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On the Lorentzian versus Gaussian Character of Time-Domain 
Spin-Echo Signals from the Brain as Sampled via Gradient-
Echoes: Implications for Quantitative Transverse Relaxation 
Studies

Robert V. Mulkern1, Mukund Balasubramanian*,1, and Dimitrios Mitsouras2

1Department of Radiology, Boston Children's Hospital, Harvard Medical School

2Department of Radiology, Brigham and Women's Hospital, Harvard Medical School

Abstract

Purpose—To determine whether Lorentzian or Gaussian intra-voxel frequency distributions are 

better suited for modeling data acquired with gradient-echo sampling of single spin-echoes for the 

simultaneous characterization of irreversible and reversible relaxation rates. Clinical studies (e.g., 

of brain iron deposition) using such acquisition schemes have typically assumed Lorentzian 

distributions.

Theory and Methods—Theoretical expressions of the time-domain spin-echo signal for intra-

voxel Lorentzian and Gaussian distributions were used to fit data from a human brain scanned at 

both 1.5T and 3T, resulting in maps of irreversible and reversible relaxation rates for each model. 

The relative merits of the Lorentzian versus Gaussian model were compared via quality of fit 

considerations.

Results—Lorentzian fits were equivalent to Gaussian fits primarily in regions of the brain where 

irreversible relaxation dominated. In the multiple brain regions where reversible relaxation effects 

become prominent, however, Gaussian fits were clearly superior.

Conclusion—The widespread assumption that a Lorentzian distribution is suitable for 

quantitative transverse relaxation studies of the brain should be reconsidered, particularly at 3T 

and higher field strengths as reversible relaxation effects become more prominent. Gaussian 

distributions offer alternate fits of experimental data that should prove quite useful in general.

Keywords

Lorentzian; Gaussian; frequency distributions; transverse relaxation; brain iron

Introduction

The transverse magnetization, or signal, as sampled throughout a free induction decay (FID), 

after spin excitation, behaves very differently than signal sampled throughout the first half of 
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a spin-echo, after a spin refocusing pulse (1). During the FID, reversible and irreversible 

transverse relaxation work together in harmony to dephase the spin system. During the first 

half of a spin-echo, however, the reversible processes rephase the spins, working against the 

irreversible transverse relaxation. Therefore, performing both types of sampling can lead to 

quantitative estimates of reversible and irreversible relaxation rates with just a single 

sequence. Ma and Wehrli originally demonstrated this elegant approach for transverse 

relaxation measurements in 2D-Fourier-Transform (2D-FT) imaging formats using gradient-

echo sampling throughout both the FID period and the first half of a spin-echo (2). Their 

approach offered a distinct advantage over previous techniques for the measurement of 

reversible and irreversible relaxation which required multiple acquisitions of a similar 

sequence (3) or the use of two different sequences, e.g., multiple gradient- and spin-echo 

sequences (4). Ma and Wehrli referred to their sequence as the Gradient Echo Sampling of 

FID and Echo (GESFIDE) sequence (2). Shortly thereafter, Yablonskiy and Haacke pointed 

out that similar information could be acquired with gradient-echo sampling of the left and 

right sides of a single spin-echo, the latter behaving in a manner similar to FID sampling (5). 

They referred to their sequence as the Gradient Echo Sampling of a Spin Echo (GESSE) 

sequence and noted that though the delayed sampling of the latter half of the spin-echo 

obviously reduced overall signal-to-noise ratio (SNR) compared to GESFIDE, signals 

acquired during the two disparate sampling regimes of GESSE would not suffer from 

potentially different slice profiles that may well affect those acquired with GESFIDE. Since 

these publications (2,5), there have been a number of clinically oriented studies performed 

with GESFIDE and its variants to study, for example, brain iron deposition in healthy 

controls (6,7) and various disease states including restless leg syndrome (8), migraine (9), 

autism (10), multiple sclerosis (11), HIV (12), and Parkinson's disease (13), the latter two 

being performed with a sequence that generated two spin-echoes with gradient-echo 

sampling occurring during the right half of each spin-echo. Extensions of the technique for 

hepatic and myocardial iron content have also been demonstrated (14,15).

What all these studies have in common, including one study designed to optimize gradient-

echo spacings for GESFIDE (16), is the assumption that the FID and right-hand sides of 

spin-echoes decay exponentially with time with the rate constant R2* = R2 + R2′ and that 

the left-hand sides of spin-echoes decay exponentially with rate constant R2
- = R2 - R2′. We 

see in the latter case that the left-hand side of a spin-echo grows with time when the 

reversible relaxation rate R2′ is greater than the irreversible relaxation rate R2. Inherent, 

though not always stated in this formalism, is the assumption that the intra-voxel frequency 

distribution responsible for the reversible relaxation rate R2′ is a Lorentzian distribution 

with a full-width-at-half-maximum (FWHM) of 2R2′. On the other hand, if the distribution 

is actually a Gaussian (with a FWHM of ∼2.35σ) then the time dependencies of the FID and 

left- and right-hand sides of spin-echoes behave quite differently than typically assumed in 

the studies just cited (2-16). We demonstrate this both theoretically and experimentally, 

within the context of a 2D-FT multi-slice GESSE sequence in which slice profile differences 

between the two sampling regimes are non-existent. We find that in many brain regions 

where reversible relaxation rates become comparable to or larger than irreversible relaxation 

rates, the Gaussian model provides a much more accurate description of the experimental 

data. Furthermore, since both Lorentzian and Gaussian models offer fits to the data which 
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simultaneously estimate the irreversible relaxation rate R2 and the distribution widths (R2′ 
or σ), it stands to reason that improved modeling of the latter will result in improved 

accuracy of the former. This contention is supported by observations of extremely high 

correlations between R2 values found from a model-free treatment of the data (5) and R2 

values from Gaussian as opposed to Lorentzian model fits. We further propose that our 

findings imply that more robust analyses with improved characterization and separation of 

reversible and irreversible transverse relaxation processes are possible than those that have 

been utilized in the past.

