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Genome-wide association analyses identify new susceptibility 
loci for oral cavity and pharyngeal cancer

A full list of authors and affiliations appears at the end of the article.

Abstract

We conducted a genome-wide association study of oral cavity and pharyngeal cancer in 6,034 

cases and 6,585 controls from Europe, North America and South America; we detected 8 loci 

(P<5x10–8), 7 of which are novel for these cancer sites. Oral and pharyngeal cancers combined 

were associated with loci at 6p21.32 (rs3828805, HLA-DQB1), 10q26.13 (rs201982221, LHPP) 

and 11p15.4 (rs1453414, OR52N2/TRIM5). Oral cancer was associated with two new regions 

2p23.3 (rs6547741, GPN1) and 9q34.12 (rs928674, LAMC3), and with known cancer loci: 9p21.3 

(rs8181047, CDKN2B-AS1) and 5p15.33 (rs10462706, CLPTM1L). Oropharyngeal cancer 

associations were limited to the human leukocyte antigen (HLA) region and classical HLA allele 

imputation revealed a protective association with the class II haplotype DRB1*1301-DQA1*0103-
DQB1*0603 (odds ratio (OR)=0.59, P=2.7x10–9). Stratified analyses on a subgroup of 

oropharyngeal cases with human papillomavirus (HPV) status indicated that this association was 

considerably stronger in HPV-positive (OR=0.23, P=1.6x10–6) compared to HPV-negative cancers 

(OR=0.75, P=0.16).
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Cancers of the oral cavity (OC) and oropharynx (OPC) are predominantly caused by tobacco 

and alcohol use, although oral infection with HPV, particularly HPV16, is an increasingly 

important cause of OPC1, especially in the US and northern Europe1,2. The proportion of 

HPV-related OPCs varies widely and is estimated to be approximately 60% in the US, 30% 

in Europe and lower in South America2–5. Genetic factors have also been implicated in OC 

and OPC susceptibility, especially polymorphisms within alcohol-related genes including 

alcohol-dehydrogenase 1B (ADH1B) and ADH76,7. In order to identify additional 

susceptibility loci, 13,107 individuals from 12 epidemiological studies (Supplementary 

Table 1) were genotyped using the Illumina OncoArray and after stringent quality-control 

steps (Supplementary Table 2, Online Methods) 6,034 cases and 6,585 cancer-free controls 

remained for analyses (Table 1). We next performed genome-wide imputation using the 

Haplotype Reference Consortium panel8 and obtained approximately 7 million high-quality 

imputed variants (Supplementary Fig. 1). Given the ethnic diversity of our study, we 

evaluated associations within continent (Europe, North and South America) using 

multivariate unconditional logistic regressions under a log-additive genetic model adjusted 

for age, sex and regional eigenvectors. Results by continent were combined using fixed-

effect meta-analyses to derive associations for overall OC and pharynx cancer (oral, 

oropharynx, hypopharynx and overlapping cancers; n = 6,034), as well as site-specific OC (n 

= 2,990) and OPC (n = 2,641). Although, several ethnic groups are present in the study, 

supervised ancestry analyses indicated that >90% of participants were predominantly of 

European (>70%CEU) ancestry, although some population admixture was observed in South 

America (Supplementary Table 3).

GWA meta-analyses of overall and site-specific cancers identified 9 regions at genome-wide 

significance (P < 5x10–8) (Fig.1). Quantile-quantile (Q-Q) plots of observed and expected P-
values showed moderate genomic inflation (λ) for the 3 meta-analyses (λ range = 1.04–

1.06, Supplementary Fig. 2–3). Since λ increases with sample size, we scaled it to 1000 

cases and controls resulting in ameliorated inflation (λ1000 range = 1.009–1.01)9. Overall 

OC and pharynx cancer were associated with rs79767424 (5p14.3), rs1229984 (4q23), 

rs201982221 (10q26.13), rs1453414 (11p15.4) and 123 SNPs at 6p21.32 (Supplementary 

Table 4). Twenty-six variants were associated (P < 5x10–8) with OC (Supplementary Table 

5), 4 of which mapped to 2p23.3, 1 to 4q23, 3 to 9q34.12, 13 to 5p15.33 and 5 to 9p21.3. 

