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Abstract 

A recently developed method involving self

consistent pseudopotentials has been used to 

calculate the electronic structure of several Si 

(111) surface models. The r~sults for. (1 x 1) 

unreconstructed, relaxed and unrelaxed surfaces 
with 

are compared A earlier calculations and discussed 

in terms of density 6f states curves and charge 

density distributions. A fully self-consistent 

calculation has been carried out for Hanernan's 

(2 X 1) reconstructed surface model. It is found 

that the important experimental results can be 
using 

understood A this model, and changes in the electronic 

structure occurring after reconstruction are rational-

ized on chemical grounds. In particular infrared 

absorption measurements, photoemission measurements 

and recent angular dependent photoernission measure-

rnents find consistent explanations. 



-2-

I. Introduction 

In this paper, self-consistent calculations of the 

electronic structure of several Si (111) surface models are 

described. The electronic structure of Si (111) surfaces 

has been investigated in a large number of experimental 

. l-9 stud1.es . 
have been 

Most of the experiments A done on surfaces 

having either (2 x 1) or (7 x 7) superlattice structures 

which are the metastable and stable surface arrangements 

of Si (lll) respectively. Very useful results, however, 

have been obtained from theoretical studies on unreconstructed 

(1 x l) surface models.lO,ll,l 2 , 13 In spite of the usefulness 

of these calculations only results obtained from realistic, 
the 

reconstructed surface models are consistent with allAexperi-

mental data. In the present paper two unreconstructed (1 ~ l) 

surface models (unrelaxed and relaxed) are investi-

gated before studying (for the first time by a self-consistent 

method)a realistic (2 x 1) reconstructed surface model. We 

note that self-con-sistency in the present context means the 

self-consistent electronic response to a given structural-

model. Even though calculations of this kind can and have 

been carried out for several structural models (unrelaxed, 

relaxed and (2 x l) reconstructed in our case)_ it is extremely 

difficult if not impossible to compare total energies to 

determine the most favorable surface structural arrangement. 

The reasons for this are two-fold, first it is known experi-

mentally that the surface geometry is strongly temperature 

dependent, therefore free energies involving ent~opies must 

'• 
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be compared. Secondly the total surface energies are large 

quantities which differ only slightly for the different 

geometries. With the present techniques they cannot be 

calculated with sufficient precision to yield reliable 

results for the energy differences. The present calculations 

as well as all previously existing self-consistent calcula-

tions are therefore restricted to the self-consistent 

determination of the electronic structure in response to a 

given structural model. 

The only other self-consistent approach to the (111) 

surface of S_i 10 11 has been presented by Appelbaum and Hamann ' 

(AH) which like our approach is based on the pseudopotential 

scheme. For metal 

surfaces, pseudopotential calculations by (AH) for Na14 and 

by Alldredge and Kleinman (AK) for Al15 and Li16 have been 

carried out very successfully. In addition to the specific 
with 

problems connected A a self-consistent treatment, the main 

difficulty arises from the 
treating 

absence of periodicity inl\the surface case. 
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AH solve this problem by expanding the 

electron wavefunction in a mixed representation i.e. two-

dimensional plane waves to account for the periodicity 

parallel to the surface multiplied by functions depending 

on the remaining spatial coordinate, z, perpendicular to the 

surface. In this mixed rep~esentation 

the Schr~dinger equation becomes a set of coupled 

differential equations in the spatial coordinate, z, which 

can be integrated stepwise numerically obeying appropriate 

.boundary conditions between the vacuum and a matching plane 

somewhere in the crystal. Numerical problems and instabilities 

however, turn this physically appealing concept into a rather 

involved procedure. 

AK also start with a mixed representation, however use 

a series of analytic trigonometric functions describing the 

z-variation of the wavefunction perpendicular to the surface. 

Retaining a finite number of these periodic functions is 

equivalent to periodically ~epeatihg the surface (or better 

the . thin film). If these films are spaced sufficiently far 

enough apart from each other and if they are sufficiently 

thick, their surfaces can be regarded as non-interacting and 

representative of the true crystal surface. More precisely, 

AK expand the z-variation of the wavefunction in a truncated 
cosine 

set of· trigonometric sine.and A functions which individually 

all vanish half way between the films. We believe that these 

specific boundary conditions, which are not strictly imposed 

t 

... 
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by the physics of the system may result in slow convergence 

behavior Slnce they add an artificial syiT~etry to the problem. 

Our method in contrast to AK's app~oach uses a set of 

periodic, trigonometric functions with arbitrary rather 

than fixed phases. 

Using this basis set our procedure 

is then completely equivalent to placing the film in a 

periodic array and expanding the wavefunction in plane waves 

in the usual form as for bulk calculations. The most appealing 

feature of the approach is that the pseudopotential method 

(EPM) 17 ln its simple standard form can now be applied. In 

particular, non-local potentials can easily be incorporated 

(which is not evident in AH's method) andexperience e.g. 

about convergence of wavefunctions gained in calculations 

18 of bulk layer crystals can be used. The method adopted 

for the present study of the elect~onic structure of Si (111) 

surfaces however goes beyond the standard EPM through the 

requirement of self-consistency. As reported in earlier 

letters13 , 19 the method may be applied to various kinds of 

local configurations like atoms, molecules, impurities, 

vacancies, one-dimensional chains, two-dimensional layers, 

surfaces or interfaces. The disadvantages and also the 

ultimate limitations of the method in dealing with compli-

cated systems is connected to the large number of plane waves 

required to describe the systems' wavefunctions. The use of 
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symmetry adapted combinations of plane waves is a helpful 

tool in dealing with this problem. The remainder of 

this paper will be organized as follows. In Section II 

the various steps in the self-consistent calculations are 

discussed in detail. The results for the electronic structure • 

of unreconstructed, relaxed and unrelaxed Si (111) surfaces 
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are presented 1n Section III. Section IV contains the 

discussion of results obtained for a (2 x l) reconstructed 

surface model. In the final Section V the main results are 

summarized and some concluding remarks are given. 

II. Calculations 

In this section a detailed description is given of the 

self-consistent calculations, carried out on several Si (lll) 

surface models. The method has been described briefly 

19 13 before, ' and mentioned in the introduction of the 

present paper. The essence of our method of calculation 1s 

to retain (artificial) periodicity perpendicular to the 

surface. In other words a large elongated unit cell is 

defined .which in two dimensions is spanned by the shortest 

lattice vectors parallel to the surface i.e. for the 

unreconstructed surface, hexagonal lattice vectors with the 
0 . 

length of 12/2 a , where a = 5.43 A is the lattice constant 
c c 

of bulk Si (the 2 x 1 reconstructed case will be discus~ed 

later) and by a long c-axis ext~nding over M atomic layers 

and N layers of empty space. The numbers M and N havB to be 

chosen such that (a) the film of material is thick enough 

to effectively decouple the two surfaces on each side of 

the film and (b) the film surface potential can decay into 

the "vacuum" without perturbation arising from other 

periodically displaced films. Various test calculations 

showed that films of M = 12 atomic layers separated by N - 4 

layers of empty space resulting in a lattice constant 
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5 c = 2 13 ac fulfill these requirements well for Si. The 

problem thus consists of self-consistently solving the 

electronic structure of a "periodic" system whose hexagonal 

unit cell with the above mentioned dimensions contains 12 

Si atoms (for the unreconstructed surface). Proceeding 

ln the standard manner we expand the electron wavefunction 

in plane waves with reciprocal lattice vectors, G: 

(l) 

In order to account well for the 11 structure" in the large 

un~t call (i.e. the individual atoms or bonds) this 

expansion has to be carried to sufficiently high G-vectors. 

