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ABSTRACT OF THE THESIS 

 

Machine Learning of PEM Fuel Cell Degradation: Artificial Neural Networks and Long 
Short-Term Memory Recurrent Neural Networks 

by 
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Master of Science 
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 Professor Yun Wang, Chair 

 

Proton exchange membrane fuel cells' (PEMFCs') degradation is a main problem 

that must be solved for their commercialization. In this thesis, we employ data-driven 

prognostic models to forecast PEMFC voltage degradation utilizing artificial neural 

networks (ANN), deep neural networks (DNN), and long short-term memory (LSTM) 

techniques. The suggested models are developed and tested using experimental 

information obtained through PEMFC stack testing, and their performance is assessed 

using a variety of metrics, such as root mean square error (RMSE). The findings show that 

the DNN technique performs better than the other methods, indicating that the model can 

reliably and precisely forecast the PEMFC stack voltage decline. In addition, we examined 

the models' performance in terms of the neural network designs' number of neurons and 

layers. The results demonstrate a trade-off between prediction accuracy and computational 

complexity, with an increase in neurons and layers able to enhance prediction accuracy. In 

conclusion, the suggested data-driven prognostic models may offer precise and 



 

ix 
 

trustworthy forecasts of PEMFC stack voltage degradation, which can aid in optimizing 

system design and operation. In order to improve the precision and effectiveness of the 

prediction process, future research can concentrate on investigating the applicability of 

these models to specific degradation modes, such as catalyst and membrane degradation, 

and developing more sophisticated data-driven prognostic models. Moreover, combining 

data-driven and physics-based models can offer a thorough strategy for PEMFC 

degradation prognostics. 

Keywords: Proton exchange membrane fuel cell, Degradation, Prognostics, Artificial 

neural network, Deep neural network, Long short-term memory, Data-driven model.  
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Chapter 1: Introduction 
 

1.1 PEMFC 

As a result of the widespread societal use of fossil fuels, which has led to issues like 

air pollution and global warming that have a significant negative impact on the environment, 

environmental issues have grown more and more serious in recent decades. Global energy-

related CO2 emissions will rise from 32.3 billion metric tonnes in 2012 to 35.6 billion metric 

tonnes in 2020 and to 43.2 billion metric tonnes in 2040, predicts the International Energy 

Outlook 2016 (IEO 2016) Reference case report from the U.S. Energy Information 

Administration (EIA). This is a predictable increase of 40% in carbon dioxide emissions. If 

various nations around the world gave this serious consideration, it might not happen [1]. 

The globe has seen rising global energy demand, rising fossil fuel costs, and a rise in 

air pollution due to rising greenhouse gas emissions during the last few decades. All of these 

have significantly pushed us forward in the realm of renewable energy research and 

development. One of the most promising clean energy technologies for supplying electrical 

energy in stationary or mobile applications is fuel cell. 

Fuel cells are electrochemical energy conversion devices that are totally eco-friendly 

if the hydrogen (the fuel) is generated entirely from renewable energy sources. It is a very 

promising energy source for the future due to its low carbon dioxide emissions, high energy 

density, and lack of reliance on fossil fuels. Water and heat are the only byproducts of the 

electrochemical interaction between hydrogen and oxygen in the air that proton exchange 

membrane fuel cell (PEMFC) can use to generate energy instantly [Wang, Y., & Chen, K. S. 

(2013). PEM fuel cells: thermal and water management fundamentals. Momentum Press.]. 
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This energy conversion is 100 percent environmentally benign if the hydrogen is generated 

using sources of renewable energy. Due to their potential as alternatives for sustainable 

energy solutions in the near future, PEMFCs are gaining more and more attention. Moreover, 

the absence of moving components in PEMFC constructions assures the dependability and 

compactness of fuel cell systems.   

When we utilized the term "PEMFC," we may have been referring to PEMFC stacks or 

PEMFC single cells. To achieve the required energy, a PEMFC stack often consists of dozens 

or even hundreds of single cells. A PEMFC stack is created by electrically connecting these 

identical single cells in series. 

1.1.1 The structure of PEMFC 

A PEMFC single cell's typical architecture is seen in Figure 1 [1, 2]. Air (oxygen) is 

delivered to the copper electrode, and hydrogen is fed to the anode electrode throughout the 

operation. The gas diffusion layer subsequently allows the hydrogen and oxygen to pass 

through to the catalyst layer on every side. The existence of platinum catalyst at the anode 

catalyst layer causes the hydrogen molecules to become disassociated from protons and 

electrons. Next, to create the electrical current, the protons move through to the humidified 

polymer electrolyte (membrane) from the anode electrode to the copper electrode. During 

this time, the electrons are transported through the external circuit from the anode to the 

cathode. Protons, electrons, and oxygen molecules are eventually united at the cathode 

catalyst layer to create water and heat as byproducts. 
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Figure 1 PEMFC single cell's design [1]. 

Each individual cell is made up of the following structural components: 

1. Polymer electrolyte membrane 

Inside a cell, the polymer electrolyte membrane (PEM), also known as the proton 

exchange membrane, controls proton transmission, reaction separation processes, and 

electrode electrical insulation. Proton conduction throughout the membrane is made easier 

by the polymer electrolyte, which enables the single cell to operate with a relatively thin 

membrane while until withstanding high pressures [3]. 

The PEMFC membranes are a type of ionomer that includes a significant amount of 

polymer ions, often the sulphonic end groups. Protons can only penetrate a membrane when 

they are carried by hydrophilic ionic end groups. Previously, a variety of membrane varieties 

were employed, but today, the perfluoro sulfonic acid (often referred to as PFSA in the 

literature) membranes are utilized extensively in PEMFCs. It is most frequently referred to 

as a membrane of the Nafion type. The PFSA's structure might, on the one hand, provide 

stability in the acidic medium brought on by the hydrogen ions contained inside it, and, on 
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the other hand, could also act as a conduit for the hydrogen ions to diffuse from the anode to 

the cathode. Its thickness typically ranges from 10 to 50 microns for PEMFCs of the present 

[4]. Water molecules would prefer to aggregate and form clusters on the hydrophilic end 

groups of the PFSA whenever the membrane absorbs water. These water clusters might then 

serve as routes for protons moving from the anode to the cathode. With greater water 

absorption, the membrane's proton conductivity would increase. 

If the membrane can withstand these two conditions, it is often said to be functioning 

adequately. The pressured gases in the anode and cathode electrodes should be physically 

separated from one another with almost no gas crossing. Furthermore, it must remain 

chemically stable in adverse circumstances like those brought on by the activity of catalysts, 

temperature swings, extremely high temperatures, or assaults from oxidative radicals that 

were first created by H2O2. In further detail, the radicals are either synthesized in the 

membrane, where they are made on the surface of the precipitated platinum particles, or 

from the incomplete chemical interactions between the hydrogen and oxygen on the cathode 

electrode. The optimal membrane for the PEMFC stack should hence, generally, have great 

proton conductivity, high chemical and thermal stability, mechanical strength, flexibility, 

almost no gas penetration, cheap cost, and accessibility.  

Several kinds of membranes utilized in PEMFCs have been covered in the literature 

[5]. It enables us to recognize the various membrane types, as well as their characteristics 

and information on membrane breakdown. Actuality, the lifetime of a fuel cell is closely tied 

to how durable its membrane is [6]. We must acknowledge the aging processes that 

contribute to the decline in membrane performance. Yet, since membrane degradations can 
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be brought on by a variety of operational conditions, it is difficult to separate and identify the 

different membrane degradation pathways. These elements typically have combined effects 

on membranes.  

2. Catalyst layer 

The two slim catalyst layers (CL) are coated on either side of the PEM. In the CLs, the 

electrochemical reactions take occur. Traditional CL is mostly made of platinum 

nanoparticles supported by carbon surfaces and a combination of ionomer in a 

predetermined proportion [Wu, J., Liu, H., Song, Y., & Wang, Y. (2022). A modeling study of 

PEM fuel cells with novel catalyst monolayers under low platinum loading. Journal of 

Materials Chemistry A, 10(8), 4076-4086.]. This layer's carbon surface would allow for 

electron conductivity and platinum dispersion. The ionomer, which theoretically maintains 

the structural integrity of the catalyst layer, has several distinct hydrophilic and hydrophobic 

fields that allow reactants and protons to reach the platinum nanoparticles' active sites, 

where reactions may take place [Wang, Y., & Feng, X. (2009). Analysis of the reaction rates in 

the cathode electrode of polymer electrolyte fuel Cells: II. Dual-Layer electrodes. Journal of 

The Electrochemical Society, 156(3), B403.]. As seen in Figure 1, the reduction process of 

oxygen occurs on the right side (the cathode side), while the oxidation reaction of 

hydrogen occurs on the active sites of the catalyst layer on the left (the anode side). 

3. Gas diffusion layer (GDL) 

The gas diffusion layer is located between the CL and the bipolar plate (BP). 

Nonwoven carbon paper and woven carbon cloth are the two primary types of GDLs. It 

enables the hydrogen and oxygen (or air) from both sides of the cell to diffuse into the layers 
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of the catalyst, where the electrochemical reaction would occur. In particular, diffusion and 

convection-diffusion are the two ways that reactants diffuse into the compressed GDL. They 

are determined by the BP's flow field channels' channel design and the shape of the GDL 

pores.  

Polytetrafluoroethylene (PTFE) hydrophobic coating is often applied to GDLs to 

facilitate the efficient transmission of liquid water and reactive gases. GDL's hydrophobic 

properties are crucial to the overall cell's ability to handle water. The ratio of hydrophilic to 

hydrophobic regions on the surface of the GDL will have a significant impact on how 

efficiently gas and water are transported [7]. The catalyst layer and membrane's water 

management are made easier by the PTFE treatment applied to GDL's porous surface.  

It may permit reactant gases and water vapor to diffuse through its pores together, 

ensuring that the membrane is sufficiently wet. Also, having the ability to remove any liquid 

water formed on the cathode side from each cell is beneficial in the interim because it keeps 

the water from obstructing the pores leading to the active sites. Furthermore, the bipolar 

plates and catalyst layer are electrically coupled to GDL. The exchange of electrons between 

the active sites and the bipolar plates may be guaranteed as a result.  

The GDLs in PEMFC typically operate in a high-pressing stress environment [Zheng, 

B., Wang, Z., & Wang, Y. (2022). Porous media flow field for polymer electrolyte membrane 

fuel cell: Depression of gas diffusion layer intrusion, deformation, and delamination. 

International Journal of Energy Research, 46(14), 20039-20049.]. Thus, the GDL must be 

robust and offer adequate air permeability when compressed . 
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4. Bipolar plates 

The reaction gases must be supplied to the electrodes with flow field channels on the 

bipolar plates in order for the electrodes to function. As well, the bipolar plates' capacity to 

electrically interact with several cells in series makes them crucial for multi-cell 

arrangements. Furthermore, they may functionally support the cells in a compressed and 

compact arrangement, increasing operating reliability. In reality, the effectiveness of gas 

supply depends greatly on the configuration of the flow field channels and two-phase flow 

[Cho, S. C., & Wang, Y. (2014). Two-phase flow dynamics in a micro channel with 

heterogeneous surfaces. International Journal of Heat and Mass Transfer, 71, 349-360.].  

Significant electrical conductivity, high corrosion resistance, a high degree of 

mechanical strength, minimal electrical or thermal contact resistance, low permeability of 

reactant gases, and low friability are all qualities that bipolar plates should possess [8, 9]. 

Bipolar plates can be made from a range of materials, including metal, composite, and 

graphite, in order to satisfy these requirements [Wang, Y., Pham, L., de Vasconcellos, G. P. S., 

& Madou, M. (2010). Fabrication and characterization of micro PEM fuel cells using pyrolyzed 

carbon current collector plates. Journal of Power Sources, 195(15), 4796-4803.]. The anti-

corrosion capacity and the contact resistance of the material used in bipolar plates would 

constantly require being balanced in study. They must select those with the lowest resistance 

and the highest anti-corrosion capacity.  

The cells are arranged in succession as illustrated in Figure 2 in order to provide an 

adequate electric power output. As we can observe in the Figure 2, any individual cell is 

formed by compressing the MEA into a small space between the two parts of the bipolar 
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plates. Indeed, throughout PEMFC operation, the reactant gases in the flow field channels 

might diffuse to the anode or cathode electrode of each cell and enable the electrochemical 

reactions. This is because hydrogen and oxygen are supplied to either side of the bipolar 

plates. 

 

Figure 2 A PEMFC single cell's design[9]. 

 

1.1.2  The system of PEMFC 

Auxiliaries would always be required for the PEMFC stack to produce power. A PEMFC 

system is the general term for the system that includes the stack and auxiliaries Figure 3. The 

auxiliary can often be divided into five subsystems: 

➢ Reactant supply subsystem 

➢ Heat management subsystem 
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➢ Water management subsystem 

➢ Power conditioning subsystem 

➢ Power management subsystem 

 

Figure 3 An example of PEMFC system setup. 

I. Reactant supply subsystem 

The hydrogen and air supply subsystems often make up the reactant supply 

subsystem. 