For OPC, novel significant variants were located at 6p21.32 (62 SNPs, Supplementary Table 

6). Suggestive susceptibility variants (P < 5x10–7, Supplementary Tables 7–9) were 

associated with OC at 4 additional loci: 6p21.33, 6p21.32, 15q21.2, 15q26.2 and, with OPC 

at 2q36.1. Other genomic locations outside the HLA region showed promising associations 

(P < 5x10–6) with OPC (Supplementary Table 10). For susceptibility loci at P < 5x10–8, 

functional annotation of regulatory features with ENCODE and eQTL information, if 

available, are summarized in Supplementary Table 11 and 12. Given the geographical 

heterogeneity of our population, we performed sensitivity analyses after excluding 

individuals with <70% CEU ancestry and these showed similar results (Supplementary Table 

13). To validate array genotypes and imputed dosages, we directly genotyped by a different 

platform (TaqMan) at least one variant within each locus (P = 5x10–7) in a subset of 

approximately 700 individuals. Concordance between genotyped/imputed genotypes and 

TaqMan results was >97% for all regions with the exception of rs2398180, an imputed 
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variant which had a concordance of 94% (Supplementary Table 14-15). For 2 rare variants, 

rs201982221 (10q26.13) and rs7976742 (5p14.3), TaqMan assays could not be designed and 

we used Sanger sequencing for validation (Supplementary Table 16). We were able to 

validate the rs201982221 deletion (Online Methods), but rs7976742 did not validate (Online 

Methods). The lead variant at each validated loci (P < 5x10–8) for overall and site-specific 

analyses are shown in Table 2. Results stratified by geographical region, smoking and 

alcohol status are displayed in Figure 2 (oral and pharynx cancer combined) and Figure 3 

(oral cancer).

The rs1229984 (4q23, ADH1B) association has been previously reported as a susceptibility 

locus for OC and OPC6, and similar to previous findings this variant showed heterogeneity 

by region, smoking and alcohol drinking status10,11 (Fig. 2a). Three other 4q23 SNPs 

reached P < 5x10–8, although conditional analyses indicated these are not independent 

signals (Supplementary Table 17). The rs1573496 (ADH7) variant reported to be strongly 

associated with OC and OPC in the previous upper aerodigestive tract cancer GWAS7 was 

only moderately associated here (Supplementary Table 18). In the overall OC and pharynx 

cancer analysis, we identified rs201982221 at 10q26.13 (OR = 1.67, P = 1.58x10–9), that 

was also separately associated with OC (OR = 1.71, P = 1.04x10–7) and OPC (OR = 1.70, P 
= 7.9x10–7) (Fig. 2b). rs201982221 is located within the LHPP gene in a region with 

reported regulatory features (Supplementary Table 11). However, it is a rare intronic deletion 

in an area of low linkage disequilibrium (LD) (Supplementary Fig. 4), and thus warrants 

further validation in a different population. rs1453414, the lead signal at 11p15.4 

(Supplementary Table 19), is an intronic variant that showed a borderline association in the 

overall (OR = 1.19, P = 4.78x10–8) and site-specific analyses [OC (OR = 1.19, P = 

1.65x10–5) and OPC (OR = 1.22, P = 4.26x10–6)] (Fig. 2c, Supplementary Fig. 5). 

rs1453414 is upstream of OR52N2, an olfactory receptor, and within TRIM5, an E3-

ubiquitin ligase, and is an eQTL for these genes in brain tissue12 (Supplementary Table 12).

At 2p23.3, 4 SNPs showed evidence (P < 5x10–8) for an association with OC, and in 

conditional analyses did not appear to be independent (Supplementary Table 20). These 

signals map to a high LD area that includes C2orf16, ZNF512, CCDC121 and GPN1 
(Supplementary Fig. 6). The lead SNP, rs6547741, was associated with OC but not with 

OPC, and maps to an intron of GPN1, a GTPase involved in RNA polymerase II transport 

and DNA repair13. Associations between rs6547741 and OC were homogenous across other 

stratified analyses by region, sex, smoking and drinking status (Fig. 3a).