2 A kinetic energy cut-off E1 = IG I z 2.7 ryd, which is 
-max 

independent of the size of the unit cell was ·chosen in 
. 18 . . . 

accordance with earlier bulk calculations on layer crystals. 

This cutoff which corresponds to a cutoff close to (220) 

in cubic bulk Si, yields about 160-180 plane waves up to 

(0,0,12) which allow sufficient variation of the wavefunctions 

inside the unit cell and .at the surface. The variations of 

the calculated total charge inside the film can be compared 

to bulk charge densities of Si calculated with much larger 

cut-off energies. Typical differences are of the order of 

20% in the peak values of the charge distribution. To 

improve the energy convergence another 340 plane waves are 

included via Lowdin's perturbation scheme17 which corresponds 

to a second cutoff at E2 = 6.0 ryd. We would like to mention 

that the decay of the wavefunction into the "vacuum" does 



. . 

not represent a particular problem in this context. In fact 

the wavefunctions at the surface decay into the vacuum over 

about the same length ~s do wavefunctions in the bulk of 

very covalent crystals (e.g. bulk Si or layer compounds) 

decay along certain (no-bond) directions. This can e.g . 

be inferred from the results,of AH which because they are 

obtained by real space integration at the surface should be 

fully converged. 

No group 

theoretical simplifications were incorporated into the present 

calculations, since it was desirable to solve Schrodinger's 

equation for general ~-points in the two-dimensional 

(hexagonal) Brillouin zone. The only remaining symmetry 

operation which would leave these k-points invariant would -
be a reflection parallel to the surface plane which however 

is not present in the n3d group of the Si (111) films. 

The expansion of the wavefunction leads to a matrix 

eigenvalue equation of the usual kind 

~~ (H§,§' - Eo§,§' )a~<§') = o 

17 which is solved by standard methods. The Hamiltonian 

matrix elements are of the form 

' 

(2) 

( 3) 

where VPS(~,~') represents a general pseudopotential matrix 

element. 
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The present calculations are restricted to the use of 

local pseudopotentials which are known to yield very satis-

factory results for bulk Si. The self-consistency loop was 

entered with an empirical potential 

V (G) 
emp - = S(G)Vat (I Gj) 

- emp -
(4) 

where 

S(G) 
1 M -iG·T· (5) = - l: e - _l 
M 

"[. 
-l 

is the structure factor describing the atomic positions in 

the "large" unit cell and where Vat C!Gj) are form factor -emp - · 

values derived from a continuous curve of the form 

V(q) = ( 6) 

The four parameters a. in Eq. 6 which are given in Table 1. 
1. 

were determined by fitting V(q) to 3 form factor values for 

bulk Si V(lll) = -0.2241 ryd, V(200) = 0.0551 ryd, V(3ll) = 

0.0724 ryd and renormalizing it for the different unit cell 

volume. Some continuous extrapolation of the kind of Eq. 6 

1s necessary to obtain form factors for the "new" G-vectors 

of the surface problem. While the shortest G-vector in 

bulk Si (111) has the length of l.osa.u., in the surface 

problem G-vectors as short as 0.14a.u. are needed. The 
Eq. ( 6) 

empirical potential 1\ 1s very uncertain at these small 

G-vectors and large changes are expected in the course of 

self-consistency. The long-range potential fluctuations 

corresponding to these small G-vectors are absent in a 

_,. 
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bulk Si crystal. In the surface case they are important 

as they form the surface potential barrier and strongly 

determine work functions and ionization potentials. The 

solutions of the eigenvalue problem, .Eq. (2), are the energies 

E (k) and the pseudo wavefunctions defined by Eq. 1. These 
n -

quantities were evaluated at 1 28 ~-points in the irreducible 

part (1/12) of the two-dimensional hexagonal Brillouin zone. 

This relatively large number of sampling points was chosen 

rather than one or several "special" ~-points to precisely 

determine the Fermi level and the total valence charge. 

The unreconstructed Si (111) surface is metallic since 

the Fermi level falls within the "dangling bondtr surface 

band. In this surface band, occupied and unoccupied states 

differ in their electronic charge distributions which justifies 

the "fine" sampling of the Brillouin zone. In the case of 

"true" semiconducting surfaces as unreconstructed (110) 

zincblende surfaces or (2 x l) reconstructed (111) Si surfaces, 

we believe calculations based on a few special k-points will 

yield good self-consistent results. To determine the Fermi-

level, the density of states, D(E) was evaluated using the 

method of Gilat and Dolling20 with the necessary energy 

gradients derived by ~AE techniques. Once the Fermi level 

EF was known the total valence (pseudo) charge density p(~) 

could be evaluated. 
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Once the 

valence charge p(E) is known in terms of its Fourier compo

nents p(G), the Hartree-Fock type screening potentials VH 

and VX can easily be evaluated. VH is the repulsive Coulomb 

potential seen by an electron and generated by all the valence 

~lectrons. It is defined by Poisson's equation 

(7 ) 

and it can be written as a Fourier series 

( 8 ) 

with 

'" i 



The divergence of VHC§l for 1§1 + 0 is physically irrelevant 

since it is exactly cancelled by the ionic potential 

d b h . . s. +l.J. • ( 11 h generate y t e pos1t1ve 1 1on cores avera c arge 

neutrality)~ We can therefore arbit~arily set VHC§=O) = 

v. (G=O) = 0. Numerically, however, the divergent character 
1on -

of VH(G_) (and v. (G)) for small G-values poses stability 10n - · _ 

problems as we shall discuss l~ter. The non-local Hartree-

Fock exchange potential, VX(~,~'), which if added to the 

Hartree potential VH(~} canc~ls the electron self energy 

contained in VH(~), has been approximated using the statis

tical exchange model of Slater. 21 It thus has the local form 

V ( ) - 3 2( 3)1/3[ ( )]1/3 
X r_ - -a e --- . p r 

81T -
( 9 ) 

In the present calculations the value a = 0.79 1s used in 

accordance with AH which brings Slater's exchange in agree-

. h w· ' 22 · 1 t' f 1 th ment w1t 1gner s 1nterpo a 1on ormu a at e average 

valence charge density of Si. The function [p(r)J 113 has 

· iG·r 
been obtained by evaluating p(r_) = r p(G)e - - at a three-

G -
dimensional grid of N - 10,000 ~-points sampling the real 

space unit cell. The cube root has then been taken at each 

individual r-point and the resulting function [p(r)J113 has -
been transformed back into Fourier space according to 

[ ( )]1/3 -iG·ri 
p r. e - --l . 