Theory

Analytic expressions accounting for the disparate effects of the reversible and irreversible 

transverse relaxation processes in signals generated from a single spin-echo sequence are 

calculated in a manner similar in spirit to the theoretical approach outlined by Ma and 

Wehrli, though with a more rigorous mathematical format. We have previously performed a 

similar analysis for steady state free precession (SSFP) sequences (17) and note that the 

approach we employ includes the effects of T1 relaxation, spoiling/crushing about the 

refocusing pulse and phase cycling, and is performed for Gaussian and uniform frequency 

distributions in addition to the Lorentzian distribution considered by Ma and Wehrli (2).

Specifically, Bloch equation analysis yields the rotating frame x, y and z components of the 

magnetization vector which we denote as f, g, and m, respectively, at time t following the 

refocusing pulse, as a function of the fundamental tissue-specific parameters. These 

parameters are the longitudinal relaxation rate R1, the irreversible transverse relaxation rate 

R2, and an angular frequency w, an “isochromat”, of the protons within the voxel of interest. 

Then, the effects of a specific distribution of isochromats p(w) are accounted for by 

multiplication of the echo signal (f + ig) during readout time t by p(w) followed by 

integration over all real w. The Appendix provides the three specific Bloch equation tools we 

use to calculate the readout signals for single isochromats. These tools are two rotation 

matrices to represent the RF pulses causing an instantaneous rotation of the magnetization 

vector about the x or y axes of the rotating frame through a specified flip angle, and a 

precession/relaxation (PR) matrix plus longitudinal relaxation vector to follow an 

isochromat through free precession by w about the z-axis while evolving via longitudinal 

and irreversible transverse relaxation.

The frequency distributions we consider here are the Lorentzian, Gaussian and uniform 

distributions, each of which is symmetric about a central frequency wo and has a width 

parameter (R2′, σ or Δw) defined through the following probability density functions:

Lorentzian:

p(w) = (R2′/π)/[(w − (wo + iR2′))(w − (wo − iR2′))] [1]

Gaussian:
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p(w) = (σ(2π)1/2)−1 exp ( − (w − wo)2/(2σ2)) [2]

Uniform:

0 for w < wo − Δw
p(w) = 1/(2Δw) for wo − Δw < w < wo + Δw

0 for w > wo + Δw .
[3]

Eqs. [1-3] are normalized functions in that integration over all real w leads to unity. The 

parameter R2′ reflects the width of the Lorentzian function where the full width at half 

maximum (FWHM) is 2R2′ while σ reflects the width of the Gaussian with FWHM being 

∼2.35σ. The parameter Δw reflects the width of the uniform function where the FWHM is, 

of course, simply 2Δw. Note that all these width parameters are referenced to the angular 

frequency w so that if a FWHM is reported in frequency units, a 2π factor will be involved 

in converting that FWHM to a relaxation rate or time. Other distributions are of course 

possible, including asymmetric distributions (18). However, these three distributions are 

commonly encountered in the field and, no doubt, often approximate physical reality. In 

addition, they share the convenient property of allowing for analytic integration over w. 

Specifically, the integration process with the Lorentzian distribution will be conveniently 

carried out using contour integration, evaluating the residue from the pole in either the upper 

or lower half of the complex plane as appropriate (19). Integrals involving the Gaussian 

distribution will require the relation (20)

∫ exp ( − p2x2 ± qx) dx = ((π)1/2/p) exp (q2/4p2) for Re p2 > 0 . [4]

The integrals associated with the uniform distribution will be trivially performed leading to 

sinc type functions (vide infra).

Consider now the spin-echo sequence 90y – τ – βy – t with a total repetition time of TR 

between excitations. The Bloch equation analysis yields the magnetization as a function of 

time t (note that here t is the time from the refocusing pulse, rather than the excitation pulse), 

resulting in

f + ig = (mo/2)( cos β − 1) exp ( − R2(τ + t)) exp (iw(τ − t))
+ (mo/2)( cos β + 1) exp ( − R2(τ + t)) exp ( − iw(τ + t))
+ moo sin β(1 − exp ( − R1τ)) exp ( − R2t) exp ( − iwt)

[5]
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where mo is the steady-state longitudinal magnetization immediately before each excitation 

and moo is the equilibrium longitudinal magnetization. Assuming that spoiling of transverse 

magnetization has been achieved prior to each excitation, mo is provided by the equation

mo = moo[1 − exp ( − R1(TR − τ)) − cos β(1 − exp (R1τ)) exp ( − R1TR)] . [6]

Multiplying Eq. [5] with the Lorentzian frequency distribution and performing the requisite 

contour integrations leads to the following “ensemble” distribution signal:

SLor = − (mo/2) (1 − cos β) exp (iwo(τ − t)) exp ( − R2(τ + t)) exp ( − R2′ τ − t )
+ (mo/2) (1 + cos β) exp (iwo(τ + t)) exp ( − R2(τ + t)) exp ( − R2′(τ + t))
+ moo sin β exp ( − iwot) (1 − exp ( − R1τ)) exp ( − (R2 + R2′)t) .