Variation within 5p15.33 was also exclusively associated with OC (OPC, rs10462706, P = 

0.47). The top signal, rs10462706, was associated with decreased OC risk (OR = 0.74, P = 

5.54x10–10) and is in low LD (r2 = 0.15, Supplementary Fig. 7) with the second strongest 

signal rs467095. These two variants are 7kb apart and map to intron 13 of CLPTM1L and in 

stratified analysis showed stronger effects in never smokers (Phet = 0.07 and Phet = 0.0028, 

respectively) and never drinkers (Phet = 0.01 and Phet = 0.0025, respectively) (Fig. 3b, 

Supplementary Fig. 8). Conditional analyses showed that these SNPs are not completely 

independent (Supplementary Table 21). TERT and CLPTM1L encode the telomerase reverse 

transcriptase (TERT) and the cleft-lip and palate-associated transmembrane 1-like protein 

(CLPTM1L), respectively. Notably, rs467095 is an esophageal TERT eQTL14 
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(Supplementary Table 12) and is in high LD with rs401681 (OR = 1.18, P = 2.1x10–7, r2 = 

0.94) a widely studied SNP associated with risk of several cancers including: lung15,16, 

bladder, prostate, cervical, melanoma17, basal cell18, esophageal19, pancreatic20 and 

nasopharyngeal cancer21. Multiple 5p15.33 variants have been reported to independently 

influence cancer risk in both an increasing and decreasing fashion. Interestingly, 

rs401681[A] was associated with an increased OC risk similar to previous melanoma 

associations, and in an opposite direction to previous lung cancer results17.

Several variants within the CDKN2A–CDKN2B locus (9p21.3) were found to be associated 

with OC. The lead SNP, rs8181047, is an intronic variant within the CDKN2B1 antisense 

RNA 1 (CDKN2B-AS1) (Fig. 3c). rs8181047 is in LD (r2
range = 0.6-0.8) with 4 other 

9p21.3 variants strongly associated with OC (Supplementary Fig. 9) that in conditional 

analyses did not show independent associations (Supplementary Table 22). The CDKN2A–
CDKN2B locus contains genes involved in cell-cycle regulation and senescence and has 

been associated with multiple malignancies including melanoma22, glioma23, basal cell18, 

breast24, lung25, nasopharyngeal26 and esophageal cancer27. Notably, CDKN2A is 

frequently mutated in HPV-negative head and neck cancers28.

The OC associated variants at 9q34.12 mapped to an intron of LAMC3, a laminin involved 

in cortical development29. rs928674, the peak signal, showed consistent effects across strata 

and a weaker association with OPC (P = 0.003) (Fig. 3d). rs928674 is in high LD with 3 

other robustly associated 9q34.12 SNPs (r2
range = 0.82–0.96, Supplemental Fig. 10, 

Supplementary Table 23) and is an esophageal mucosa cis-eQTL for a downstream gene 

AIF1L (Allograft Inflammatory Factor 1-Like)14.

The most prominent finding in the overall and OPC meta-analyses was a large association 

signal at 6p21.32 within the HLA class II region. The lead variant in both analyses, 

rs3828805, maps 1.7kb 5' of HLA-DQB1 (Fig. 2d and Supplementary Fig. 11) and similar to 

other 6p21.32 variants (Supplementary Table 4 and 6), showed heterogeneity by 

geographical region (Phet = 0.007) with no effect in South America (P = 0.62). Association 

analyses of 6p21.32 variants (P < 5x10–8) conditioned on rs3828805 did not reveal multiple 

independent signals (Supplementary Table 24), suggesting a common haplotype. To further 

investigate HLA associations, we imputed classical alleles in 11,436 individuals (>70% 

Caucasian ancestry) (Online Methods). Three classical HLA alleles DRB1*1301, 

DQA1*0103 and DQB1*0603 reached P < 5x10-8 in the overall analysis and were also 

strongly associated with OPC (Supplementary Table 25). These alleles are in high LD (r2 > 

0.9) and are part of the HLA class II haplotype, DRB1*1301-DQA1*0103-DQB1*0603, 
which is common in Europeans and previously reported to be associated with decreased 

cervical cancer risk30. DRB1*1301-DQA1*0103-DQB1*0603 was strongly associated with 

reduced OPC risk (OR = 0.59, P = 2.7x10-9) and more weakly with OC risk (OR = 0.75, P = 