(10) 

The precision of this procedure can easily be tested by 

omitting the step at which the cube root of p(r.) is taken. 
-l 

The final p(G) should then be identical to the initial values. -
The exchange potential then has the form 
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(ll) 

The exchange potential is an absolute potential which approaches 

zero in the vacuum as the charge goes to zero. p113 CG=O) 

has a finite value and is essential in determining the absolute 
the 

value of A potential. The sum of the two potentials VH(~) 

and VX(~) yields the electronic screening potential 

(12) 

and is at each step in the self-consistent loop evaluated 

from the total valence charge. 

After initiating the calculations with an empirical 

potential V (Eq. 4), the self-consistent loop is continued emp 

by adding the screening potential V to an ionic potential screen 

V d h S · + 4 · · Th . . d . generate by t e 1 10n1c cores. lS 1on pseu o-
lOn 

potential contains in addition to the exchange a, the only 

parameters of the self-consistent calculation. First, 

there are the ,atomic positions in the surface which enter 

V. via a structure factor given by Eq. 5. In addition to 
lOTI 

the structural model, the individual atomic ionic potential 

is also based on a parametrized model. Assuming that to first 

order the ion cores do not change in the free ion, in the 

bulk crystal or in the surface, an atomic model potential 

which was fit to atomic term values (as done by Heine and 

Abarenkov 23 ) has been used 1n our calculation. One important 

(but not sufficient) check on the quality of this potential 

is to use it to perform a self-consistent Si bulk calculation. 

This test lS not sufficient, since bulk calculations do not 
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probe the long range Coulomb tail of ionic potentials. In 

the case of surfaces, however, this tail is of importance. 

On the other hand, the Coulomb tail is model independent and 

results in a l/q 2 behavior of the Fourier transformed 

potential for small wavevectors. 

The repulsive cores of the ionic model potentials 

£itted by Hein~ and Abarenkov to atomic term values are 

non-local or ~-dependent. In the present calculation a 
·' 

local, "on Fermi sphere" approximation was used in deriving 

the Fourier transform. This Fourier transform was fitted 

to a four parameter curve of the form · 

t al 4 
v~on(q) = ~ [cos(a2q)+a3]ea4q 

·q 
. (13) 

The values of these four parameters are given 1n Table 1 .. ·. 

The potentials are normalized to an atomic volume of 169. (a.u. )
3 

and the units are ryd. if q is eritered in a.u~ Equation 15 

behaves like l/q2 for small q representing the Coulomb tail 

arid decreases exponentially for large q allowing a definition 

f bl ff 3 f S. 4+ A t. d o a reasona e cuto qc ~ a.u. or 1 · . s men 1one 

above, self~consistent Si bulk calculations based on this 

ionic pseudopotential yield a band ~tructure in excellent 

. . . l . 24 agreement w1th the most recent emp1r1cal calcu at1ons. -~ 

The most important electronic transition energies are repro-

duced to within ±0.1 eV. The total bulk valence charge. 

derived from this self-consistent bulk calculation compares 

very favorably with the empirical charg~ densities of Walter 

25 and Cohen. The values of charge densities in the bonds 
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change from 25.5 to 25.8 electrons per unit cell and at the 

atomic sites from 7 to 5.5 which results from a more 

repulsive self-consistent potential at the atoms. 
n = 

The input poten~ials for stepsAl and 2 of the self-

consistent loop then become 

v~l)(r) = v (r) 
1n emp -

( 2) . . (l) 
V. (r) = v. (r) + V .. (r) 

1n - 10n - screen -
( 14) 

Note that~ while V (r) and v. (r) are linear super-
emp - 10n -

positions of atomic potentials, all other potentialscV(n) 
screen 

d V (n+l) ( l) f l f d an . n > are o a more genera orm an can no ln · 

longer be factorized into structure factor times form factor. 

This fact accounts for the non-linear nature of the dielectric 

screening and results in the existence of "forbidden" 

reflections in the self-consistent potential. 

Since the potential V (r) was determined empirically 
emp -

for Si bulk crystals, it is not expected to yield a very 

good screening charge for a surface described by the ionic 

cores. V~ (r). In fact v~ 2 )(r) results in a very different 
. 10D - · 1n -

. (l) 
eigenvalu~ spectrum and charge than does Vin (~) and any 

further:. steps in the self-consistent loop based on a 

straightforward extension of Eq. 14 would be unreasonable 

and not 6onverge. This very unstable behavior of the self-

consistent potentials in particular for the small G-vectors 

has already been described by Lang and Kohn
26 

and by AK. 16 

In agreement with these authors we also find that relaxed, 

modified versions of Eqs. 14 which compute the input potential 
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of stage (n+l) from a linear mixture of input and output 

potentials of stage (n) does not result in a convenient 

method to attain rapid convergence for the surface problem. 

In the present calculations these 

instabilities were dealt with by computing adj~sted input 

potentials V~n)(G) for n > 2. from preceding input and output 
1n -

potentials individually for each small G-vector. -This can 

best be done by inspecting V t versus V. graphs separately ou 1n 

for each small G. Even though the various Fourier campo-

nents are not independent, this procedure helps to reach 

convergence fairly rapidly. Mathematically the instabilities 

are reflected in rather steep curves (with negative slopes) 

of V t versus V. , 1.e. very small changes in V. result ou 1n 1n 

in large overshoots in Vout" For higher ~-vectors, 1§1 > 

la.u., no instabilities occur and- convergence is easily 

reached. Because of the above mentioned instabilities and 

difficulties in determining long range potential fluctuation~, 

wbrk functions and ionization potentials are 

to obtain cor:r;~ctly__by -~ur _method. 

difficult 
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III. Results for Unreconstructed Si (111) Surfaces 

Clean unreconstructed Si (111) surfaces are known to be 

thermodynamically unstable below 900°C. 1 Stability can be 

7 reached at lower temperatures by adsorption of adatoms. 

Nevertheless the clean unreconstructed surfac~ presents an 

. . . 10-12 
excellent model for the theoretlcal study of surface effects 

and results obtained for it can be compared to subsequent 

more elaborate (reconstructed) surface calculations. Our 

study of the Si (111) surface therefore starts with the 

clean, unrelaxed, unreconstructed surface, in which all 

surface atoms remain at their exact "bulk" positions. In a 

second ("relaxed") model the outermost atomic layer was 
. 0 

rigidly relaxed inwards by an amount of A = 0.33 A as 
. 10 

proposed by AH. In Fig. 1 the crystal structure of Si is 

viewed in perspective along the [110] direction. The [111] 

direction is vertical. A horizontal (111) surface is obtained 

by cutting all vertical bonds in a plane. 

An excellent overall impression of the behavior of the 

electronic states at the Si (111) surface can be obtained 

by considering the total, self-consistent valence charge 

distribution, as presented in Fig. 2 for the unrelaxed surface 

model. The figure shows charge density contours in a (110) 

plane cutting the (111) surface at right angles (see Fig. 1). 

