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A Bayesian Latent Variable Selection Model for Nonignorable 
Missingness

Han Dua, Craig Endersa, Brian Tinnell Kellerb, Thomas N. Bradburya, Benjamin R. Karneya

aDepartment of Psychology, University of California

bDepartment of Educational Psychology, The University of Texas at Austin

Abstract

Missing data are exceedingly common across a variety of disciplines, such as educational, social, 

and behavioral science areas. Missing not at random (MNAR) mechanism where missingness 

is related to unobserved data is widespread in real data and has detrimental consequence. 

However, the existing MNAR-based methods have potential problems such as leaving the data 

incomplete and failing to accommodate incomplete covariates with interactions, non-linear terms, 

and random slopes. We propose a Bayesian latent variable imputation approach to impute missing 

data due to MNAR (and other missingness mechanisms) and estimate the model of substantive 

interest simultaneously. In addition, even when the incomplete covariates involves interactions, 

non-linear terms, and random slopes, the proposed method can handle missingness appropriately. 

Computer simulation results suggested that the proposed Bayesian latent variable selection model 

(BLVSM) was quite effective when the outcome and/or covariates were MNAR. Except when 

the sample size was small, estimates from the proposed BLVSM tracked closely with those from 

the complete data analysis. With a small sample size, when the outcome was less predictable 

from the covariates, the missingness proportions of the covariates and the outcome were larger, 

and the missingness selection processes of the covariates and the outcome were more MNAR 

and MAR, the performance of BLVSM was less satisfactory. When the sample size was large, 

BLVSM always performed well. In contrast, the method with an MAR assumption provided 

biased estimates and undercoverage confidence intervals when the missingness was MNAR. The 

robustness and the implementation of BLVSM in real data were also illustrated. The proposed 

method is available in the Blimp software application, and the paper includes a data analysis 

example illustrating its use.
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Missing data are exceedingly common across a variety of disciplines such as the 

educational, social, and behavioral sciences. Participants drop out of studies or omit 

responses for a variety of reasons, some of which are benign, but others of which can 

have serious consequences on the validity of a statistical analysis if the missing values aren’t 

dealt with properly. Mainstream missing data handling methods typically assume a missing 

at random (MAR) mechanism, whereby the probability of missingness is only related to 

observed scores (Little & Rubin, 2014). For example, students could opt out of achievement 

testing for reasons related to background variables such as socioeconomic status, language 

proficiency but not to achievement itself. The MAR assumption is reasonable in many 

cases, but there are also many situations where missingness is related to unobserved scores 

themselves (Little & Rubin, 2014). This type of missingness process is called a missing not 

at random mechanism (MNAR; also known as nonignorable missingness). For example, in 

education, students with low achievement could have missing values on an achievement test 

because they fail to finish the exam. Hence, the missingness of the achievement scores is 

due to the unobserved ability. In medical trial settings, values of physical measures could 

be missing because patients die during the treatment period. Therefore, the missingness of 

physical measure scores is due to the unobserved physical status, even after conditioning on 

the observed data. Additionally, in substance use cessation studies, participants may skip a 

blood or urine test because they are using substances and will have positive test results. In 

this case, the missingness of test results is directly related to the unobserved test results.

If the true underlying missingness mechanism is MNAR but an MAR-based analysis 

procedure is used, previous research has shown that parameter estimates will generally be 

biased (Enders, 2011; Fitzmaurice et al., 2012; Graham, 2009; Yang & Maxwell, 2014). 

The fundamental problem is that it is difficult to fully rule out the possibility of MNAR 

mechanism because the observed data carry no information about the unobserved scores and 

their associations with other variables. This makes correcting for MNAR inherently complex 

because missingness depends on the unobserved information. In practice, it is necessary 

to simultaneously estimate the analysis model of substantive interest and an additional 

model for the nonresponse process (e.g., a regression model where the outcome or covariate 

predicts its own binary missing data indicator). In other words, an MNAR mechanism 

requires that we model the joint distribution of the data and missingness, p y, r . In our 

generic notation, p y  represents the distribution induced by the substantive model (e.g., 

a linear regression model) and p r  denotes the corresponding distribution of missingness 
model where r is the missing data indicator. In principle, MNAR processes can apply 

to the outcome or predictors in a substantive model. Existing literature focuses on the 

nonignorable missingness on the outcome, except that Ibrahim et al. (1999) and Ibrahim et 

al. (2005) briefly showed how to handle nonignorable covariates. This paper is the first one 

which presents all combinations of missingness mechanisms, whereas the previous literature 

focuses on missing outcome or missing covariates separately. Additionally, there are three 

distinctions between Ibrahim’s work and our work, which will be elaborated later. As a brief 
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preview, our proposed Bayesian procedure uses probit regression with latent variables to 

model missingness.

There are two broad MNAR modeling frameworks: the selection model and pattern mixture 

model. Heckman (1976; 1979) originally proposed the selection model for an MNAR 

process on the outcome, and Glynn et al. (1986), Little (1993; 1994), and Rubin (1987) 

proposed the general form of the pattern-mixture model. The two frameworks both integrate 

a missingness model that captures the propensity for missing data in the analysis, but they 

factorize the joint distribution and operationalize the missingness model differently. The 

selection model framework partitions the joint distribution of the data and missingness 

as p y, r = p y p r ∣ y . The second term, p r ∣ y , says that missingness is modeled as a 

function of the incomplete variable y (Heckman, 1976, 1979). As noted previously, this 

representation often entails the simultaneous estimation of two models: a regression model 

for the outcome of substantive interest, and a second model with y’s missing data indicator 

as a function of y and possibly other variables. In contrast, the pattern-mixture model 

framework partitions the joint distribution as p y, r = p r p y ∣ r . The second term, p y ∣ r , 

describes how the model of substantive interest depends on the missing data pattern (e.g., 

Little, 1993). This representation reverses the role of r, such that the substantive analysis 

model parameters vary across missing data patterns. In this framework, the model of 

substantive interest can be estimated separately for each missing data pattern (usually 

with a set of identification constraints), or the missing data patterns can appear as dummy-

coded covariates in the analysis (Hedeker & Gibbons, 1997). Ibrahim et al. (1999), Huang 

et al. (2005), and Ibrahim et al. (2005) provided and summarized methods to handle 

MNAR in generalized linear models. The former two focused on the selection model, 

and the latter discussed the pattern mixture model. Galimard et al. (2016) and Galimard 

et al. (2018) extended selection models to multiple incomplete covariates in the chained 

equations framework. In addition, a good deal of methodological research has developed 

variants of these approaches for longitudinal data. For example, Diggle and Kenward 

(1994) outlined a selection model for longitudinal data analyses. P. S. Albert and Follmann 

(2000), Follmann and Wu (1995), Wu and Bailey (1989), and Wu and Carroll (1988) 

proposed another type of longitudinal selection model called a random coefficient selection 

model (also referred to as the shared parameter approach) whereby random effects predict 

missingness. Extending the Diggle & Kenward selection model, Daniels and Hogan (2008) 

proposed a Bayesian selection model when longitudinal outcomes are missing. Within 

the pattern-mixture model framework, Roy (2003) introduced a pattern-mixture method 

treating class membership as a latent variable. Other applications have combined features 

of pattern-mixture model and selection model or have otherwise developed variants of the 

two frameworks (e.g., Beunckens et al., 2008; Dantan et al., 2008; Demirtas & Schafer, 

2003; Foster et al., 2004; Galimard et al., 2016; Gottfredson et al., 2014; Hafez et al., 2015; 

Mason et al., 2012; Muthén et al., 2011; Roy & Daniels, 2008; Yuan & Little, 2009). It is 

important to emphasize that the selection and pattern mixture models are not exchangeable 

representations of the joint distribution. For example, we would not expect pattern mixture 

models to accurately capture a process aligned with p y, r = p y p r ∣ y , nor would we 

expect our method to yield unbiased estimates if the true process is p y, r = p r p y ∣ r . This 

is an inherent feature of MNAR modeling and not Bayesian estimation, per se.
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The major limitation of existing MNAR methods is that they focus on incomplete outcomes 

and don’t necessarily provide a mechanism for handling MNAR explanatory variables 

except the expectation–maximization (EM) algorithm proposed by Ibrahim et al. (1999) 

and Ibrahim et al. (2005). Recent studies have described fully Bayesian estimation and 

imputation approaches that allow for MAR covariates with interactions, non-linear terms, 

and random slopes (e.g., Bartlett et al. 2015; Enders et al., 2020; Erler et al., 2019, 2016; 

Goldstein et al., 2014; Kim et al., 2015, 2018; Lüdtke et al., 2020; Zhang & Wang, 2017). 

We refer to these methods generically as model-based estimation and imputation because 

they essentially tailor missing values to the substantive model of interest. These approaches 

yield Bayesian estimates of the model parameters, and they also generate imputations that 

can be analyzed in the frequentist framework with Rubin’s pooling rules (Rubin, 1987). 

As mentioned previously, our approach readily accommodates an MNAR process for any 

variable in the model including covariates, and thus it is a generalization of existing model-

based imputation.

The purpose of this study is to outline a fully Bayesian latent variable selection model 

(BLVSM) to impute missing data and estimate parameters of interest where either covariates 

or outcomes follow an MNAR (or MAR) process. The method falls in the class of selection 

models outlined by Heckman and others (Diggle & Kenward, 1994; Heckman, 1976, 1979; 

Huang et al., 2005; Ibrahim et al., 1999), and we apply a Bayesian estimation procedure 

that simultaneously estimates the substantive regression model and a probit regression 

model that invokes latent missingness variables. Besides direct Bayesian inference, multiple 

imputations are a natural by-product of the Markov Chain Monte-Carlo (MCMC) estimation 

algorithm. These imputations can be analyzed in the frequentist framework in lieu of 

direct Bayesian inference to answer various of new research questions, without requiring 

any special software. Our approach can accommodate general missing data patterns and 

the following scenarios: the outcome is MAR or MNAR with a) complete covariates, b) 

incomplete covariates with an MAR mechanism, and c) incomplete covariates with MNAR 

mechanism. It also can be applied when the outcome is complete but covariates are MAR 

or MNAR. Importantly, we extend the work in Enders et al. (2020), where the substantive 

analysis model supports incomplete MAR non-linear functions such as interactive and 

polynomial effects. This model-based estimation and imputation procedure extends to 

accommodate incomplete MNAR covariates with a variety of metrics (continuous, binary, 

ordinal, or nominal). The proposed procedure is ready in a forthcoming release of the 

software Blimp 3 (Keller et al., 2019). We are unaware of existing approaches and software 

that can handle these combinations of features, although the R package ’mdmb’ can estimate 

some selection models.

The outline of this paper is as follows: in “A Typical Selection Model” section, an 

overview of selection model is given. In “Bayesian Estimation of a Selection Model 

with MAR Covariates” and “Bayesian Estimation of a Selection Model with MNAR 

Covariates” sections, we present the proposed fully Bayesian latent variable selection 

model (BLVSM) when covariates are MAR and MNAR, respectively. In “Simulation 

Study 1: MAR Covariates”, “Simulation Study 2: MNAR Covariates”, and “Simulation 

Study 3: Misspecification” sections, the performance of BLVSM when covariates are MAR 
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and MNAR and when the selection model is misspecified is thoroughly examined via 

simulations, respectively. In “A Real Data Example” section, a real data example is provided 

to illustrate BLVSM. We end the paper with some concluding remarks in “Conclusion” 

section.