1.7x10–4). Further conditional analysis on this haplotype and 6p21.32 variants did not reveal 

evidence of additional independent effects (Supplementary Table 26). Given the importance 

of HPV infection in the etiology of cervical and oropharyngeal cancer31, we conducted 

post-hoc analyses to examine the effect of DRB1*1301-DQA1*0103-DQB1*0603 in a 

subset of 576 cases with available HPV-status and 3,662 controls. DRB1*1301-
DQA1*0103-DQB1*0603 was associated with a strong reduced risk of HPV-positive OPC 
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(OR = 0.23, P = 1x10-6, n = 336) with no significant association in 240 OPC HPV-negative 

cases (OR = 0.75, P = 0.16) (Table 3). These results indicate that the class II HLA region is 

implicated in at least two HPV-driven cancers, namely HPV-positive OPC and cervical 

cancer. The lack of an association between 6p21.3 SNPs and OPC risk in South America 

could relate to previous findings that less than 10% of OPC are HPV-positive in this 

region4,5. Moreover, a weaker association with OC could be due to a smaller proportion of 

these cases being HPV-positive, as well as possibly some misclassified OPC cases, 

especially for base of the tongue tumors. Further evaluation of the extent and specificity of 

this HLA effect in HPV-associated cancers is important given the strength of the observed 

association. This may help elucidate why some individuals are at higher risk of HPV-

positive OPC after HPV infection and may also have implications for cancer 

immunotherapies targeting the HLA class II antigen presentation pathway32.

In summary, we identified seven oral and pharyngeal cancer susceptibility loci including a 

strong HLA signal narrowed to a class II haplotype. Future replication of these findings in 

an independent population is warranted as well as fine-mapping and functional studies 

necessary to establish the biological framework underneath these associations.

Online Methods

Study population and genotyping

The study population comprised 6,034 cases and 6,585 controls derived from 12 

epidemiological studies, the majority of case-control design and part of the International 

Head and Neck Cancer Epidemiology Consortium (INHANCE). Additionally, cases and 

controls from a European cohort study (EPIC) and cases from a United Kingdom case-series 

(HN5000) were also included. Characteristics and references for each study are summarized 

in Supplementary Table 1. Informed consent was obtained for all participants and studies 

were approved by respective Institutions Review Boards. Cancer cases comprised the 

following ICD codes: oral cavity (C02.0-C02.9, C03.0-C03.9, C04.0-C04.9, C05.0-C06.9) 

oropharynx (C01.9, C02.4, C09.0-C10.9), hypopharynx (C13.0-C13.9), overlapping (C14 

and combination of other sites) and 25 oral or pharyngeal cases with unknown ICD code 

(other).

Genomic DNA isolated from blood or buccal cells was genotyped at the Center for Inherited 

Disease Research (CIDR) with a novel genotyping tool, the Illumina OncoArray custom 

designed for cancer studies by the OncoArray Consortium33 part of the Genetic 

Associations and Mechanisms in Oncology (GAME-ON) Network. The majority of the 

samples were genotyped as part of the oral and pharynx cancer OncoArray, with the 

exception of 2,476 shared controls (1,453 from the EPIC study and 1,023 from the Toronto 

study) that were genotyped at CIDR but as part of the Lung OncoArray. Genotype calls were 

made by the Dartmouth team in GenomeStudio software (Illumina, Inc.) using a 

standardized cluster file for OncoArray studies. Cluster plots for top SNPs for individuals 

genotyped as part the oral and pharynx cancer OncoArray are shown in Supplementary 

Figure 12.
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GWAS quality control

We used PLINK 1.934 to conduct systematic quality-control (QC) steps on genotypes calls. 

An initial filtering step on the complete dataset excluded samples with genotyping rate 

<80% and SNPs with call rate <80%, then we excluded samples and SNPs <95% call rates. 