The plotting area starts midway between two films and extends 

about 4 1/2 atomic layers into the bulk. The atomic 

(unrelaxed) positions are indicated by dots. Moving deeper 

into the crystal, the charge distribution closely resembles 
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the Si bulk charge densities; near the surface, it decays 

rapidly into the "vacuum". This rapid decay assures the 

required "vacuum" and hence the decoupling of the films~ 

No surface states can be recognized on this plot, since only 

a small number of them exists in a continuum of decaying 

bulk-like states. It is instructive to compare the charge 

distribution deeper inside. the crystal to the standard, 

highly convergent Si bulk charge densities of Walter and 

25 
Cohen. These bulk charge densities which were derived 

from wavefunctions including about 90 plane waves up to 

G = (331) 

bulk unit 

2~/a have values of 25.5, 7 and ll electrons per c 

cell volume n = a 3 /4 for the bonding site, the c 

atomic site and the antibonding site respectively. Due to 

the lower degree of convergence in the present su~face 

calculations the charge density reaches values of 20, 9 and 

12 at the respective sites. This lack of charge ''modula-

tion" which amounts to about 25% at the bonding sites results 

in an error in the exchange potential (-p113 ) of at most 8% 

at the bonding sites. We believe that this range of 

uncertainty in the potential or charge is acceptable and 

does not influence the results more than other conceptual 

uncertainties like the choice of the factor a scaling Slater's 

exchange potential. The total charge density can also be 

compared ~ith results obtained by AH for a relaxed Si (111) 
10 . 

surface. (The outermost atomic layer has been relaxed 
0 

inwards by 0.33 A.) Scaling their charge contour plot by 

the volume n the values 20, 3 and 10 (±2) are obtained for 
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the respective sites. Their particularly low value at the 

atomic site might result from a stronger repulsive core 

potential. 

of 
In Fig. 3 contour plots are presentedA the self-consistent 

pseudopotential giving rise to the valence charge discussed 

above and of the empirical starting potential. The potentials 

are displayed ln the same plane as the charge ln Fig. 2' 

with values given ln rydbergs. Self-consistency was reached 

~Ji thin 0.01 Ry) after 5-7 steps. Normalized to approach 

zero in the vacuum the potential values for the self-

consistent and empirical potentials are -1.8 C-1.8) at the 

bonding site, +0.8 (+0.1) at the atomic site and -1.6 (-1.0) 
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at the antibonding site re~pectively. The self-consistent 

potential at the bonding sites differs slightly for the 

different bonds, thus caus1ngsome asymmetries 1n the bond 

charge distrioutions. Note the more 

repulsive core of the self-consistent potential resulting 

from the model ion potential. used. As 

mentioned earlie~ both potentials lead to very similar bulk 

energy spectra·and bulk charge densities. The self-

consistent potential of AH for a relaxed surface model 

reaches values of around -2.2, >0.2 and -1.6 at the bonding 

site, atomic site and antibonding site respectively. This 

is in good agreement with our self-consistent potential 

except possibly at the atomic site where the AH value is 

not explicitly given in ref. 10. 

To illustrate the various contributions to the total 

self-consistent potential in Fig. 4b, the potentials V. (z), · 1on 

VH(z) and VX(z) averaged parallel to the surface are plotted 

as a function of the coordinate z perpendicular to the surface. 

Due. to their strong long-range Coulomb character V. and VH 10n 

show only small short range fluctuations compared to their 

absolute values. V. rises about ao rydbergs over the last 1on 

six atomic layers and forms a strong surface barrier. It is 

very delicately balanced by the screening potential VH 

leaving a weak attractive net potential with fluctuations on 

the scale of interatomic distances of the order of 0.5 rydbergs. 
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Strictly speaking only the sum of VH and V. lS physically 
lOTI 

meaningful; the individual potentials diverge as !GI-! . 
- m1n 

The sum is added to the exchange potential 

VX which is of comparable strength and modulation. The 

resulting total self-consistent potential is indicated in 

Fig. 4-a. In this figure the original empirical_starting 

potential lS superimposed to demonstrate the change- in the 

potential occurring because of the self-consistency procedure. 

While inside the crystal the two potentials V (z) and 
~ emp 

vsc(z) are almost identical (the potential differences visible 

in Fig. 3 cancel almost exactly after averaging parallel to 

the surface), the self-consiste~t potential vsc(z) is somewhat 

deeper at the outermost atomic layer and exhibits a higher 

surface barrier of about 0.2 Ry. These changes 

localize the charge more in the surface, stabilize the surface 
I 

states and increase the ionization potential. In fact, using 

the empirical starting potential, charge originating .from 

states at the top of the valence bands was leaking out into 
confined back 

the "vacuum". -This charge was 11 -- to the surface by the 

stronger potential obtained in. course of self-consistency. 

Though the differences between the empirical and self-

consistent surface potentials seem to be relatively small, 

they are essential to stabilize the surface. An ionization 

potential of about 4.0 eV has been calculated. As mentioned 

earlier this quantity is difficult to determine precisely 

with our method and the calculated value is only approximate (±leV). 

Figure 5 displays the two-dimensional band structure of 

a twelve layer Si (111) film based on the self-

consistent potential for the relaxed surface model. The 

band structure is presented for surface k-vectors ~~I between 
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in the hexagonal Brillouin zone 
f(O,O), ~(1/2,0), K(l/3,1/3) and f(O,O~. The 24 valence 

bulk 
bands can be roughly divided into 3~groups, representing 

the 6 low-lying s-like bands, 6 bands of mixed s- and p
separate 

character, 11 p-like bands and oneAp-like dangling-bond 

band in the fundamental gap. The three groups of bands, 

would with increasing film thickness approach 

continua separated by several gaps in which most 

of the surface states appear. Let us first discuss the 

dangling bond bands in the fundamental gap. Suppose a Si 

bulk crystal is cut every 12 layers parallel to the (111) 

plane and the pieces are gradually separated from each other. 

With increasing distance one state each would split away 

from both the valence-bands and .the conduc-

tion bands to meet about at half-gap to form th~ two fold-

degenerate dangling bond surface band corresponding to the 

broken bonds on either side of the Si films. In Fig. 5 

the two bands are not exactly degenerate corresponding to 

some weak interaction (-0.2 eV) still present between opposite 

surfaces of the 12 layer films. If the surfaces are un

relaxed and unreconstructed the two dangling bond bands show 

almost no dispersion parallel to the surface, i.e. they would 

appear extremely flat in the band structure plot. If the 

outermost atomic layer is relaxed inward, the dangling bond 

band shows an increased dispersion parallel to the surface 
slight 

together with aA overall shift of the bands (see Fig. 5). 

·This effect shall be discussed later in more detail in 

relation to charge densities and densities of states. 
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In contrast to the dangling bond surface band which exists 

throughout the two-dimensional Brillouin zone independent of 

relaxation, other surface states show up only in parts of 
and some 

the two-dimensional Brillouin zone A depend on relaxa.tion. 

