + r2) 	e_i/ cos e r 	
2(R) 	 LcJ 1zl3/2 	21zI5/2j 

(2.1) 

E 	= eN 	
S(z,t) 	

(2+ r
2 ) 	+ 	(b2- r2) 	-ioz/c e 	

2(R)b3 	 cJ• Jz 	3/2 	2 	
- 	i5/2 J 

(2.19c) 

- 2eN r S(z,t)t__1 	- 2( 	1 	
sin 8 

	

(7tib3 	liz - vti3/2 	 Jz - 
(2.1) 

B 	 eN 	S(z,t)  
r 	 e 	 sin 9 	 (2.19e) 

	

(tR)b 	iz -. vtih/2 

	

Be = - 
1l.eN 	S(z,t) 	

e1 U)Z/c 	
cos 9 	, 	 (2 	) 

(tib3 	Jz - vtil/ 	
19f 

 

where N is the total number of particles and S(z,t) is defined 

(as before) as unity for z < vt and zero for z > vt . Obviously, 

Eci. (2.19)  contains only dominant terms for each field; the fields 

	

are not zero when S(z,t) is zero. 	If we ignore the field cornponents 

that fall off faster than I z - vt -1/2 , we see that a particle 

moving in the z directionwith velocity v and a'riving at position 

z at time t wou1d experience a force in the x direction given 

by 



F 	= 	eN D 2 
	

S(z,t) 	icuz/~ c 
 • 	 (220) X 	

(tR)b3 	Iz -  vt 

It will be recalled [fran Eq. (2.2)] that the pulse source passed 

the position z at time z/v and had--at that moment--phase - (uz/v). 
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• 	 APF.DIX A. ESTIMATION OF FOURIER TRANSFORMS 

This appendix is devoted to mathematical quetions related 

to the approximate evaluation of Fourier transforms, that is, to the 

properties of the integral: 

00 

iks f(s) = J 	(k) e 	dk 	 (A 1) 

The general procedure that we. employ is to approximate 	(k) 

by a suitable 	(k) for which the integral in Eq. (A.l) can be 

evaluated exactly. In the situations encountered in this paper, the 

•a 	 are generally piece-wise analic Thnctions for which the 

Fourier transforms, although well-.known, are nevertheless uncommon. 

In Table I we list all of the transforms which we require; the 

• 	results quoted are established in the literature. 9  

A particularly simple transformation can be employed when the 

nonanaly-ticity of '(k) {wiich for the f(k) of Table I is al?lays 

at •k = 01 occurs at k =k . Letting k =k + K we find that 

Eq. (A.l) becomes 

00 iks 
f(s) = e 0 	f 	f(k0  + K) eiKS dK 	 (A 2) 

-00 

so that the nonanalyticity is transformed to K = 0 , and the results 

of Table I are readily applicable. 

We turn now to the problem of bounding the error in f(s) 

generated by replacing f(k) with 	(k) •. To state .the problem 
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TABLE I. Various Fourier transforms. 

(k) f(s) 

1 

!k1 2  
1 - 

(IL) 
- 	 2 	IsI72 

- I 	Jkl 2  Sign (k) 
( 	

Sigi 

1k 12 
1 

2  2() 	
'j:. 

1s1 2  

i 	1kI 	si .(k) - 2 () 2 	Sign(s) 

l  IsIIF 

Jk!3(2 3/2 	
()2 

j5/2 

I 	kJ" 	Sign (k) 3/2 	(.)2 	Si:n(s) 

i k tn 	1k! It 	Sign 	(s) 

kSIgn(k) - 	 - 

S 

4- 



-27- 

more positively: 	(k) is generally rather complicated; we want to 

know how roughly we can approximate it without significant loss of 

accuracy in f(s) . • There are a number of cases which we must consider. 