[7]

Eqs. [5] and [7] consist of three terms with distinct dependencies on the refocusing flip 

angle β, which are (i) 1-cosβ, (ii) 1+cosβ and (iii) sinβ. The first of these three terms, and 

the only surviving term if β = 180°, is the primary term utilized by practitioners of 

GESFIDE and GESSE. Note from Eq [7] that immediately after the β pulse but for t < τ, a 

period defining the left side of a spin-echo, the exponential decay of this primary term with 

time t is governed by the rate R2 - R2′, a rate some have referred to as R2
- (2,9,10). As 

mentioned previously, this “decay” may in fact be a growth of signal when R2′ exceeds R2, 

as indeed occurs often in practice (vide infra). For times t > τ, which would be the right half 

of the spin-echo, the decay with time t is similar to that after the excitation pulse, with rate 

R2* = R2 + R2′. Since these are exponential decays (or growths) on either side of τ, plotting 

the natural logarithm of the signal magnitude, ln(SLor), versus t will yield linear time 

dependencies on either side of τ straight-line fits (i.e., via linear regression) may therefore be 

used to extract estimates of (R2 - R2′) and (R2 + R2′) and subsequently R2 and R2′.

The critical point to note here is that Eq. [7] resulted from the assumption of a Lorentzian 

distribution. Thus, only in this case will the (R2′ - R2) and (R2 + R2′) rates extracted by 

semi-log fits of signal versus time have any reasonable meaning. Another point to note is 

that, in the case of imperfect refocusing (i.e., β ≠ 180°), two more terms will contribute to 

the signal. The (1+cosβ) term in Eq. [7] will affect the observed rate following the β pulse 

such that it becomes a mixture of R2* and R2
-. Ma and Wehrli suggested, and 

experimentally demonstrated, that spoiler/crusher gradients placed symmetrically about the 

β pulse can ameliorate the contribution from this term (2). The sinβ term in Eq. [7], which 

was not derived or discussed in (2), also has the potential to cause error when imperfect 

refocusing is present, in a manner dependent upon the spin-lattice relaxation rate R1. This 

term also vanishes with perfect refocusing which, however, is realistically impossible over 

an entire field-of-view (FOV) when slice-selective pulses are applied in 2D-FT imaging, 

particularly at high fields like 3T (21). A detailed discussion of how spoiling/crushing 

affects both the (1+cosβ) term and the sinβ term is relegated to the Appendix. There, an 

explicit derivation of the degree of spoiling for each term is provided and it is shown that the 
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spoiler gradients are twice as effective for the (1+cosβ) than for the sinβ term as the latter 

arises from spins that were along the longitudinal axis during the first spoiler gradient. It is 

also of interest, however, to consider how RF phase-cycling schemes (22) may be employed 

instead of spoiler gradients to remove these nuisance terms. Towards this end, Table 1 is 

provided in which the coefficients for each term are listed for the various RF phase cycling 

schemes shown in the top row of the table. From these coefficients, it follows that a four-step 

phase-cycling procedure in which k-space lines are combined according to the following 

equation

C − A + D − B = 2 (1 + i) (1 − cos β) [8]

would cancel out both nuisance terms resulting from imperfect refocusing pulses, 

eliminating the need for spoiler gradients. This approach also has the benefit of higher SNR, 

due to the combination of the four (1+cosβ) terms in A-D, albeit at a cost of increased scan 

time.

We now repeat the procedure above for the Gaussian distribution and, for completeness, the 

uniform distribution. As before, this involves multiplying the single isochromat expression 

for the 90y – τ – βy – t sequence (Eq. [5]) by the appropriate frequency distribution, 

followed by integration over w. We then obtain the following expressions for these ensemble 

signals, which read

SGauss = −(mo/2)(1 − cos β) exp (iwo(τ − t)) exp ( − R2(τ + t)) exp ( − t(t − τ)2σ2/2)

+ (mo/2)(1 + cos β) exp (iwo(τ + t)) exp ( − R2(τ + t)) exp ( − t(t + τ)2σ2/2)

+ moo sin β exp ( − iwot)(1 − exp ( − R1τ)) exp ( − R2t) exp ( − t2σ2/2)

[9]

and

Suniform = −(mo/2)(1 − cos β) exp (iwo(τ − t)) exp ( − R2(τ + t)) sin (Δw(τ − t))/Δw(τ − t)
+ (mo/2)(1 + cos β) exp (iwo(τ + t)) exp ( − R2(τ + t)) sin (Δw(τ + t))/Δw(τ + t)
+ moo sin β exp ( − iwot)(1 − exp ( − R1τ)) exp ( − R2t) sin (Δwt)/(Δwt) .

[10]

Note the basic similarity of these two expressions to the Lorentzian expression for the 

ensemble signal with respect to the three types of flip angle dependencies so that, 

presumably and without proof, we propose that phase cycling for these two distributions will 
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also follow the directives of Table 1. Eqs. [7] and [9] for the case of β = 180° were used to 

fit the time-domain spin-echo data acquired in this study.

