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Abstract

We introduce linear regression using physics-based basis functions optimized through the

geometry of an inner product space. This method addresses the challenge of surrogate

modeling with high-dimensional input, as the physics-based basis functions encode problem-

specific information. We demonstrate the method using a proof-of-concept nonlinear random

vibration example.
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1. Problem statement and introduction

Consider an end-to-end computational model M : x ∈ Rn 7→ y ∈ R that maps an n-

dimensional input x into a 1-dimensional output y. The input x is an outcome of a high-

dimensional random vector X, defined in the probability space (Rn,Bn,PX), where Bn is

the Borel σ-algebra on Rn, and PX is the probability measure of X. The random output

Y is associated with a probability space (R,B,PY ), where PY is the push-forward measure

of PX induced by M. We seek a surrogate model M̂ : x ∈ Rn 7→ ŷ ∈ R to approximate

the statistical properties of Y . This task is challenging due to the high dimensionality of x.

Specifically, conventional data-fitting surrogate models such as polynomial chaos expansion

[1–4] and Gaussian process (Kriging) [5–7] become increasingly ineffective as the number

of input variables increases. Injecting domain/problem-specific prior knowledge into the

surrogate modeling process has proven to be a promising approach to mitigate the curse of

dimensionality, as reflected in the advancements in scientific machine learning [8–10] and

multi-fidelity uncertainty quantification [11–13]. This short communication adapts and re-

formulates the recent works [12, 13] on physics-based surrogate modeling into a simple,
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unified framework of linear regression. In this linear regression, the basis functions are sim-

plified physics-based models with tuning parameters. An inner product space is introduced

to facilitate the training of these physics-based basis functions. A proof-of-concept example

is presented to demonstrate the proposed approach.

2. Linear regression using physics-based basis functions

We represent the surrogate model M̂ by the linear regression:

M̂(x) = s(x)w , (1)

where s(x) = [s1(x), s2(x), . . . , sm(x), 1] is a row vector of basis functions andw = [w1, w2, . . . , wm+1]
⊺

is a column vector of weights. We define si(x), i = 1, 2, . . . ,m, as physics-based models with

tuning parameters θi. Note that the basis function vector s(x) contains a constant basis as

its last component.

We define the inner product between functions of x as:

⟨f, g⟩ := EX [κ (f(X) , g(X))] , (2)

where f , g : Rn 7→ R are functions of x, and κ : R × R 7→ R is a symmetric and positive

definite kernel function that induces an inner product in the function space of f or in an

implicit feature space of ϕ(f), known as the kernel trick [14]. If the kernel is linear, i.e.,

κ(af + bf ′, g) = aκ(f, g) + bκ(f ′, g) for scalars a and b, the inner product is defined in

the original function space of f ; otherwise, the inner product is formulated in an implicit

feature space induced by the kernel. To ensure a finite inner product, we require κ(f, f) be

integrable with respect to the measure PX .

Given a training set D = {(x(i),M(x(i)))}Ni=1, we optimize s1(x;θ1) by solving:

θ⋆
1 = argmax

θ

⟨M, s1(θ)⟩√
⟨M,M⟩⟨s1(θ), s1(θ)⟩

, (3)

where the inner product terms can be evaluated by the sample estimates using D. This

optimization aims to align s1 with the direction of M, in the inner product space defined

by Eq. (2).

Given s1(x;θ
⋆
1), we optimize s2(x;θ2) by solving:

θ⋆
2 = argmax

θ

⟨M−Ps1(M), s2(θ)⟩√
⟨M−Ps1(M),M−Ps1(M)⟩ ⟨s2(θ), s2(θ)⟩

, (4)

where Ps1(M) denotes the projection of M onto s1, defined as:

Ps1(M) :=
⟨M, s1⟩
⟨s1, s1⟩

s1 . (5)
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Eq. (4) aims to align s2 with the direction of the orthogonal residual, M−Ps1(M), between

M and s1.

Subsequently, given s1(x;θ
⋆
1), s2(x;θ

⋆
2), ..., sj−1(x;θ

⋆
j−1), the j-th basis function is ob-

tained from:

θ⋆
j = argmax

θ

〈
M−

∑j−1
k=1Psk(M), sj(θ)

〉
√

⟨M−
∑j−1

k=1 Psk(M),M−
∑j−1

k=1Psk(M)⟩ ⟨sj(θ), sj(θ)⟩
, (6)

where Psk(M) denotes the projection of M onto sk, expressed by replacing s1 in Eq. (5)

with sk.

Provided with the optimized physics-based basis functions and appended by a constant

basis, their weights can be computed using the conventional linear regression solution:

w = (S⊺S)−1S⊺Y , (7)

where S is an N × (m + 1) matrix with entries Sij = sj(x
(i)), in which sm+1(x) ≡ 1, and

Y is an N × 1 vector with components Yi = M(x(i)), in which x(i) and M(x(i)) are from

the training set D. A more general formulation for the weights is w = argmin⟨M(x) −
s(x)w,M(x)−s(x)w⟩, which is identical to the linear regression solution if we use a simple

linear kernel κ(f, g) = fg.