The hydrogen supply subsystem's goal is to regulate the anode's hydrogen pressure 

and flow rate. A pressurized hydrogen tank linked to the anode by a pressure reduction valve 

and a pressure control valve typically makes up the hydrogen supply subsystem. When the 

hydrogen outlet is blocked and the anode is operating in a dead-end mode, all hydrogen 

delivered through 

the channels are used up by the fuel cells. The vent valve at the anode outlet regularly opens 

the hydrogen exit for purging to release treated wastewater, stored contaminants, or 
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nitrogen diffused from the air on the cathode side. So, when the anode is operating in flow-

through mode, a recirculation pump device would be used to return the hydrogen from the 

outlet to the hydrogen intake.  

A blower or air compressor that can introduce pressured air into the cathode from 

the environment typically makes up the air supply subsystem. Its goal is to deliver air at a 

specific flow rate to guarantee the PEMFC stack is operating properly. At the cathode circuit 

output, a pressure valve controls the pressure. Typically, a 2.5 bar pressure is applied to the 

cathode side in order to increase output power. Nevertheless, the power required for the 

compressor at the system level must be matched with this power enhancement from the 

stack level. 

II. Heat management subsystem 

The stack cooling system and the reactant heating system make up the heat 

management subsystem. In actuality, the optimal operating temperature range for PEMFCs 

would be between 60 and 80°C. Hence, a PEMFC system's efficiency and a heat management 

subsystem's performance are closely associated. In some circumstances, the heat produced 

as a byproduct might be recycled for additional uses, such as heating the reactant gases at 

the entrance. 

III. Water management subsystem 

To keep the PEMFC operating in an effective condition, water management in the 

PEMFC system is crucial. The PEMFC stack or system can avoid unintended degradation with 

proper water management. On the cathode side, the oxygen reduction process results in the 

production of water. The quantity of water generated on the cathode side would be excessive 
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in some circumstances, such as those with high current output profiles, and this might affect 

the operation of the PEMFC by obstructing the GDL. At times, if the reactant gases are not 

correctly humidified, the PEMFC, particularly the membrane, might get dehydrated in a low 

current output profile. The effectiveness of the PEMFC would likewise be affected by this. As 

a result, the water management subsystem is crucial since the efficiency of the PEMFC is 

highly associated with its performance. The majority of the time, the water management is 

carried out by active or passive exchange humidifiers between the reactant gas inlets and 

outlets.  

These humidifiers allow for the regulation of the reactant gas's humidity as well as 

the removal of extra water from the electrodes. 

Since the relative humidity levels in the various PEMFC components are connected 

and may be affected by operational factors like temperature and load change, managing 

water is a difficult issue. Due to a change in reactant stoichiometry, the humidification level 

may also have an impact on the PEMFC's efficiency. To best meet the load requirement, the 

ideal humidity level could not be compatible with an effective flow level of the reactant gases . 

There are typically three methods for reactant humidification: 

a) Gas bubbling: 

Gas bubbling is a technique that is often applied in a laboratory setting rather than a 

business setting. The gases would be bubbling at a controlled temperature through a water 

pipe. In this instance, the temperature would affect and regulate how humid the reactant 

gases were. Nonetheless, under some circumstances, the humidified reactant gases might 

still include liquid water. 
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b) Direct vapor injection: 

Typically, to do this, moisture mist is injected into the reactant gases. A source of heat 

would be utilized to create fine water vapor to enhance the humidification quality. The 

quantity of injected moisture is the only factor that affects the humidification rate. 

c) Water exchange through permeable material: 

In this scenario, a membrane made of a permeable material like Nafion would be used. 

Liquid water would pass through the membrane's surface on one side, while reactant gases 

would move across it on the other side and get humidified as a result of the membrane's 

water diffusion. The temperature of the water flow can be used to regulate the amount of 

reactant gas humidification. 

IV. Power conditioning subsystem 

Several operational characteristics, including the gas humidification level, gas flow 

rate, stoichiometry, stack temperature distribution, membrane hydration level, current 

density, etc., may have an impact on the voltage of each individual PEMFC cell. As a result, 

before being provided to the load demand, the PEMFC stack's output voltage needs to be 

controlled.  

Regulators for DC/DC or DC/AC are the most common components of the power 

conditioning subsystem. Transformers and DC/DC or DC/AC coupling may both increase the 

PEMFC stack's output voltage range and provide electrical isolation between the stack and 

the load. There would likely be more than one regulator conditioning the PEMFC output in 

the system since the regulated output voltage might often be employed by the load or the 

system auxiliaries. 
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V. Power management subsystem 

In actuality, the PEMFC system is integrated into the power generation system 

through the power management subsystem. The power management subsystem is typically 

installed in a working environment which also includes additional energy output or storage 

elements, such as battery packs or supercapacitors. There wouldn't be a requirement for a 

power management module in this scenario because the PEMFC stack would be able to 

provide the entire load if no other energy sources were present. Nevertheless, it is required 

to construct a power management subsystem within and distribute the output power as 

appropriate if the system has additional energy sources, such as in a hybrid or electric vehicle 

situation. 

1.1.3  Principles of PEMFC operation 

In essence, the transferred chemical energy from the electrochemical processes that 

took place on the electrodes is what produces the electricity from a functional PEMFC. It 

would consist of two half-electrochemical reactions occurring on all the electrodes in PEMFC: 

In the anode CL:  

2𝐻2 → 4𝐻+ + 4𝑒− (1 ) 

In the cathode CL: 

𝑂2 + 4𝐻+ + 4𝑒− → 2𝐻2𝑂 (2 ) 

Overall: 

2𝐻2+𝑂2→2𝐻2𝑂 (3 ) 
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The difference between the enthalpies of the products and the reactants is the 

enthalpy of this overall reaction: 

∆𝐻=𝐻𝐻2𝑂−𝐻𝐻2−12𝐻𝑂2=−286𝑘𝐽 (4 ) 

This exothermic reaction releases 286kJ of energy per mole of H2 which is used 

throughout the whole process, as indicated by the negative value in the equation. This 

quantity of released enthalpy is based on the assumption that the water is released in liquid 

form at 25°C under the conditions of 1 atm. 

Enthalpy cannot entirely be transformed into energy, though. Just a portion of the 

286kJ released per mole H2 consumed throughout processing could be turned to electricity 

because some of the inherent enthalpies cannot be transformed into work. The Gibbs free 

energy, or ΔG, is this component of energy, in which: 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆 (5 ) 

The irreversible losses that occur throughout an electrochemical reaction are 

represented by ΔS, while the reaction temperature in the cell is represented by T. ΔS would 

vary depending on the reactant's temperature and pressure during operation. According to 

[10], each mole of hydrogen burned at 25°C under the conditions of atmospheric pressure 

results in a Gibbs free energy of -237.34kJ of the total available energy in the whole process. 

Similar to the enthalpy, the negative value indicates that energy is being released during the 

reaction in this case. 
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Charge and potential are the components of electrical work, and the theoretical 

potential that may be generated from this energy is: 

𝐸𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 =
−∆𝐺

𝑛𝐹
=

237.34 𝑘𝐽/𝑚𝑜𝑙

2 × 96485 𝐴𝑠/𝑚𝑜𝑙
= 1.23 𝑉 (6 ) 

The number of electrons involved in the whole process for every mole of hydrogen 

used is denoted by the symbol n, and the faraday constant, F, has a value of 96485 (C/mol). 

The voltage obtained under normal conditions is 1.23V. In reality, electrochemically, if it 

weren't operating under normal conditions, the electrodes' potential would depart from 

1.23V: 

𝐸 = 𝐸𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 −
𝑅𝑇

𝑛𝐹
ln (

𝑎𝐻2𝑂

𝑎𝐻2
. 𝑎𝑂2

0.5) (7 ) 

In the above equation, a represents of various species' activities. Nevertheless, the 

fuel cell would often have variable operating losses, which would typically result in a 

significantly lower power supply when compared to this amount . 

The losses [2] may typically be divided into three categories: 

1) Activation losses: 

The electrode kinetics must deliver the required activation energy during the 

electrochemical process in order to produce continuous electrical current, which results in 

activation losses. Both the anode and cathode electrodes sides experienced losses, however 

the cathode side losses were significantly more than the anode side losses. This is because 

the oxygen reduction reaction is far more difficult than the hydrogen oxidation reaction, 

which occurs on the anode side . 
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Fundamentally, the Tafel equation on the electrodes might be used to get the 

activation loss, and the following formulation could be used: 

𝑉𝑎𝑐𝑡 =
𝑅𝑇

𝛼𝐹
ln (

𝑖

𝑖0
) (8 ) 

In the Eq. (8), 𝑖 is the current density, i0 is the exchange current density on the 

electrode, and 𝛼 is the transfer coefficient. It could take the form of [2]: 

𝑖0 = 𝑖0
𝑟𝑒𝑓

𝑎𝑐𝐿𝑐 (
𝑃𝑂2

𝑃𝑂2

𝑟𝑒𝑓
)

𝜆

𝑒𝑥𝑝 (−
𝐸𝑐

𝑅𝑇
(1 −

𝑇

𝑇𝑟𝑒𝑓
)) (9 ) 

𝑃𝑂2
 and 𝑃𝑂2

𝑟𝑒𝑓
 are the actual and reference of partial pressures of oxygen in the cathode 

electrode, respectively. 𝜆 is the pressure coefficient. 𝐸𝑐 is the activation energy on the 

cathode electrode for the oxygen reduction process on the catalyst. T and Tref are the actual 

and reference temperatures, respectively. The loss of platinum on the catalyst layer (Lc) 

would cause the exchange current density for a PEMFC to decrease during a sufficient period 

of time. The ac would decrease with time while running under various circumstances, as 

indicated in the Eq. (9). 

2) Ohmic losses 

The resistance to the passage of the ions in the proton electrolyte membrane or of the 

electrons in the electrically conductive components of the fuel cell, which include the bipolar 

plates, GDL, etc., is what causes the ohmic losses. As the resistance of every electrically 

conducting component is almost constant throughout the operation, the quantity of losses is 

directly proportional to the current. 

𝑉𝑜ℎ𝑚𝑖𝑐 = 𝑖𝑅𝑖  (10 ) 
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In the above Eq., the internal resistance of the whole cell makes up Ri. The long-term 

operation would result in an enhancement in Ri, which would eventually result in an 

enhancement in PEMFC's ohmic losses. 

3) Concentration losses 

When the reactant gases are used quickly, concentration losses typically occur. The 

pressure at the reaction site differs from the reactant pressure in the flow field channel due 

to the diffusivity limitations of various gases in the GDL and bipolar plates. This occurs 

particularly under conditions of greater output current because, under these conditions, the 

actual pressure at reaction sites would be significantly lower than the reactant pressure in 

the flow field channel. Typically, the empirical expression of the concentration loss is: 

𝑉𝑐𝑜𝑛𝑐 =
𝑅𝑇

𝑛𝐹
ln (

𝑖𝑙𝑖𝑚𝑖𝑡

𝑖𝑙𝑖𝑚𝑖𝑡 − 1
) (11 ) 

Here, the limiting current density is denoted by the symbol ilimit. Owing to the diffusion 

constraint from the flow field channel to the surface of the electrode, it is the maximum 

current density that the electrode can supply. 

The output performance of the PEMFC stack would be significantly impacted by these 

three voltage losses that occurred across each cell. In zones I, II, and III, respectively, of Figure 

4, they are dominant. 
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Figure 4 Polarization diagram of PEMFC. 

This graph illustrates what the PEMFC stack's output voltage would be: 

𝑉𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐸 − 𝑉𝑎𝑐𝑡 − 𝑉𝑜ℎ𝑚𝑖𝑐 − 𝑉𝑐𝑜𝑛𝑐 (12 ) 

 
 
 

 

1.2  Effects of operating conditions on PEMFC performance 

The operating conditions of the PEMFC may have a significant impact on its overall 

efficiency. Poor working conditions are the primary cause of the PEMFC's performance 

fluctuations. We'd want to use a variety of operating situations to illustrate this point, 

including inadequate water management, poor temperature control, gas hunger, fuel 

contamination, and load cycling. 
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1.2.1  Insufficient water management 

The PEMFC's output efficiency can be significantly impacted by how water is 

managed there. Water can enter a PEMFC through the humidified reactant gases or it can be 

produced at the cathode side by electrochemical processes. 

Before being supplied to the anode electrode, the reactant gases are pre-humidified. 

After that, water is diffused through the membrane, ensuring that it has a suitable proton 

conductivity. Water is also produced on the cathode side by the oxygen reduction process. 

Other than water management, nothing in the PEMFC could be more paradoxical. A 

sound water management plan is essential to maintaining the PEMFC's functionality. On the 

one hand, without water, protons could not permeate across the polymer membrane from 

the anode to the cathode side. On the other side, water may obstruct the pores in the GDL or 

the flow field channels of the bipolar plates, slowing down the processes in the fuel cell. The 

local reactant shortage in the operating fuel cells might result from this. Furthermore, too 

much water might lead to a considerably more humid atmosphere. The bipolar plates and 

GDL in the fuel cell would corrode in this environment with too much water, for example. 