During the individuals QC, we removed samples with unsolved genetic and reported sex 

discrepancies and individuals with outlying autosomic heterozygosity rate (+/– 4 standard 

deviations (SD)). Identity-by-descent (IBD) analysis performed on the LD pruned dataset (r2 

< 0.1) identified; 103 expected experimental duplicate-pairs (IBD > 0.9), from these we 

excluded the sample with lower genotyping rate, and 74 unexpected duplicate-pairs that 

were excluded. Additionally, we identified 44 unexpected relatives pairs (IBD > 0.3) and 

excluded one sample from each pair, prioritizing cases over controls and for pairs with same 

status we excluded according to genotyping rate. After the initial SNP filtering calling rate 

and exclusion of duplicated and zeroed probes, 513,311 probes remained for analysis. Next 

and given the heterogeneity of the study population, we divided the dataset by geographical 

region (Europe, North America and South America) and excluded SNPs within each region 

with deviation of Hardy-Weinberg Equilibrium (HWE) in controls (P < 1x10–7). To account 

for potential population stratification within geographical area, we performed principal 

components analysis (PCA) in EIGENSTRAT35 using approximately 10,000 common 

markers in low LD (r2 < 0.004, MAF > 0.05), subsequently we excluded population outliers 

(n = 139) and derived regional eigenvectors to adjust regional GWAS analyses 

(Supplementary Fig. 13). PCA analyses on each individual study are displayed in 

Supplementary Fig. 14. To inquire about ancestry within regions, we used STRUCTURE 

2.3.436 under a supervised approach with HapMap samples to determine individual CEU, 

YRI and CHB/JPT ancestries. All coordinates refer to genome build HG19/GRCh37.

Imputation

Imputation of unknown genetic variation was performed using the Michigan Imputation 

Server37 (https://imputationserver.sph.umich.edu/), a free service for largescale population 

studies. We used SHAPEIT38 for prephasing, Minimac339 for imputation and the first 

release of the Haplotype Reference Consortium panel8 (HRC) a large collection of human 

haplotypes (n = 64,976) that combines data from multiple initiatives including the 1000 

genomes project. For imputation we used a set of high-quality SNPs; MAF > 0.01, call rate 

>98%, we imputed in randomized batches of approximately 3000 individuals and analyzed 

imputation quality statistics together, SNPs with MAF < 0.01 or R2 < 0.3 in any of the 

batches were excluded before associations analysis. Thus, the final set of 7,099,472 imputed 

variants used in association analysis had very high quality: 86% of the variants with MAF ≥ 

0.05 had R2 > 0.9 and 52% of the less common variants (MAF < 0.05) had R2 > 0.9 

(Supplementary Figure 1).

GWAS and meta-analyses

We undertook a by geographic region GWAS and meta-analysis approach to evaluate the 

relation between SNPs and overall OC and pharynx cancer, and site-specific OC and OPC 

risk; in total we tested we evaluated 7,574,753 SNPs (genotyped and imputed variants). By 

region GWAS were performed in PLINK and R glm function for genotype dosages, using 
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multivariable unconditional logistic regression assuming a log-additive genetic or dosage 

model with age, sex and principal components as covariates. Next, association statistics were 

included in a fixed-effects meta-analysis performed in PLINK34. The P-value for 

heterogeneity was calculated using Cochran’s Q. Conditional analyses within associated 

regions were performed in R (glm) and meta-analysis of regional results were done in 

PLINK.

HLA imputation and haplotype analyses

Using SNP2HLA40 and the Type I Diabetes Genetics Consortium reference panel of 5,225 

individuals of European descent, we imputed HLA classical alleles and aminoacids in 

11,436 study participants with >70% CEU ancestry. Individuals were randomized into 12 

groups approximately of 1000 each and quality imputation scores from beagle examined 

across groups. Markers with R2 >= 0.7 in all groups and average R2 > 0.9 (8,286 makers of 

8,961 included in the panel) were carried on for analyses and 98% of these had R2 > 0.95. 

We then performed regional association analyses of binary markers followed by meta-

analysis of imputed binary markers (SNPs, classical alleles and aminoacids) as previously 

described using PLINK and R. DRB1*1301-DQA1*0103-DQB1*0603 haplotype 

information was extracted from beagle files of phased best-guess genotypes and used to 

estimate ORs and 95%CIs from multivariable unconditional logistic regression models with 

each phenotype. Haplotype and HPV stratified analyses in a subset of cases with available 

data, was performed with unconditional logistic regression with haplotype as predictor and 

oropharyngeal cancer HPV positive or negative as outcomes. The measure of HPV positivity 

was derived by HPV16E6 serology in the ARCAGE and EPIC studies, tumor HPV16 DNA 

and p16 overexpression in the CHANCE study and for the Pittsburgh cases a combination of 

tumor HPV in situ hybridization and p16 immunohistochemistry.