The framework above requires an explicit specification of the underlying frequency 

distribution model (e.g., Lorentzian, Gaussian or uniform). If one is only interested in 

characterizing the irreversible transverse relaxation, then a model-free estimate of R2 from 

GESSE data is feasible, as noted by Yablonskiy and Haacke (5), by exploiting the symmetry 

of the reversible component of the (1-cosβ) term about the spin-echo. Consider the pair of 

signal values S(τ-Δ) and S(τ+Δ), equidistant by a time Δ from the spin-echo, which occurs 

at t = τ. Taking the ratio of S(τ-Δ) to S(τ+Δ) will cancel out any reversible relaxation terms, 

as can be verified for the specific cases of the Lorentzian, Gaussian or uniform distributions 

by considering the magnitudes of Eqs. [7], [9] or [10], respectively, for the case of β = 180°. 

The natural logarithm of this ratio exhibits a linear dependence on Δ, with the slope of this 

line equal to 2R2, independent of the underlying frequency distribution.

Methods

A healthy male volunteer (age = 57 yr) and a potato (age < 1 yr) were scanned at 1.5T with a 

General Electric Signa system equipped with an 8-channel head coil, using an 

implementation of the GESSE sequence (5) obtained by modifying a multi-slice 2D-FT 

spin-echo imaging sequence to gather unipolar-sampled gradient-echoes throughout a single 

spin-echo. 15 gradient-echoes were collected at 3.1 ms intervals, with the 1st gradient-echo 

occurring at 33.4 ms and the 8th gradient-echo coinciding with the spin-echo at TE = 55 ms 

(i.e., τ = 27.5 ms). Data sets with TR = 3 s, 18 slices, 5/1 mm slice thickness/gap, 240 × 240 

mm2 in-plane FOV and 128 × 128 matrix were collected with a scan time of 6:48 minutes.

The same human volunteer as above was subsequently scanned at 3T with a Siemens Trio 

system equipped with a 32-channel head coil. Here the implementation of the GESSE 

sequence had 31 gradient-echoes collected at 2.4 ms intervals with the 1st gradient-echo 

occurring at 43.4 ms and the 16th gradient-echo coinciding with the spin-echo at TE = 80 ms 

(i.e., τ = 40 ms). Data sets with TR = 2 s, 10 slices, 5/2.5 mm slice thickness/gap, 256 × 256 

mm2 in-plane FOV and 256 × 256 matrix were gathered in 8:32 minutes. All studies were 

performed according to the guidelines of the local institutional review board.

Voxel-wise fits of the echo-time dependencies to both Lorentzian and Gaussian models were 

performed, yielding R2 and width (R2′ or σ) parameters for each model. For the Lorentzian 

model, straight lines were fitted separately to data (i.e., ln(S) versus time) from either side of 

the spin-echo; from the two resulting slopes, R2 and the Lorentzian width parameter R2′ can 

be computed, as described earlier in the Theory section (in particular, see Eq. [7]). For the 

Gaussian model, on the other hand, ln(S) versus time is a quadratic function (see Eq. [9]); 

the coefficients of a quadratic fit therefore yield estimates of R2 and the Gaussian width 

parameter σ. All fits were performed in MATLAB, using the “regress” function.

In order to obtain a simple and straightforward measure of which of the two models was 

superior for any given voxel, the standard deviation of the residuals (i.e., the standard error 

of the estimate) was obtained for each fit, and the logarithm of the ratio of the Lorentzian 
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standard error to the Gaussian standard error was computed. This measure is equal to zero 

when the two models perform equally well (or equally poorly), positive when the Gaussian 

model outperforms the Lorentzian, and negative when the Lorentzian model outperforms the 

Gaussian. Although we recognize the existence of more advanced metrics than this simple 

“quality of fit” measure, we deemed such metrics unnecessary for the purposes of this study, 

since the two models have the same complexity (i.e., degrees of freedom): essentially one 

irreversible relaxation parameter R2 and one reversible relaxation parameter, R2′ or σ.

The choice of model, Lorentzian or Gaussian, will obviously affect the estimation of the 

width parameter but as a secondary effect can also influence the estimation of the 

irreversible relaxation parameter, since R2 is obtained simultaneously from the fitting 

procedures described above. Therefore, we also sought an estimate of R2 that was 

independent of the underlying distribution, as discussed by Yablonskiy and Haacke (5) and 

mentioned in the Theory section. Specifically, this estimate of R2 was computed by first 

taking the ratio of the signal from every pair of echoes on either side of and equidistant (by a 

time Δ) from the spin-echo and then fitting a straight line to the natural logarithm of this 

ratio versus Δ. The resulting slope (divided by 2) provides a model-free estimate of R2, for 

comparison with R2 estimates that explicitly assume Lorentzian or Gaussian frequency 

distributions. The advantage of the model-free approach is that no underlying distribution 

need be assumed, eliminating any potential errors due to an inappropriate choice of model, 

while the disadvantage is that information regarding the reversible relaxation is discarded.