Particularly, because too much water might produce a corrosive environment, it will hasten 

the aging of GDL and bipolar plates. It combines the bipolar plates' and GDL's deterioration. 

Hence, during regular operation, the fuel cell's water management is crucial. 

In essence, poor water management might cause membrane drying or flooding on the 

electrodes. 
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➢ Flooding of electrodes: 

Both the anode and cathode sides of the electrodes might get flooded. 

i. Flooding at the cathode side: 

Flooding on the cathode side occurs far more frequently than on the anode side. This 

is due to the fact that water is created on the cathode side of the fuel cell during the reaction, 

and that protons traveling from the anode side would likewise draw water molecules from 

the anode side to the cathode side, resulting in cathode flooding. The water-dragging 

phenomena in this process are known as electro-osmosis. Mass transit inside the GDL may 

be hampered by floods on the cathode side. This might make it more difficult for the oxygen 

to get to the reaction sites. In certain severe circumstances, this blocking of the pores in the 

GDL might induce local oxygen deficiency. The oxygen would travel in different routes 

because of the obstruction. As a result, the flow field channels may experience an imbalanced 

pressure, which would lower the PEMFC stack's efficiency [11]. Under larger current 

densities, cathode flooding typically occurs. In a particular experiment, He et al. [12] showed 

that when the cathode is flooded from 1.5 kPa to about 3 kPa, the output voltage of a single 

cell will fall from 0.9V to 0.3V. Cathode purging is often able to reduce cathode flooding. The 

GDL in the PEMFC should all have the PTFE coating treatment applied to its surface, as has 

already been indicated. Hence, the proportion of hydrophobic holes in the GDL is somehow 

connected to the PEMFC stack's maximum power. The hydrophobic holes are essential for 

allowing the water created on the cathode to escape while the stack is working at a high 

current profile. 
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Also, with the prolonged operation, the extra water in the cathode would cause 

corrosion on the bipolar plates. The pores of the GDL might be blocked by dissolving or 

dissolved particles from the corrosion sites on the bipolar plates, and the particles may even 

permeate into the membrane, reducing the proton conductivity of the membrane.  

A PEMFC stack's efficiency may suffer as a result of both of these.  

ii. Flooding at the anode side: 

In a PEMFC stack that is working correctly, anode flooding is uncommon. Nonetheless, 

in some specific circumstances, the anode could experience flooding and have similar effects 

as the cathode. Typically, while the stack is functioning at a relatively low current density, 

flooding on the anode side of the fuel cell frequently occurs. Since the low flux of protons 

moving from the anode to the cathode in the membrane in a low current operating profile, 

electro-osmosis would not be sufficient to balance the water environment in the anode. This 

type of anode flooding may occur, particularly if the anode is powered by highly hydrated 

hydrogen. Incorrect water injection into the anode might also result in anode flooding.  

➢ Membrane dehydration: 

Owing to electro-osmosis in the membrane, dehydration often occurs on the anode 

side of the fuel cell. Protons may move the water molecules to the opposite side of the 

membrane, resulting in a discrepancy in the amount of water on the two sides of the 

membrane. Although reverse diffusion is physically preferred for replenishing lost water, the 

anode may still get dehydrated while in use, particularly when running at high current 

densities or receiving fuel that isn't sufficiently humidified [13].  
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The poor proton conductivity of the membrane might be caused by the membrane's 

declining water content. As a result, operational efficiency would suffer. Büchi et al. [14] 

detected a PEMFC in the experiment of during 1200 hours of continuous running with no 

humidification on the anode side. The current density reduced from 170 to 130 mA/cm² at 

the constant output potential of 0.61V.  

The rehydration process on the anode side may be able to restore some efficiency. 

Yet, prolonged membrane dehydration would lead to a permanent decline in performance. 

Any membrane that operates in dry circumstances will inevitably develop internal fissures 

or brittleness. The quantity of gas crossing between the electrodes would undoubtedly rise 

as the number of fractures grew. The dissolute platinum particles inside the membrane 

would react with the crossed-over gases, resulting in the formation of pinholes. Additional 

gas would cross through as a result of these pinholes. This is one of the primary membrane 

degradation phenomena. 

1.2.2 Poor thermal management 

The efficiency drops or degradation over a sufficient period of time might be brought 

on by the PEMFC stacks' inadequate temperature regulation. Under cold temperatures, it 

might, however, drop significantly [15] [Wang, Y. (2007). Analysis of the key parameters in 

the cold start of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 

154(10), B1041.]. Moreover, performance suffers while operating in environments with high 

temperatures (>80°C) [16, 17].  
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➢ Sub-zero condition: 

The freezing or sub-zero operating situation is the most frequent temperature-related 

circumstance that might result in an efficiency of drops or degradation in a fuel cell  .He et al. 

[18] presented comparison research examining the influence of several membranes under 

sub-zero temperatures. The findings demonstrated a substantial correlation between the 

water content and membrane thickness and the volume change brought on by ice formation. 

After this freezing test, the Nafion 117 membrane is much thicker than the Nafion 112 

membrane for two membranes that were fully hydrated before the sub-zero test. Physically, 

the sub-zero or fluctuating temperatures near 0 °C might cause fractures to form inside the 

membrane, increasing the amount of crossover between the electrodes. Pinholes that 

develop throughout the operation may lead to further membrane breaches and a reduction 

in fuel cell stack efficiency. Intriguingly, Kim et al. [19].'s research demonstrates that no 

physical damage could be seen in the membrane or on the catalyst layer during freezing for 

those cells that were thoroughly dried after the operation. 

➢ Elevated temperature condition: 

For various reasons, the engineers occasionally tended to keep the PEMFC stack 

operating at higher temperatures (over 100°C) [Yuan, H., Dai, Y., Li, H., & Wang, Y. (2022). 

Modeling of high-temperature polymer electrolyte membrane fuel cell for reaction spatial 

variation. International Journal of Heat and Mass Transfer, 195, 123209.]. Secondly, at higher 

temperatures, electrochemical processes would have faster reaction kinetics. Moreover, a 

greater temperature could increase the PEMFC's tolerance for fuel contaminants. Therefore, 
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in this situation, the effects of Carbon monoxide poisoning may be lessened, which may 

increase the PEMFC stack's durability when supplied with lower-quality hydrogen. 

Yet, the increased temperature may be to blame for the fuel cell's performance 

drop or long-term degradation. The fact that the catalyst layers might degrade more quickly 

at an increased temperature is what matters most in this situation. Under a high-temperature 

setting at the cathode side, the platinum particles would become more potentially unstable. 

The nano platinum particles would tend to group in this manner and have a lower chemical 

potential. This aggregation process, also known as the Ostwald ripening phenomenon, may 

result in the loss of ECSA and a possible decline over time.  

Moreover, the undesired response on the cathode side can be brought on by the 

higher temperature. The high temperature and voltage on the cathode side would cause the 

oxygen molecules to divide into two oxygen atoms. In this manner, the carbon substrate 

might interact with the atoms inside the cell to produce CO2 or CO. This implies that the 

increased temperature may affect the carbon structure in the GDL or perhaps speed up 

carbon corrosion in the catalytic layer. 

In particular, while fuel is supplied with improperly pre-humidified fuels, the 

increased temperature operating circumstances may result in a decrease in the proton 

conductivity. The membrane's ohmic losses may rise due to the decreased proton 

conductivity, which would lower performance across the board. 
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1.2.3  Reactant starvation 

Reactant starvation in a fuel cell refers to a lack of oxygen or fuel. This would always 

result in sub-stoichiometric functioning circumstances for fuel cell. Gas starvation may result 

in a possible drop in the efficiency of fuel cells. Gas starvation in a fuel cell can frequently 

result in undesirable events occurring on both electrodes. Whenever supplied with oxygen, 

fuel cell must produce water on the cathode side. Nonetheless, under gas deprivation 

conditions, this reaction's cathode side emission of hydrogen might be seen: 

2𝐻(𝑎𝑞)
+ + 2𝑒− → 𝐻2(𝑔)

 (13 ) 

When the oxygen might be emitted from the anode side: 

2𝐻2𝑂(𝑎𝑞) → 𝑂2(𝑔)
+ 4𝐻(𝑎𝑞)

+ + 4𝑒− (14 ) 

In some circumstances, the Carbon dioxide might also be recognized, and the cathode 

side could experience the below reactions: 

𝐶(𝑠) + 2𝐻2𝑂(𝑎𝑞) → 𝐶𝑂2(𝑔)
+ 4𝐻(𝑎𝑞)

+ + 4𝑒− (15 ) 

These various reactions show how gas shortage may change the composition of the 

gas through each electrode, producing hydrogen on the cathode side and oxygen on the 

anode side. In addition to this occurrence of the reactant gases reversing, the carbon support 

is oxidized and destroyed because of gas starvation at the anode side, which may cause the 

electrodes to degrade over time. 

Cold starts or inadequate water management are the usual culprits for gas starvation. 

In either scenario, the pores in the layer of gas diffusion might be blocked by water or ice, 
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preventing reactant gases from reaching the reaction sites. The uneven flow field channel 

design or an abrupt increase in load might both result in gas starvation and worse fuel cell 

efficiency. 

1.2.4   Contamination 

A reduction in the efficiency of fuel cells might be brought on by contamination. Often, 

the term "contamination" refers to contaminants that enter the fuel cell together with the 

fuels. Contaminants may occasionally be shown to have originated from cell components. 

After all, catalyst particles, metallic ions, CO, NOx, and SO2 are frequently found among the 

contamination's impurities. The pollution could have a significant impact on how well the 

membrane and electrodes work. 

Because of the contamination of the membrane by pollutants like ammonium or 

alkaline metal ions, the protons may not be able to connect to the PFSA end groups. Due to 

the higher ohmic resistance, this event may significantly reduce the fuel cell's efficiency. 

Because of the limited electro-osmosis inside the membrane in some severe situations, 

contamination may result in dehydration at the cathode side, which would impair output 

performance and exchange current density [20]. 

Furthermore, carbon monoxide on the anode side is frequently the source of 

contamination for electrodes. The term "CO poisoning" refers to this contamination 

mechanism. If the hydrogen is generated by reforming the hydrocarbons, the CO is first 

delivered to the cell together with the hydrogen. The platinum particles on the catalyst layers 
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may get bonded to CO molecules, severely reducing the ECSA, and this is the mechanism of 

CO poisoning. Because of the substantial CO coverage in this reaction, the hydrogen is 

prevented from reaching the covered reaction sites on the catalyst layers, which might lower 

output performance. Carbon monoxide poisoning, therefore, is treatable and reversible. By 

merely blowing some air into the anode side, the connected CO molecules would be burnt 

and converted to Carbon dioxide with the airflow, reducing the impact of CO poisoning [21]. 

1.2.5  Voltage cycling 

The platinum might clump together on the catalyst layer as a result of voltage cycling, 

which would lower the ECSA. ECSA shrinkage is the name given to this occurrence. In 

actuality, the number of possible cycling affects and lowers the ECSA in the fuel cell at the 

cathode side during the ECSA shrinking [22]. The rate of ECSA degradation would increase 

with the number of possible cycles. Furthermore, during typical processes (1V), the peak 

value of the potential cycle also has a significant impact on the aging of the ECSA. The ECSA 

would degrade more quickly the greater the possible cycles.  

Since platinum particles could only dissolve at higher potentials, the load cycling in 

the PEMFC stack could only have an impact on the catalyst layer on the cathode side [23]. 

Compared to the potential on the anode side, the potential at the membrane and cathode 

contact is significantly greater. Hence, the cathode catalyst layer is far more susceptible to 

load cycling than the one on the anode side. 
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It's actually intriguing that during cycling, greater cathode potentials (>1V) might 

potentially result in the formation of a platinum oxide layer on the platinum particles' 

interface. This oxide layer, which was created at a greater potential, may then stop the 

platinum particles from eroding into the membrane. PtO covers surfaces of platinum 

particles at a rate that is proportional to potential; a greater potential would result in a 

quicker covering rate of PtO. 

This ECSA-related degradation is especially shown in [24]. For further details, we 

gladly suggest the readers to [24]. We only consider the formation of the PtO monolayer and 

the dissolution of platinum particles as they are affected by changes in potential. The possible 

cycling might also result in carbon corrosion on the catalyst layer or the GDL in addition to 

the ECSA degradation. 
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Chapter 2: PEMFC degradation 

The PEMFC components might decline or stop working throughout normal system 

operation because they are vulnerable to the aging phenomenon, which results in PEMFC 

degradation or failure. Thus, it is crucial to carefully and in-depth study and comprehend the 

causes of degradation. In actuality, it is impossible to simply isolate the degradation 

processes of the various fuel cell components because they are typically impacted by one 

another. Nonetheless, it is preferable to show the various methods on each component 

separately in order to make it obvious and legible for the readers.   