Technical validation genotyping

In order to confirm array genotypes and imputed dosages, we genotyped at least one SNP 

within each associated (P < 5x10–7) genomic region using TaqMan assays (Thermo Fisher 

Scientific) in a subset of approximately 900 individuals from ARCAGE, IARC Latin 

America, EPIC, and IARC oral cancer studies (Supplementary Table 14). Taqman 

genotyping included standard positive and negative controls; assay numbers and cycling 

conditions are described in Supplementary Table 15. For 10 of the 12 SNPs genotyped by 

TaqMan there was no evident departure from Hardy-Weinberg equilibrium (P > 0.05). 

However, two variants rs467095 and rs3731239 were slightly out of HWE only in samples 

from the EPIC study (P < 0.01), which might relate to the small sample size genotyped in 

the technical validation. The rare variants at 5p14.3 (rs79767424) and 10q26.13 

(rs201982221, Supplementary Figure 15) could not be genotyped with TaqMan assays, thus 

for these, validation was performed with Sanger sequencing on the on a small subset of 

samples available within IARC studies; rs201982221 (15 wild-type, 15 heterozygous and 2 

homozygous) and for rs79767424 (15 wild-type and 15 heterozygous). Primer sequences 

and conditions for PCR are described in Supplementary Table 16; amplification products 

were sequenced on the Applied Biosystems 3730 DNA Analyzer at Biofidal, France.
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Bioinformatic annotation and analyses

To explore possible functional implications of variants within associated regions, we used an 

internet tool HaploReg v4.141 that includes annotations from the Encyclopedia of DNA 

elements (ENCODE). Functional annotation for variants reaching P < 5 x 10-8 is 

summarized Supplemental Table 11. We also retrieved eQTL information from several 

sources including the Genotype-Tissue Expression Project (GTEx)14 and HaploReg41. 

Manhattan and quantile-quantile plots were generated in R using the package qqman42, and 

forest plots were generated using the metafor R library43. Regional association plots were 

generated using LocusZoom44 with LD and recombination rates data from the 1000 

Genomes Project November 2014 release. To search for additional, pairwise LD information 

we used the online tool LD link45.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome-wide associations meta-analyses results.
The red line represents P = 5x10–8. The y-axis represents the –log10 P-values. (a) Overall 

OC and pharyngeal cancer 6,034 cases and 6585 controls (b) Oral cancer analysis with 

2,990 cases and 6,585 controls (c) Oropharyngeal cancer analysis with 2,641 cases and 

6,585 controls. Loci with GWA significant SNPs and technically validated are tagged with 

genomic location.
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Figure 2. Forest plots of odds ratios for the lead SNP at each genome-wide significant loci in the 
overall oral and pharyngeal cancer meta-analysis.
(a)4q23, rs1229984 (b)10q26.13, rs20198222 (c)11p15.4 rs1453414. (d)6p21.32 rs3828805. 

EAF = effect allele frequency in 6585 controls. Effect allele in square brackets. OC = oral 

cancer; OPC = oropharynx cancer.
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Figure 3. Forest plots of odds ratios for the lead SNP at each genome-wide significant loci in the 
oral cancer (OC) meta-analysis.
(a)2p23.3 rs6547741 (b)5p15.33, rs10462706 (c)9p21.3, rs8181047 (d)9q34.12, rs928674. 

EAF = effect allele frequency in 6585 controls. Effect allele in square brackets. Overall = 

oral and pharyngeal cancer; OPC = oropharynx cancer.
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Table 1

Epidemiological and clinical characteristics of cases and controls.

Cases Controls

N % N %

Total 6,034 6,585

Tumor site

Oral cavity 2,990 49.6

Oropharynx 2,641 43.8

Hypopharynx 305 5.1

Overlapping 73 1.2

Other 25 0.4

Geographic Region

Europe 2,499 41.4 2,928 44.5

North America 2,549 42.2 2,522 38.3

South America 986 16.3 1,135 17.2

Sex

Male 4,527 75.02 4,325 65.68

Female 1,507 24.98 2,260 34.32

Age, years

=<50 1,315 21.8 1,355 20.6

50-<60 2,006 33.2 1,954 29.7

60-<70 1,748 29.0 1,983 30.1

>=70 964 16.0 1,293 19.6

Unknown 1 0.02

Smoking Status

Never 1,057 17.5 2,508 38.1

Former 1,792 29.7 2,263 34.4

Current 2,623 43.5 1,466 22.3

Unknown 562 9.3 348 5.3

Drinking Status

Never 820 13.6 1,199 18.2

Ever 4,840 80.2 4,840 73.5

Unknown 374 6.2 546 8.3
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Table 2

Lead genome-wide significant SNP for each validated locus from the regional meta-analyses of oral and 

pharyngeal cancers combined and analysis of each cancer separatelya and pharynx cancer combined, as well as 

OCa and OPCa separately.