They are indicated at the high symmetry points r, K and M 

by dots in Fig. 4. A region of particular interest is 

around the point K. S~rongly localized surface states exist 

in the gap between -7 eV and -9 eV independent of surface 

relaxation. These states merge into the continuum at M and 

become strong surface resonances. A similar behavior is 

found around K between -2 eV and -4 eV. Even though the 

existence of these surface states does not depend upon 

relaxation, their exact energy position is a function of 

relaxation. Other surface states appear only after relaxa-

tion like the splitting away of the lowest valence band pair 

between -9.5 eV and -12.5 eV throughout the zone. All these 

findings have qualitatively also been obtained in a recent 

. . • . 27 
analyt~cal model calculat~on by Yndura1n and Fal~cov. 

Comparison with a tight-binding surface band structure 

calculated by Pandey and Phillips12 (PP~ shows qualitative 

agreement, though quantitative differences exist in energy 

and number of surface states. In particular five surface 

states are found 1n our calculations at K which agrees with 

the calculations of Yndurain and Falicov whereas PP only 

report four surface states. The existence of more than four 

surface states at a given vector~~ 1 indicates that 

bonds deeper in the crystal, not connected to the outermost 
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layer are strongly affected by the surface. The character 

of the various surface states will be discussed later in 

terms of charge density distributions. 

Density of states curves for the self-consistent results 

for the unrelaxed and relaxed surface'models are presented 

in Fig. 6. Since these curves represent the total density 

of states for a 12 layer slab, their overall features 

strongly resemble those of the Si bulk density of states. 

The results for the (2 X 1) reconstructed surface (insert) 

are obtained for a 6 layer slab. They shall be discussed 

in the next se-c:tion together with 12 layer (2 x 1) reconstructed 

surface calculations. To locate structures associated with 

surface states (no distinction is made in the present case 

between )Pna fide surface states and strong surface resonances) , 

we investigated the charge density distributions for small 

energy intervals scahning the entire width of the valence 

bands. One problem which arises when simulating surfaces 

by finite slabs of atoms periodically repeated, is spurious 

structure in the density of states due to the "unreal" 

periodicity of isolated slabs perpendicular to the surfaces. 

Spurious two-dimensional singularities occur. Their number 

increases with the number of atomic layers per slab. For the 

"true" surface case these singularities become "dense" and 

disappear. For finite slab calculations all structures in 

the density of states have to be investigated in this spirit. 

Similar problems are encountered when simulating an amorphous 

28 material by large unit cells periodically repeated. The 
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locations of surface states and strong surface resonances 

(for the relaxed case) are iridicated by arrows 1n Fig. 6. 

Their labelling corresponds to ~he regions around high 
from 

symmetry k-points in the two-dimensional Brillouin zone,;.which 

they originate (see dots and labelling in Fig. 5). The 

surface state energies are given in Table 2 and compared 

to experimental data obtained from UPS m~asurements on 

(2 x 1) and (7 x 7) reconstructed surfaces. Also indicated 

in Table 2 are the results of the self-consistent pseudo-

potential calculation of AH and of the empirical tight-

binding calculation of PP on unreconstructed relaxed Si 

(111) surfaces. 

Let us now examine the various surface bands in more 

detail. When relaxing the outermost atomic layer rigidly 
0 

inwards by an amount of 6 = 0.33 ~a surface band (2-fold 

quasi-degenerate in our model originating from the two 

surfaces of the slab) throughout the entire zone splits off 

between -11 eV and -13 eV. It essentially corresponds to 

s-like states with some p admixture 0entered on the two 
z 

/' 
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outermostt atomic layers) which decay into the crystal.· A 

typical charge density plot of these surface states near r 

Cr 1b) at about -12.7 eV is shown in Fig. 7 (top). As one 

follows this surfac~ band from r to M to K the charge center 

moves somewhat back into the crystal, e.g. the charge 

distribution of the state Klb' at about -9.8 eV is mostly 

s-like on the second atomic layer with charge extending 
. 

considerably into the "longitudinal" bond between second and 

third atomic layer. A similar situation is found at M for 

the state Mlb' at about -10.7 eV. At these two point~ (K 

and M) the predominant s-like charge on the outermost layer 

is transferred to the surface states K1b and Mlb at somewhat 

higher energies around -8.5 eV. These states (in particular 

K1b) are strongly localized on the outermost layer see Fig. 8 

(bottom) and decay into the crystal being localized at every 

other layer (1,3,5 etc.). Roughly it can therefore be said 

that at K the state Klb' at -9.8 eV has s-like charge on 

the second, fourth, etc. atomic layer, decaying into the 

bulk, whereas the state K1b at -8.5 eV has decaying s-like 

charge at the first, third, etc. atomic layer. 

The next surface states or strong surface resonances 

appear only at considerably higher energy and they correspond 

to mostly p-like states with some.s-admixture. Starting 

at rat -1.5 eV (ftb) a 2-fold degenerate (4-fold in our 

case of two surfaces) surface band appears corresponding to 

the transverse back bonds between first and second atomic 

layer; its charge distribution is shown in Fig. 7 (bottom). 
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This band merges into the continuum as one goes from r to M 

where it appears as a strong·resonance. Again a region of 

special interest lS at K. A very similar arrangement to 

the low lying s-states is found for the energies of the 

p-states. The bulk-like states merge into two narrow groups 

of bands separated by a -2 eV gap (see Fig. 5). One surface 
about 

state (K1b,) is found inside this gap atA-2 eV. In constrast 

to the s-like surface state Ktb at -8.5 eV this state does 

not appear midgap; a small potential perturbation might have 

moved this more sensitive p-like state slightly up towards 

the upper group of bulk-like bands. Another surface state 

(Ktb) splits off below the lower group of bulk-like bands 
between 

at -4.2 eV. The resemblance A the s-like and p-like band 

structure at K and an inspection of the corresponding charge 

densities suggest very strong decoupling of s- and p-states 

at K. This kind of dehybridization decreases band disper-

sian, localizes states and favors the formation of surface 

states. In fact it is the special form of the structure 

factor at K which allows separation into s-states centered 

on even or odd numbered layers, longitudinal p-states and 
. . 27 . 

transverse p-states. To support thls statement further we 

note tha:t the charge distribution for the state Ktb at -4.2 

is almost identical to the charge of the states rtb at -1 .. 5 

(see Fig. 7 bottom) and therefore has strong transverse 

character appearlng between the first and second, third and 

fourth etc. layer. The state Klb' at -2.0 eV (see Fig. R 

top) is of longitudinal character, the charge appears in 

eV 

eV 

,,· 
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the longitudinal bonds between the second and third, fourth 

and fifth etc. layer, decaying into the crystal. We would 

like to note that the behavior of surface states being 

localized at alternating atomic layers is not an artifact 

connected with the finite slab ap·proximation; it has analy

tically been confirmed for semi-infinite surface models. 27 

In contrast to r where two transverse back bond states 

exist, at K only one such surface state appears, the other 

having merged into the continuum. Again the situation at M 

is similar to that at K, with smaller gaps, however, and 

surface states merging into the continuumw The preceding 

analysis showed clearly that surface states can 
deeply 

"penetrate'/\ into the longi t~dit;-al bond between second and 
restr1ct1ons 

third layer which puts severel\on the,.size of model clusters repre
senting the surface and which has to be considered in positioning 

a matching plane as used by AH separating the iurface 

region from the bulk. It can be inferred from Fig. 6 that 

inward relaxation strengthens the transverse back bonds and 

therefore lowers the energies of the states rtb and Ktb" 

It weakens the longitudinal back bonds and raises the energy 

of states like K£b'" These effects are also reflected in 

the total charge density. They shall be discussed again 1n 

connection with the ( 2 x 1) reconstructed surf ace·. 

