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BRIEF COMMUNICATION OPEN

Saccharibacteria harness light energy using type-1 rhodopsins
that may rely on retinal sourced from microbial hosts
Alexander L. Jaffe 1,10, Masae Konno 2,3,10, Yuma Kawasaki2, Chihiro Kataoka4, Oded Béjà 5, Hideki Kandori4,6,
Keiichi Inoue 2✉ and Jillian F. Banfield 7,8,9✉

© The Author(s) 2022

Microbial rhodopsins are a family of photoreceptive membrane proteins with a wide distribution across the Tree of Life. Within the
candidate phyla radiation (CPR), a diverse group of putatively episymbiotic bacteria, the genetic potential to produce rhodopsins
appears to be confined to a small clade of organisms from sunlit environments. Here, we characterize the metabolic context and
biophysical features of Saccharibacteria Type-1 rhodopsin sequences derived from metagenomic surveys and show that these
proteins function as outward proton pumps. This provides one of the only known mechanisms by which CPR can generate a proton
gradient for ATP synthesis. These Saccharibacteria do not encode the genetic machinery to produce all-trans-retinal, the
chromophore essential for rhodopsin function, but their rhodopsins are able to rapidly uptake this cofactor when provided in
experimental assays. We found consistent evidence for the capacity to produce retinal from β-carotene in microorganisms co-
occurring with Saccharibacteria, and this genetic potential was dominated by members of the Actinobacteria, which are known
hosts of Saccharibacteria in other habitats. If Actinobacteria serve as hosts for Saccharibacteria in freshwater environments,
exchange of retinal for use by rhodopsin may be a feature of their associations.

The ISME Journal (2022) 16:2056–2059; https://doi.org/10.1038/s41396-022-01231-w

INTRODUCTION
The sun is the dominant source of energy on Earth, and many
organisms have evolved ways to use light. Only recently was it
suggested that some members of the candidate phyla radiation
(CPR)—a highly diverse group of bacteria originally detected by 16 S
rRNA sequencing [1] and subsequently characterized by genome-
resolved metagenomics [2, 3]—may be able to use rhodopsins for
proton translocation and thus energy generation [4, 5]. However,
experimental evidence supporting this function was lacking. Here,
we biophysically characterize rhodopsins from putatively symbiotic
Saccharibacteria (TM7 lineage of CPR) and explore their relevance
for metabolism. We also consider how rhodopsins may play a role in
the interactions between Saccharibacteria and their putative
microbial hosts in sunlit environmental microbiomes.

RESULTS
Phylogenetic placement of Saccharibacteria rhodopsins (SacRs)
shows that these sequences form a sibling clade to characterized
light-driven inward and outward H+ pumps (Fig. 1a). We selected
three phylogenetically diverse SacRs from freshwater lakes
(Table S1) and two related, previously uncharacterized sequences
from the Gammaproteobacteria (Kushneria aurantia and Halomo-
nas sp.) for synthesis and functional characterization (highlighted

in Fig. 1a). All sequences have Asp–Thr–Ser (DTS) residues at the
positions of D85–T96–D96 of bacteriorhodopsin (BR) in the third
transmembrane helix (Fig. S1). These residues are known as the
triplet DTD motif and represent key residues for proton pumping
function in BR [6].
Proton transport assays for the SacRs and Gammaproteobacteria

proteins expressed in Escherichia coli showed marked decrease of
external pH upon light illumination (Fig. 1b and Fig. S2), indicating
that these proteins are light-driven outward H+ pumps. The pH
decrease was almost eliminated after adding the protonophore
carbonyl cyanide m-chlorophenyl hydrazone (CCCP), which dis-
sipates the H+ gradient, confirming that it was indeed formed
upon illumination (Fig. 1b and Fig. S2). We also characterized the
absorption spectra and the photocycle of the SacRs, showing that
the three rhodopsins have an absorption peak around 550 nm
(Fig. S3). The photocycle of the SacRs, determined by measuring
the transient absorption change after nanosecond laser pulse
illumination (Fig. 1c and Fig. S4), displays a blue-shifted M
intermediate that represents the deprotonated state of the retinal
chromophore. This has been observed for other H+ pumping
rhodopsins [7, 8] and indicates that the proton bound to retinal is
translocated during pumping.
Given that SacRs function as outward proton pumps, we