A typical selection model

In this paper, we consider the case where the missingness is a function of the unseen 

scores and possibly other variables. To illustrate the missing data handling procedure for 

a MNAR mechanism, we start by focusing on an incomplete outcome. We consider a 

simple regression model where y has missing values and missingness is a function of the y
scores themselves. As illustrated earlier, a selection model consists of two components: the 

substantive model p y  and the missingness model p r ∣ y .

yi = β0 + β1xi + εi εi ∼ N 0, σε
2

ryi
∗ = γ0 + γ1yi + ζi ζi ∼ N(0, 1) (1)

The first part of Equation (1) presents the substantive model p y . We introduce a binary 

missing data indicator ri, where ri = 0 if yi is observed and ri = 1 if yi is missing. The second 

part of Equation (1) presents the missingness model p r ∣ y , which is a probit regression 

model defining missingness as a normally distributed latent variable (Johnson & Albert, 

2006). ryi
∗  is a continuous latent missingness variable for individual i that represents an 

individual’s latent propensity or proclivity for missing data. For example, in an education 

context, yi could be an achievement test score that is potentially missing for reasons related 

to achievement ability itself (i.e., a student may fail to finish the exam and thus it leads 

a missing value), and ryi
∗  represents how likely a student fail to finish the exam. The fixed 

part of the missingness model, γ0 + γ1yi, defines the conditional mean (expected value) of the 

latent variable. In other words, the fixed part defines the systematic influence of missingness 

due to the unobserved outcome scores. The residual ζi is standard normal with variance fixed 

at one for identification. Accordingly, the probit regression can be written as

Pr ri = 1 ∣ yi = 1 − Φ γ0 + γ1yi , (2)

where Φ  is the cumulative distribution function of the standard normal distribution. γ0 + γ1yi

is the predicted z-score of missingness propensity and Φ  returns the proportion of the 

area below that z score in a standard normal curve. The probit regression model additionally 

incorporates a threshold parameter κ that divides the standard normal latent distribution into 

two segments, such that ri = 0 if ryi
∗ < κ and ri = 1 if ryi

∗ ≥ κ. That is, the latent missingness 

scores increase to a cut-point, above which the score becomes missing. Note that κ is 

typically fixed at zero to avoid redundancy with the regression intercept, but the model can 

also be parameterized by eliminating the intercept and estimating the threshold. Because 

estimating the threshold parameter is known to exhibit slow convergence behavior (Cowles, 

1996), we adopt the former approach and fix the threshold at zero.
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Bayesian estimation of BLVSM with MAR covariates

In this section, we describe the MCMC estimation steps for the case where the outcome 

in the substantive model is MNAR and the covariates are MAR. The Bayesian framework 

views the substantive regression model parameters, missingness model parameters, missing 

outcome scores, covariate model parameters, and missing covariate scores as variables 

to be estimated. The Gibbs sampler breaks this complex multivariate problem involving 

parameters and missing values into a series of simpler univariate problems, each of 

which draws one of the unknown quantities at random from a probability distribution that 

conditions on the current values of all other unknowns, which will be elaborated later 

(Gelfand & Smith, 1990). After providing the posterior distribution of each variable, we 

illustrate how to estimate each variable by Gibbs sampling procedure.

To illustrate our proposed Bayesian latent variable selection model (BLVSM), we consider a 

single-level substantive model with multiple covariates,

y = Xβ + ε, (3)

where y is a N × 1 vector of the outcome measures for N individuals, X is a 

N × K + 1  matrix for the K covariates and one intercept, β is a K + 1 × 1 vector for 

the K + 1 regression coefficients, ε is a N × 1 vector for independently distributed errors, 

and ε ∼ N 0, σε
2I . As noted previously, our model specification readily accommodates 

incomplete interactive or curvilinear effects (Enders et al., 2020), and it thus extends recent 

research (Bartlett et al., 2015; Erler et al., 2016; Goldstein et al., 2014; Grund et al., 2018; 

Ibrahim et al., 2002; Kim et al., 2015, 2018; Zhang & Wang, 2017) by accommodating 

an MNAR process for the outcome and/or an MNAR process for the covariates (presented 

in the next section). This combination of features is a new contribution to the literature, 

although researchers have worked on MAR covariates or MNAR outcome separately. To this 

end, consider the following moderated regression model, examples of which are exceedingly 

common in the literature (Aiken et al., 1991),

yi = β0 + β1x1i + β2x2i + β3x1ix2i + εi,
εi ∼ N 0, σε

2 . (4)

In this case

X =

1 x1, 1 x1, 2 x1, 1x1, 2

1 x2, 1 x2, 2 x2, 1x2, 2

⋮ ⋮ ⋮ ⋮
1 xN, 1 xN, 2 xN, 1xN, 2

, β =

β0

β1

β2

β3

.

The missingness of y is a function of the y scores themselves and x1 is incomplete due to 

an MAR process, and hence x1x2 is incomplete. Indeed, regardless of whether the covariates 

are complete or incomplete, the posterior distributions of substantive model parameters, 

missingness model, and missing outcome are not affected.
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As mentioned above, when a missing outcome, yi, is related to the unobserved scores (e.g., yi

itself) for individual i, we introduce a binary missing data indicator, ri, for which 1 indicates 

a missing outcome and 0 indicates an observed outcome. We generalize Equation (1) that the 

missingness not only depends on the unobserved yi but also other variables to provide a more 

general form. Accordingly, an underlying continuous latent missingness variable ryi
∗  could be 

directly modeled by a regression model

ry
∗ = Zγ + ζ, (5)

where ry
∗ is a N × 1 vector of latent missingness propensities for N individuals, Z = 1, y, M

is a N × 2 + P  matrix, M is a N × P  matrix for causes of missingness other than y itself, 

such as auxiliary variables, γ is a 2 + P × 1 vector, and ζ is a N × 1 vector of error term with 

ζ ∼ N 0, I . Past literature suggests that if M incorporate the predictors in the substantive 

model X or other predictors highly correlated with y, collinearity problems may occur and 

be detrimental to estimation (for details refer to Puhani, 2000; Stolzenberg & Relles, 1990, 

1997 ). As discussed later, this does not appear to be the case with BLVSM, and we will 

recommend including variables from the substantive model in the missingness model. Latent 

variable scores ryi
∗  follow a truncated normal distribution, such that ryi

∗  is above the threshold 

κ = 0  if yi is missing (i.e., ri = 1  and below the threshold if yi is complete (i.e., ri = 0).

Posterior distributions of substantive model parameters

We estimate the aforementioned selection model using an iterative MCMC algorithm, Gibbs 

sampling, that draws each unknown from a probability distribution that conditions on all 

other unknowns. The remainder of this section gives the full conditional distributions for the 

estimation steps. To begin, augmenting the likelihood with the latent missingness variable ry
∗

gives

p y, ry
∗ ∣ γ, β, σε

2 = p y ∣ β, σε
2 p ry

∗ ∣ γ, y, M

= 2πσϵ
2 − N

2 exp − (y − Xβ)′(y − Xβ)
2σε

2

× (2π)− N
2 exp − ry

∗ − Zγ ′ ry
∗ − Zγ

2 ,

(6)

where Z = 1, y, M . We employ independent priors that p β ∝ 1 for all coefficients in 

β, p σϵ
2 = IG a, a , and p γ = N 0, b  for all coefficients in γ. Note that p γ  needs to be 

weakly informative, as some prior information is often needed to facilitate convergence, 

particularly in small samples. We will elaborate this point later in Simulation Study 1.

Based on the priors and the likelihood (Equation 6), the joint posterior distribution of γ, β, 

and σε
2 is constructed by Bayes’ theorem,
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p γ, β, σϵ
2 ∣ y, ry

∗ ∝ p y, ry
∗ ∣ γ, β, σε

2 p γ, β, σε
2

∝ σϵ
2 − N

2 − a − 1exp − 2a + (y − Xβ)′(y − Xβ)
2σε

2 ×

exp − ry
∗ − Zγ ′ ry

∗ − Zγ
2 × exp − γ′γ

2b

(7)

Based on the joint posterior distribution of γ, β, and σε
2, we can derive the conditional 

posterior distributions one by one. Specifically, the conditional posterior distribution of β is a 

multivariate normal distribution with · indicating the variables and parameters conditional on

p(β ∣ ⋅ ) = MN β = X′X −1X′y, σε
2 X′X −1 . (8)

The conditional posterior distribution of σϵ
2 is an Inverse-Gamma distribution,

p σϵ
2 ∣ ⋅ = IG N

2 + a, (y − Xβ)′(y − Xβ)
2 + a . (9)

In words, Equation (8) says that the substantive model’s regression coefficients are drawn 

from a multivariate normal distribution. The center and spread of this distribution align with 

ordinary least squares estimates of the coefficients and their parameter covariance matrix, 

respectively, because of the specified prior. Equation (9) says that the substantive model’s 

residual variance is drawn at random from a rightskewed inverse gamma distribution. The 

center and spread of this distribution is determined by the degrees of freedom, residual sum 

of squares, and prior information. Note that the conditional posterior distributions of β and 

σϵ
2 are exactly the same as those from any linear regression problem using the same priors 

regardless of whether the outcome and covariates are incomplete.

Posterior distributions of missingness model parameters and missing outcome

Given the latent missingness propensity r∗, the coefficients of the missingness model have 

a posterior with a similar form as β. That is, the MCMC algorithm draws a vector of 

regression coefficients from a multivariate normal distribution. The residual variance is not 

an estimated parameter here, as it is fixed at 1.

p(γ ∣ ⋅ ) = MN γ = ∑1

−1 Z′ry
∗, ∑1

= 1
b × I + Z′Z

−1
. (10)

In words, Equation (10) says that the selection model’s regression coefficients are drawn 

from a multivariate normal distribution. The center and variance are determined by the latent 

data and current imputed data. All that is left is to define the distributions of the latent 

variable scores ry
∗ and the missing values of y. Latent variable scores can be modeled by a 

truncated normal distribution,
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p ryi
∗ ∣ ⋅ = N Ziγ, 1 I(κ = 0, ∞) ri = 1

N Ziγ, 1 I( − ∞, κ = 0) ri = 0, (11)

where I denotes the indicator function, Zi denotes the ith row of Z for individual i, and 

the threshold κ is fixed at 0. In words, this equation says that latent missingness scores are 

drawn from one of two normal distributions, both of which are centered at the predicted 

z-score from the regression equation (the mean of the normal distribution) and have a fixed 

variance equal to 1. Specifically, if yi is observed, a latent score should be drawn from the 

region of the normal curve below 0 (the fixed threshold parameter), as this area corresponds 

to the region occupied by indicator scores of r = 0. Otherwise, if yi is missing, a latent 

score should be drawn from the region of the normal curve above the threshold, as this area 

corresponds to the region occupied by indicator scores of r = 1.

The posterior predictive distribution of the missing outcome values has a complex mean 

and variance structure that depends on the parameters of both the substantive model and 

missingness model. Conceptually, the mean of the normal distribution is a predicted value, 

but that prediction accounts for y’s role as an outcome in the substantive model and a 

predictor in the selection model. The variance of the imputations similarly depends on terms 

from both models. Specifically, the posterior predictive distribution is proportional to the 

augmented likelihood in Equation (6)1

p y ∣ ry
∗, γ, β, σε

2 ∝ p y, ry
∗ ∣ γ, β, σε

2

= MN Xβ + γyσε
2 ry

∗ − Z−yγ−y

1 + γy
2σε

2 , σε
2

1 + γy
2σε

2 I , (12)

where γy is the regression coefficient for y in the missingness model, γ−y are the regression 

coefficients except for y in the missingness model, and Z−y are the predictors in the 

missingness model except y. Because Equation (12) is tedious to derive, alternatively, we 

can use the Metropolis-Hastings algorithm to empirically construct the posterior distribution 

and estimate the missing outcome scores from this distribution (Gilks et al., 1996; Hastings, 

1970). The Metropolis-Hastings algorithm can used to draw the posterior samples of other 

parameters (i.e., β, σε
2, and ry

∗ . Please see the supplemental materials for more information for 

the Metropolis-Hastings algorithm.