2.1 Degradation mechanism  

Several degradation modes may occur during fuel cell operation [25]. Much 

degradation typically occurs in the GDL, catalyst layer, and polymer membrane. Carbon 

corrosion is the main degradative process in the GDL. The GDL is often constructed of fabric 

or carbon paper. High humidity and/or potential (load) cycling of the PEMFC is the two main 

causes of carbon corrosion, respectively [26, 27]. In addition, platinum (the catalyst) 

rearrangement (sintering) in the catalyst layer is frequently regarded as a crucial element 

affecting the long-term efficiency of PEMFC. The platinum particles in electrodes are affixed 

to the interface of the carbon substrate or support, making them subject to degradation of 

the carbon structure. Moreover, platinum particle sintering can frequently be seen while 

running in load-cycling or high-humidity or high-temperature conditions [24, 28]. It is 

thought that the hydroxyl (OH) and hydroperoxyl (OOH) radicals' chemical assaults on the 
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polymer membrane are what first reason for the membrane to degrade. Hydrogen peroxide 

(H2O2), which is produced as a result of fuel pollution or gas crossing, is the source of these 

radicals. The breakdown of polymer structure and alteration of membrane characteristics 

are caused by chemical assault and temporary operational conditions [29-32]. Table 1 

summarizes the significant processes and reasons for degradation.  

Table 1 The causes and effects of PEMFC degradation. 

 
Carbon 

Corrosion 
Platinum 

loss 

Membrane 

degradation 

Structural 
stress 

Electrical 353 0.75 0.75 0.9 

Data2 333 0.75 0.25 0.34 

Data3 293 0.99 0.99 0.74 
 

2.2  Component degradation  

2.2.1  Membrane degradation 

In the majority of literature evaluations, the three types of membrane degradation-

chemical, mechanical, and thermal-could be distinguished. A somewhat different 

classification-chemical deterioration, mechanical degradation, and crossover-related 

damage-was proposed by Gittleman et al. in [4]. These three factors would be used in this 

thesis study to explain how the membrane degrades. 

1) Chemical degradation 

It is acknowledged that one of the main factors limiting the polymer membrane's 

lifespan is chemical degradation. The membrane thinning and the release of HF, CO2, and 

H2SO4 during the process are indicators of the chemical degradation of the membrane. 

Decreased membrane thickness starts a gas crossover and makes the membrane more brittle 
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mechanically. Fundamentally, it is believed that the toxicity of the contaminated species and 

the activities of species of aggressive radicals that are created during the process of the stack 

is to blame. 

The weak connections in the polymer structure might be attacked by the radicals. Due 

to their excellent chemical stability, perfluorocarbon-sulfonic acid ionomers (PSA) are a 

necessary component of the membrane. In a fuel cell, it has to be both chemically and 

mechanically stable. Unfortunately, perfluorinated compounds are not inert while the stack 

is in use over an extended period. The membrane decomposes as a result of the chemical 

degradation, which is brought on by radical species attacking the polymer directly. The main 

species responsible for assaults on the membrane are reactive species like hydroxyl (OH), 

hydroperoxyl radicals (OOH), and hydrogen peroxide (H2O2). The problem of radical attacks 

is covered in [4, 29, 32-34].  

An unstable membrane state is imposed by the oxidative environment on the cathode 

side and the reductive environment on the anode electrode, which might hasten the chemical 

degradation of the membrane. The PEMFC's operation at relatively low humidity and greater 

potential may further speed up chemical degradation.  

Additionally, poisonous species hasten the chemical degradation of the membrane. 

These compounds, which also are hypothesized to be generated by nearby metallic pipes or 

apparatus, include the cations Fe3+, Cu2+, and others. The ability of these cations to connect 

to the end groups in the polymer electrolyte would minimize the space available in the 

membrane for protons to attach, which would result in a reduction in the conductivity of the 
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membrane and, consequently, in the output voltage of the entire stack. This makes the 

membrane especially vulnerable to the existence of these cations. 

2) Mechanical degradation 

Typically, cyclic working conditions are what lead to mechanical degradation. The 

membrane would be susceptible to mechanical degradation, in this case, known as 

hydrothermal fatigue, whenever it expands and contracts with changes in humidity or 

temperature. The membrane would develop tiny pinholes as a result of this type of 

degradation, which would also enhance the rate at which gases traverse the membrane from 

either side. 

Moreover, the Xo plane of the membrane would experience local tension as a result 

of the catalyst particle buildup. The sources [27, 35] go into great detail about it. In reality, 

the Pt particles would tend to diffuse through the membrane even under normal operating 

conditions. Since the included dissolving reaction is encouraged at a higher potential, the Pt 

particles on the cathode side would particularly dissolve into the membrane. These dissolved 

platinum ions have the potential to be decreased by the hydrogen crossed over from the 

anode side and can build up in a specific area of the membrane (the Xo plane) where the 

concentration ratio of the crossed-over hydrogen or oxygen is preferred. 

3) Crossover related damage 

The crossover in a PEMFC refers to the potential for hydrogen or oxygen to pass 

across the membrane and reach the reaction sites on the opposite electrode. The reactant 

gases that were crossed over might interact with one another inside the membrane or on the 

electrodes. 
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The reactions that took place on electrodes with the crossover gases included were 

deemed chemical combustion reactions instead of electrochemical reactions. As a result, it is 

thought that this portion of the reactants given to the fuel cell was squandered during the 

crossover. So, a PEMFC would only be regarded as an energy converter if the electrons it is 

driving are coming from an external circuit and aren't just being squandered on the 

electrodes. 

In addition, the membrane's crossing of the reactant gases would result in the gases 

inside the membrane interacting on the surface of the precipitated platinum particles. The 

membrane would be significantly damaged by this combustion event, leading to increased 

membrane crossing. Numerous studies [36, 37] have documented the exponentially rising 

profile of membrane aging-related crossover in the literature. 

2.2.2  GDL degradation 

The GDL degradation would affect the fuel cell stack efficiency throughout aging and 

operating time, much as other degradation components. The GDL layer is often formed of 

carbon paper or cloth, which is heavily squeezed between the bipolar plates and MEA within 

every cell, as has been previously discussed. It is a crucial part of the PEMFC because it acts 

as a conduit for the diffusion of the reactants from the bipolar plates to the reaction sites 

while also releasing the water produced during the reaction if the droplets would otherwise 

obstruct the pores through which the reactant gases pass. 

The GDL degradation will be specifically shown in this thesis project from the 

viewpoints of chemical and physical degradation: 



 

34 
 

1) Chemical degradation 

The GDL's chemical composition would alter over time. Particularly, the 

hydrophobicity of the GDL would diminish with time. During fabrication, the GDL is typically 

treated with a PTFE coating. Teflon pans, often known as non-stick pans, are frequently 

coated with PTFE. The benefits of high hydrophobicity, high operating temperature, an 

exceptionally low coefficient of friction, acceptable abrasion resistance, and strong chemical 

resistance would be conferred onto the GDL by this coating.  

Although, the change from hydrophobic to hydrophilic always happens gradually. 

According to the aging experiments described by [33], the hydrophobicity would rise with 

operating temperature while falling with time. The carbon cloth's binding forces weaken 

when the PTFE coating breaks from it, and this can lead to the formation of hydrophilic 

surfaces on the GDL. Because there are more hydrophilic surfaces, throughout the long-term 

operation, the reactant gases would be prevented from reaching the reaction sites by the 

water droplets. 

2) Physical degradation 

Physical qualities are always thought to alter as a result of physical deterioration. This 

is mostly caused by carbon corrosions that mechanically modify the GDL's structural 

completeness and also result in an imbalanced force distribution from the membrane or the 

bipolar plate. 

Carbon corrosion remains an important factor in the GDL's physical degradation. On 

the cathode side, where the potential is substantially greater than the equilibrium potential 

for the carbon oxidation process (0.207V), carbon is considered to be thermodynamically 
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unstable [38]. Most precisely, carbon corrosion would frequently happen during start-stop 

operations while air is supplied on the anode side of the fuel cell. This would potentially 

elevate the carbon corrosion rate on the cathode side of the fuel cell, which would then rise 

[39-41]. 

Furthermore, carbon corrosion would be brought on by fuel starvation [42]. The GDL 

layer may fracture or separate due to carbon corrosion, which might also result in a change 

in the GDL's mechanical structure and an imbalanced distribution of force from the 

membrane or the bipolar plate. The electric or thermal resistance of the GDL layer would 

alter as a result of all of these scenarios. 

2.2.3  Catalyst layer degradation 

The catalyst is mostly composed of nano platinum particles with sizes between 2 and 

5 nm. If the characteristics of those tiny particles changed, it would have a significant impact 

on the PEMFC stack's efficiency. Based on the [43], dissolution, oxidation, or agglomeration 

on the anode side would rarely have an impact on the platinum particles. Unfortunately, 

because of the higher potential environment, the platinum particles on the cathode side are 

not entirely stable. The platinum particles would be oxidized to platinum ions and 

subsequently dissolved into the membrane as a result of this increased potential producing 

an oxidative environment. As a consequence, the catalyst layer's ECSA would gradually 

decline. The majority of the time, it can be caused by cyclical operating conditions, such as a 

potential cycling or temperature cycling operation profile. 
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Generally, these three processes are considered to be catalyst degradation: 

I. Platinum particles diffuse through the ionomer, dissolve and re-deposit on other 

platinum particles to make bigger particles (Ostwald ripening), then diffuse through the 

membrane to form the platinum band (Xo plane). 

II. Producing oxidative compounds that would lead to membrane breakdown. The 

radical’s hydroxyl (OH), hydroperoxyl (OOH), and hydrogen peroxide (H2O2) would always 

be present in these species (usually occurred on the platinum particles precipitated in the 

membrane). 

III. Adsorption of contaminants from the air, reactants, or other damaged materials 

that may be reversible or irreversible. 

To demonstrate the Ostwald ripening, that contributes to catalyst degradation and 

results in ECSA reduction, in this thesis project, we will be more explicit. 

A phenomenon known as the Ostwald ripening, which may be seen in solid (or liquid) 

solutions, shows how an inhomogeneous structure changes over time. Wilhelm Ostwald [44] 

published the first description of the phenomena in 1896. Energy-related variables will cause 

major precipitates to expand whenever a phase precipitates out of a solid, taking material 

from smaller precipitates, which shrink. Another way to say, bigger particles tend to grow in 

size while smaller ones prefer to shrink in an inhomogeneous environment. Figure 5 depicts 

this procedure. 
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Figure 5 Ostwald ripening processes [44]. 

Due to the larger particles being much more energetically stable than smaller 

particles, this thermodynamically driven spontaneous process happens. This is because the 

internal pressure is inversely correlated with the particle's radius. It results from the fact 

that molecules on a particle's surface are less energetically stable than those that are 

previously arranged and tightly packed within. Large particles would have a reduced surface 

energy because of their smaller surface-to-volume ratio, which leads to a lower energy state. 

The molecules on the surface of a tiny (energetically inadequate) particle will typically tend 

to detach, diffuse through the solution, and then adhere to the surface of a bigger particle as 

all chemical systems attempt to reduce their total energy. As a result, although larger 

particles continue to expand, the number of smaller particles continues to decline. 

This type of phenomenon would occur with platinum particles in the fuel cell 

environment, particularly if the particles were inside the membrane or on the surface of the 

cathode side catalyst layer. This is taking place as a result of the platinum particles being 

excited to an unstable condition by the greater potential on the cathode side; once the 

potential is favorable, they prefer to disintegrate from the reaction site. Because of the 
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oxidative interaction with the H2 crossed over from the anode side, the platinum particles in 

the membrane have a tendency to precipitate and aggregate.  

On the one hand, the ECSA would decrease over time as the size of the platinum 

particles increased for the Ostwald ripening on the cathode side. In contrast, the membrane's 

Ostwald ripening would result in the precipitation of platinum there. This would cause the 

membrane to mechanically degrade, which would lead to tiny pinholes and speed up the 

crossing of gases from both sides of the membrane. 

2.2.4  Degradation on bipolar plates, gaskets, and others 

There are just two studies that discuss the degradation of bipolar plates in the 

research [9, 43]. These two publications reveal three processes at play: 

1. Long-term corrosion brought on by the bipolar plates' acidic environment 

would result in the formation of undesired cations, which would negatively affect the 

membrane and catalyst layers' resilience; 

2. Long-term corrosion would produce a layer of resistance on the surface, 

increasing the ohmic contact resistance; 

3. On the plates, deformations or cracks would occur. They are a result of cyclical 

operating circumstances like temperature cycling that would lead to an uneven distribution 

of temperature in the bipolar plates. 

The stacks are crushed in addition to the bipolar plates by the gaskets and seals. It is 

currently uncertain how these components will age. The causes and consequences of a few 

things are shown in [9]. The compression force that the gaskets would give can be impacted 
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by the temperature stress and the acidic environment. The materials could occasionally 

dissolve or dissolute in this acidic medium. The hydrophobicity of the GDL may be impacted 

by their movement and precipitation in the electrodes, and they may also contaminate the 

membrane and catalysts. In addition, with the prolonged operation, breakdown products 

might be detected in the MEA. No literature has yet suggested a degradation model for this 

component. 

2.3 Prognostics of PEMFC  

Prognostics, as a whole, refers to the assessment of the degree of a system's deviation 

or degradation from its anticipated normal state of operation to forecast the future efficiency 

of one or more components [45]. The engineer would know, thanks to predicting the 

performance, whenever the system or a component will stop serving its intended purpose. 