Region SNP chr:posb Gene EA/OAc Info (Rsq)d AFe case/control OR P P het

Oral and pharyngeal cancer

4q23 rs1229984 4:100239319 ADH1B A/G Geno 0.03/0.06 0.56 2.29x10–15 0.002

6p21.32 rs3828805 6:32636120 HLA-DQB1 C/T 0.88 0.75/0.72 1.28 3.35x10–13 0.007

10q26.13 rs201982221 10:126157446 LHPP D/I Geno 0.03/0.02 1.67 1.58x10–9 0.50

11p15.4 rs1453414 11:5829084 OR52N2/TRIM5 C/A Geno 0.23/0.20 1.19 4.78x10–8 0.55

Oral cancer

2p23.3 rs6547741 2:27855924 GPN1 A/G 0.98 0.50/0.54 0.83 3.97x10–8 0.34

4q23 rs1229984 4:100239319 ADH1B A/G Geno 0.03/0.06 0.57 1.09x10–9 0.02

5p15.33 rs10462706 5:1343794 CLPTM1L T/C 0.97 0.12/0.15 0.74 5.54x10–10 0.84

9p21.3 rs8181047 9:22064465 CDKN2B-AS1 A/G Geno 0.29/0.24 1.24 3.80x10–9 0.37

9q34.12 rs928674 9:133952024 LAMC3 G/A 0.89 0.14/0.12 1.33 2.09x10–8 0.88

Oropharyngeal cancer

4q23 rs1229984 4:100239319 ADH1B A/G Geno 0.02/0.06 0.55 8.53x10–9 0.05

6p21.32 rs3828805 6:32636120 HLA-DQB1 C/T 0.88 0.75/0.72 1.37 2.21x10–12 0.07

a
OC=oral cancer, OPC=oropharyngeal cancer;

b
SNP position according to NCBI genome build 37 (Hg19);

c
EA=Effect allele; OA=other allele;

d
Geno=genotyped, SNP, INFO, R2 is the average across imputation batches;

e
AF=allele frequency of the effect allele
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Table 3

Associations of DRB1*1301-DQA1*0103-DQB1*0603 haplotype in individuals with >70% Caucasian 

ancestry

Meta-analysisc

haplotypea case/control case/control HFb case HFb control OR P OR P

Oral and pharynx cancer 0.68 3.32x10–10

Europe 207/422 2,497/2,928 0.04 0.07 0.60 4.04x10–8

North America 207/276 2,342/2,329 0.04 0.06 0.74 1.68x10–3

South America 74/101 613/727 0.06 0.07 0.86 0.35

Oral cancer 0.75 1.72x10–4

Europe 106/422 1,231/2,928 0.04 0.07 0.60 1.52x10–5

North America 128/276 1,135/2,329 0.06 0.06 0.92 4.67x10–1

South America 41/101 351/727 0.06 0.07 0.80 0.26

Oropharynx cancer 0.59 2.73x10–9

Europe 84/422 1,098/2,928 0.04 0.07 0.57 2.69x10–5

North America 72/276 1,119/2,329 0.03 0.06 0.52 3.49x10–6

South America 31/101 216/727 0.07 0.07 1.05 0.81

Oropharynx cancer by HPV status d

HPV-positive 11/505 336/3,686 0.01 0.07 0.23 1.6x10–6

HPV-negative 25/505 240/3,686 0.05 0.07 0.75 0.16

a
Number of copies of the haplotype in cases and controls

b
Haplotype frequency calculated as total number of copies of haplotype in the population (haplotype copies/2n).

c
Fixed-effects meta-analysis of regional associations adjusted for age, sex and eigenvectors.

d
HPV-status available in a subset of cases from ARCAGE, EPIC, CHANCE and Pittsburgh studies
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