Posterior distributions of missing covariates and covariate model parameters

We assume that some of the covariates in the substantive model are partially observed and 

that missingness for the covariates depends on the fully observed covariates, the outcome, 

and/or other auxiliary variables. Suppose there are Q partially observed predictors (i.e., 

x1, …, xQ) and K − Q fully observed predictors (i.e., xQ + 1, …, xK . We factorize the joint 

distribution of all incomplete covariates as

1The procedure is that multiplying the two components in Equation (6) and finding a normal distribution for y which has the same 
kernel as the product.
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p y, x1, …, xQ ∣ xQ + 1, …, xK = p y ∣ x1, …, xK
p x1, …, xQ ∣ xQ + 1, …, xK ,

where p y, x1, …, xQ ∣ xQ + 1, …, xK  is the joint distribution for all incomplete covariates and 

the outcome, p y ∣ x1, …, xK  is the distribution of y induced by the substantive model (i.e., 

a normal distribution, conditional on the covariates and possibly curvilinear or interactive 

terms), and p x1, …, xQ ∣ xQ + 1, …, xK  is the joint distribution of the incomplete covariates 

and represents the covariate model (e.g., a normal distribution for continuous and latent 

categorical covariates). We assume that the conditional distribution of the incomplete 

covariate variables, p x1, …, xQ xQ + 1, …, xK , is a multivariate normal distribution, such that 

the incomplete covariates are linearly related. Based on this assumption, we can specify 

the full conditional distribution for each incomplete covariate given all other incomplete 

and complete covariates as a univariate normal distribution. This is the so-called “separate” 
specificationor fully conditional specification for covariates (Enders, 2021; Enders et al., 

2020). Alternatively, a “sequential” specification of the joint distribution (Erler et al., 2016, 

2019; Ibrahim et al., 2002; Lüdtke et al., 2020) can accommodate non-linear relations 

among incomplete covariates, and this approach is equivalent to the separate specification 

when assuming multivariate normality. Due to the scope and word limitation of this paper, 

we illustrate details of the sequential specification when covariates are MAR and outcome 

is MNAR in the supplemental materials. The focus of the main text is the separate or 

fully conditional specification because the separate specification is easier to implement 

and calculate especially for applied researchers. It is generally harder to implement the 

sequential specification because the researcher needs to work out how to factorize the joint 

distribution to achieve the desired model. Under a separate specification, the researcher just 

needs to specify the needed univariate covariate model and nothing else. Our software Blimp 

can accommodate either specification because the sequential specification is an important 

alternate and is the only option when researchers would like to model nonlinear relations 

between covariates.

In the moderated regression example (Equation 4), to impute x1 (or any of the covariates), 

we must derive its conditional distribution given all of the other variables including the 

outcome. Generally, we denote that xq q = 1, …, Q; e.g., x1 in Equation (4)) is the target 

of imputation at a particular set, and x−q is set of all remaining covariates including 

the complete covariates except xq, that is x−q = x1, …, x q − 1 , x q + 1 , …, xQ, xQ + 1, …, xK  (e.g., 

x−1 = x2  in Equation (4)). p xq ∣ x−q  is a linear regression of xq on all other covariates which 

is the covariate model, and p y ∣ xq, x−q  is the distribution of y induced by the substantive 

model (e.g., Equation (3)). We refer to this as the “separate” specification because each 

incomplete predictor requires a unique regression. Because xq appears in both terms on the 

right side of the substantive model and on the left side of the covariate model, its posterior 

distribution has a complex form that depends on the product of two normal distributions. 

The resulting distribution of xq given all other variables is (Enders et al., 2020; Erler et al., 

2016; Kim et al., 2015)
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p xq ∣ y, x−q ∝ p y ∣ xq, x−q p xq ∣ x−q . (13)

In words, Equation (13) says that the distribution of xq given all other variables depends on 

the distribution of y induced by the substantive model xq is a covariate in that model) and a 

normal distribution induced by the regression of xq on all other predictors (i.e., the covariate 

model). Deriving the distribution of missing values involves multiplying all distributions that 

feature xq then performing algebra that combines the component distributions into a single 

function of that covariate. We give the distribution below in Equation (16). Particularly, the 

covariate model of xq is p xq ∣ X−q, ψq, σe, q
2 ,

xq = X−qψq + eq, (14)

where xq is a N × 1 vector of the target of imputation covariate for N individuals, 

X−q = 1, XInc, − q, Xobs  is a N × K matrix (e.g., X−1 = 1, X2  in Equation (4)), XInc, − q denotes 

all the incomplete covariates except xq for N individuals, Xobs = xQ + 1, …, xK  denotes all the 

observed covariate for N individuals, ψq is a K × 1 vector for for K regression coefficients, eq

is a n × 1 vector, and eq ∼ N 0, σe, q
2 I . When assuming that the missing predictor is conditional 

on auxiliary variables, the auxiliary variables enter Equation (14) as predictors. When using 

the separate specification, it implies that the incomplete covariates follow a multivariate 

normal distribution and thus restrict incomplete covariates to be linearly related. Therefore, 

X−q cannot contain curvilinear or interaction terms involving any incomplete covariates, 

although the incomplete curvilinear and interaction terms can appear in the substantive 

model. If one prefers to use the sequential specification for the covariate model, the details 

are provided in the supplemental materials (e.g., Erler et al., 2016; Lüdtke et al., 2020).

Note that we assume the missingness of the outcome does not depend on the unobserved 

values of xq in the above model. If the missing outcome is not only related to the unobserved 

outcome itself but also conditional on the incomplete covariates in the substantive model 

(e.g., M = X). Then the posterior distribution of xq should consider its influence on the 

underlying continuous latent missingness variable of the outcome ry
∗ by

p xq ∣ ⋅ ∝ p y ∣ X, β, σε
2 p xq ∣ X−q, ψq, σe, q

2 p ry
∗ ∣ γ, y, xq, X−q . (15)

But this missingness assumption may cause a collinearity problem.

Back to the moderated regression example in Equation (4), there is no need to specify a 

model for x1x2, as the lower-order terms are sampled from a distribution that accounts for 

their role in the product. Kim et al. (2015) show that estimating the lower-order scores 

in this fashion is equivalent to sampling x1 and the x1x2 product as a pair. We estimate x1

by Equation (13) and compute x1x2 based on the imputed x1 and x2. The covariate model 

for x1, p x1 ∣ x2 , is defined as a linear regression x1i = ψ0 + ψ1x2i + ei with ei ∼ N 0, σe
2 . The 

posterior distribution of x1 based on Equation (13) is
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p x1i(miss) ∣ yi, x2i ∝ p yi ∣ x1i, x2i p x1i ∣ x2i

= N σe
2 β1 + β3x2i yi − β0 − β2x2i + σε

2 ψ0 + ψ1x2i

σe
2 β1 + β3x2i

2 + σε
2

, σε
2σe

2

σe
2 β1 + β3x2i

2 + σε
2

. (16)

The distribution of xq imputations is a normal distribution, albeit a complicated one with a 

mean and variance that depend on two sets of model parameters. The mean is a function 

of the substantive model’s parameters as well as the covariate model’s parameters. The 

variance similarly depends on two models (note that the variance is heteroscedastic and 

depends on a participant’s moderator score). As an aside, a result similar to Equation (16) 

cannot be derived for incomplete curvilinear effects (e.g., yi = β0 + β1x1i + β2x2i + β3x1i
2 + εi with 

incomplete x1  (Lüdtke et al., 2020). However, the absence of an analytical form for this 

posterior distribution is not problematic in practice, as we can use the Metropolis-Hastings 

algorithm to estimate the missing covariates. This strategy provides a more general solution 

across a variety of analytic scenarios, including the ones we examine here. Note that the 

procedure is not limited to a single incomplete covariate.

For the posterior distributions of coefficients in the covariate model, ψq and σe, q
2 , we 

employ a Jeffreys prior where p ψ ∝ 1 for all coefficients in ψq and p σe, q
2 ∝ 1

σe, q
2  for 

the covariate model. The posterior distributions of ψq and σe, q
2  have exactly the same 

forms as the coefficients in substantive model. After imputing the missing covariates, the 

conditional posterior distributions of the substantive model parameters, the conditional 

posterior distribution of the regression coefficients in probit regression, and the posterior 

distribution of the latent propensity ry
∗, and the posterior predictive distribution of yi miss  are 

the same as the ones when the covariates are complete (please see the previous section). 

More details are presented in the supplemental materials.

When the covariates have a missing completely at random (MCAR) mechanism where the 

probability of missingness of the covariates is unrelated to either observed or unobserved 

variables, we still can use the illustrated methodology in this section to impute missing 

covariates and missing outcome, and estimate the substantive model.

As mentioned previously, the previous approach readily accommodates incomplete binary, 

ordinal, and nominal covariates with MAR missingness mechanisms, as does our later 

extension for NMAR covariates. We just need to extend the previous equations to 

incorporate a cumulative probit model for ordinal variables or a multinomial probit model 

for nominal responses (e.g., Agresti, 2018; J. H. Albert & Chib, 1993; Johnson & Albert, 

2006; McCulloch & Rossi, 1994). Take a binary covariate as an example, where we can use 

a binary probit regression to model the incomplete responses. In this scenario, the model 

introduces an underlying normally distributed random variable for an incomplete binary 

covariate, with the variance of the latent covariate is usually fixed at 1 for identification (this 

is the same probit model used for MNAR missingness on the outcome). A threshold divides 

the distribution of the latent continuous covariate into two segments, such that the latent 

continuous covariate is below the threshold when the binary variable equals zero and above 
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the threshold when the binary variable equals one. Compared to the continuous covariates, 

instead of specifying Equation (14) for incomplete binary covariate, we specify Equation 

(14) for each latent continuous covariate and conditional on all other latent continuous 

covariates. Note that this latent continuous covariate is different from the aforementioned 

latent missingness propensity r∗ when a variable is MNAR, although it does use the same 

probit regression framework. We refer the interested reader to Enders et al. (2020).

Markov Chain Monte Carlo (MCMC) computational algorithm

We propose a Gibbs sampling algorithm to sample β, σε
2, γ, ryi

∗ , and yi miss  from their 

aforementioned posterior distributions, and to obtain the posterior inferences based on the 

Monte Carlo samples (Gelfand & Smith, 1990). The Gibbs sampling algorithm is an iterative 

procedure that estimates the variables one at a time in a sequence (Gelfand & Smith, 

1990): estimate regression coefficients while holding all other variables that their current 

values; estimate the residual variance while holding all other variables constant, and so 

forth. More specifically, it invokes the following steps: (a) estimate the substantive model 

regression coefficients and residual variance, (b) estimate the selection model’s regression 

coefficients, (c) estimate the missingness propensity scores, (d) estimate outcome’ missing 

values (e) estimate the covariate model’s regression coefficients and residual variance, and 

(f) estimate covariates’ missing values. Each of these steps treats the current values of all 

other unknowns as fixed constants. When the posterior distribution is not accessible or 

difficult to derive, the Metropolis-Hastings algorithm draws the posterior samples.

The MCMC algorithm gives a posterior distribution of each parameter, and we can use 

these quantities to conduct Bayesian inference for the substantive model parameters (i.e., 

β and σε
2). Alternatively, one can save the imputations of missing data at regular intervals 

in the MCMC chain (e.g., save a data set every 1000 iterations) and use the filled-in data 

sets for a multiple imputation analysis (Rubin, 1987; Schafer, 1997). When frequentist 

estimation (e.g., ordinary least squares estimation) is applied to the imputed complete 

data to estimate the parameters in the substantive model, this leads to a hybrid procedure 

(Bayesian techniques are used for imputation and frequentist methods are used for parameter 

estimation).

The full cadre of step-by-step Gibbs sampler procedure is given below.

0. Initialization step: set initial values for β 0 , σε
2 0 , γ 0 , and ry

∗ 0 , and yi miss
0  (for the 

individuals who have missing outcome). For the individuals who have missing 

covariates, set initial values for xq
0 , ψq

0 , and σe, q
2 0 .

1. In the tth iteration, given covariates in the substantive model X , the imputed 

outcomes in the previous iteration y t − 1 , and the residual variance of the 

substantive model in the previous iteration σε
2 t − 1 , sample β t  from Equation 

(8).