The most prominent surface states are the dangling 

bond states in the fundamental gap. In both the un-

relaxed and relaxed cases, the surface bands are 
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half occupied leaving the surface metallic with a Fermi 

level positioned as indicated in Figs. 5 and 6. A charge 

density plot for the occupied part of this band lS presented 

in Fig. 9. The charge originates from states around M and 

K and exhibits the very pronounced dangling bond character. 

The unoccupied states originate from a region around r and 

show some stronger mixing with back bond states. Though the 

comparative study of the unrelaxed and relaxed surfaces 

yieldsvery useful information about the existence energy 
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positions and energy shifts of surface states, these two 

surface models cannot satisfactorily explain a number of 

experiments. These experiments include various photo-

. . 29 f . . . 1 emlsslon measurements sur ace moblllty studles, photo~ 

conductivity1 and infrared absorption measurements 4 on 

freshly cleaved Si (111) sur~aces, exhibiting a (2 x 1) 

reconstruction. The most important experimental facts which 

cannot be explained involve the surface states in and close 

to the fundamental gap. To gain some understanding of the 

behavior of these states after (2 x 1) reconstruction and 

to find explanations for the various experimental results, 

we have done fully self-consistent calculations on a (2 x 1) 

reconstructed surface model. A detailed discussion of this 

surface model and the results obtained is given in the · 

following section; 

IV. Results for a (2 x 1) reconstructed Si (111) surface model 

Carefully cleaved clean Si (111) surfaces exhibit a 

(2 x l) superstructure as seen from low energy electron 

diffraction (LEED) patterns. At the present time unfortunately 

there does not exist a satisfactory analysis of the LEED 

intensities which would uniquely determine the (2 x 1) 

surface geometry. Any calculation of the electronic struc-

ture of the (2 x 1) surface is therefore necessarily based 

on empirical structural models. The situation is complicated 

by the fact that the (2 x l) reconstructed surface is meta-

stable. It transforms into a more complex (7 x 7) structure 
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upon annealing, which is the thermodynamically stable Si 

(111) surface geometry, or it transforms into the simple 

(1 x 1) structure after adsorption of adatoms. Once annealed 

or contaminated, the (2 x 1) structure cannot be recovered. 

Due to this fact, models for the metastable (2 x l) surface 

cannot easily be established on thermodynamical grounds. 

Various different reconstruction models have thus been 

suggested. 8 Most recent discussions seem to favor the 

formation of the (2 x 1) superstructure by periodically_ 

raising and lowering rows of surface atoms leaving a buckled 

surface. This model for reconstructed surfaces was first 

29 suggested in 1961 by Haneman and later developed by Talo~i 

30 and Haneman. In addition to the periodic raising and 

lowering of rows of surface atoms, in Haneman's model, the 

second layer-atoms are slightly shifted laterally to 

approximately conserve the individual bond lengths of the 

transverse back bonds between first and second layer. The 

situation is schematically indicated in Fig. 10. Without 

' 
the lateral shift of second layer atoms, transverse back 

bonds of different lengths would exist. This modified 

31 Haneman model has recently been proposed by AH. - In their 

model calculatioris done on two differently relaxed (inward 

and outward) (1 x 1) surfaces, the main emphasis has been 

put on th~ existence of stretched and compressed backbonds. 

The subsequent discussion of our results obtained for a 

(2 x 1) Haneman model, however, will show that all essential 

experimental finding~ can be understbod even if the lengths-
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of the transverse back bonds are approximately conserved. 

The stru~tural parameters entering our (2 x l) reconstructed 

surface model are the following: alternating rows of atoms 
o 0 and 

have been raised by 0.18 A and lowered by 0.11 A,Asecond 

layer atoms have been shifted laterally as indicated by 

the arrows in Fig. 10 such as to approximately preserve the 
i 

length of the back bonds. This choice of parameters may 

not represent an optimum 

choice. In particula~, since these parameters represent an 

overall outward relaxation of the outermost atomic laye~, 

some surface states which depend on inward relaxation like 

the states r 1b at the bottom of the valence bands will b~come 

delocalized. Our main interest in this study however is 

the behavior of the electronic states in the vicinity of 

the gap and their dependence on the character of the 

reconstruction (buckling with preserving the length of back 

bonds). The planar unit cell now contains 4 atoms. First 

preliminary calculations have been done on six-layer slabs 

separated by 3 bond lengths of empty space. The corres-

pending density of states in the vicinity of the valence 

band edge, obtained from 72 k-points in the two-dimensional 

Brillouin zone is shown as an insert in Fig. 6. As expected, 

qualitative changes compared to the unreconstructed (1 x l) 

case occur. Doubling the real space unit cell in one 

dimension corresponds to folding back the Brillouin zone 

in certain directions. Thus two surface bands appear 

separated by a gap resulting from the potential perturbation 



-34-

of the reconstruction. This behavior is reflected by the 

density of states in Fig. 6 showing two peaks which now 

correspond to two different bands. In Fig. 6 the density 

of states does not vanish between the two peaks, thus leaving 

the surface semi-metallic. In fact the gap between the two 

surface bands is comparable or smaller than their dispersion. 

We believe that this behavior is an artifact of only 

including 6 layers per slab. The surface states on 

opposite surfaces of the slab_show too much interaction, 

consequently causing the semimetallic behavior.
To obtain 

more quantitative results (2 x 1) calculations with 12 layers 

per ~lab have been performed. Because of the large matrix 

size (about 320 plane waves were included to obtain the 

same convergence as for the unreconstructed cases), the 

self-consistent calculations were based on a two-point 

scheme ((O,O)f and (l/2,1/2)K'). For the final self-

consistent potential several ~ ll-:-poihts along high symmetry 

directions have also been included. A band structure sho~ing 

the bands in the vicinity of the fundamental gap is presented 

1n Fig. 11. The -two dangling bond surface bands are split 

by a gap Df > 0.27 eV throughout the zone. They show some 

dispersion of o~ly about 0.2 eV. The Fermi-level falls 

between the two bands, thus creating a semi-conducting 

surface. To obtain a density of states curve for these bands 

a four term Fourier expansion for the band energy E(~! I) 
has been fitted to the calculated band structure at the four 

~~ 1 -points r, M', M and K', and subsequently evalua~d 

\. 

') 
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over a fine grid of~~ ~-points of the two

dimensional Brillouin zone. The results are shown in Fig. 
are found 

12 (bottom). Two structuresAseparated by about 0.4 eV 
to 

correspondingAthe two surface bands. The lower surface 

band which overlaps with states arising from bulk and other 

surface bands is centered a~ about E = EV = 0. Experimental 
2 3 . 

photoemission data ' show structure at somewhat lower energy 

(E ~ -0.5 eV). Further lowering of the calculate surface 

band and better agreement with experiment can probably be 
using · 

obtained byAa different choice of atomic displacement para-

meters. Our results, however, show the definite trend of 
combined 

splittin~ the dangling bond surface bandsAwith an overall lowering 

because of the buckling structure. 
Also indicated in Fig.· 

12 (top) is a joint density of states (JDS) for optical 

transitions between the lower and the upper ~urface bands. 
in this plot. 