searched Saccharibacteria genomes for the F1Fo ATP synthase that
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would be required to harness the generated proton motive force
for ATP synthesis. HMM searches showed that all genomes
encoded the complete ATP synthase gene cluster and, further-
more, had c subunits with motifs consistent with H+ binding,
instead of Na+ binding (Table S1 and Fig. S5). Together, our
experimental and genomic analyses strongly suggest that some
Saccharibacteria utilize rhodopsins for auxiliary energy generation
in addition to their core fermentative capacities [6].
Retinal is the rhodopsin chromophore that enables function of

the complex upon illumination [9]. We found no evidence for the

presence of β-carotene 15,15’-dioxygenase (blh), which produces
all-trans-retinal (ATR) from β-carotene, in Saccharibacteria gen-
omes encoding rhodopsin. This absence was likely not due to
genome incompleteness, as genomic bins were generally of high
quality (79–98% completeness, Table S1) and rhodopsin genomic
loci were well-sampled. Additionally, no conserved hypothetical
proteins were present in these regions, where blh is often found
[10] (Fig. 1d, Fig. S6 and Table S2). As SacRs do contain the
conserved lysine for retinal binding [4], we instead hypothesized
that Saccharibacteria may uptake retinal from the environment, as

Fig. 1 Characteristics of Saccharibacteria rhodopsins (SacRs). a Rhodopsin protein tree indicating that SacRs from freshwater lakes form a
broad clade of proton pumps. b The ion-pumping activity of SacRs. Blue and green lines indicate the pH change with and without 10 μM
CCCP, respectively. Yellow bars indicate the period of light illumination. c Time evolution of transient absorption changes of SacRNC335 in
100mM NaCl, 20 mM HEPES–NaOH, pH 7.0, and POPE/POPG (molar ratio 3:1) vesicles with a lipid to protein molar ratio= 50. Time evolution at
406 nm (blue, representing the M accumulation), 561 nm (green, representing the bleaching of the initial state and the L accumulation), and
638 nm (red, representing the K and O accumulations). Yellow lines indicate fitting curves by a multi-exponential function. Inset: The
photocycle of SacRNC335 based on the fitting in (c) and a kinetic model assuming a sequential photocycle. The lifetime (τ) of each intermediate
is indicated by numbers as follow (mean ± S.D., fraction of the intermediate decayed with each lifetime in its double exponential decay is
indicated in parentheses): I: τ= 1.7 ± 0.3 μs (42%), τ= 13 ± 1.8 μs (58%), II: τ= 118 ± 2 μs, III: τ= 1.6 ± 0.1 ms, IV: τ= 23.5 ± 1.0 ms, V: τ= 98.4 ±
6.4 ms (56%), τ= 384 ± 18ms (44%). d Genomic context of SacRNC335. Neighboring genes with above-threshold KEGG annotations are
indicated in gray with the highest-scoring HMM model. Genes without KEGG annotations are indicated in white.
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has been previously observed for other microorganisms encoding
rhodopsin but also lacking blh [11, 12].
We tested the ability of SacR proteins to bind ATR from an

external source by performing a retinal reconstitution assay. In
contrast to the proton transport assays, where rhodopsin was
expressed in the presence of ATR, here ATR was dissociated from
the purified complex and the visible absorbance of rhodopsin
was measured upon re-addition of ATR [13]. Both Gloeobacter
rhodopsin (GR), a typical Type-1 outward H+ pump, and SacRs
showed an increase in absorption in the visible region with time
after the addition of ATR (Fig. 2a and Fig. S7). For all SacRs, the
binding of ATR by their apoprotein was saturated within 30 sec
after retinal addition (Fig. 2b), indicating that SacR is able to be
efficiently functionalized using externally derived ATR. The
observed reconstitution rate is substantially faster than that of
GR ( > 20min) and comparable to that of heliorhodopsin, which is
used by other microorganisms also lacking a retinal synthetic
pathway and rapidly binds ATR through a small opening in the
apoprotein [12]. In the structure of SacRNC335 modeled by
Alphafold2 [14, 15], a similar hole is visible in the protein moiety
constructing the retinal binding pocket (Fig. S8). Hence, SacRs may
also bind retinal through this hole in a similar manner to TaHeR
(heliorhodopsin).
Saccharibacteria with rhodopsin must obtain retinal from other