2. Given X, y t − 1 , and β t , sample σε
2 t  from Equation (9).
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3. Given y t − 1 , the predictors M in the missingness model, and ry
∗ t − 1 , sample γ t

from Equation (10).

4. For all individuals, given r, y t − 1  and γ t , sample ry
∗ t  from Equation (11).

5. For the individual i who has missing outcome (i.e., ri = 1), given the covariates 

and/or auxiliary variables, β t , σε
2 t , γ t , and ryi

∗ t , sample yi miss
t  from Equation (12). 

Repeat step 5 for all individuals who have missing outcome and obtain a set of 

updated imputed outcomes, y t .

6. For the qth incomplete predictor, given X−q
t − 1  and σe, q

2 t − 1 , sample ψq
t  from 

Equation (2) in the supplemental materials.

7. For the qth incomplete predictor, given X−q
t − 1  and ψq

t , sample σe, q
2 t  from 

Equation (3) in the supplemental materials.

8. For the individual i who has the qth missing covariate, given 

yi
t , X−qi

t − 1 , β t , σϵ
2 t , ψq

t , and σe, q
2 t , sample xqi miss

t  from Equation (13) by 

Metropolis-Hastings algorithm. Repeat steps 6 to 8 for all individuals who have 

missing covariates and impute all covariates. The missing interaction terms can 

be calculated by the updated components. For example, x1ix2i
t = x1i

t × x2i
t .

9. Repeat steps 1 to 8 until the MCMC chains reach convergence and provide 

sufficient posterior samples.

Bayesian estimation of BLVSM with MNAR covariates

In this section, we further extend the previous ideas by allowing missingness of an 

incomplete covariate to depend on the unobserved covariate variable itself. Additionally, 

the missing covariate can depend on the unobserved scores of other covariates, observed 

covariates, auxiliary variables, and the outcome. The missingness of the outcome may also 

be conditional on the unobserved outcome scores or the unobserved covariate scores, or it 

can be MAR (or even MCAR). As mentioned previously, the literature and existing methods 

of MNAR generally have focused on MNAR outcomes, except a few studies investigating 

MNAR covariates (Huang et al., 2005; Ibrahim et al., 1999; 2005). The existing literature 

has worked on MNAR covariates, MNAR outcome, MAR covariates, or MAR outcome. 

Our approach is more general than the previous models because it can accommodate 

MNAR covariates, MAR covariates, MAR/MNAR outcome, or all of them simultaneously. 

Although putting the models in the previous literature together also can accommodate all 

of the aforementioned cases, this paper is the first one which systematically presents all 

cases. Additionally, there are three major differences between our work and the work from 

Ibrahim’s group. First, Ibrahim et al. (1999) and Ibrahim et al. (2005) proposed algorithms 

to handle MNAR covariates in the expectation–maximization (EM) framework, whereas we 

use Bayesian statistics. As a Bayesian method, our method can use informative priors and 

incorporate prior information (e.g., from existing papers or pilot results). Second, Ibrahim 

et al. (1999) and Ibrahim et al. (2005) focused on the sequential specification which we 

present in the supplemental material, whereas we focus on the separate or fully conditional 
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specification which may be more widely used when researchers assume a linear relationship 

between covariates. Third, our separate specification assumes that the missingness latent 

variables (propensities) are independent after controlling for the influence of the cause of 

missingness, whereas Ibrahim’s sequential specification assumes that the missingness latent 

variables are still correlated after controlling for the influence of the cause of missingness. 

However, Ibrahim’s sequential specification may cause nonconvergence and we may need to 

simplify the model by assuming that the missingness latent variables are independent after 

controlling for the influence of cause of missingness, which is kind of back to the separate 

specification. We refer audiences to the supplemental material for more details about the 

sequential specification.

Suppose there are Q partially observed covariates which are MNAR, and K − Q fully 

observed covariates. Similar to the case where the outcome is MNAR. A missing indicator 

rx, q is used to indicate the missingness of the qth missing covariate xq . rx, q does not apply to 

the interaction terms in the substantive model. An underlying random variable rx, q
∗  captures 

the latent propensity of missingness for the qth missing covariate xq. When we assume 

the missingness of xq is conditional on the unobserved xq and the other covariates, the 

missingness or selection model is

1rx, q
∗ = Xγx, q + ζx, q, (17)

where rx, q
∗  is a N × 1 vector of latent missingness propensities of xq for N individuals, 

X = 1, xq, X−q  is a N × K + 1  matrix and X−q are the covariates other than xq, γx, q is a 

K + 1 × 1 vector, and ζx, q is a N × 1 vector following N 0, I  (as mentioned above, the 

residual variance is fixed at one for identification). The missing indicator rx, q is conditional 

on the propensity rx, q
∗  through a probit regression, P rx, q = 1 ∣ X = Φ Xγx, q . This is the same 

model as before. The rx, q
∗  variable is a latent missingness variable scaled as a z-score, and 

the right side of the expression features potential predictors of missingness (typically, xq plus 

other substantive model variables).

Besides the missingness probit model of rx, q, a regressive covariate model specifies the 

relation between xq and all other covariates, p xq ∣ X−q, ψq, σe, q
2 , which is the same as Equation 

(14) if the separate specification is used. Thus, the joint conditional distribution of xq and its 

latent missingness variable rx, q
∗  is factored into three components: the substantive model, the 

covariate model of xq, and the missingness model of xq,

p xq, rx, q
∗ ∣ y, X−q, β, σε

2, ψq, σe, q
2 , γx, q

∝ p y ∣ xq, X−q, β, σε
2 p xq ∣ X−q, ψq, σe, q

2 p rx, q
∗ ∣ γx, q, X . (18)

If one prefers to use the sequential specification for the covariate model and the missingness 

model, the details are provided in the supplemental materials. With the sequential 

specification, we can accommodate the nonlinear relations between the covariates and latent 

missingness variables.
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When interaction or curvilinear terms in the substantive model are incomplete, each missing 

covariate appears multiple times in the substantive model and we need to extract it from all 

the relevant components. We use the example where there is one partially observed covariate 

x1 and one partially observed interaction term. The substantive model, the missingness probit 

model for y, the regressive covariate model for x1, and the missingness probit model for x1

are respectively

yi = β0 + β1x1i + β2x2i + β3x1ix2i + εi εi ∼ N 0, σε
2

ryi
∗ = γ0 + γ1y + ζi ei1 ∼ N(0, 1)

x1i = ψ1, 0 + ψ1, 1x2i + ei1 ei1 ∼ N 0, σe, 1
2

rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x1i + ζx, 1i ζx, 1i ∼ N(0, 1) .

(19)

x1 appears in both x1 and x1x2. Based on Equation (18), for individual i, the conditional 

posterior distribution of x1i is

p x1i ∣ ⋅ ∝ p yi ∣ x1i, x2i, β, σε
2 p x1i ∣ x2i, ψ1, σe, 1

2 p
rx, 1i

∗ ∣ x1i, x2i, γx, 1

= N σe, 1
2 β1 + β3x2i yi − β0 − β2x2i + σε

2 ψ1, 0 + ψ1, 1x2i + σe, 1
2 σε

2γx1, 1 rx, 1i
∗ − γx1, 0

β1 + β3x2i
2σe, 1

2 + σε
2 + γx1, 1

2 σe, 1
2 σε

2
,

σe, 1
2 σε

2

β1 + β3x2i
2σe, 1

2 + σε
2 + γx1, 1

2 σe, 1
2 σε

2
.

(20)

The analytical form for imputing x1i is complex, and it is specific to the particular substantive 

model, Equation (19). Generally, the Metropolis-Hastings algorithm is suggested to draw the 

posterior samples in practice, as this algorithm allows the procedure to extend to covariate 

sets with an arbitrary composition and general missing data patterns. Nevertheless, the 

equation follows the same basic form as before. That is, the mean and variance combines 

information from three regressions – the substantive model, the covariate model, and the 

selection model in which x1 plays a role. If x1 plays a role in multiple selection models, we 

need to consider all of them.

The posterior predictive distribution of rx, qi
∗  is conditional on the missing predictor indicator 

rx, qi and imputed predictors Xi Xi = 1, x1i  in the example of Equation (19)),

p rx, qi
∗ ∣ ⋅ = N Xiγx, q, 1 I(κ = 0, ∞) rx, qi = 1

N Xiγx, q, 1 I( − ∞, κ = 0) rx, qi = 0 . (21)

In words, this equation says that latent missingness scores are drawn from one of two 

normal distributions, both of which are centered at the predicted z-score from the regression 

equation (the mean of the normal distribution) and have a fixed variance equal to 1. 

Specifically, if xqi is observed, a latent score should be drawn from the region of the 

normal curve below 0 (the fixed threshold parameter), as this area corresponds to the region 

occupied by indicator scores of rx, qi = 0. Otherwise, if xqi is missing, a latent score should be 

drawn from the region of the normal curve above the threshold, as this area corresponds to 

the region occupied by indicator scores of rx, qi = 1.
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We employ weakly informative prior p γx, q = N 0, b  for all coefficients in γx, q in the 

missingness model of xq to facilitate convergence in MNAR case, as for γ in the missingness 

model of y. Similar to Equation (10), the conditional posterior distribution of γx, q is a 

multivariate normal distribution,

p γx, q ∣ ⋅ = MN γx, q = ∑1

−1 X′rx, q′
∗ ∑1

= 1
b × I + X′X

−1
. (22)

X = 1, x1  in the example of Equation (19). In words, Equation (22) says that the selection 

model’s regression coefficients are drawn from a multivariate normal distribution, and 

the center and variance are determined by the latent data and current imputed data. The 

conditional posterior distribution of σe, q
2  is the same as Equation (3) in the supplemental 

materials, and the conditional posterior distribution of ψq is the same as Equation (2) in 

the supplemental materials. After imputing the missing covariates, the conditional posterior 

distributions of the substantive model parameters, the conditional posterior distribution of 

the regression coefficients in probit regression for y, and the posterior distribution of the 

latent propensity ry
∗ for y, and the posterior predictive distribution of yi miss  are the same as the 

ones when the covariates are MAR/complete.

When a categorical covariate has a MNAR mechanism, we will need two probit regression 

models (one for the binary covariate and another for its missingness model), and we will 

need both the latent covariate and the latent missingness propensity. For example, suppose 

x1 is a incomplete binary variable with a MNAR mechanism. First, x1
∗ is the latent x1 . x1

∗

does not appear in the substantive analysis but only is used to in the covariate model to 

impute the missing x1. The first probit regression model describes the distribution of x1
∗. A 

threshold (usually fixed at 0) divides the normal distribution of x1
∗ into two segments, such 

that the x1
∗ is below the threshold if x1 = 0 and above the threshold if x1 = 1. Second, the latent 

missingness propensity rx, 1
∗  provides a latent missingness propensity for x1

∗. The second probit 

regression model is a missingness model, which captures how x1
∗ influence the missingness 

propensity of rx, 1
∗ . This missingness model is the same as Equation (17) with a difference that 

the propensity is on the latent covariate and the predictors in the probit model are also on the 

latent variable scales. For example, rx, 1
∗ = γx, 1, 0 + γx, 1, 1x1

∗ + ζx, 1. We will illustrate more details in 

Simulation Study S2 in the supplemental materials.

Markov Chain Monte Carlo (MCMC) computational algorithm

The step-by-step Gibbs sampler procedure when the outcome is MNAR and the covariates 

are MNAR is given below. The first five steps generate estimates for the substantive analysis 

model, the missingness model, and missing outcomes. Steps 6-7 generate estimates for the 

parameters in the covariate model. Steps 8-10 target on the missingness model for covariates 

and missing covariates.

0. Initialization step: set initial values for β 0 , σε
2 0 , γ 0 , and ry

∗ 0 , and yi miss
0  (for the individuals 

who have missing outcome). For the individuals who have missing predictors, set initial 

values for xq
0 , ψq

0 , σe, q
2 0 , γx, q

0 , and rx, q
∗ 0 ,
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1-7. Steps 1-7 are exactly the same as the ones in the section of MAR covariates.