In many literary works, the prognostics-which includes the remaining usable life (RUL) 

forecast-are always tied to the performance projection. We discuss the performance 

prediction of PEMFC in this research thesis. It refers to the evaluation of the gathered 

historical data to estimate or forecast the long-term performance fluctuation of the fuel cell 

stack. 

Prognostic methods in the field of engineering control may essentially be categorized 

into three groups: data-driven, model-based, and hybrid methods. Articles on these 3 groups 

have always been accessible through literature. 
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2.3.1  Data driven methods 

The historical data that is tracked and collected forms the foundation of data-driven 

techniques. The engineer would have to remove the degradation or behavior aspects from 

the gathered data using data-driven methodologies. An RUL or performance variation can be 

anticipated once the historical data has been trained. In actuality, data-driven methodologies 

are the focus of the majority of prognostics research studies. There are papers connected to 

Bayesian probabilistic [46-49], neural networks [50-54], Kalman filter [55], or just 

straightforward regression methods [56]. These methods are often calculus-friendly, 

relatively easy to apply, and do not call for analysis methods of system degradation. 

Unfortunately, they occasionally had low prediction performance, which caused the models' 

output to differ from the system's real behavior. In order to achieve a compromise between 

application and precision, data-driven techniques are used. 

2.3.2  Model based methods 

The model-based techniques call for the creation of a physical dynamic model that 

captures the system's behavior and includes degradation phenomena (primarily the 

phenomenon of wear, corrosion, or fatigue) whose evolution might be studied [57-62]. 

Commonly, these sorts of procedures could produce prognosis outcomes that are 

more precise than those from the other two ways. They do, though, have several significant 

flaws. On the one hand, it is challenging to construct the physical dynamic model since it is 

typically challenging to analytically characterize the degradation processes. The physical 

degradation approach, on the other hand, is typically difficult to execute in in-situ prognostic 
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situations, where the quick and accurate prognostic model is always preferred. Furthermore, 

the physical dynamic model of one system or component may not always be generalizable to 

others, making it challenging to apply the degradation model to other systems or 

components. As a result, the application space for model-based techniques is rather 

constrained. 

2.3.3  Hybrid methods 

Hybrid prognostic techniques are often a type of strategy that combines model-based 

techniques with data-driven techniques. During the prognostic process, data and physical 

model information from a system are exchanged. The series configuration and the parallel 

configuration are the two main types of hybrid techniques. 

When compared to some of the unobservable characteristics in the physical dynamic 

model, which are calculated or estimated by various data-driven approaches, the series 

configuration is often recognized as a model-based prognostic approach. This style of 

predictive methodology is covered in [63]. 

A "parallel configuration" combines a physical model's output with a data-driven 

approach's output to supply an overall outcome. The data fusion strategy, in which the 

output results of two models are combined to get a global forecast outcome, and this sort of 

method are fairly comparable. Several publications have been discussing this subject area in 

the literature [64, 65]. 
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2.4  Data-driven method 
 

2.4.1  Artificial Neural Networks  

Artificial Neural Networks (ANNs) are nonlinear mapping mechanisms designed to 

mimic the operations of the human brain. They consist of a set number of neurons, which are 

central processing units, coupled by connecting weights, which are unidirectional signal 

channels. Given that they can manage the most complicated scenarios that are not adequately 

stated for carrying out deterministic algorithms, neural networks are a machine learning 

technique (ML) that provides a significant and practical replacement for traditional 

approaches [66]. According to its fundamental characteristic that enables the approximation 

of any continuous non-linear relationship using a neural network with appropriate design 

and weight variables, artificial neural networks offer an excellent mathematical mechanism 

to handle nonlinear challenges [67]. The artificial neural networks also possess a number of 

desirable qualities, including the capacity for internal mapping of the functional 

relationships that represent the process, the capacity for learning functional dependencies 

of data, the capacity for high computation rates, the capacity for large input error tolerance, 

the capacity for noise filtering, and the capacity for handling correlations [66-68]. Across a 

wide range of industries, such aerospace, manufacturing, engineering, military, health care, 

the oil and gas sector, finance, securities, transportation, telecommunications, and 

environment, neural networks have been used to solve modeling and classifying issues [67-

69]. 
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The explosive expansion of what has been dubbed "Deep Learning" is one of the most 

astonishing phenomena in the field of machine learning. Neural network research and 

application have undergone a revolution as a result of deep learning. Any multilayer artificial 

neural network could be a deep learning instance because deep learning is a cluster based 

on various ANN architectures. We refer to these networks as deep neural networks (DNNs) 

because every layer can solve complex functions like representation and abstraction that 

make sense of sound, images, and text. As neural networks feature several (deep) layers that 

enable learning, we coined the term "deep learning" to refer to the number of layers that are 

employed in the network. In terms of feature learning, model building, and model training, 

deep learning techniques have numerous benefits over classical ML [70]. Deep learning, as 

opposed to manually designing the most effective data representation with domain 

expertise, permits for the automatic data processing through very nonlinear and complex 

abstraction of characteristics over a cascade of numerous layers to find the complex 

fundamental patterns. The more the model learns, the better it gets at solving complicated 

issues despite the fact that it uses a wide variety of unstructured, interrelated data. Although 

there are many distinct forms of learning in machine learning, they may typically be 

categorized into four classes based on their intended use: 

I. Supervised Learning: Whenever the actual result with information is present, 

this strategy is utilized, where the learning algorithm receives a set of inputs in addition to 

the intended results. Its result might be actual value or discrete/categorical (e.g., a certain 

color, an image of an animal, a vehicle model, etc.). By comparing the actual output with the 

present output to identify faults, the learning process updates the model as necessary by 
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using various techniques including regression and categorization [71]. All of the models that 

are suggested in our thesis fall under this heading. 

II. Unsupervised Learning: This technique allows for the extraction of all the useful 

data from a particular database for further processing and analysis without the requirement 

of ground truth data or expert supervision (labels). Such a strategy can go in one of 2 ways: 

either by utilizing cluster analysis to detect intriguing patterns, or by employing association 

evaluation to identify some extremely valuable associations between the variables of a huge 

database [72]. 

III. Semi-supervised Learning: This strategy is employed anytime there is a mix of 

labeled and unlabeled training data, often a small quantity of labeled data and a big volume 

of unlabeled data due to the cheaper cost of unlabeled data relative to labeled data [71]. The 

same applications of supervised learning may be utilized with this sort of learning, and it is 

also feasible to combine it with supervised learning by using the unsupervised methodology 

for label prediction. This approach is especially suitable for picture collections when not 

every image is typically tagged [72]. 

IV. Reinforcement Learning: The reinforcement learning framework is built on an 

agent that interacts with its environment to learn, and the agent must decide which 

behaviors to do in order to enhance the expected reward over a certain duration. The 

objective of this sort of learning is to find the best policy since it will enable the agent to hit 

the target much faster. The agent, or learner, the environment, and the agent's behaviors are 

the three major elements in this sort of learning [72]. Reward-based learning is tailored for 

particular issues including gaming, robotics, and navigation. Moreover, it uses either one of 
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the following ways to solve the reinforcement tasks: value function methods, policy search 

methods, or both [73]. 

According to the ANN concept, a wide variety of structures were created, each with a 

unique architecture style, data processing (input-output), and learning methodology. 

Amongst numerous, one may choose the most well-liked methods, which served as the 

cornerstones of deep learning, the new cluster of ANNs. Some methods include: 

i. Multilayer Perceptron Networks (MLP). 

ii. Convolutional Neural Networks (CNN). 

iii. Recurrent Neural Networks (RNN). 

Deep learning approaches have demonstrated improved performance when it comes 

to tackling complicated prognostic problems with a variety of systems whose degradation 

processes are challenging to connect using alternative methodology. These architectures 

stack numerous layers of information processing modules in hierarchical structures to 

model high level representations of information and estimation/classify patterns [74]. Also, 

it was used to solve numbers of issues in manufacturing and industrial operations, and its 

efficiency and notable outcomes in the use of predictive health management have beyond 

expectations [75]. For various systems, including high-speed CNC machines, induction 

motors, gearboxes, air compressors, and aviation engines, to mention a few, in particular 

problem detection, diagnosis, and RUL estimation. An overview of the aforementioned 

architectures will be provided in the following subsections. 
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2.4.2  Multilayer Perceptron Networks (MLP) 

Given that it serves as the foundation for all neural networks, MLP is one of the most 

frequently utilized neural networks [76]. As we will see, it is commonly utilized as a stand-

alone model [77] or as the last layers of more sophisticated and complicated neural 

networks, such as CNNs or RNNs. The network's efficiency (Result) depends solely on the 

current input instance, making MLP a feed forward artificial neural network design [78]. By 

way of explanation, this MLP is made up of interconnected neurons that transmit 

information among themselves, much like the human brain [76]. Every level is linked to the 

contiguous layer by a set of connections, each connection being equipped with a weight. It is 

divided into three main parts: an input layer, an [67] intermediate layer (one or more), and 

an output layer. The input layer, one hidden layer, and the output layer are the three layers 

that make up the construction of an MLP in  

 

Figure 6.  
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Figure 6 The structure of MLP Method. 

The input layer, represented by x ϵ Rk, is immediately transferred to the first hidden 

layer, represented by h ϵ Rn, before creating the output, represented by y0 ϵ R0. The output 

from every layer may then be determined using the formula below: 

𝒉 = 𝜑(1)(𝑾𝟏𝑥 + 𝑏1) 

𝒚𝟎 = 𝜑(0)(𝑾𝟎ℎ + 𝑏0), 

(16) 

(17) 

In the above equations,𝑾𝟏 ∈ 𝑅𝑛×𝑘, 𝑾𝟎 ∈ 𝑅0×𝑛, 𝑏1 ∈ 𝑅𝑛, and 𝑏0 ∈ 𝑅0 are the weights 

and bias of every layer. Also, 𝜑 shows the activation function. 

Mathematical functions known as activation functions define the nonlinear 

relationships among both input and output. By calculating the weighted sum and adding bias 

to it [79], which will add non-linearity to the neuron's output, the activation function has a 

role in every neuron, calculating whether to consider this neuron as activated "fired" or not. 

This depends on whether or not each neuron's input is noticeable for the predictive model. 

Given that nonlinearity characterizes the majority of real-world data, this feature is crucial. 

The activation functions may be as simple as a step function, which regulates the neuron 

output by turning it on and off by predetermined guidelines or bounds. Nevertheless, they 

might also be non-linear activation functions, which would allow the network to handle more 

complicated data, learn and calculate virtually any data-related attribute, and provide 

precise predictions [79].  
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There are several well-known and popular activation functions, including: 

I. One of the most common activation functions is the sigmoid or logistic function, 

and it takes the following form. 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) =
1

1 + 𝑒−𝑥
 (18) 

It converts (normalizes) actual input quantities inside the R domain into outputs that 

fall within a range (0, 1). 

II. A further activation function, the hyperbolic tangent function (tanh), is fairly 

similar to the preceding one but takes the general formula: 

𝑡𝑎𝑛ℎ (𝑥) =
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
 (19) 

Its output ranges between 0 and 1 and it is zero-centered, which is why it is frequently 

chosen over the sigmoid function. 

III. Rectified Linear units (ReLu): This is the most significant and well-known 

activation function, which converts real input values R so that the positive values grow 

linearly while the negative values are transformed to zero: 

𝑅𝑒𝐿𝑢(𝑥) = max (0, 𝑥) (20) 

MLP is frequently used with supervised learning models, which train their networks 

using the back propagation approach. The discrepancy between the outputs and the known 

predicted results is always represented as an error during training. The cost function is the 

function that measures this mistake. In order to maximize the correlation between the model 

and the system it seeks to represent, supervised learning aims to minimize this function [80]. 

To find the minimal value of the cost function within the weight space, the backpropagation 
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process relies on the gradient descent approach (or other methods with the same purpose). 

The weights that succeed in achieving this goal will be regarded as offering the best answer 

to the current learning conundrum. In order to calculate the derivative of the cost function 

with respect to the network weights, the gradient descent algorithm does as follow:  

𝜕𝐸𝑟𝑟𝑜𝑟

𝜕𝑾1
=

𝜕𝐸𝑟𝑟𝑜𝑟

𝜕𝒚𝟎

𝜕𝒚𝟎

𝜕𝑾𝟎

𝜕𝑾𝟎

𝜕𝒉

𝜕𝒉

𝜕𝑾1
, (21) 

In which the cost function's measurement of the mistake is denoted by the word 

Error. In other words, the idea is straightforward: alter the network's weights and biases to 

obtain the required output at the output layer. Check [80] for further information on the 

backpropagation algorithm. 

In a variety of industries, including Handwriting Recognition [81], Classification of 

Healthcare Data [82], Index of Industrial Production [83], and Stock Market Analysis [84], to 

mention a few, MLP has been employed. MLP has demonstrated great effectiveness in PHM 

applications, and a variety of methodologies have been put forth. For example, Huang et al. 

[53] suggested an integrated methodology for examining the whole life cycle of ball bearings. 