The number of physics-based basis functions can be adaptively determined: starting with

s1 and gradually increasing the basis until the training error no longer shows significant

reduction.

3. A proof-of-concept nonlinear random vibration example

Consider a Duffing oscillator subjected to Gaussian white noise excitation:

z̈(t) + 2ζωnż(t) + ω2
nz(t) + βz3(t) = a(t) , (8)

where ζ = 0.05, ωn = 10 rad/s, and β = 2000m−2s−2. The Gaussian white noise a(t) has

a unit spectral intensity. For numerical simulations, we set a cutoff angular frequency of

30π rad/s and represent a(t) by 200 independent standard Gaussian random variables X

weighted by a Fourier series [15]. The input of the end-to-end model M is outcomes of

the 200-dimensional random vector X, while the output is the peak absolute displacement

y = supt∈[0,10] |z(t)| for a duration of 10 seconds.

We design the initial physics-based basis function s1 by generalizing the first-order per-

turbation of Eq. (8):

s1(θ) = sup
t∈[0,10]

∣∣h(t; θ1, θ2) ∗ a(t)− θ3 h(t; θ1, θ2) ∗ (h(t; θ1, θ2) ∗ a(t))3
∣∣ , (9)
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where “∗” denotes convolution, h(t; θ1, θ2) is the impulse response function for a single-

degree-of-freedom linear system parameterized by the natural frequency θ1 ≥ 0 and damping

ratio θ2 ≥ 0, and θ3 ≥ 0 is another tuning parameter controlling the contribution of the

first-order perturbation. The zeroth order perturbation term, h(t) ∗ a(t), describes the

response of a tunable linear system subjected to a(t). The first-order perturbation term,

h(t) ∗ (h(t) ∗ a(t))3, describes the response of the same linear system subjected to the cube

of the zeroth order perturbation term.

The basis functions si, i > 1, are modeled by linearization—Eq. (9) with θ3 = 0. If m

physics-based basis functions are used, the total number of tuning parameters is 2(m−1)+3.

Therefore, the surrogate representation is parsimonious for this high-dimensional problem

with a white noise input. Two convolutions are required to evaluate s1, while one convolution

is needed for each si, i = 2, 3, . . . ,m. Thus, m+ 1 convolutions are required to evaluate the

basis function vector once, which takes negligible time for a relatively small m.

We optimize the physics-based basis functions using the formulas in Section 2 and a

training set of only 30 samples from random realizations of the white noise and their cor-

responding peak absolute responses. To define the inner product, a simple linear kernel

κ(f, g) = fg is used. An alternative is κ(f, g) = (f − EX [f(X)])(g − EX [g(X)]), which is

also linear. We did not find significant evidence to favor one option over the other, so either

can be used effectively. Note that nonlinear kernels can also be employed, but there is no

theoretical reason to favor them in this particular example. The number of physics-based

basis functions is adaptively determined, such that by increasing the basis, the reduction

in the mean square relative training error is less than 1%. This number typically ranges

from 2 to 4 due to variations in the training set. Using a test set of 104 random samples,

Figure 1 compares the reference Runge–Kutta–Fehlberg solutions with the surrogate model

predictions. Figure 2 illustrates the basis function responses.
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Figure 1: Performance of the physics-based linear regression: (a) scatter plot of the reference

solutions against surrogate model predictions, (b) histogram of the relative error, and (c) pre-

diction on cumulative distribution function. The reference solutions for the peak absolute responses

are obtained from the Runge–Kutta–Fehlberg method. The surrogate model predictions are obtained from

Eq. (1) using a training set of only 30 samples. For the simulation results reported in this figure, the mean

relative error is −0.3%, the first quartile is −2.5%, and the third quartile is 2.3%. Thus, on average, the

surrogate model slightly overestimates the peak absolute response.

Figure 2: Basis function responses. The top-left panel shows the reference peak absolute responses

against the outputs of the basis function s1, evaluated using a test set of 104 samples. The top-right and

bottom-left panels illustrate the scenarios for s2 and s3, respectively. The bottom-right panel displays the

frequency response functions (FRFs) associated with the three basis functions. It is seen that s1 is mostly

correlated with M, as expected from the goal of Eq. (3), while s2 and s3 are optimized to fill the orthogonal

residues. The FRFs clearly illustrate the differences in these basis functions. The FRF for s1 is obtained

from the zeroth-order perturbation term.
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4. Conclusion

This short communication introduces linear regression using physics-based basis functions.

The main contribution is to standardize the procedure for training physics-based basis func-

tions. A proof-of-concept random vibration example of a Duffing oscillator demonstrates

the potential of this approach. Future research directions may include extensions to multi-

variate output models, adaptations for rare-event probability estimations, and applications

in inverse uncertainty quantification, sensitivity, and optimization problems.
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