8. For the qth incomplete predictor, given X−q
t − 1  and rx, q

∗ t − 1 , sample γx, q
t  from Equation 

(22).

9. For all individuals, given X t − 1  and γx, q
t , sample rx, q

∗ t  from Equation (21).

10. For the individual i who has the qth missing predictor, sample xqi miss
t  from Equation (18) 

by Metropolis-Hastings algorithm. Repeat steps 6 to 10 for all individuals who have missing 

covariates and impute all covariates.

11. Repeat steps 1 to 10 until the MCMC chains reach convergence and provide sufficient 

posterior samples.

Simulation study 1: MAR covariates

Simulation study 1: Simulation design

This simulation study examines the performance of the proposed Bayesian latent variable 

selection model, BLVSM, when x1 is MAR and y is MNAR. We also conducted a 

simulation where y is MNAR and covariates are complete (see Simulation Study S1 in 

the supplemental materials). The substantive model for the simulation is the widely-used 

moderated regression model in Equation (4). The missing values on the outcome y were 

generated as a function of y itself and the missing values on x1 were generated as a 

function of x2. We varied the values of the following four factors. (1) The first factor is 

the sample size SZ = 50, 100, 200, 500, or 1000 . (2) The second factor is the missing data 

proportion/probability for y Py = 0.1, 0.2, or 0.4 . (3) The third factor is the pseudo coefficient 

of determination between the cause of missingness and the latent propensities of y, Rry∗
2 = 0.1, 

0.25, or 0.5 (McKelvey & Zavoina, 1975). When Rry⋆
2  is large, the MNAR selection process 

of y is strong and the missingness of y heavily depends on y. When Rry∗
2  is 0, the missingness 

of y is independent from y, which leads to a missing completely at random (MCAR) 

case whereby the probability of missingness is not related to any observed variables or 

unobserved variables. Because in practice, we don’t know the true missingness mechanism, 

it is important to check whether estimating a model for the missingness negatively impacts 

the substantive analysis when the MNAR selection process is very weak and almost MCAR. 

(4) The fourth factor is the missing data proportion for x1 Px1 = 0.1, 0.2, or 0.4 . (5) The fifth 

factor is the pseudo coefficient of determination between x2 and the latent propensities of 

x1(Rrx1
∗2 = 0.1, 0.25, or 0.5). When Rrx1

∗2  is large, the MAR selection process of x1 is strong. When 

Rrx1
∗2  is 0, the missingness of x1 does not depend on x2 or any observed/unobserved scores, 

which is a MCAR case. The coefficient of determination in the substantive model Ry
2 (the 

proportion of the variance in the outcome that is predictable from the covariates, x1, x2, and 

x1x2  is fixed at 0.13, a medium effect size (Cohen, 1988). By fixing the mean and variance 

of y at E y = 5 and var y = 10, fixing the means of x1 and x2 at 0, fixing the regression 

coefficients at 1, and fixing the correlation between x1 and x2 at 0.3, we can solve the 

variances of x1 and x2 and the residual variance σε
2 given a specific value of Ry

2 (the mean 
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and variance of the interaction term is determined by formulas in Bohrnstedt and Goldberger 

(1969)).

We used a probit regression equation to link missingness probabilities of y to the values 

of y ryi
∗ = γ0 + γ1yi + ζi with ζi ∼ N 0, 1  and another probit regression equation to link 

missingness probabilities of x1 to the values of x2 rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x2i + ζx, 1i, ζx, 1i ∼ N 0, 1 . 

Using a latent variable formulation for probit regression (Agresti, 2018; Johnson & 

Albert, 2006), we derived γ0, γ1, γx, 1, 0, and γx, 1, 1 that produced the desired missing data 

proportion Py, Ry
2, Px1 and Rrx1

∗2  values. Finally, we sampled a missing data indicator for 

each observation 0 = observed, 1 = missing  from a binomial distribution with success 

rate equal to that observation’s missingness probability from the probit regression model, 

and we deleted scores with indicator values of one. But when we estimate the missing 

covariates, we do not need to estimate its probit model. Instead, we specify a covariate 

model x1i = ψ0 + ψ1x2i + ei, ei ∼ N 0, σe
2  and use Equation (13) to impute the missing x1. There 

were 1000 replications under each condition.

As a comparison, we first applied the ordinary least squares estimation (OLS) to the original 

complete data. The results from the complete data are treated as the simulation baselines. 

We also applied a misspecified Bayesian method with assuming that both x1 and y are MAR 

to the incomplete data. When we assume the outcome is MAR, we simply draw y from 

N β0 + β1x1i + β2x2i + β3x1ix2i, σε
2  and ignore the missingness model. In addition to the Bayesian 

summaries of the model parameters (we refer it to as the full Bayesian approach), we 

also saved imputed data sets and applied multiple imputation inference. More specifically, 

we used our proposed approach to impute missing data, saved 20 complete sets of data 

from the posterior samples of the converged chains, and conducted multiple imputation (20 

imputations were suggested by Graham et al. (2007)). We used the OLS estimator to fit 

Equation (4) to the multiply imputed data sets, and pooled estimates and standard errors 

based on Rubin’s pooling rules (see Rubin (1976) and Schafer (1997) for more details).

The following priors of the model parameters were used: 

p β ∝ 1, p σϵ
2 = IG 1, 1 , p ψ ∝ 1, p σe, q

2 ∝ 1
σe, q

2 , and p γ = N 0, var = 10 . The priors on β and 

ψ are the Jeffreys prior, which is widely known as noninformative. The priors on γ and σϵ
2

are all weakly informative priors which contain little information but facilitate convergence. 

IG 1, 1  is a flat distribution, which gives an almost equal prior probability in a relatively 

wide parameter space, and N 0, var = 10  has a relatively large prior variance.2 The initial 

burn-in period was 104, after that we checked convergence every 2 × 104 iterations, and all 

the iterations before the converged 2 × 104 iterations were treated as the final burn-in period. 

2Based on our pilot simulations, if we used noninformative prior for γ (i.e., p γ ∝ 1), sometimes we could get converged results but 
sometimes not, which depended on the data. The default prior for coefficients in probit regression with missing data is N 0, 5  in 
Mplus. We found that prior variance of 5, 10 or 15 did not yield observably different results and it could ensure convergence results in 

almost all cases. In addition, r∗ is scaled as a z-score, and we checked various probit regressions to capture the relation of y and r∗
under different scenarios. We found that γ was not large across conditions. Therefore, we use the prior variance of 10 in the normal 
prior of γ, which is still quite large but small enough to induce additional information that facilitates convergence. In real data analysis, 
researchers can modify this weakly informative prior based on each specific data.
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Geweke (1992) convergence diagnostic was used. If after 20 times, the chain still did not 

converge, we claimed nonconvergence. The simulation was coded in R.

We compared the performance of BLVSM with that of the misspecified method with an 

MAR assumption, based on the accuracy of the point estimates via the bias and relative bias, 

and both the accuracy and precision via the coverage rates of the 95% confidence intervals 

(CI) or posterior credible intervals for each parameter of interest. Denote a parameter of 

interest by θ. The bias and relative bias are calculated by averaging θ̂r − θ and θ̂r − θ
θ × 100%

(when θ ≠ 0) respectively across the 1000 replications, where θ̂r is the point estimate from 

the rtℎ replication. θ̂r was calculated using the posterior mean or mode. We consider average 

relative bias (averaging over 1000 replications) lower than 10% as ignorable (L. K. Muthén 

& Muthén, 2002). The OLS estimation from the complete-data (pre-deletion) is used as 

a reference. Both the quantile-based probability (QBP) interval and the highest posterior 

density (HPD) interval were obtained as credible intervals. The coverage rate was calculated 

as the proportion of the 95% credible/confidence intervals covering the true parameter value. 

We considered coverage rates between 91% and 98% as satisfactory (L. K. Muthén & 

Muthén, 2002).

Simulation study 1: Simulation results

The convergence rates in all conditions were over 94% for BLVSM, and they were 100%
for the misspecified method with an MAR assumption. This finding is practically important 

because modeling an MNAR process is computationally challenging relative to an MAR 

analysis. The fact that the more complicated modeling task reduced convergence rates by 

only 6% across a wide range of conditions is encouraging. The detailed summaries of each 

method under each condition are found in the supplemental materials. The main findings on 

the performance of each method are summarized below.

We first focus on BLVSM. In terms of biases, when the sample size exceeded 

200 SZ > 200 , the biases were negligible. When the sample size was less than or equal 

to 200 SZ ≤ 200 , the posterior mode – the most likely value for a parameter from its 

posterior distribution – was found to be less biased than the posterior mean for σε
2, γ0, and 

γ1. The posterior mode and mean were similar for β0, β1, β2, and β3 which are the main focus 

of the substantive model. The point estimates from multiple imputation were very close to 

the posterior means for the full Bayesian approach. As such, we focus on the the posterior 

mode from the full Bayesian approach. We found that the influence of the sample size (SZ), 

the missingness proportion Py , the pseudo coefficient of determination between y and the 

latent propensities of y(Rr∗∗
2 ), the missingness proportion of x1 Px1 , and the pseudo coefficient 

of determination between the x2 and the latent propensities of x1(Rr11
∗2 ) were consistent for 

β0, β1, β2, and β3. In the interest of space, we select the minimum and maximum values of 

Py, Rry∗
2 , Px1, and Rrx1

∗2  to illustrate the bias results in figures. More specifically, the average 

relative biases of β3 are presented in Figure 1, the average relative biases of β0 and β1 are 

presented in Figure 2, and the average relative biases of β2 and σε
2 are presented in Figure 

3. In figures, each cell represents a combination of different levels of Py, Rry∗
2 , Px1, and Rrx1

∗2 , 
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and different lines represent the relative biases from BLVSM with an MNAR process, the 

misspecified model with an MAR assumption, and the complete data respectively. The row 

panel effects reflect the influence from Px1 and Rrx1
∗2 , and the column panel effects reflect 

the influence from Py and Rry∗
2 . When the sample size was greater than or equal to 200, the 

relative biases of β0, β1, β2, β3, and σε
2 were ignorable and very close to the OLS estimates 

from the complete-data. We found that when the sample size was less than or equal to 100, 

BLVSM provided smaller biases for β0, β1, β2, and β3 when (1) the missingness proportion 

of y was smaller (see cells across column panels with different Py in Figures 1–3), (2) the 

MNAR selection process of y was weaker (see cells across column panels with different Rry∗
2

in Figures 1–3), (3) the missingness proportion of x1 was smaller (see cells across row panels 

with different Px1 in Figures 1–3), and (4) the MAR selection process of x1 was weaker (see 

cells across row panels with different Rrx1
∗2  a in Figures 1–3). But the positive biases of the 

σε
2 estimates were smaller with a larger Rry∗

2  and a larger Px1 (see Figure 3). When the MNAR 

selection process was weak, incorporating the latent missingness model in BLVSM did not 

negatively impact the substantive analysis and again provided unbiased estimates.

Next, consider the misspecified method with an MAR assumption. In terms of biases, when 

the MNAR selection process was strong (Rry∗
2 ≥ 0.25), the estimates of β0, β1, β2, β3, and σε

2 in 

the misspecified method with an MAR assumption were underestimated relative to their 

true values (i.e., > 10% relative bias) and increasing sample size did not effectively improve 

the point estimates. Only when the MNAR selection process was weak (Rry∗
2 = 0.1) could the 

misspecified model with an MAR assumption approximate the complete-data estimates; the 

MAR-based analysis was still inferior to BLVSM in this case, although the difference was 

not practically significant (see Figures 1–3).

In terms of the coverage rates, the QBP intervals had slightly better coverage rates than 

the HPD intervals in both BLVSM and the misspecified Bayesian method with an MAR 

assumption. The differences between the confidence intervals from multiple imputation and 

the QBP intervals in the full Bayesian approach were trivial. As such, we focus on the 

QBP intervals in the full Bayesian approach. The coverage rates for β0, β1, β2, and σε
2 are 

presented in Figure 4 after fixing Rrx1
∗2 = 0.5 and Px1 = 0.4 (the most severe MAR case for 

the incomplete covariate) and selecting the minimum and maximum values of Py and Rry∗
2

(i.e., the missingness proportion of y and strength of the selection mechanism, respectively). 