The remaining useful life has been estimated using NN and the weight utilization to failure 

times after the minimum quantization error has been utilized as a degradation indicator and 

the degradation period, which is characterized by the fluctuating signal that rises from the 

start of the defect until the failure of the component, has been monitored. A method to 

determine the health of a lithium-ion battery utilizing an MLP network was reported by Kim 

et al. [85]. The MLP network was used by Jedlinski et al. [86] to assess the technical state of 

a gearbox and to identify the defect as soon as feasible. The MLP method was used by Hu et 
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al. [87] to diagnose the position and quantity of mass imbalance on aircraft engines, and the 

outcomes were preferable to those of previous approaches. By exploiting the characteristics 

of vibration signals in time-domain for bearings in both normal and faulty instances, 

Almeidaet al. [88] suggested an architecture based on MLP network to perform the 

fundamental classification task in addition to the fault diagnosis. Geramifard et al. [89], 

MLP.'s network was utilized to track and forecast a cutter's health, especially the wearing 

state in terms of the characteristics or collected data. In order to offer a diagnostic method 

for defect diagnosis and classification in a real gas turbine, Loboda et al. [90] used the MLP. 

In order to present an intelligent approach that utilizes the strengths of both frequency 

domain analysis and time scale, Zolfaghari et al. [91] integrated the wavelet analysis and the 

MLP network to enable autonomous detection of defect severity during the course of a 

motor. For the purpose of identifying various faults in the gearbox, Heidari et al. [92] 

suggested a method that combines the MLP, wavelet support vector machine, and continuous 

wavelet. 

2.4.3  Recurrent Neural Networks (RNN) 

RNNs are a significant and well-known type of artificial neural network topologies 

and one of the most often used sequential modeling methods [93]. RNNs are designed to 

detect the features of consecutive data and utilize trends and patterns to anticipate the 

following likely situation. RNNs are distinct from the current feedforward neural network 

paradigms in that they include an internal memory that enables them to recall prior 

knowledge and interpret current events appropriately [94]. While RNNs, where the word 

"recurrent" is employed, execute the same procedure for every sequence item, with the 
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performance depending on the previous computations, classic neural networks are thought 

to treat all inputs and outputs as being independent of one another. As shown in Figure 7, 

RNN works on the principle of preserving a particular layer's output and feeding it back into 

the input to forecast the layer's output. 

 

Figure 7 The RNN Concept. 

The several input and output relations are reflected by the several structures found 

in RNNs. Five distinct types of input and output interactions are depicted in Figure 8. The 

three primary types are as follows [94]:  

1. Many-to-one: Whenever the result is a vector with a fixed dimension but the 

incoming data is a sequence. The sentiment classification serves as a typical instance of a 

many-to-one algorithm, with a text-based sequence serving as the input and a specific label, 

such as positive or negative, serving as the result. 

2. One-to-Many: If the input is not a sequence but the result is. This group includes 

activities that need the input of a picture and the output of a phrase of words. 

3. Many-to-Many: If the input and output are both series and whether or not they 

are synchronized, this classification may also be separated into subgroups. A synchronized 
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many-to-many job is an instance of the video classification problem. Whilst the illustration 

of the unsynchronized many-to-many is language translation. 

 

Figure 8 The relationship structures of input and output data [94]. 

Despite the RNNs' excellent performance in a variety of domains, these networks have 

several drawbacks, such as the inability to take future contributions to the present state into 

account. It was for this cause that the bidirectional recurrent neural network, an enhanced 

version of the RNN, was developed [95]. In this network, input data from the past and future 

of the current timeline are used simultaneously to determine the same output, with the first 

direction representing forward states and the second representing backward states, as 

illustrated in Figure 9. 
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2.14 

 

Figure 9 The bidirectional recurrent neural networks [95]. 

Moreover, the disappearing and inflating gradients are two other major issues that 

the RNNs face. While the weight matrices are modified utilizing gradient during training 

(learning), the RNNs generally employ backpropagation. As mentioned earlier, gradients are 

calculated throughout the backpropagation process by continuously multiplying derivatives, 

and there is a good chance that these derivative values will get smaller as we move through 

the network. As a consequence, the gradient will get smaller and smaller until it reaches the 

"vanish" stage, also known as the "vanishing gradient problem" [93]. Whenever the gradient 

is very modest, changing the RNN variables (weights and biases) is insignificant, which 

indicates that no actual learning is done. Gradients provide information that is employed in 

updating the RNN variables. Particularly, the preliminary layers' variables (weights and 

biases) won't be updated efficiently between training sessions (as the gradient value is 

vanishing), which could result in the entire network being completely inaccurate [93, 94]. 

These preliminary layers are crucial for identifying the essential parts of the input data. On 

the other hand, the exploding gradients occurred when the big incorrect gradients 

accumulated, leading to exceptionally massive modifications to the neural network model's 
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weights throughout the training. Whenever the modifications are tiny but regulated the 

training process functions flawlessly. If not, it might result in subpar predicted outcomes or 

even a model that doesn't provide any relevant information at all. To address some of the 

aforementioned RNN model's drawbacks, researchers have created more advanced varieties 

of RNNs, including the following:  

 

i. The Long Short-Term Memory (LSTM). 

ii. The Bidirectional Long Short-Term Memory (BLSTM). 

iii. The Gated Recurrent Unit (GRU). 

iv. The Bidirectional Gated Recurrent Unit (BGRU). 

The most advanced method for learning sequences is known as Long Short-Term 

Memory Networks (LSTMs). Hochreiter and Schmidhuber presented the LSTM for the first 

time, and subsequent publications like References [96] and [97] improved upon and 

popularized it. The LSTMs are a unique type of RNN that have been developed to solve the 

long-term dependence issue in addition to the regular RNN's vanishing and ballooning 

gradient issues. This was accomplished via a method known as cell states, which is according 

to a gating system to offer a framework with memory. The latter is employed to regulate 

reading, writing, and erasing (forgetting) the written data from the memory state [98]. 
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The cell state and the gating system are the foundation of the main principle of LSTM. 

In theory, during sequence processing, pertinent data will be stored in the cell state. Hence, 

even information from earlier temporal steps will enable subsequent actions to be taken, 

reducing the influence of short-term memory. The gating mechanism regulates whether data 

is added to or removed from the cell state. Three different sorts of gates are included in this 

system, which will teach users what knowledge is crucial to remember or forget throughout 

training. The forget gate, input gate, and output gate are these gates [99].  

The LSTM structure is illustrated in Figure 10 with 𝒉𝑡 ∈ 𝑅𝑀and 𝒄𝑡 ∈ 𝑅𝑀 hidden state 

vector (also known as the output vector of the LSTM unit) and the cell state vector at time t, 

respectively. M stands for the number of nodes (hidden units).  

1. 

 

Figure 10 Schematic of LSTM [99]. 

The sensor data xt as well as ht-1 and ct-1 from time (t-1) will be the input to the LSTM. 

The gating system, an inner mechanism is according to the following gates, regulates the 

information flow within the inner cell unit: 

i. Forget gate: A forget gate, indicated by 𝒇𝑡 ∈ 𝑅𝑀, that determines whether 
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certain items should be kept or forgotten [100]. The input to this gate consists of the current 

input and the previous hidden state, which are then multiplied by the weight matrices and a 

bias is added. The output is then passed through the sigmoid function, which creates a vector 

with values ranging from 0 to 1, one for each number in the cell state. In essence, the sigmoid 

function is in charge of selecting which data to keep and which to discard. The closest to 0 

therefore indicates forgetting, whereas the closest to 1 indicates holding. 

ii. Input gate: A cell state update process based on ht-1 and xt is managed by an 

input gate 𝒊𝑡 ∈ 𝑅𝑀 [100]. According to the forget gate, the sigmoid function decides the 

important (1) and the unimportant after it receives the current input and the prior concealed 

state (0). Also, a vector containing every conceivable value that may be added to the cell state 

is created by passing the current input and the previously concealed state through the tanh 

function (output values range from -1 to +1). Next, the sigmoid will choose which data to 

retain from the output of the tanh by multiplying both the sigmoid and tanh outputs, and 

these beneficial updates will then be added to the cell state. 

iii. Output gate: An output gate that evaluates the subsequent value of the hidden 

state is designated by the symbol 𝒐𝑡 ∈ 𝑅𝑀 [100]. The cell state is used with the tanh function 

to create a vector with values between -1 and +1, and the current input and the previous 

hidden state are then supplied to the sigmoid function to control the vector's output values 

(from the tanh). The output and hidden state for the following cell is obtained by multiplying 

the previous output by the vector (which was the result of tanh). 

The LSTM cells are implemented according to the following equations [101] at every 

step t: 
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𝒊𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖𝒉𝑡−1 + 𝒃𝑖), 

𝒐𝑡 = 𝜎(𝑊0𝑥𝑡 + 𝑈0𝒉𝑡−1 + 𝒃0), 

𝒇𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓𝒉𝑡−1 + 𝒃𝑓), 

𝒂𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐𝒉𝑡−1 + 𝒃𝑐), 

𝒄𝑡 = 𝒇𝑡 ∘ 𝒄𝑡−1 + 𝒊𝑡 ∘ 𝒂𝑡 , 

𝒉𝑡 = 𝒐𝑡 ∘ tanh (𝒄𝑡), 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

When the weight matrices are made up of the words Wi, W0, Wf, and Wc ∈ 𝑅𝑀×𝐿 as well 

as terms Ui, U0, Uf, and Uc ∈ 𝑅𝑀×𝑀; Biases are represented by the terms bi, b0, bf, and bc ∈ 𝑅𝑀; 

the number of input features is represented by L; The term "tanh()" stands for the activation 

function, while the operators "𝑜" and "𝜎" stand for an entry-wise product action and element-

wise multiplication of two vectors, respectively. The LSTMs have been effectively used in a 

variety of applications, including image captioning [102], handwriting recognition [103], 

hand action recognition [104], speech recognition [105], natural language processing [106], 

and human action recognition. 

Because the LSTM was so effective in PHM applications and related disciplines, 

several other strategies have been put forth. To detect hidden patterns and learn complex 

features within the sensor and operational data with multiple operating conditions, fault, and 

degradation models, Zheng et al. [107] presented an LSTM-based model for RUL prediction. 

This model uses multiple layers of LSTM cells along with standard feed-forward layers. 

Vanilla LSTM neural networks, a powerful method in the field of natural language processing, 

were utilized by Wu et al. [108] to construct a model for RUL prediction. A dynamic difference 
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approach is suggested in addition to standard LSTM neural networks to extract additional 

features from unprocessed medical monitoring data. The Long Short-Term Memory based 

Encoder-Decoder (LSTM-ED) approach was presented by Malhotra et al. [109] for 

calculating the unsupervised health index (HI) of a system according to the multi-sensor 

time-series data (from which the RUL may be computed). The multivariate time-series 

pertaining to a system's healthy state is first reconstructed using the LSTM-ED, which is then 

trained to do so. The reconstruction error is then utilized to calculate the HI, which is 

subsequently utilized to RUL prediction. By utilizing the Long Short-Term Memory (LSTM) 

approach to successfully learn features from multivariate time-series data and then capture 

long-term dependencies via the recurrent actions and gate mechanism, Lei et al. [101] 

demonstrated a failure diagnostic for wind turbines. A method for supercapacitor life 

estimation was put up by Zhou et al. [110] by leveraging the LSTM to capture long-term 

dependencies of a deteriorated supercapacitor. The LSTM was employed by Liu et al. [111] 

to provide a technique for proton exchange membrane fuel cell RUL estimation. For the 

reconstruction and smoothing of the data, this approach additionally employs periodic 

interval sampling and locally weighted scatterplot smoothing. In order to create a feature set 

based on time element, Wang et al. [112] retrieved feature variables from the time domain, 

frequency domain, and time-frequency domain. They then chose the values that best 

described the bearings degradation behavior. This feature set was used by the LSTM during 

training and prediction of the rolling bearing's RUL. A deep long short-term memory was 

suggested by Wu et al. [113] as a means of forecasting the RUL of turbofan engines. The 

suggested method mixes time series data from several sensors and finds the long-term 
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relationships between sensor readings that are concealed for RUL estimation. The grid 

search methodology has also been used to identify the ideal model variables. 

2.5  PEMFC prognostics literature review 

The PEMFC stack is an energy converter with an excessive amount of internal 

complexity. Isolating the relevant factors would be fairly challenging due to the interaction 

and effect of many operational circumstances and parameters. Another way of saying that, it 

can be challenging to perform precise prognostics due to the great complexity of the fuel cell 

stack. The following are the key prognostications in PEMFC today: 

1) Data collecting level (tough to continuously monitor some interesting 

variables); 

2) Degree of prognosis (there is no common standard for PEMFC prognostics); 

3) Validating degree (the aging mechanisms on auxiliaries maybe ignored). 