Matrix-element effects have not been consideredA The JDS 
qualitatively 4 

curve can beAcompared to infrared absorption measurements 

(broken lina). A. quantitative comparison is not reasonable because 

of the ad hoc choice of atomic displacement parameters and 
because of probable strong excitonic effects. 
It is also instructive to calculate the charge density 

distributions for states inside the two. peaks in the density 

of states of Fig. 12 (bottom). The corresponding charge 
the 

(or hypothetical charge forAunoccupied upper band) is 

displaye4 in Fig. 13 in a (210) plane intersecting the surface 

at right angle. This plane corresponds to the (110) plane 

of the unreconstructed surface. The buckling ralses the 

surface atom on the left hand side and lowers the surface 
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atom on the right hand side. Due to lateral shifts the 

second layer atoms are slightly moved out of the (210) plane. 

The states show very interesting real space behavior. 

Electrons in states originating from the lower peak labelled 

d are located predominantly on those atoms which have out 

been raised and avoid those atoms which have been lowered. 

Conversely the wavefunctions for unoccupied states of the 

peak labelled d. are concentrated around those atoms which 1n 

have been lowered. The surface ·thus exhibits a (2 x l) 
nearly 

pattern ofAtwo-fold occupied dangling bond states centered 

at every second row of· atoms. Roughly speaking the unpaired 

dangling electron of every second surfac~ atom (in) ls 

transferred to its neighboring atom (out) where it pairs up 

with another electron, thus creating an ionic semi-conducting 

surface. In view of this picture infrared transitions are 

expected to have a very weak oscillator strength because of 

the small wavefunction overlap. In fact, the calculated dipole 
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matrix elements are of the order of 0.05 2n/a and about one c 

order of magnitude smaller than average bulk matrix elements. 

However~ the net charge transfer obtained in our calculation 

is presumably too large and would be decreased by correlation 

effects. These effects can be considerable for bands of 0.3 eV 

width; since they are not included in our calculations, the 
a 

results are ofAmore qualitative nature. It can be seen from Fig. 13 

that the charge distribution of the lower peak (d ~) extends 
OUL 

somewhat into the back bonds. This mixing of states happens 

around the r-point where the lower dangling bond band actually 

overlaps with lower lying bac~ bond states~ In fact some 

of the transverse back bond states Crtb) found at -1.5 eV 

for the unreconstructed surface rise in energy upon recon~ 

struction and fall between 0 and ~o.a eV. At~~ ~-points 

further away from the r-point (K', M', M) the dangling bond 

surfac~ bands have very pure dangling bond character and do 

not show any noticeable mixing with the back bonds which 
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decreas~ in energy to about -3.5 eV. The existence of 

t~ansverse back bo~ding surface states Cor strong surface 

resonances) close to the valence band maximum may explain 

angular photoemission results 9 involving states between 0 

and -1.4 eV. These results show a threefold rot~tional 

pattern as do the transverse back bonding states but 
do not 

the pure longitudinal dangling bond state~. The results 

we obtained for the (2 x l) reconstructed surface can be 

understood on the basis of simple chemical arguments. 

Since our calculations were based on Haneman's model which 

excludes, bond length variations (such as AH propose in 

their model) the various changes 1n the electronic structu~e 

must in first orderare caused by bond angle variations. 

This concept is not new, in fact Haneman's original model 

was designed on this basis. 

The following discussion includes three different bonds 

and their resp~ctive energies i.e. the energies of a state 

whose charges are primarily concentrated in one of these 

bonds: the (longitudinal) dangling bonds d with energy Ed' 

the transverse back bonds bt (Et) between first and second 

atomic layer and the longitudinal back bonds b
1 

CE
1

) between 

second and third atomic layer. 

Let us consider the case of the raised outermost atom. 

In this case the bond angles between the longitudinal orbitals 

and the transverse orbitals are increased wherea~ the bond 

angles among the transverse orbitals are decreased. The 

ideal sp 3 hybridization is consequently changed in such a 
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way as to increase the amount of s-like character in the 

longitudinal orbitals and of p-like character in the trans~ 

verse orbitals. As a consequence the energy £d of the 

dangling bonds d is lowered due to an increased s-admixture. 

The transverse back bonds bt now contain more p-character 

~hich raises their energy Et ftnd weakens the bonds. The 

longitudinal back bonds like the dangling bonds contain 

more s-character which lowers their energy E~ and strengthens 

them. The inclusion of bond-length variations (AH model) 

would result in an additional stretching of the transverse 

back bonds b..._ and a further weakening. In the case of the 
L 

lowered outermost atom the bond angles change the opposite 

way causing a decrease of s-charadter in the longitudinal 

orbitals and an increase of p-character in the transverse 

orbitals. The energy Ed of the dangling bonds d is raised, 

the energy Et of the transverse back bonds bt is lowered 

combined with a strengthening of the bonds (an additional 

bond length contraction would increase this effect) and the 

energy E~ of the longitudinal back bonds b~ is increased 

combined with a weakening of the bonds. Raising and lowering 

of alternating rows of atoms leads in first order to a 

combination of the above effects. The net effect on 

the longitudinal back bonds cannot be anticipated in this 

simple picture. The simple picture apparently underlies our 

self-consistent pseudopotential results. It accounts for 

the following facts: 
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a) the strengthening of the transverse back bonds and 

the weakening of the longitudinal back bonds in the relaxed 

(1 x 1) geometry. (Here the transverse back bonds have also 

been contracted.) 

b) the raising of the dangling bond energy Eb at r ln 

the relaxed (1 x l) geometry. 

c) the more s-like character of the lower dangling bond 

band ln the (2 x 1) geometry as compared to the upper more 

p -like dangling bond band. This can be recognized from z . 
the dangling bond charge having a different asymmetry around 

the outermost atoms in Fig. 13 (top and bottom). 

d) the localization of the lower occupied dangling· bond 

orbita~on the raised atoms and of the higher unoccupied 

dangling bond orbita~on the lowered atoms ln the (2 x l) 
~ . 

geometry. 

e) the raising of the transverse back bond energies Et 
about 

up to~-0.5 eV at r and -3.5 at K' for back bonds connected 

to raised outermost atoms in the (2 x l) geometry. 

V. Conclusions 
. 19 

A recently developed extension of the empirical pseudo-

potential method for the self-consistent treatment of local 

"non-periodic" configurations has been applied to several 

Si (111) surface models. Three different surface models have 

been studied including unreconstructed, relaxed and unrelaxed 

(1 x l) surfaces which also have been investigated by 

10 Appelbaumand Hamann in the only previously existing 
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self-consistent calculation. Their results are basically 

consistent with our calculations. In addition new types 

of surface states corresponding to the longitudinal back 

bonds between the second and third atomic layer are foupd 

and complete density of states curves are presented. A 

buckled <2 x 1) surface model.such as proposed by Haneman 

(with preserved back bond lengths) has been used to study 

the (2 x D reconstructed surface. The salient experimental 

results on (2 x 1) Si (111) surfaces can be understood on 

the basis of this model. Upon reconstructio~ the dangling 

bond band is split and lowered considerably in energy. The 

surface is found to be semiconducting 

producing an infrared absorption peak at low energies. 