The effects of Py, Rry∗
2 , and the sample size are the column panel effect, row panel effect, and 

the x-axis effect within each cell, respectively. For BLVSM, the coverage rates of β0, β1, β2, 

and σε
2 were close to the nominal level (95%) except when the sample size was less than 

or equal to 100 (see the x-axis effect in Figure 4). With a small sample size, there could 

be undercoverage. For the misspecified method with an MAR assumption, the coverage 

rates for β0, β1, β2, and σε
2 were far below the nominal level and even close to 0 in some 

cases (see Figure 4). Even when the MNAR selection process was weak (Rry∗
2 = 0.1), severe 

undercoverage was observed.
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Turning to the covariate model, the estimates of ψ0, ψ1, and σe
2 were unbiased and 

coverage rates were acceptable from BLVSM across all the manipulated conditions (see the 

supplemental materials). For these particular parameters, the misspecified method with an 

MAR assumption provided similar but slightly worse estimates than the correctly-specified 

model, BLVSM. When the sample size was greater than or equal to 50 SZ ≥ 50 , the 

estimated ψ0, ψ1, and σe
2 from the MNAR and MAR methods were essentially the same 

as the OLS estimates from the complete-data. Besides the parameters in the substantive 

and covariate models, BLVSM estimates γ0 and γ1 in the missingness model for y. The 

estimation of these coefficients was challenging, and we observed negative biases and 

undercoverage of credible intervals when the sample size was not large enough SZ ≤ 200, 

see the supplemental materials). This was an interesting and encouraging finding, given that 

the substantive model parameters were largely unaffected by the biases in the missingness 

model or at least achieved their optimal properties at a smaller sample size.

Simulation study 2: MNAR covariates

Simulation study 2: Simulation design

The moderated regression model in Equation (4) again served as the substantive model for 

the simulation. This simulation study examined the performance of the proposed method 

when both x1 and y are MNAR. The missing values on the outcome y were generated as a 

function of y itself and the missing values on x1 were generated as a function of x1 itself. 

The conditions were the same as the second simulation (SZ, Py, Rry∗
2 , and Px1) except that the 

fifth factor is the pseudo coefficient of determination between x1 and the latent propensities 

of x1 which reflects the strength of MNAR selection process of x1(Rrx1
∗2 = 0.1, 0.25, or 0.5). 

We used a probit regression equation to link missingness probabilities of y to the 

values of y(ryi
∗ = γ0 + γ1yi + ζi with ζi ∼ N 0, 1 ) and another probit regression equation to link 

missingness probabilities of x1 to the values of x1 rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x1i + ζx, 1i, ζx, 1i ∼ N 0, 1 . 

When we estimate the missing x1, we not only estimate the probit model but also estimate 

the covariate model x1i = ψ0 + ψ1x2i + ei, ei ∼ N 0, σe
2 . The coefficient of determination in the 

substantive model Ry
2 is fixed at 0.13.

As a comparison, we applied the OLS estimator to the original complete data and applied 

the MAR method with assuming that both x1 and y are MAR assumption to the incomplete 

data. When we assume x1 is MAR, we draw x1 from Equation (13). In addition, we 

conducted multiple imputation. The following priors of the model parameters were used: 

p β ∝ 1, p σϵ
2 = IG 1, 1 , p ψ ∝ 1, p σe, q

2 ∝ 1
σe, q

2 , p γ = N 0, 10  and p γx, q = N 0, 10  (weakly 

informative prior to facilitate convergence). The burn-in period is the same as Study 1.

Simulation study 2: Simulation results

The convergence rates of all conditions were again over 94% when modeling an MNAR 

process on both the outcome and the explanatory variable. Given the complexity of this 

modeling problem, we found this result very encouraging. The detailed summaries of each 
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method under each condition are in the supplemental materials, and the main findings are 

summarized below.

We again focus on the posterior mode from the full Bayesian approach. We select the 

minimum and maximum values of Py, Rry∗
2 , Px1 and the pseudo coefficient of determination 

between x1 and the latent missingness propensities of x1 (i.e., Rrx1
∗2  ) to illustrate the bias 

results (Figures 5–7). In figures, each cell represents a combination of different levels of 

Py, Rry∗
2 , Px1, and Rrx1

∗2 , and different lines represent the relative biases from BLVSM with an 

MNAR process, the misspecified model with an MAR assumption, and the complete data 

respectively. The row panel effects reflect the influence from Px1 and Rrx1
∗2 , and the column 

panel effects reflect the influence from Py and Rry∗
2 . We found that when the sample size was 

greater than or equal to 200, the relative biases of β0, β1, β2, β3, and σε
2 were ignorable and very 

close to the OLS estimates from the complete-data. When the sample size was less than 

or equal to 100, relative biases for β0, β1, β2, and β3 in the Bayesian latent variable approach 

decreased as (1) the missingness proportions of x1 and y decreased (see cells with different 

Py and Px1 in Figures 5–7), (2) the MNAR selection process of y became weaker (see cells 

across column panels with different Rry∗
2  in Figures 5–7), and (3) the MNAR selection process 

of x1 became weaker (see cells across row panels with different Rrr1
∗2  in Figures 5–7). But 

a larger Rry∗
2  decreased the positive biases of the σε

2 estimate (see Figure 7). In contrast, the 

misspecified method with an MAR assumption had the pattern of underestimating β0, β1, β2, β3, 

and σε
2 unless when the MNAR selection processes of the outcome and x1 were weak 

(Rry∗
2 = Rrx1

∗2 = 0.1).

Turning to coverage rates, the influence from Px1 and Rrx1
∗2  on the QBP coverage rates for 

β0, β1, β2, and σε
2 was not large. Therefore, the coverage rates for β0, β1, β2, and σε

2 are presented 

in Figure 8 for the Rrx1
∗2 = 0.5 and Px1 = 0.4 (the severest missingness case) conditions along 

with the minimum and maximum values of Rry∗
2  and Py. Similar to Simulation Study 1, the 

coverage rates of β0, β1, β2, and σε
2 from BLVSM were close to the nominal level (95%) except 

when the sample size was small (e.g., SZ = 50 or 100 ; see Figure 8). The coverage rates for 

β0, β1, β2, and σε
2 from the misspecified method with an MAR assumption were again too low 

(see Figure 8).

In addition to the substantive model, we examined the covariate model and missingness 

model parameters. The estimates of ψ0, ψ1, and σe
2 in the covariate model were unbiased, 

and coverage rates were acceptable from BLVSM across most conditions, except when the 

sample size was small (see the supplemental materials). When the sample size was greater 

than or equal to 100, the estimates of ψ0, ψ1, and σe
2 from BLVSM were essentially the same 

as the OLS estimates from the complete-data. However, different from the Study 1 where 

the covariate is MAR, in the current simulation study, the misspecified method with an 

MAR assumption produced biased point estimates and considerable undercoverage relative 

to the correctly specified model even with a large sample size, particularly when the MNAR 

selection process was strong (e.g., a large value of Rrx1
∗2 ). Finally, considering the missingness 
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model parameters in BLVSM, γ0, γ1, γx, 1, 0, and γx, 1, 1, we observed biases and undercoverage 

when the sample size was less than or equal to 500 (see the supplemental materials), but this 

bias apparently had no material impact on the substantive analysis. Again, it is encouraging 

that bias was relegated to a part of the analysis that is not of substantive interest.

As mentioned previously, BLVSM readily extends to accommodate categorical covariates as 

well. We conducted an additional simulation to generalize the result of Simulation Study 2 

to binary covariates. This extra simulation study considered the same scenario as Simulation 

Study 2, but with x1 as a binary variable. The performance of BLVSM was similar to that 

in the case of continuous covariates. In the interest of space, we refer interested readers to 

Simulation Study 2S in the supplemental materials for additional details.

Simulation study 3: Misspecification

The challenging part of using MNAR methods is that we cannot identify or prove which 

selection model or missingness mechanism are the true ones. Ibrahim et al. (2005) 

summarized two different views on specifying the selection model. First, one can let 

data empirically determine the selection model by comparing the model fit index. One 

can then use the likelihood ratio or AIC to evaluate the fit of each model. However, 

“it is often the case that little information is contained in the data regarding alternative 

nonignorable models” (page 341). Alternatively, one can view a set of MNAR analyses 

with different selection models as a sensitivity analysis that examines how stable substantive 

model parameter estimates are across different missingness models. Our method and related 

software provide the opportunity to conduct sensitivity analysis with various selection 

models. The previous simulations clearly show that failing to model an MNAR process 

(e.g., by fitting an MAR analysis to data where the true process is MNAR) is detrimental. 

Thus, the practical danger for researchers is specifying a model with too few predictors 

of missingness, as it will usually be difficult to know which covariates to include in a 

given selection model. One potential remedy for this model specification problem is to 

deploy rich models that include all variables in the selection model. The question is whether 

misspecifying the selection model in this way has a detrimental effect on the substantive 

model parameters.

To provide some practical guidelines, we conducted additional simulations that examined 

the impact of misspecifying missingness models by including too many (or too few) 

predictors. Ibrahim et al. (2005) cautioned against making the selection model too complex 

and suggested that the main-effects model usually is adequate. Thus, our simulation only 

focused on the main-effects model (i.e., the missingness model included all variables in 

the substantive analysis but did not include interaction effects). Past literature on selection 

models suggests that including predictors from the analysis model may induce collinearity 

problems that are detrimental to estimation ( for details refer to Puhani, 2000; Stolzenberg & 

Relles, 1990, 1997 ). The simulations in this section suggest that this finding does not extend 

to BLVSM, and we ultimately recommend including all variables from the substantive 

model in the missingness model.
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Simulation study 3: Simulation design

The moderated regression model in Equation (4) again served as the substantive model 

for the simulation. We considered three types of missingness scenarios. First, x1 was 

missing due to y, which indicated a MAR scenario. In this scenario, we considered three 

selection models: rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x1i + ζx, 1i (misspecified), rx, 1i

∗ = γx, 1, 0 + γx, 1, 1yi + ζx, 1i (correctly 

specified), and rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x1i + γx, 1, 2x2i + γx, 1, 3yi + ζx, 1i (over-specified). Second, x1 was 

missing completely at random (MCAR). In this scenario, we considered two over-specified 

selection models: rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x1i + ζx, 1i and rx, 1i

∗ = γx, 1, 0 + γx, 1, 1x1i + γx, 1, 2x2i + γx, 1, 3yi + ζx, 1i. 

The first two scenarios investigate the situation where a researcher incorrectly applies 

a selection model to an analysis where the missingness model is unnecessary. In 

the third scenario, x1 was missing due to both x1 and y, which indicated a mixture 

of MAR and MNAR processes. In this scenario, we considered three selection 

models: rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x1i + ζx, 1i (misspecified), rx, 1i

∗ = γx, 1, 0 + γx, 1, 1x1i + γx, 1, 2yi + ζx, 1i (correctly 

specified), and rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x1i + γx, 1, 2x2i + γx, 1, 3yi + ζx, 1i (over-specified). We also conducted 

additional simulations that considered similarly misspecifications of the outcome’s 

missingness model, but the results were similar to that for missingness on the covariate. 

Therefore, we focus on these three representative simulations. The simulation conditions 

were as follows. The sample size SZ  varied as 200, 500, and 1000. The coefficient of 

determination in the substantive model Ry
2 was fixed at 0.13. The missing data proportion 

for x1 Px1  was 0.2. and the pseudo coefficient of determination between the cause of 

missingness and the latent propensities of x1(Rrx1
∗2 ) was 0.25.