Results

Fig. 1 presents simulations of the time-domain echo signals (natural logarithm of the 

magnitude signal) resulting from the three different distributions (i.e., Lorentzian, Gaussian 

and uniform). These simulations were carried out for a perfect refocusing pulse (β = 180°), 

an irreversible relaxation rate R2 = 15 Hz, a spin-echo time of 70 ms (i.e., τ = 35 ms) and for 

width parameters of 5, 60 Hz and 110 Hz. Note that, for the Lorentzian and the Gaussian 

distributions, large width parameters result in growth rather than decay of signal to the left 

of the spin-echo. On these semi-log plots, signals from the Gaussian and uniform 

distributions show distinct curvature compared to the straight lines of the Lorentzian 

distribution. It is also apparent from these simulations that as the reversible relaxation rates, 

or width parameters, become larger than the irreversible relaxation rate the differences 

between Lorentzian and Gaussian model behavior becomes more apparent.

Fig. 2 presents results from the 1.5T potato study demonstrating, in the case of strong 

reversible relaxation compared to irreversible relaxation, the possibility of both Lorentzian 

and Gaussian model behavior. Shown at the top of the figure are five of the individual 

gradient-echo images, with the spin-echo occurring at a TE of 55 ms. All of the ln(S) versus 

time curves (lower plots) showed growth and then decay through the spin-echo as sampled 

from the individual gradient-echoes, indicating larger reversible relaxation than irreversible 

relaxation (2), presumably due to air pockets in the potato. In most of the potato flesh 

voxels, the ln(S) time courses displayed curvature and a leftward shift of the peak signal, 

consistent with Gaussian rather than Lorentzian intra-voxel frequency distributions. There 

were some locations, however, near the diseased portion of the potato (presumably fungi—a 
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common potato blight) where straight lines, characteristic of Lorentzian distributions, were 

observed (Fig. 2, lower middle plot).

Fig. 3 presents results from the 1.5T brain study. A semi-log plot of signal intensity versus 

echo time is shown (top left) for the voxel marked with the purple square in the other 

images, demonstrating a far better fit to the Gaussian model than the Lorentzian. 

Specifically, significant departures from straight lines on either side of the inflection point at 

the spin-echo position, which would be characteristic of Lorentzian distributions on such 

plots, were observed along with a leftward shift of the echo signal maximum, all 

characteristic of Gaussian distributions as predicted from the model simulations shown in 

the bottom left of Fig. 1. A map of the simple “quality of fit” measure described in the 

Methods section is shown on the bottom left of Fig. 3, showing that the two models perform 

equally well in most of the brain, but that the Gaussian model clearly wins in many regions 

(such as the one surrounding the purple square). Also shown in Fig. 3 are the irreversible 

relaxation rate (R2) maps from the Lorentzian and Gaussian fits (middle panel), in which 

subtle but real differences can be observed (vide infra), and the corresponding width maps 

(right panel), in which more structure is apparent in the Gaussian σ map than the Lorentzian 

R2′ map. From inspection of this figure and as confirmed by examining time-domain spin-

echo signals from multiple brain voxels, we observed that in voxels where the irreversible 

relaxation dominates, the two models perform equally well, but in voxels where the 

reversible relaxation is comparable to or greater than the irreversible relaxation, the 

Gaussian model typically provides a better fit. In short, for voxels within the brain, the 

Lorentzian model hardly ever outperformed the Gaussian model.

Fig. 4 presents results from a 3T scan of the same subject shown in Fig. 3. Again, note the 

significant curvature of the ln(S) time course for the highlighted voxel, resulting in a 

superior fit for the Gaussian model. Gaussian and Lorentzian fits were of comparable quality 

in this slice in the occipital lobe towards the back of the head, as well as in central regions in 

higher slices where the irreversible relaxation was dominant. However, Gaussian fits 

significantly outperformed Lorentzian fits in many voxels, especially those in frontal regions 

near sinuses (see Fig. 4, bottom left), where the reversible relaxation was significant. 

Comparing the width maps at the two field strengths (right panel of Figs. 3 and 4), we see 

greater values at 3T regardless of model distribution, as would be expected due to greater 

susceptibility effects, leading to more structure being apparent in the width maps at the 

higher field strength. Note also that here the 3T data is noisier than the 1.5T data, since the 

gain in SNR due to field strength is more than offset by a combination of longer echo times, 

shorter TR, smaller voxel size and higher readout bandwidth.

To see how the choice of model affects the estimation of irreversible relaxation rates, the R2 

values obtained via the Gaussian fit were compared to the corresponding values obtained 

from a Lorentzian fit (see Fig. 5, middle panel). Although the correlation between the two 

R2 values was good overall (r2 = 0.84), substantial differences were observed for some 

voxels. A slight bias towards higher R2 values is also seen for estimates obtained via the 

Lorentzian versus the Gaussian model. In the right panel of Fig. 5, R2 values from the 

Gaussian fit are compared to the model-free R2 values estimated using the procedure 
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described in the Methods, showing a remarkable agreement between these two estimates (r2 

> 0.99).

Since R2* mapping is of relevance to iron deposition studies and has more recently sparked 

interest for use with ultra-high field (7T) brain imaging (23), it is of interest to consider what 

the equivalent map would be when a Gaussian model as opposed to a Lorentzian model is 

employed. Fig. 6 shows the familiar R2* map calculated assuming a Lorentzian model (with 

R2* = R2 + R2′) as well as a “σ*” map calculated assuming a Gaussian model (with σ* = R2 

+ σ). In both cases the relevant width parameter of the frequency distribution has been added 

to the irreversible relaxation rate R2. The two images in Fig. 6 are windowed identically and 

share similar features though with somewhat larger values for the reversible + irreversible 

transverse relaxation parameters obtained for the σ* maps.