Asymptotic evaluation 

The problem of approximately evaluating f(s) in the limit 

of very large s , is treated exhaustively in Ref. 9. The situation 

is that the asymptotic behavior of f(s) is determined by the points 

of nonanalyticity of f(k) . Assuming, as is always the case in this 

report, that 	(k) is analytic for k 0 , we conclude that 	(k) 

may be approximated by a(k) , with no error in f(s) as s - co, 

provided 	(k) is analytic for k 0 and the singularity in 

' (k) (at k = 0) is the same as that in 	(k) 

Evaluation for large argument 

Weoften have the situation that f(k) is well apDroximated 

by for k <k01  , and both and f
a  are analytic except 

at k.= 0 . It then is true--as an extension of Case 1--1 -,hat f(s) 

is well approximated by the transform of fa(k) provided s >>k 01  

In this paper, where we are concerned with distances large 

compared to the pipe's transverse dimensions and the bunch length, we 

will invoke the present theorem to always limit attention to 

k <<k01 	L, a, b 1, d 1  , and thus are permitted many simplifying 

approximations in .(k) 
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3. Small region of inaccuracy 

Suppose 	(k) is closely approximated by a(k) , except 

for lkI <k 	and02 

k f 
 02 [(k)I 	I a k)J] dk < 5 

02 

It is then the case that the transform of f a ( 1 ) differs from f(s) 

byless than 8. 

Consequently, f(s) is well approximated except when it is 

• smaller in value than 8 . (This is the reason Case 1 isntt 

contradicted by the present result, since f(s) generally approaches 

zero asymptotically.) In our applications, the range k 	will be 02 
exceedingly small [of the order of R 1  b 2  or R(d - b) -2  , with 

R 	cm] . It follows that even a rather large departure of 

fa (k) from • f(k) can be tolerated within k02 , with f(s) well 

approximated except where it is exceedingly small, namely, at very 

large distances. 

p 
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APPENDIX B. BESSEL FUNCTION PROPERTIES 

In this Appendix we summarize--without derivation--various 

properties of Bessel functions which are necessary to the analysis 

employed in the paper. More complete discussions can be found in 

any standard text. 10  

The Bessel function J(x), where v is any integer, is the 

solution of Bessel's equation: 

• 	 (x)+-)z = o, 	(B.l) 

defined by the power series 

k 	2k+v 
OD 

• 	 x (-i) 	(.) 
J(x) = 	 . 	(B.2) V 	

k=0 	r(k+l)r(k+v1) 

The Neumann function • N,(x) also satisfies Eq. (B.l), but with 

different boundary conditions, and has the property 

2  N (x) • 	- - £n 2 - , 
0YX 

N(x) 	r(V) (2) 	
for x<landv0, 	(B3) 

) 

where the (Euler) constant y = 1.7 811 . The Ilankel functions 

HV (1) (x) an 	,(2)(X) are defined by 

() 
H 	(x) = J(x) 	± N(x) , 	 (B.24) 



-30- 

	

and clearly also satisfy Eq. (B.i). For small argument 	
( 

	

, 	'c )() 
may be obtained from Eqs. (B.2) and (B.3). The special case of 

- i xx) = 1 	x tJ1 (x) + I N(x)] 

1 + x N(x) , for x << 1 

2 

	

x , for x << 1 	 (B.) 

requires the next term in the expansion of Eq. (B.3). 

Asymptotically, namely for large argument, 

1 
2 2   

cos 	( 	ir 	71v\ 
() 	 - 	- 

N(x) 	() 	sin 	
X

- 	

- 	), 	
(B 6) Ttx 	

() 
from whIch it is evident that H V  (ix) approaches asymptotically 

1 	 +Ir 	fl) I(x - 	- -) 
H 	x) 	() 	e 	 (B.?) 

The Wronskian relation (the prime indiates derivations with respect 

to argument) 

N'(x)J(x) - J'(x) N(x) = - a-- 	, 	(3.8)-Jx 
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or the equivalent relationship 

- 1 (x) 3(x)
- 	- 1 (x) N(x) = 	 (B 9) 

• 	 11 

Is often useful, as are the analogous relations for H V  

- (x) H(x) - J(x) H - (1)
()  = 

- 	x 	(x) - H(2)(x) 	- (x) = - 	 (B 10) 

SI 	 • 
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