organisms. To evaluate possible sources of ATR, we investigated
the genetic potential for retinal biosynthesis in 15 subarctic and
boreal lakes [16] where Saccharibacteria with rhodopsin were
present (Fig. S9). Blh-encoding scaffolds were found in 14 of the 15
metagenomes profiled (~93%) and, in nearly all cases, these
scaffolds derived from Actinobacteria (Fig. 2c and Table S3). This is

intriguing because Actinobacteria are known to be hosts of
Saccharibacteria in the human microbiome [17, 18] and potentially
more generally [4, 19]. BLAST searches against genome bins from
the same samples indicated that these Actinobacteria were
members of the order Nanopelagicales (Table S3) and often
encode a rhodopsin (phylogenetically distinct from SacRs) in close
genomic proximity to blh genes (Table S4). HMM searches
revealed that these genomes also harbor homologs of the crtI,
crtE, crtB, and crtY genes necessary for β-carotene production [20].

DISCUSSION
Here, we add to growing evidence that DTS-motif rhodopsins can
function as outward H+ pumps [21] and infer that Saccharibacteria
use them to establish a proton gradient for energy generation, given
a source of ATR and light. This is one of the very few known ways
that any CPR organism can pump protons across the membrane.
However, the source of ATR enabling the function of Sacchar-
ibacteria rhodopsins is unclear. While there is precedent for external
supply of ATR to functional rhodopsins in other bacteria [11, 12], the
mechanism by which this hydrophobic compound is transferred to
the membrane of such bacteria is also unknown.
Experimental co-cultures of Saccharibacteria with Actinobac-

teria from multiple microbiome types [18, 19] suggest that a host
bacterium for the Saccharibacteria studied here may be the source
of ATR. We infer that these hosts are co-occurring Nanopelagicales
Actinobacteria that dominate retinal production in microbial
communities containing Saccharibacteria with rhodopsin. These
Nanopelagicales bacteria are sufficiently abundant to represent
plausible hosts (Fig. S10a) and have average genome sizes of

Fig. 2 Binding of retinal by Saccharibacteria rhodopsins and context for biosynthesis. a UV-visible absorption spectra showing the
regeneration of retinal binding to SacRNC335 and GR in 20mM HEPES–NaOH, pH 7.0, 100mM NaCl and 0.05% n-dodecyl-β-D-maltoside (DDM).
In SacRNC335, a peak around 470 nm was transiently observed in the spectrum 30 s after the addition of ATR, suggesting that an intermediate
species appears during the retinal incorporation process that involves formation of the Schiff base linkage. b Time evolution of visible
absorption representing retinal binding to apo-protein. Numbers in parentheses in the legend indicate the absorption maxima of each
rhodopsin. c Genetic potential for β-carotene 15,15’-dioxygenase (blh) production in freshwater lake metagenomes where SacRs are found.
Fractions indicate the number of blh-encoding scaffolds taxonomically affiliated with the Actinobacteria in each sample. d Conceptual diagram
illustrating potential retinal exchange between Saccharibacteria and host cells. ATR all-trans-retinal, GR Gloeobacter rhodopsin, AM Alinen
Mustajärvi, Ki Kiruna, rhod. rhodopsin.
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approximately 1.25 Mbp (Fig. S10b). This is substantially smaller
than known hosts of Saccharibacteria from other environments
(Fig. S10b) but still larger than Saccharibacteria themselves (~0.78
Mbp, on average). However, the genetic requirements to host CPR
symbionts is currently unknown.
If Nanopelagicales bacteria are indeed the hosts of freshwater

Saccharibacteria with rhodopsin, then retinal produced by the
former from β-carotene could be transferred to the latter either
by membrane contact, a common feature in imaged CPR-host
interactions [17, 22], or possibly via extracellular vesicles
(Fig. 2d). ATR produced by Actinobacteria is required for their
own rhodopsins [11] (Fig. 2d), but it is conceivable that they
produce ATR in excess to deliberately supply Saccharibacteria
symbionts, possibly to ensure interdependence. Alternatively,
Saccharibacteria scavenge ATR. Regardless of the source
organism and ATR transfer mechanism, our analyses suggest a
new aspect of Saccharibacteria lifestyles, in which they employ
rhodopsins and externally derived retinal to produce energy via
phototrophy.

DATA AVAILABILITY
All accession information for the genomes and metagenomic samples analyzed in
this study are listed in the Supplementary Tables. Additional files (including the
masked rhodopsin alignment and maximum likelihood tree), supplementary tables,
and custom code for the described analyses are also available on Zenodo (https://doi.
org/10.5281/zenodo.6038621).
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