Finally, we examine data from the putamen and pallidum, iron-containing structures studied 

in the past with GESFIDE/GESSE sequences or variants thereof. Fig. 7 shows 1.5T and 3T 

spin-echo images and plots of ln(S) versus time from single voxels in these two structures 

and several points of interest may be made here. Namely, at 1.5T, irreversible relaxation is 

much larger than reversible relaxation in these structures, leading to a decay of signal 

throughout the entire echo and making the choice between Lorentzian (red) and Gaussian 

(green) models largely irrelevant. At 3T, however, reversible relaxation has become as large 

or larger in these structures, resulting in a small growth of signal on the left side of the echo 

and some curvature in the ln(S) time courses. These signals thus appear to be better suited to 

Gaussian than Lorentzian models even given the modest SNR in these voxels.

Discussion and Conclusions

In many regions of the brain distal from air/tissue or air/bone interfaces where irreversible 

relaxation rates were generally larger than reversible relaxation rates, Gaussian and 

Lorentzian fits to the data were of similar quality. In frontal regions of grey matter situated 

near sinuses, however, significant curvature of ln(S) time courses was observed, with a left-

shifted echo peak, characteristic of Gaussian frequency distributions. Indeed, in these cases, 

Gaussian fits significantly outperformed Lorentzian fits in terms of overall ability to 

adequately characterize the shapes of the signal time courses. In these regions, differences of 

∼10% in the irreversible relaxation rates R2 arose between the two types of fit. Presumably, 

with more accurate evaluation of the reversible relaxation process attained with the Gaussian 

fits, more accurate representation of the irreversible relaxation is also attained since both are 

estimated simultaneously from fits to the experimental data.

Within the context of quantitative transverse relaxation imaging, a number of methods are 

available, all with varying degrees of complexity, information content and potential for 

artifact. For example, Carr-Purcell-Meiboom-Gill (CPMG) imaging sequences with non-

selective refocusing pulses and appropriate spoiling schemes, as discussed by Poon and 

Henkelman (24), may be applied in single-slice mode or 3D mode to assess irreversible 

relaxation in great detail. Mackay and colleagues have long espoused this approach for 

studying the multicompartmental nature of brain water as accessed with multiexponential 

fits of CPMG decay curves to separate, for example, myelin-associated water with a very 
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short T2 (approximately 5 to 30 ms) from water within and between brain cells with longer 

T2 values (25). Difficulties with the CPMG approach include long scan times and the 

artifactual effects of stimulated echoes from imperfect refocusing pulses, particularly at high 

field, ultimately involving complicated schemes for correction (21). In addition, one does 

not get a measure of the reversible relaxation rate from CPMG approaches. Furthermore, the 

irreversible relaxation rate, estimated from multiple spin-echoes with short inter-echo 

spacings, can be anticipated to differ from that measured with a GESFIDE/GESSE approach 

that utilizes a single Hahn spin-echo. Namely, contributions from diffusion within the 

gradients and/or background frequency distributions as well as water exchange between 

compartments will be different between these two methods such that, in general, smaller 

irreversible relaxation rates can be anticipated with CPMG versus GESFIDE/GESSE 

methods.

A remarkable aspect of the GESFIDE/GESSE approaches is that, with nuisance terms 

removed via spoiling and/or phase cycling (vide supra), it is difficult to conceive of 

artifactual influences to the data, particularly for GESSE in which the potentially different 

slice profile issues which may affect GESFIDE are avoided (5). The beauty of GESFIDE 

and GESSE approaches thus lies in (i) their relatively brief scan times for multi-slice full 

brain volume coverage, (ii) their relative insensitivity to Bo and B1 artifacts and (iii) the 

simultaneous estimation of both reversible and irreversible relaxation rates. Although we 

have not explicitly considered pure gradient-echo FID sampling in this work, the data we 

have collected on the right side of the spin-echo has implications for such sampling. Namely, 

in regions where we have observed signal time courses strongly indicative of Gaussian 

frequency distributions, multiple gradient-echo sampling following a single excitation is 

expected to show similar curvature. A complete comparison of how the second half of spin-

echoes collected at 50 ms or longer compared to FID sampling, in which presumably 

myelin-associated water also contributes (26), is beyond the scope of this work but is 

certainly worthy of further attention within the context of quantitative transverse relaxation 

studies of the brain.

Finally, we note that we have to date only focused upon magnitude image data but that the 

time course of the phase data through a spin-echo as sampled with gradient-echoes could 

also be of value in spatially mapping the central frequencies (wo) of the distributions and 

possibly correcting for strong background gradients (27). In this context, GESFIDE/GESSE 

sequences might be employed in a manner similar to that which has been demonstrated with 

asymmetric spin-echo sequences, an early version of which was used to demonstrate spin-

echo time courses indicative of Gaussian distributions in excised rat lungs (28), with more 

recent versions adapted for iron deposition studies (29,30).

In conclusion, our studies show that modeling the time course of spin-echoes in some 

regions of the brain with GESFIDE/GESSE type sequences may be better performed with 

Gaussian rather than Lorentzian models of the underlying frequency distributions 

responsible for reversible relaxation. We further propose that, in this manner, more accurate 

(or, at least, less artifact-prone) values for the irreversible relaxation rates R2 may be 

obtained, particularly at higher fields such as 3T and above where reversible relaxation 

effects become more prominent.
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Appendix

Bloch Equation Tools

We have used only three mathematical tools to perform the Bloch equation single 

isochromat analyses in each of the pulse sequence segments discussed above. These are two 

rotation matrices representing the effects of RF pulses along the x- and y-axes of the rotating 

frame. For the time in between these pulses, a free precession/relaxation matrix with the 

addition of a vector component to account for longitudinal spin-lattice relaxation was 

employed.