There haven't been many studies in recent years discussing the prognostic techniques 

utilized on the issue of PEMFC prognostics: 

A PEMFC prognosis based on a particle filter architecture was put out in [114]. The 

RUL estimation of two fuel cell stacks was achieved using the particle filter, which was the 

primary contribution of this study. Three state models were set up in the model (linear 

model, logarithm model, and exponential model). These three models were evaluated and 

contrasted. According to the findings, the logarithm model would provide the most accurate 

prognostic information (RUL estimation error of 90h in a 1000h case). To the researchers’ 

knowledge, the particle filter occasionally experiences particle depletion during operation, 
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and typically, to provide accurate prediction results, the particle filter requires a large 

amount of data. 

To obtain the PEMFC prognostics, Morando et al. [115] presented an Echo State 

Network (ESN) technique. The researcher utilized the stack output voltage data to forecast 

how the PEMFC stack's output performance would deteriorate. The ESN is a method for quick 

learning, and it used direct and parallel structures to complete its prognostics. Nevertheless, 

setting up a few training variables for the prediction algorithm would be necessary. 

Moreover, altering preset settings may result in inconsistent predictions. 

A data-driven methodology was put out by Silva et al. [116] to forecast the voltage 

fluctuation of two PEMFC stacks. The online prognosis in this study might be the prediction 

made by the Adaptive Neural Fuzzy Inference System (ANFIS). The natural aging portion of 

the training data for aging voltage and the external perturbations were separated by the 

author into two components for this work. The ANFIS forecast, though, is dependent on 

laborious iterative learning processes. The size of the data would affect the computing time. 

In addition, the ANFIS uses a soft computing strategy. The volume of experimental data and 

the number of initialization variables have a direct impact on the difficulty of the training 

method. 

To determine a PEMFC stack's EIS (Electrochemical Impedance Spectroscopy) 

impedance, Vianna et al. [117] suggested a regression-based method. The prediction 

issue was approached using the linear regression method and a higher-order polynomial 

regression. Using the fitted impedance values, the training ranged from 0 to 515 hours. The 
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experimental results on impedance measurements made at four distinct frequencies and 

times-5.18 Hz, 505 Hz, 50 MHz, and 789 MHz-were used to confirm the results. These 

measurements were made at 685 hours, 823 hours, and 991 hours. In this impedance 

prediction scenario, the findings indicated greater prediction performance using linear 

regression. This could be because the impedance shifting profile over time has very few non-

linear deterioration components. 

Specifically, Hochstein et al. [118].'s illustrations of the Regime Switching Vector 

Autoregressive (RSVAR). The shifting dependence structures of multivariate time series may 

often be modeled using this approach. The prognostic scenario of a constant output PEMFC 

stack, with datasets comprising a range of characteristics like the stack voltage, current, 

inlet/outlet temperature for the fuels, etc., was briefly discussed by the researcher at the 

conclusion of the article. The projected outcome seemed good. Nevertheless, for training and 

prediction, this system would require several operational variables and quantifiable data. A 

big dataset is typically required if one wants accurate prediction results. 

A PEMFC prognosis of a PEMFC stack employing a particle filter architecture was 

described by Kimotho et al. [119]. In this article, the "self-healing component" was included 

in the prediction scenario. The PEMFC stack's output performance would automatically 

recover following measurement of the data every predetermined period of time during aging 

thanks to self-healing. With the self-healing element applied during prediction, the results of 

the estimation were acceptable. 
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A method called the Equivalent Circuit Model (ECM) was put out by Kim et al. [120] 

to forecast how two PEMFC stacks' impedance would change over time. Generally, the model 

would comprise 10 variables for a typical ECM representation of a PEMFC stack in [120]. To 

reduce complexity, the author reduced the model to a 4-parameter model. As some of those 

values were not intended to be fixed or constant for this simplified model, it is somewhat 

debatable whether or not it is acceptable. In actuality, to our understanding, the double-layer 

capacity will gradually decline over time and is closely tied to the ECSA. This variable, 

nevertheless, was programmed to be fixed and eliminated from the prognostic model. 

Two model-based methods for the estimation of PEMFC stack performance 

degradation were shown by Lechartier et al. [121]. The degradation propensity of the 

polarization curve was predicted using a static model based on the Butler-Volmer equation. 

Moreover, a dynamic model was developed using an equivalent circuit model to anticipate 

the EIS impedance deterioration tendency during long-term operation. Nonlinear regression 

was used to adjust both models to account for the PEMFC stack's aging. The prognostic 

results were encouraging, but as the models were only calibrated using data from the tested 

PEMFC stack, their applicability to other stacks is uncertain. 

Bressel et al. [122] suggested an Extended Kalman Filter-based observer-based 

prognostic model for PEMFC (EKF). The time-varying characteristic and derivative, that 

might depict the aging of the cell, were estimated using the observer. The approach that was 

developed produced accurate predictions of voltage deterioration under various load 

circumstances. The efficiency of the RUL prediction was also demonstrated. It's also 



 

63 
 

intriguing that the author claimed that throughout extended operation (more than 1000 

hours), the exchange current density would not vary . 

Table 2  PEMFC prognostics literature review. 

Prognostics 
class 

Approach 
Monitored 
 variable 

Year Reference 

Data driven Particle filter Stack voltage 2013 [114] 

Data driven Echo State Network Cell voltage 2014 [115] 

Data driven 
Adaptive Neuro Fuzz 

Inference 
Stack voltage 2014 [116] 

Data driven Regression EIS Impedance 2014 [117] 

Data driven 
Switching Vector 
Autoregressive 

Stack voltage 2014 [118] 

Data driven Particle Filter Stack voltage 2014 [119] 

Hybrid Equivalent Circuit Model EIS Impedance 2015 [120] 

Model based Equivalent Circuit Model 
Polarization curve 
/ EIS Impedance 

2015 [121] 

Data driven Extended Kalman filter Stack voltage 2016 [122] 

Table 2 lists each study project's features. We could see from this table that the data-

driven approach is more common than the other two. This is due to the fact that, when it 

comes to PEMFC prognostics, data-driven methodologies are often more useful than others. 

Furthermore, the stack voltage was mostly in use. This is because, especially in a continuous 

operating profile, the stack voltage is the parameter that is easiest to measure in order to 

evaluate output performance or condition of health. 
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Nevertheless, each of the works may have one or more of the following drawbacks, 

which apply to the majority of data-driven techniques in the literature: 

1. High computational requirement; 

2. Large dataset required for training; 

3. Insufficient validation under varying load situations; 

4. Generalizations about various stacks and circumstances. 

 

2.6 Thesis overview 

This thesis aims at developing data-driven methodologies like as artificial neural 

networks (ANNs) and deep learning techniques to predict fuel cell degradation. We employ 

the ANN, deep neural networks (DNN), and long short-term memory (LSTM) models, to 

forecast PEMFC stacks' voltage deterioration and calculate their RUL.  

2.6.1  Objectives 

The following are the precise goals: 

1) Collect real-world experimental data on the voltage degradation of PEMFC 

stacks under various operating conditions. 

2) Develop and evaluate ANN models with different architectures and 

hyperparameters to predict the voltage degradation of PEMFC stacks. 

3) Develop and evaluate DNN models with different architectures and 

hyperparameters to predict the voltage degradation of PEMFC stacks. 
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4) Develop and evaluate LSTM models with different architectures and 

hyperparameters to predict the voltage degradation of PEMFC stacks. 

5) Compare the performance of different models and identify the most effective 

model for prognostics of PEMFC stacks. 

2.6.2  Methodology 

The proposed methodology for this research involves the following steps: 

1) Data collection: Collect real-world experimental data on the voltage 

degradation of PEMFC stacks under different operating conditions. 

2) Data preprocessing: Clean and preprocess the data by removing outliers, 

filling missing values, and normalizing the data. 

3) Model development: Develop ANN, DNN, and LSTM models with different 

architectures. 

4) Model evaluation: Evaluate the performance of different models using 

metrics such as mean squared error (MSE), root mean squared error (RMSE), 

and R-squared (R2) on test data. 

5) Model comparison: Compare the performance of different models and 

identify the most effective model for prognostics of PEMFC stacks. 

2.6.3  Expected outcomes 

The expected outcomes of this research are as follows: 

1) Development of data-driven models, including ANN, DNN, and LSTM, for 
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predicting the voltage degradation of PEMFC stacks and estimating their RUL. 

2) Comparison of the performance of different models and identification of the 

most effective model for prognostics of PEMFC stacks. 

3) Validation of the proposed models using real-world experimental data and 

demonstration of their effectiveness in practical applications. 

4) Contribution to the field of PEMFC prognostics and promotion of the use of 

data-driven methods for more accurate and reliable prognostics. 

Chapter 3: Artificial Neural Network 

An effective and popular technique for function approximation and pattern 

recognition is the Artificial Neural Network (ANN). ANNs are able to learn from and adapt to 

complicated and nonlinear connections in data since they are based on the structure and 

operation of the human brain. Several industries, including banking, engineering, healthcare, 

and many more, have effectively used the ANN approach. 

This chapter's goal is to show how the ANN approach may be applied to a 

straightforward function before applying it to the prediction of PEMFC degradation. At the 

beginning, we'll provide a straightforward function and demonstrate how to train an ANN 

model to forecast its results. The use of the ANN approach to anticipate PEMFC degradation, 

which is a key difficulty in the field of fuel cells, will be covered next. An effective and popular 

technique for function approximation and pattern recognition is the artificial neural 

network (ANN). ANNs are able to learn from and adapt to complicated and nonlinear 
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connections in data since they are based on the structure and operation of the human brain. 

3.1 Approximation of a Sinusoidal Function  

The function we want to predict is 𝑓(𝑥1, 𝑥2) = sin(1 + 𝑥1𝑥2), where 𝑥1 and 𝑥2 are 

input variables. We have 1000 samples for 𝑥1 and 1000 samples for 𝑥2. The first input 

variable 𝑥1 is a linearly spaced vector from 0 to 2π with 1000 points and the second input 

variable 𝑥2 is generated by adding 1000 random samples between 0 and 2π to a vector that 

contains two fixed values (0 and 2π). The output variable 𝑓(𝑥1, 𝑥2) is calculated by 

applying the sinusoidal function to the input variables. 

The ANN is trained using the Levenberg-Marquardt backpropagation algorithm 

with a trainlm training function, and a two-layer architecture consisting of 32 and 16 

neurons in the first and second hidden layers, respectively as shown in Figure 11. The 

chosen performance function is the mean squared error (MSE), and the training is 

performed for 10000 epochs. Next, we split the data into training, validation, and test sets. 

We use 70% of the data for training, 15% for validation, and 15% for testing. 

 

Figure 11 Sinusoidal function approximation architecture of ANN. 

The plot of the prediction of the sin(1 + 𝑥1𝑥2) function using ANN is shown in  Figure 

12. The blue line represents the actual values of the sin(1 + 𝑥1𝑥2) function, and the orange 

point represents the predicted values obtained from the ANN model. The graphic clearly 
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shows that the projected values nearly match the actual values, demonstrating how well the 

ANN captured the underlying patterns in the data. 

 

 Figure 12 ANN prediction plot for 𝑖𝑛(1 + 𝑥1𝑥2) . 

We decided to employ a feedforward neural network to solve this problem, which 

implies that the inputs are sent through the network in a forward manner without any 

feedback loops. The network's design consists of two hidden layers, each of which has a 

certain number of neurons, followed by an output layer. By testing, the number of neurons 

in the hidden layers is established and is dependent on the difficulty of the issue. 

Regression plots can be used in addition to the prediction plot to assess how well the 

ANN model is working. In a regression plot, the predicted values and the actual values of the 

output variable are compared and plotted on a scatter plot. All the points in an ideal model 

would be on a straight line with a slope of 1. 
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Figure 13 depicts the regression curve for the sin(1 + 𝑥1𝑥2) function using the ANN 

model. The scatter plot displays the actual values on the x-axis and the expected values of 

the sin(1 + 𝑥1𝑥2)  function on the y-axis. The scatter plot's dots are densely grouped around 

the line that best fits them; this line is a straight line with a slope of 1. This shows that the 

ANN model can correctly anticipate the output values and has identified the underlying 

patterns in the data. 

 

Figure 13 ANN-based regression curve for 𝑖𝑛(1 + 𝑥1𝑥2) . 

Overall, the use of ANN on the sin(1 + 𝑥1𝑥2) function has shown how well it can 

identify the underlying patterns in the data and forecast the output values. This gives a solid 

basis for utilizing ANN to forecast PEMFC degradation. 



 

70 
 

3.2 Approximation of the PEMFC degradation 

The performance prediction of proton exchange membrane fuel cells (PEMFCs) is a 

critical issue that affects the performance and reliability of these devices. Accurately 

predicting of PEMFCs over time is essential for optimizing their performance and extending 

their lifespan.  

In this part, we use data-driven approaches based on experimental results from prior 

research to forecast the PEMFC load current and stack voltage. Using WebPlotDigitizer, we 

retrieved the load current and recorded stack voltage plot data from the [123] reference and 

utilized this information to train and test an artificial neural network to forecast the voltage 

and current of PEMFC over time.  

3.2.1 Case Study  

The case study we are considering in this section is a research paper published in 

IEEE Transactions on Industrial Electronics [123]. The research paper presents an 

experimental study on the performance degradation of a proton exchange membrane fuel 

cell (PEMFC) and proposes a method for analyzing the degradation based on the load current 

and stack voltage signal. 