Transverse back bonding surface states are found to be 

raised in energy and appear between 0 and -0.5 eV below the 

valence band edge at rand above -3.5 eV at K1
• These 

be the origin of the 
states may A angular dependent photoemission results 

The various effects are discussed on 

chemical grounds in terms of bond angle variations occurring 

with reconstruction. Changes in back bond lengths such as 

1 . d b AH . 31 b . 1 h c a1me y . 1n a recent paper to e essent1a are t us 

not necessary for a satisfactory explanation of spectroscopic 

data. The existence of bond length changes, however, cannot 

be ruled out on the basis of the existing results since both 

bond angle- and bond length variations seem to alter the 

electronic structure at the surface in a similar manner . 
. / 
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Table Captions 

Table 1. Parameters entering Eqs. 6 and 15 to define the 

empirical and ionic Si pseudopotentials. 

Table 2. Calculated energies of surface states and strong 

surface resonances of the relaxed Si (111) surface at r 

(center), K (corner) and M (edge midpoint) of the two

dimensional Brillouin zone. Also indicated are experimental 

(UPS) results for (2 x 1) and (7 x 7) reconstructed surfaces. 

The energy zero is taken at the bulk valence band edge EV. 



0 0 

Table 1 

vat vc:-t 
emp J.on 

al 0. 27 9 -9.917 

a2 2.214 0.791 

a3 0.863 -0.352 

a4 1.535 -0.018 

Table 2 

SCLC AHe ppf experiment 

(lxl) relaxed surface (2xl) (7x7) 

r 1.2 rd 0.88 1.04 

-1.5(2x) rtb -1.95(2x) -1.71(2x) --l.Od 
. a 

-1·5 

-12.7 rLb -12.87 -12.9 -11.7 a . a 
-12.3 

a 

K 0. 5 Kd 0.11 
-0.5 b 

O.la -0.45 c 
-0.6 

-2.0 KTb' . L 

-4.2 Ktb -5.65 

-8.5 KLb -8.35 -7. 5 a 

-9.8 KLb' -9.6 

M 0. 5 Md 0.04 0.17 

-2.6 M~bJ 
-3.1 Mtb -3.55 -3.78 -3.6a 

-8.1 
} MLb 

-8.7 

-10.7 MLb' 

a) ref. 6 ; b) ref. 2 . 
' 

c) ref. 3. 
' 

d) ref. 9 . 
' 

e) ref. 10; f) ref. 12 
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Figure Captions 

Fig. 1. Perspective view of the Si crystal structure 

projected on a (110) plane. The [111] direction is 

vertical. The (111) surface is obtained by cutting 
horizontal 

the vertical bonds in aAplane. 

Fig. 2. Total valence charge distribution for an unrelaxed 

Si (111) surface. The charge is plotted as contours 

in a· (110) plane intersecting the (111) surface at 

right angls. The plotting area starts in the vacuum 

and extends about 4~ atomic layers into the crystal. 

The atomic positions and bond directions are indicated 

by dots and heavy lines respectively. The contours 

are normalized to electrons per Si bulk unit cell 
a 3 c 

volume no = --4- . 

Fig. 3. Contour plot~ of the empirical starting potential 

V (too) and the final self-consistent .Potential VSC emp ~ 

(bottom). The plotting areas are identical to Fi~. 2. 

The potential values are given in rydbergs normalized 

to zero in the vacuum. 

Fig. 4a.. Empirical (Vemp) and self-consistent (VSC) potentials 

averaged parallel to the (111) surface plotted as a 

function of the coordinate z perpendicular to the surface. 

b .. Individual potential contributions adding up to the 

self-consistent potential VSC of F~g. 4a. 

Fig. 5. Two-dimensional band structure of a twelve laye~ 

Si (111) film (relaxed surface model). The energy is 

plotted as a 'function of ~~I in the two-dimensional 



0. U;.·-·. '~.} 0 ·,· .,. 
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hexagonal Brillouin zone. The various surface states 

or strong surface resonances at high symmetry points·. 

are indicated by dots and labelled according to the 

description 1n the text. 

Fig. 6. Density of states curves for the self-consistent 

results on twelve layer films for the relaxed (broken 

line) and unrelaxed (solid line) surface geqmetry. 

Surface states are indicated by arrows and labelled 

according to Fig. 5. Inserted iE the density of states 

1n the vicinity of the fundamental gap for a six layer 

( 2 X 1) reconstructed surface model. 

Fig. 1 . Charge density contour plots for two surface states 

at r . The states crLb) at -12.7 eV form the bottom of 

the valence bands (top figure), the transverse back bonds 

rtb (bottom figure) are located -1.5 eV below the valence 

band maximum~ The indicated charge values are only for 

comparison. 

Fig. 8. Charge density contour plots for two surface states 

at K. The longitudinal p-like back bond orbitals K~b 1 

(top figure)are located at -2 eV while the s-like charge 

K~b localized on the outermost, third, etc. atomic 

layers (bottom figure) has an energy of -8.5 eV. 

Fig. 9. Charge density contour plot of the dangling bond 

state Kd at 0.5 eV around the points M and K in the 

Brillouin zone. 

Fig. 10. Schematic representation of the ideal and (2 x 1) 

reconstructed Si (111) surface. The reconstruction lS 
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done according to Haneman's mode1 23 and leaves the 

surface buckled as indicated by arrows. The slight 

lateral shifts of second layer atoms are also indicated 

by arrows. 

Fig. 11. Two-dimensional band structure around th~ fundamental 

gap for a (2 x l) reconstructed Si (lll) twelve layer 

film. The folded back Brillouin zone is indicated in 

the insert. 

Fig. 12. Calculated joint density of states curve for low 

energy transitions between dangling bond bands of (2 x l) 

Si (lll) (top). Also indicated is the experimental 

absorption £ 2 Cw) as obtained in Ref. ~. The bottom 

figure shows the regular density of states for the two 

dangling bond bands (d. and d t) of (2 x l) Si (111). 
ln ou 

Fig. 13. Charge density contour plots for the dangling bond 

states dout(top) and din (bottom) of 2 x 1) Si (111). 

The charge is plotted in a (210) plane of (2 x 1) Si 

which corresponds to the (110) plane of (1 x l) Si. The 

raised and lo'>-7ered atoms are marked by arrows. 
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Si {111) surface, relaxed 

states at + 0.5 e V (Kd) 
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a) Si (lll) SURFACE, (2xl) RECONSTRUCTED 
·· -- STATES AT 0 eV (dout) 

b) Si (111) SURFACE, (2x1) RECONSTRUCT ED
STATES AT 0.35 eV (din} 

., 
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