The following two rotation matrices are used to represent the effects of RF pulses with flip 

angle θ along the x- and y-axis of the rotating frame, respectively:

1 0 0
θx = 0 cos θ sin θ

0 − sin θ cos θ
[A1]

cos θ 0 sin θ
θy = 0 1 0

− sin θ 0 cos θ
[A2]

Apologies to purists who like their rotations to have a strictly « positive » bent as in the latter 

case the matrix represents a negative rotation about the y-axis.

The free precession/relaxation (PR) plus longitudinal relaxation between pulses, for time t, 

is taken care of using

PR =

cos (wt) exp ( − R2t) sin (wt) exp ( − R2t) 0
− sin (wt) exp ( − R2t) cos (wt) exp ( − R2t) 0

0 0 exp ( − R1t)
+

0
0

moo(1 − exp ( − R1t))

[A3]
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Spoiling Considerations

Spoiling/crushing in a spin-echo sequence in which the flip angle β of the refocusing pulse 

deviates from a perfect 180° is commonly performed and consists of sandwiching the 

refocusing pulse between a pair of unipolar field gradient pulses. We consider this 

phenomenon by analyzing a 90y – τ1 – τs – βx - τs – t sequence in which a gradient pulse of 

amplitude G is applied along the z direction during the τs periods. Assuming that the steady-

state magnetization prior to the 90y excitation pulse is all longitudinal and given by mo, with 

the equilibrium longitudinal magnetization being moo, a Bloch equation analysis yields the 

signal S = f + ig as a function of time t during the readout as

S = (mo/2)(1 − cos β) exp ( − R2(τ1 + 2τS + t)) exp (iwo(τ1 − t))
+(mo/2)(1 + cos β) exp ( − R2(τ1 + 2τS + t)) exp ( − iwo(τ1 + 2τS + t)) exp ( − iwz2τS)
+imoo sin β exp ( − R2(τS + t))[1 − exp ( − R1(τ1 + τS))] exp ( − iwo(τS + t)) exp (iwzτS)

[A4]

where R1 and R2 are the longitudinal and irreversible transverse relaxation rates, 

respectively, wo is the frequency offset in the absence of the spoiling gradient and wz the 

position dependent frequency during the spoiling periods ts. Eq. [A4] demonstrates that the 

signal is comprised of three primary terms each with a different dependence on the 

refocusing flip angle β: (i) 1 - cosβ, (ii) 1 + cosβ and (iii) sinβ. The latter two vanish for β = 

180°. However, in the unavoidable absence of this condition, the spoiling gradients are relied 

upon to minimize the contributions from these last two “nuisance” terms. Note that the 

“money” term proportional to (1 – cosβ) has no wz dependence which is why it is unaffected 

by the spoiler gradients. To see the effect of wz on each of the other terms we must consider 

integrating exp(-iwz2τs) and exp(-iwzτs), respectively, over relevant ranges of wz. Let us 

consider spoiling along the slice selection direction and calculate spoiling factors 

SP(G,τs,Δz) for each of the nuisance terms where Δz is the slice thickness representative of 

the distance over which the spoiling occurs. For the (1 + cosβ) term we have

SP(G, τS, Δz) = (1/Δz) ∫
zo − Δz/2

zo + Δz/2

exp (iwz2τS) dz

= (1/Δz) ∫
zo − Δz/2

zo + Δz/2

exp ( − i(wo + γGz))(2τS) dz

[A5]
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where the limits of the integration reflect the slice thickness and the central location zo of the 

slice. Note the normalization of this integral by the slice thickness to insure a unitless 

spoiling factor. Performing the requisite integration we obtain

SP(G, τS, Δz) = exp ( − iwo2τS) exp ( − iγGzo2τS) sin (γGΔzτS)/(γGτSΔz) . [A6]

The spoiling factor for the sinβ term is similar but with τs replaced by τs/2 in Eq. [A6] as 

this term arises from magnetization aligned along the longitudinal axis in between the two 

RF pulses and so does not experience any dephasing during the first τs period. Clearly, the 

larger the gradient G and τs, the greater degree of spoiling but note that choosing the 

argument of the sinc function in Eq. [A6] wisely can also lead to increased spoiling 

efficiency, e.g., by choosing a zero of the sinc. It is interesting to consider asymmetric 

spoiler gradients such as a plus/minus combination about the refocusing in which case the (1 

+ cosβ) term is unaffected and the (1 - cosβ) term is spoiled (proof left to the reader).
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Fig. 1. 
The three frequency distributions considered here—Lorentzian (red), Gaussian (green) and 

uniform (black)—are shown on the top left, each with a central frequency of 0 Hz and width 

parameter (R2′, σ or Δw) of 15 Hz. Also shown are the simulated time-domain signal 

magnitudes (see Eqs. [7-10]) for the Lorentzian (top right), Gaussian (bottom left) and 

uniform (bottom right) distributions, using width parameters of 5 Hz (*), 60 Hz (+) and 110 

Hz (-), an irreversible relaxation rate R2 of 15 Hz and a value of τ = 35 ms. Recall that t = 0 

in Eqs. [7-10] corresponds to the time of the refocusing pulse, and therefore the spin-echo 

occurs at t = τ = 35 ms, which is equivalent to a spin-echo time (measured from the time of 

the excitation pulse) of 70 ms.
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Fig. 2. 
For the potato scanned at 1.5T, images corresponding to five of the echoes from the GESSE 

sequence are shown in the upper row, illustrating the left and right gradient-echo sampling of 

the spin-echo, with the central gradient-echo coinciding with the spin-echo (TE = 55 ms). 