Simulation study 3: Simulation results

The convergence rates of all conditions and scenarios were 100%. We present the relative 

biases of posterior mode estimates (when the true value is 0, absolute biases are presented 

instead) and the coverage rates of QBP intervals in Table 1. Specifically, we focus on 

the estimates of substantive models and selection models when the selection models are 

over-specified. For example, in the first scenario, when the selection model is specified as 

rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x1i + γx, 1, 2x2i + γx, 1, 3yi + ζx, 1i, the true values of γx, 1, 1 and γx, 1, 2 are 0.

When x1 was missing due to y (Scenario 1, an MAR process), estimates were biased if 

we misspecified the fitted selection model by omitting the true cause of missingness (i.e., 

rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x1i + ζx, 1i). Regardless of how much we increased the sample size, the biases 

in the substantive model estimates did not decrease, and the coverage rates actually got 

worse. When the selection model was correctly specified in the sense that it included only 

the true cause of missingness (i.e., rx, 1i
∗ = γx, 1, 0 + γx, 1, 1yi + ζx, 1i), the bias values and coverage 

rates were within the acceptable range, even with a sample size as small as 200. When 

the selection model was over-specified by including all variables from the substantive 

analysis model as predictors (i.e., rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x1i + γx, 1, 2x2i + γx, 1, 3yi + ζx, 1i), performance 

was generally quite good. Although the biases of some parameters (in both the substantive 

model and the selection model) were relatively large with a sample size of 200, the coverage 

rates of the parameters of the substantive model were otherwise acceptable. Additionally, 

when the sample size increased, the biases of the parameters in both the substantive model 
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and the selection model decreased and were near zero. Specifically, the estimates of γx, 1, 1 and 

γx, 1, 2 were very close to the true value 0. That is, x1 and x2 should have no influence on the 

missingness of x1.

Next, consider the situation where x1 was missing completely at random (Scenario 

2). In this case, the fitted selection models (i.e., rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x1i + ζx, 1i and 

rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x1i + γx, 1, 2x2i + γx, 1, 3yi + ζx, 1i) are over-specified because there are no causes of 

missingness. Although the biases of some parameters (in both the substantive model and 

the selection model) were relatively large with a sample size of 200, but the biases and 

coverage rates of the parameters of the substantive model were otherwise acceptable. Similar 

to the Scenario 1, when the sample size increased, the biases of the parameters in both the 

substantive model and the selection model decreased and approximated zero. Specifically, 

the estimates of γx, 1, 1, γx, 1, 2, and γx, 1, 3 were very close to the true value 0. That is, the two 

covariates and outcome should have no influence on the missingness of x1.

Finally, consider the scenario where x1 was missing due to both x1 and y (Scenario 

3). If we omitted one of the true causes of missingness in the selection model (i.e., 

rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x1i + ζx, 1i), the biases of estimates and coverage rates of the parameters 

in the substantive model were unacceptable, regardless of the sample size. When the 

selection model is correctly specified (rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x1i + γx, 1, 2yi + ζx, 1i), the parameter 

estimates and coverage rates were acceptable even with a sample size of 200. Finally, 

when the selection model was over-specified by including unnecessary predictors 

(i.e., rx, 1i
∗ = γx, 1, 0 + γx, 1, 1x1i + γx, 1, 2x2i + γx, 1, 3yi + ζx, 1i), the biases of the parameters in both the 

substantive model and the selection model decreased as the sample size increased. The 

biases of the substantive model and selection model parameters reached acceptable levels 

(e.g., 10% relative bias) at a sample size of 500 and 1000, respectively. Consistent with 

the findings from the previous two simulation studies, the substantive model parameter 

estimates were acceptable even when the missingness model parameter estimates were 

biased.

The simulations investigating misspecifications provide the following conclusions: (1) 

omitting the true cause of missingness caused biases and disrupted coverage rates, (2) 

correct specification yielded accurate estimates and acceptable coverage rates even with a 

relatively small sample size (i.e., 200), and (3) adding extra, unnecessary predictors to the 

missingness part of the selection model caused biases when the sample size was relatively 

small, but the coverage rates were close to the nominal level. In the current simulation, 

as the sample size increased to 500, the biases of substantive model parameter estimates 

due to over-specification generally diminished to below the 10% threshold. We would like 

to highlight that when the missingness model is over-specified, the true parameters of the 

unnecessary predictors are 0 although in samples they are never estimated to be exactly 

0. Simulation Study 3 shows that the estimates from the over-specified model can have 

ignorable biases and acceptable coverage rates. Our conclusions seem to offer a fairly clear 

prescription for researchers applying these models: specify selection models that are more 

inclusive, including all variables in the analysis model. This strategy provides a realistic 

possibility of obtaining approximately unbiased parameter estimates in sample sizes that are 

Du et al. Page 26

Multivariate Behav Res. Author manuscript; available in PMC 2023 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



typical of the behavior sciences, whereas adopting a more restrictive specification that may 

omit potential predictors of missingness risks inducing substantial biases. We illustrate this 

approach in the ensuing real data analysis example.

A real data example

In a marital satisfaction study at the University of California, Los Angeles, a sample of 431 

first-married couples were asked to rate their marriage on a 8-item scale twice in 2012 and 

2014 respectively. The sum of the ratings was treated as an index of marital satisfaction. 

We are interested in whether wives’ marital satisfaction at the first wave (WS1) had an 

influence on the husbands’ marital satisfaction at the second wave (HS2) after controlling 

husbands’ marital satisfaction at the first wave (HS1), husbands’ education levels (EDU), 

and husbands’ stress levels (STR). Therefore, the substantive model is

HS2 = β0 + β1HS1 + β2W S1 + β3EDU + β4STR + ε,
ε ∼ N 0, σε

2 (23)

The missing proportions in the husbands’ marital satisfaction scores at the two waves and 

the wives’ marital satisfaction scores at the second wave were 13.2%, 22.3%, and 13.0%, 

respectively. The education and stress level scores of husbands were complete.

All MAR- and MNAR-based methods including BLVSM rely heavily on untestable 

assumptions of missingness. We cannot prove the missingness is MNAR or MAR. Similarly, 

we cannot prove whether a specific MNAR selection model is appropriate for a given 

data set. Given the inherent uncertainty associated with conducting NMAR analysis, we 

followed recommendations from Ibrahim et al. (2002) by conducting sensitivity analysis 

that apply different assumptions of missingness to the same data. Additionally, following 

our conclusions from Simulation Study 3, we modeled NMAR processes with rich selection 

models that included all variables in the substantive analyses (i.e., HS1, WS1, HS2, EDU, 

and STR) as the predictors. When the MCMC chains had difficulty in converging, we 

simplified the selection models by removing predictor variables. In this real data example, 

we considered eight assumptions (Tables 1 and 2). We used the forthcoming Blimp 3 

application (Keller et al., 2019) to apply BLVSM, and the Blimp code (both separate and 

sequential specifications) is illustrated in the Appendix. A typical application might consist 

of the substantive regression, an selection model for outcome’s missingness that features all 

variables from the substantive model, and a selection model for a covariate’s missingness, 

again with all variables from the analysis as predictors. As mentioned previously, Blimp 

allows for binary, ordinal, or nominal covariates (and categorical outcomes), and it readily 

accommodates interactive or non-linear effects. Depending on the assumptions, it is possible 

to fit these models in other packages. For example, specialized Bayesian programs like 

WinBugs or JAGS could certainly estimate these models. Based on the R technical manual 

and Lüdtke et al. (2020), the R package ’mdmb’ (Robitzsch & Luedtke, 2019) can handle an 

MAR or MNAR outcome and covariates. The ’mdmb’ package uses the sequential approach. 

Bayesian estimation can be used in conjunction with a structural equation modeling 

framework such as Mplus (L. Muthén & Muthén, 1998–2017) to incorporate selection 

models for an outcome or a covariate, with two caveats (even when users specify syntax by 
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themselves). First, incomplete covariates are assumed to be normally distributed, although 

outcomes can be binary and ordinal. Second, because the SEM framework is grounded in 

the multivariate normality assumption, interactive or non-linear effects with missing data 

would be estimated with potentially substantial biases (e.g., Bartlett et al., 2015; Enders et 

al., 2018; Erler et al., 2016; Kim et al., 2015; Seaman et al., 2012; Van Buuren et al., 2006).

In the first analysis, we assumed the covariates (HS1 and WS1) and the outcome (HS2) were 

missing at random (MAR). We used five MCMC chains with different starting values, and 

the Gelman-Rubin diagnostic (Gelman & Rubin, 1992) was used to check the convergence 

of the five chains after the burning period (Gelman & Rubin, 1992). As mentioned in the 

simulation studies, we can get Bayesian estimates of β0, β1, β2, β3, β4 and σε
2 from the MCMC 

algorithm in the full Bayesian approach, and we can also generate multiple imputations. 

We report the posterior mode estimates, the posterior standard deviations (i.e., standard 

deviation from posterior samples; SD), the quantile-based probability (QBP) credible 

intervals, and the deviance information criterion (DIC) in Table 1. We reject H0:β = 0 when 

the QBP interval does not cover 0. In addition to the full Bayesian inferences, we applied 

multiple imputation with 100 imputed sets of data from the posterior samples by BLVSM 

(each chain provided 20 sets of data). The R and Mplus code for pooling the estimates 

and standard errors are illustrated in the Appendix. The point estimates, standard errors, 

the Akaike information criterion (AIC), and the Bayesian information criterion (BIC) are 

in Table 2. Both the full Bayesian and multiple imputation results showed that wives’ 

marital satisfaction at the first wave (WS1) could significantly predict husbands’ marital 

satisfaction at the second wave (HS2) after controlling for other variables, and β̂2 was about 

0.2. Additionally, the husbands’ marital satisfaction at the first wave (HS1) and husbands’ 

education levels (EDU) could significantly predict husbands’ marital satisfaction at the 

second wave.

Although our simulation results suggest that overparameterizing a selection model by 

incorporating an inclusive set of covariates is not problematic at current sample size, 

specifying complex selection models may not be feasible in every dataset. We reduce model 

complexity by removing predictor variables in the selection models if the complex selection 

models fail to converge because the data contain insufficient information to estimate such a 

complex model. Additionally, we would not recommend treating all variables are MNAR, 

as it seems unlikely that such models would converge in practice. Rather, we suggest a 

model-building procedure that researchers assume one variable is MNAR first (when such 

a process is theoretically justified), and move to the analyses where two and more variables 

are MNAR. This is the process we applied here.

In the second analysis, we assumed that WS1 and HS2 were MAR and HS1 was MNAR, 

where the missingness of HS1 depended on HS1, WS1, HS2, EDU, and STR. Using 

both the full Bayesian approach and multiple imputation based on BLVSM, the estimated 

coefficients and posterior standard deviations/multiple imputation errors of the substantive 

model are in Table 2. In addition, we provide the estimates of the probit missingness model 

for HS1 (e.g., γHS1 ∣ HS1 and γHS1 ∣ HS2) in Table 2. We compared the substantive parameter 

estimates in the current analysis to the ones in the first analysis without any selection 
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model. As a practical guide, we investigated how much the estimates changed in posterior 

standard deviation units (SD; we used the SDs in the first analysis, which were similar in 

magnitude to the imputation-based standard errors). We found the estimates and hypothesis 

testing results of the substantive model did not noticeably differ from those with only MAR 

assumptions (the first analysis), and largest change (e.g., in β̂2) was equivalent to about 0.7 

SDs.

Third, we assumed that HS1 and HS2 were MAR, and WS1 was MNAR, with the 

missingness of WS1 depended on HS1, WS1, HS2, EDU, and STR. Compared to the first 

analysis, β̂1 changed about 1.4 posterior SDs (β̂1 was 0.636 and 0.558 in the first and third 

assumptions, respectively) and other estimates changed less than 1 posterior SD (see Table 

2).