The PEMFC stack used in the experiment was a commercial 24-cell stack, which 

consisted of multiple individual fuel cells arranged in a series configuration. Each individual 

cell contained an anode, a cathode, and a proton exchange membrane. The anode was 

typically made of a porous carbon material, and the cathode was made of a layer of platinum 
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or other catalyst material supported on a porous carbon substrate. The proton exchange 

membrane was typically made of a perfluorinated sulfonic acid polymer, which allowed for 

the exchange of protons between the anode and cathode compartments (Figure 14). 

 

Figure 14 Schematic of the first case study [123]. 

The operating conditions of the PEMFC were controlled using an external load 

resistor and a temperature-controlled water bath. The load resistor was used to vary the 

electrical load on the PEMFC, which in turn affected the load current and stack voltage. The 

temperature-controlled water bath was used to control the operating temperature of the 

PEMFC, which the operating conditions were shown in Error! Reference source not 

found.. 

Parameter Value 

Temperature (℃) 80 

Anode and cathode stoichiometry ratios 1.5-2 

Absolute pressure anode/cathode (bar) 1.5 

Relative humidity anode/cathode (%) 50 

Nominal current density (A.cm-2) 0.45 

Maximum current density (A.cm-2) 0.77 
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Table 3 Operating conditions of the first case study [123].  
 

 

 

 

3.2.2 ANN for the first case  

The data from the experimental study, including the load current and recorded stack 

voltage plot data, was used in our case study to predict the degradation of the PEMFC using 

data-driven methods. The load current and recorded stack voltage plot data was extracted 

using WebPlotDigitizer which shown in  and Error! Reference source not found. 

respectively.  

 

.  
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The ANN is trained using the Levenberg-Marquardt backpropagation algorithm with a 

trainlm training function, and a two-layer architecture consisting of 32 and 16 neurons in the 

first and second hidden layers, respectively (Figure 11). The trained ANN model's projected 

load current and recorded stack voltage graphs were contrasted with experimentally 

observed plots. The comparison charts in Figure 17 and Error! Reference source not found. 

demonstrate that the ANN model can predict the PEMFC system's behavior with high 

accuracy, with good agreement between the anticipated and actual plots.  

Figure 16 Load current plot data of the first case study 

Figure 15 Stack voltage plot data of the first case study. 
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Figure 17 Comparison between experimental and ANN value (Load current).  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

75 
 

 

 

Figure 18 Comparison between experimental and ANN value (Stack voltage). 

We utilized the Mean Squared Error (MSE) plot to assess how well the ANN model 

performed. The variance of the MSE during the ANN model's training and testing stages is seen 

in this graphic. The performance of the model is improved by a reduced MSE. The MSE curve 

for the ANN model is displayed in Error! Reference source not found.. The model is well-

trained and not overfitting, as shown by the best validation performance of 0.0052673 at 

epoch 533. 

A regression plot is employed to assess the relationship between the expected and 

actual values. The model performs better the closer the data points are to the line of perfect 

correlation. The regression curve for the ANN model is displayed in Figure 20. As we can see, 

there is a strong correlation between the projected and observed values, proving that the 

ANN model is a solid choice for predicting experimental data from the load current and 

recorded stack voltage plot data. 
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Figure 20 Regression plot of the ANN model. 

 

 

 

  

Figure 19 MSE plot of the ANN model. 
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Chapter 4: Results and Discussion 

This chapter focuses on the prediction of PEMFC degradation using data-driven 

methods such as ANN, DNN and LSTM. The experimental data test used in this study was 

obtained from the [124] reference that employed a constraint-based summation-wavelet 

extreme learning machine (CSW-ELM) algorithm, which is a data-driven machine learning 

technique that combines constraint optimization with wavelet transformation. The 

extracted voltage plot data from the test was used as input for the models, and the accuracy 

and computational efficiency of the models were compared to determine the most effective 

method for predicting PEMFC stack degradation. 

4.1 ANN method 

In the first section of the chapter on predicting the degradation of a PEMFC stack 

using data-driven methods, we focused on training an Artificial Neural Network (ANN) 

model with one hidden layer to predict the voltage degradation of the PEMFC stack. The 

training results of the ANN model were highly encouraging, as the model was able to 

accurately learn the underlying patterns in the experimental data and make accurate 

predictions of voltage degradation.  

The MSE plot indicated that the model's error decreased with each epoch during 

training, indicating that the model was improving its predictions with each iteration. This 

showed that the model was effectively learning from the data and continuously improving 

its predictions and the best validation performance is 6e-5 at epoch 31 (Figure 21). 
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Figure 21 Mean squared error of the ANN model. 

Also, the output target (fit function) in Figure 22 showed the model's predictions 

compared to the actual values. The plot indicated that the model's predictions closely 

followed the actual values, with very little deviation. This suggested that the model was 

accurately capturing the underlying patterns in the data and effectively predicting the 

voltage degradation of the PEMFC stack. 

Error! Reference source not found. showed the regression diagram and 

relationship between the predicted voltage degradation and the actual voltage degradation. 

This indicated that the model was able to capture the essential patterns in the data and 

accurately predict the voltage degradation. 
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Figure 22 Fit function of the ANN model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 Regression of the ANN model. 
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4.2 DNN method 

Figure 23 illustrates the architecture of the DNN model, which consists of three 

hidden layers with 32, 16, and 8 neurons in each of the first, second, and third layers, 

respectively. In order to forecast the voltage degradation of the PEMFC stack, the model was 

trained using the same experimental data as the ANN model. 

 

Figure 23 DNN model architecture. 

The best validation performance, as shown in Figure 24, is 1.0494e-5 at epoch 176. 

At each training period, the DNN model's error dropped, according to the MSE plot, showing 

that the model was becoming better at making predictions. This demonstrated how the DNN 

model was successfully learning from the data and making predictions that were becoming 

better all the time. 

The output target (fit function) plot in Figure 25 demonstrated how well the DNN 

model's predictions matched the actual values, with very little variance. This demonstrated 

that the DNN model was successfully forecasting the voltage deterioration of the PEMFC 
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stack and properly capturing the underlying trends in the data. 

 

Figure 24 Mean squared error of the DNN model. 

 

 

Figure 25 Fit function of the DNN model. 
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The regression figure showed that the actual voltage degradation and anticipated 

voltage deterioration had a very strong linear connection. This demonstrated that the DNN 

model could accurately forecast the voltage decline and identify the key patterns in the data 

(Figure 26). 

 

Figure 26 Regression of the DNN model. 

 

 4.3 LSTM method 

The LSTM model with 4 layers and 100 epochs was further analyzed in the following 

portion of the chapter, and the impact of increasing the number of layers and epochs was 

looked at. 

First, the LSTM model with 4 layers and 100 epochs was evaluated. The input to the 
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model was a sequence of historical data points, and the output was the predicted voltage 

degradation at the next time step. The prediction diagram (Figure 27) of this model showed 

a weak fit to the actual voltage degradation values, indicating that the model was not 

effectively capturing the underlying patterns in the data. According to the Figure 28 ,RSME 

plot showed that the model's error decreased gradually with each epoch during training, 

indicating that the model was improving its predictions. 

 

Figure 27 Fit function of the LSTM model (4 layers with 100 epochs). 
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Figure 28 RMSE of the LSTM model (4 layers with 100 epochs). 

Then, a 250-epoch LSTM model with 7, 6, 5, and 4 layers was trained. A series of 

previous data points served as the model's input, and its output was the anticipated voltage 

degradation at the following time step. This model's prediction curve closely matched the 

measured voltage degradation values, demonstrating that the model correctly identified the 

underlying trends in the data. The RSME error plot demonstrated that the model's error 

rapidly dropped with each training period, demonstrating a steady improvement in the 

model's predictions. 

Similar to this, 250 epochs were used to train the 6, 5, and 4 layer LSTM models, and 

then each model's prediction curve and RSME error plots were assessed. The findings 

demonstrated that all models were successful in identifying the key patterns in the data, and 

throughout training, the error steadily decreased with each epoch. 
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Figure 29 Fit function of the LSTM model (4 layers with 250 epochs). 

 

 

Figure 31 RMSE of the LSTM model (4 layers with 250 epochs).  
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Figure 30 RMSE of the LSTM model (4 layers with 250 epochs). 
 

 

 

 

 

 

 

 

 

 

 

                     Figure 31 Fit function of the LSTM model (5 layers with 250 epochs). 

 

 

 

 

 

 

 

 

 

                  Figure 32 RMSE of the LSTM model (5 layers with 250 epochs). 
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Figure 33 Fit function of the LSTM model (6 layers with 250 epochs).  

 

 

 

 

 

 

 

 

 

 

                          

 

Figure 34 RMSE of the LSTM model (6 layers with 250 epochs). 
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Figure 35 Fit function of the LSTM model (7 layers with 250 epochs).                                                                      
 

 

 

 

 

 

 

 

 

Figure 36 RMSE of the LSTM model (7 layers with 250 epochs). 

The outcomes from Figure 29 to Error! Reference source not found. showed that 
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the LSTM model's prediction ability may be enhanced by adding more layers and epochs. 

The danger of overfitting the model to the training data may, however, rise as the number of 

layers and epochs increases. To prevent overfitting, it is crucial to carefully assess the 

model's performance using validation data. 

 Also, Table 4 provides an overview of the procedures carried out and the outcomes 

attained by the LSTM approach for better comprehension, which demonstrates that the best 

case occurs in row 4. 

Table 4 Overview of the LSTM models. 
 

State # Layers # Epochs # Neurons Time RMSE 

1 4 100 200 1 min 1 sec 0.0460 

2 4 250 200 2 min 27 sec 0.0189 

3 5 250 400 6 min 9 sec 0.0373 

4 6 250 500 8 min 4 sec 0.0169 

5 7 250 700 13 min 3 sec 0.0207 
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Chapter 5: Conclusion 

In this thesis, we investigated how to forecast the voltage degradation of proton 

exchange membrane fuel cell (PEMFC) stacks using data-driven techniques such as artificial 

neural networks (ANN), deep neural networks (DNN), and long short-term memory (LSTM) 

models. Using data from actual trials, we have carried out a number of tests and assessed 

how well these models predicted voltage decline. We have shown via trial and assessment 

that data-driven approaches may efficiently capture the underlying patterns in the data and 

offer precise voltage degradation forecasts. We have shown the promising performance of 

LSTM models with various numbers of layers and epochs, as well as ANN and DNN models 

with various numbers of hidden layers and neurons.  Additionally, we have demonstrated 

that the model's predictive ability may be enhanced by increasing the model's complexity, 

such as the number of layers and epochs. To prevent over fitting, it's crucial to assess the 

model's performance using validation data. 

5.1  Main result 

 The key findings show how well data-driven techniques, in particular ANN, DNN, and 

LSTM models, forecast the voltage deterioration of PEMFC stacks. These models are capable 

of capturing the underlying patterns in the data and making precise voltage degradation 

forecasts. We have discovered that adding more layers and neurons to the model can make 

it more effective at predicting the future. To prevent overfitting, it is crucial to carefully 

assess the model's performance using validation data. Our research also demonstrates that 

ANN models occasionally outperform LSTM models and are capable of accurately capturing 

the temporal relationships in the data. Moreover, LSTM models' prediction ability may be 
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enhanced by incorporating more layers and epochs. 

Overall, our findings imply that data-driven approaches might enable more pro-

active maintenance and repair operations while offering insightful information about the 

health and performance of PEMFC stacks. By foreseeing the beginning of errors and 

deterioration before they become serious, these techniques may also be able to save 

downtime and maintenance costs. Our research does, however, also draw attention to the 

drawbacks of data-driven methodologies, such as the requirement for substantial data sets 

and potential over fitting. Hence, to increase the precision and reliability of prognostic 

approaches, future research should concentrate on creating more sophisticated machine 

learning algorithms and combining data-driven methods with other prognostic strategies, 

such as physics-based models. 

5.2 Future study 

Future studies could concentrate on a number of significant factors. One such 

component is the creation of more sophisticated machine learning techniques, such deep 

reinforcement learning or generative adversarial networks that can handle big and 

complicated datasets. Also, the exploration of alternate data sources, such as sensor data or 

image analysis, is a significant field for future research. These extra data sources might offer 

more details on the condition of the fuel cell system and possibly increase the precision of 

the predictive models. 

Moreover, studies can concentrate on the fusion of data-driven approaches with 

other prognostic tools, including physics-based models or model-based methodologies. By 

combining these several approaches, it may be possible to analyze the health of the fuel cell 
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system in a more thorough and accurate manner and to make better decisions on 

maintenance and repair. 

In addition, future study may examine the use of data-driven techniques to fuel cell 

system monitoring in real-time, enabling prompt and proactive maintenance responses to 

suspected failures or deterioration. 

To summarize, more study on data-driven prognostics for PEMFC stacks is essential 

to enhancing the dependability and robustness of these systems. The performance and 

usefulness of PEMFC stacks in diverse applications might be significantly enhanced by future 

developments in machine learning algorithms, alternative data sources, integration with 

other prognostic approaches, and real-time monitoring. 
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