Semi-log plots of signal magnitude versus echo time are shown in blue in the lower row, 

along with Lorentzian (red) and Gaussian (green) fits, for the voxels marked with purple, 

yellow and cyan squares in the upper row. These three voxels are located in the outer layer 

of the potato (lower left plot), the diseased area (lower middle plot) and the central region 

(lower right plot), respectively. Note that only in the diseased portion of the potato does the 

Lorentzian fit outperform the Gaussian fits found within the healthy regions of the potato.
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Fig. 3. 
For the 15 echoes collected at 1.5T on the human subject using the GESSE sequence (with τ 
= 27.5 ms, corresponding to a spin-echo time of 55 ms), a semi-log plot of signal magnitude 

versus echo time is shown in blue on the top left for the voxel marked with a purple square 

in the remaining images. Fits assuming either a Lorentzian or a Gaussian distribution are 

shown in red and green, respectively. Note that a distinct departure from the echo-time 

dependence of a Lorentzian frequency distribution is observed for this voxel, whereas the 

Gaussian distribution model provides an excellent fit to the data. For each voxel, the simple 

“quality of fit” measure described in the Methods section was computed, and this map is 

shown on the bottom left. Intensities near zero (medium gray) in this image indicate regions 

where the two models performed equally well, whereas intensities greater than zero (white) 

indicate regions where the Gaussian model outperformed the Lorentzian. Also shown are the 

irreversible relaxation rate (R2) maps as obtained from the Lorentzian (top center) and 

Gaussian (bottom center) fits, along with the corresponding width maps R2′ (top right) and 

σ (bottom right). All relaxation rates and frequency widths are in Hz.
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Fig. 4. 
For the same subject shown in Fig. 3, results are shown here for data collected at 3T, using 

an implementation of the GESSE sequence with 31 echoes and spin-echo at 80 ms (τ = 40 

ms). As in Fig. 3, a semi-log plot of signal magnitude versus echo time is shown in blue on 

the top left for the voxel marked with a purple square in the remaining images, overlaid with 

Lorentzian (red) and Gaussian (green) fits. The quality of fit map is shown on the bottom 

left, the R2 maps obtained via the Lorentzian and Gaussian fits are shown in the middle 

panel, and the width maps (Lorentzian R2′ and Gaussian σ) are shown in the right panel. All 

relaxation rates and frequency widths are in Hz.
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Fig. 5. 
The spin-echo image for the same slice as in Fig. 4 is shown on the top left (3T data). A 

subtraction image of the R2 maps obtained via Gaussian versus Lorentzian fits is shown on 

the top center, and a subtraction image of the R2 maps obtained via Gaussian fitting versus 

the model-free R2 estimation procedure described in the text is shown on the top right. 

Voxels with intensity greater than 100 were selected from the spin-echo image and the 

corresponding binary mask is shown on the bottom left. For these voxels, the R2 values 

obtained via the Gaussian fit are plotted against the corresponding values obtained from the 

Lorentzian fit (bottom center), showing differences on the order of 5-10%, with the squared 

correlation coefficient r2 = 0.84. On the bottom right, the Gaussian R2 values are plotted 

against the values from the model-free R2 estimates (r2 > 0.99).
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Fig. 6. 
The R2 and frequency width maps shown in Fig. 4 were combined to produce an R2* map 

(left), which assumes a Lorentzian model (with R2* = R2 + R2′), and a “σ*” map (right), 

which assumes a Gaussian model (with σ* = R2 + σ). Both R2* and σ* have units of Hz.
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Fig. 7. 
Spin-echo images at 1.5T (top left) and 3T (bottom left), with single voxels in the putamen 

and pallidum marked with purple and yellow squares, respectively. The middle panel shows, 

for each field strength, plots of ln(S) versus time for the putamen voxels marked on the spin-

echo images and the right panel shows the corresponding plots for the pallidum voxels. Note 

that at 1.5 T, irreversible relaxation is much larger than reversible relaxation in these iron-

containing structures, leading to decay of signal throughout the entire echo and making the 

choice between Lorentzian (red) and Gaussian (green) models largely irrelevant. At 3T, 

however, reversible relaxation has become as large or larger in these structures, resulting in a 

small growth of signal on the left side of the spin echo and in some curvature in the ln(S) 

time courses, which therefore appear more suited to modeling with Gaussian distributions.
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Table 1

Numerical coefficients multiplying mo/2 for the (1-cosβ) and (1+cosβ) terms and moo for the sinβ term for the 

RF phase cycling schemes depicted in the top row.

A) 90y – τ – βy – t B) 90x – τ – βx – t C) 90y – τ – βx – t D) 90x – τ – βy – t

(1 - cosβ) -1 -i 1 i

(1 + cosβ) 1 i 1 i

sinβ 1 i i 1
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