Fourth, we assumed that HS1 and WS1 were MAR, and HS2 was MNAR. In this analysis, 

different from the previous analyses, wives’ marital satisfaction at the first wave failed to 

predict husbands’ marital satisfaction at the second wave β2 . Compared to the first analysis, 

most of the estimates changed more than 1 SD. More specifically, σ̂ε
2 changed about 6.8 

SDs, β̂1 changed about 1.6 SDs (β̂1 was 0.636 and 0.548 in the first and fourth assumptions, 

respectively), and β̂2 changed about 1.5 SDs (β̂2 was 0.214 and 0.13 in the first and fourth 

assumptions, respectively; see Table 2). We tried to explore why the estimates changed 

dramatically. We removed the predictors in the selection model one by one and found when 

HS1 was removed, the estimates and inferences were similar to those in the first analysis.

After pairing the substantive analysis with one selection model, we next fitted models that 

incorporated a pair of selection models. Then in the fifth model, we assumed that HS1 

and WS1 were MNAR and HS2 was MAR. Including all variables as predictors in the 

missingness model led to nonconvergence, therefore we did not include the outcome, HS2, 

in the selection models. There is no clear guideline of how to simplify the selection model. 

We suggest removing one variable at a time, The estimates of the substantive model and 

selection models are in Table 3. This model had the smallest DIC, AIC, and BIC. The 

estimates and hypothesis testing results of the substantive model did not noticeably differ 

from those in the first analysis with only MAR assumptions. The largest change is that β̂4

changed about 0.2 SDs (see Table 3 for estimates).

In the sixth model, we assumed that HS1 and HS2 were MNAR, and WS1 was MAR. 

Compared to the first analysis, β2 was not significant anymore and most of the estimates 

changed more than 1SD (e.g., σ̂ε
2 changed about 8.1 SDs, β̂0 changed about 3.4 SDs, and β̂2

changed about 1.8 SDs; see Table 3 for estimates). The change of the estimates probably is 

probably due to assuming HS2 was MNAR based on the results in the fourth assumption.

In the seventh models, we assumed that WS1 and HS2 were MNAR, and HS1 was MAR. 

However, in the seventh model, including all variables as predictors in the missingness 

model led to nonconvergence, therefore we did not include the outcome, HS2, in the 

missingness model of WS1. Compared to the first analysis, β2 was not significant anymore 

and most of the estimates changed more than 1 SD (e.g., σ̂ε
2 changed about 6 SDs and 
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β̂2 changed about 2.3 SDs; see Table 3 for estimates). Again, we think the change of the 

estimates is due to assuming HS2 was MNAR.

Finally, in the eighth model, we assumed HS1, WS1 and HS2 were all MNAR. However, the 

five chains did not converge, even when we only include one predictor in the missingness 

model and used 6 × 104 iterations. Because the posterior distributions of multiple parameters 

converged to two different modes, we did not pursue this model. We suggest that researchers 

should be cautious when assuming more than one covariate are MNAR, paying careful 

attention to convergence diagnostics such as the Gelman–Rubin diagnostic statistic.

Considered as a whole, when we assumed HS2 was MNAR (the fourth, sixth, and seventh 

assumptions), the influence of wives’ marital satisfaction at the first wave on husbands’ 

marital satisfaction at the second wave β2  was no longer significant, which was different 

from the result obtained when HS2 was MAR. We also found when excluding HS1 

from predictors in the selection model of HS2 in the model 3, the results were more 

consistent with the other models. The difficulty with the discrepancy between the models 

is that a researcher cannot verify which model is more plausible based on the data. If 

one’s substantive knowledge suggests that the NMAR process might be plausible, then a 

reasonable course of action is to present multiple sets of results (e.g., including the full 

sensitivity analysis in an online supplement). We don’t necessarily view such discrepancies 

across models as insurmountable or inherently problematic, nor do we feel that it is 

necessary for a researcher to choose one set of results - in fact, there is little basis for 

such a choice beyond one’s expert opinion about the plausibility of different processes. 

Online supplemental documents offer researchers unlimited space with which to report 

multiple sets of results, and we find it just fine to declare that different assumptions about 

the missingness process led to somewhat different conclusions for certain model parameters. 

This won’t always be the case, but sometimes it will. Certainly, reporting two sets of results 

is a better alternative that choosing just one, particularly when that choice involves effects 

that are significant under one assumption and non-significant under another. We believe the 

importance of this exercise stems from doing a thorough job of trying to understand if, how, 

and why one’s analysis results are sensitive to missing data assumptions, not choosing “the” 

best model.

Conclusion

In real data analysis, usually a missing at random mechanism (MAR; missingness is related 

to observed data but not to the unobserved values of itself) or missing completely at 

random mechanism (MCAR; missingness is unrelated to either observed or unobserved 

data) is assumed. However, it is possible that the underlying missingness mechanism is 

MNAR. If we ignore the possibility of an MNAR selection process by inappropriately 

applying an MAR-based procedure, previous research and our own simulations have shown 

that parameter estimates generally were biased (Enders, 2011; Fitzmaurice et al., 2012; 

Graham, 2009; Yang & Maxwell, 2014). Building on one of the major MNAR modeling 

frameworks – the selection model – this paper outlined a Bayesian latent variable selection 

model, BLVSM, that accommodates an MNAR process on the outcome, covariates, or both. 

This procedure offers a number of compelling advantages: it (a) has a strong theoretical 
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foundation in the Bayesian framework, (b) can be either applied in a full Bayesian 

framework where parameters in the substantive model are calculated in MCMC steps, or in 

a multiple imputation framework where the missing data are imputed by MCMC steps and 

the parameters in the substantive model are estimated by frequentist methods later, (c) easily 

handles complete or incomplete covariates (due to MCAR, MAR, or MNAR), (d) allows 

the incomplete MAR or MNAR covariates to involve interactions, non-linear terms, and 

random slopes, and (e) accommodates categorical variables. The procedure is implemented 

in a forthcoming release of the software package Blimp (Keller et al., 2019). We are unaware 

of other packages that offer these modeling possibilities, although the R package ’mdmb’ 

can estimate some selection models in the EM framework.

Computer simulation results suggest that BLVSM is quite effective when the outcome is 

MNAR and the covariates are complete, MAR, or MNAR (regardless of whether covariates 

are continuous or binary). Except when the sample size was small (e.g.) SZ ≤ 100), 

estimates tracked closely with those from a complete-data analysis. More specifically, 

the substantive model parameter estimates were unbiased and their coverage rates were 

acceptable, even when parameters of the missingness model exhibited bias (these parameters 

required large samples to achieve their optimal properties). Moreover, convergence failures 

were rare, even when simultaneously modeling an MNAR process for the outcome and 

covariate. In addition, we found that the following factors influenced the performance of 

BLVSM: the sample size, the coefficient of determination in the substantive model, the 

missingness proportion of y, the strength of MNAR selection process of y, the missingness 

proportion of covariates, and the strength of MAR/MNAR selection process of covariates. 

With a relatively small sample size, when the outcome was less predictable from the 

covariates, the missingness proportions of the covariates and the outcome were larger, 

and the missingness process of the covariates and the outcome were more MNAR and/or 

MAR, the performance of BLVSM was less satisfactory. When the sample size was large, 

the factors barely influenced the performance. Multiple imputation as a hybrid approach 

provided similar results as the full Bayesian method, thus researchers have various options 

for applying our approach. As noted in the introduction, the literature has largely focused 

on MNAR processes for the outcome variable except some work investigating MNAR 

covariates (Huang et al., 2005; Ibrahim et al., 1999, 2005). Our approach is quite flexible 

because it can accommodate MNAR covariates, MAR covariates, MAR/MNAR outcome, or 

all of them simultaneously. Although putting the models in the previous literature together 

also can accommodate all of the aforementioned cases, this paper is the first one which 

systematically presents all cases. Additionally, our work and the work from Ibrahim’s group 

have differences in terms of estimation method and assumptions.

We explored the robustness of the proposed method in Simulation Study 3. Based on the 

results, we suggest specifying an inclusive selection model for each variable. When MCMC 

chains have difficulty in converging, we can simplify the selection models to make the 

computation process easier. Although we suggest an inclusive selection model, in practice, 

it is not feasible to include all variables as predictors in the selection model because it may 

lead to nonconvergence. Based on prior knowledge and existing theories, researchers can 

select several important predictors to enter the selection model. Based on our simulation 
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results, there is no need to force the selection model to have only one or two predictors. 

We also suggest conducting sensitivity analysis to investigate how much the results change 

across missingness assumptions and missingness models. More specifically, we suggest 

a model-building procedure. We begin with assuming all variables are MAR. Then we 

assume one variable is MNAR (when such a process is theoretically justified), and move 

to the analyses where two and more variables are MNAR, as we illustrated in the real data 

example.

Due to the scope and word limitation of this paper, we only focus on the missingness 

patterns that can be handled by selection models. BLVSM has not generalized to other 

missingness patterns such as pattern mixture models yet.

In sum, our paper outlined a new Bayesian latent variable selection model for an MNAR 

process. When missingness is truly MNAR, computer simulations suggest that the proposed 

model can offer substantial improvement over methods that apply an incorrect MAR 

assumption. The Blimp application offers a user-friendly environment for implementing 

BLVSM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Blimp code for BLVSM, and R and Mplus code for Multiple Imputation

###########################################

######## BLIMP CODE FOR HS1, WS1, AND HS2 ARE MAR (SEPARATE SPECIFICATION)

###########################################

DATA: inputdata.csv;

VARIABLES: HS1 WS1 EDU STR HS2;
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ORDINAL:;

NOMINAL:;

MISSING: 999;

CLUSTERID:;

MODEL: HS2 ~ HS1 WS1 EDU STR;

SEED: 90291;

BURN: 10000;

THIN: 10000; #Each imputed dataset is save every 10000 iteratives;

NIMPS: 100;

CHAINS: 5 processors 5;

OPTIONS: psr covariatemodel;

SAVE:

separate imp*.dat; #Save 100 imputed datasets for Mplus

stacked imps.dat; #Save 1 compiled imputed dataset for R

###########################################

######## BLIMP CODE FOR WS1 IS MAR, AND HS1 AND HS2 ARE MNAR (SEPARATE 

SPECIFICATION)

###########################################

DATA: inputdata.csv;

VARIABLES: HS1 WS1 EDU STR HS2;

ORDINAL:;

NOMINAL:;

MISSING: 999;

CLUSTERID:;

MODEL:
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HS2 ~ HS1 WS1 EDU STR;

HS1.missing ~ WS1 HS1 EDU STR;

HS2.missing ~ WS1 HS1 HS2 EDU STR;

SEED: 90291;

BURN: 15000;

THIN: 10000;

NIMPS: 100;

CHAINS: 5 processors 5;

OPTIONS: psr covariatemodel;

SAVE:

separate imp*.dat;

stacked imps.dat;

###########################################

######## BLIMP CODE FOR WS1 IS MAR, AND HS1 AND HS2 ARE MNAR (SEQUENTIAL 

SPECIFICATION)

##########################################-

#################################

DATA: inputdata.csv;

VARIABLES: HS1 WS1 EDU STR HS2;

ORDINAL:;

NOMINAL:;

MISSING: 999;

CLUSTERID:;

MODEL: HS2 ~ HS1 WS1 EDU STR;

#Squential covariate model
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HS1 ~ WS1 EDU STR;

WS1 ~ EDU STR;

#Squential selection model

HS2.missing~WS1 HS1 HS2 EDU STR HS1.missing;

HS1.missing~WS1 HS1 HS2 EDU STR;

SEED: 90291;

BURN: 15000;

THIN: 10000;

NIMPS: 100;

CHAINS: 5 processors 5;

OPTIONS: psr covariatemodel;

SAVE:

separate imp*.dat;

stacked imps.dat;

###########################################

######## MPLUS CODE

######## 100 copies of data sets must be arranged as imp1.dat, imp2.dat, … , 

imp100.dat.

###########################################

DATA:

file impnames.dat;

type imputation;

VARIABLE:

names HS1 WS1 EDU STR HS2;

usevariables HS1 WS1 EDU STR HS2; #dshidhsid;
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MODEL:

HS2 on HS1 WS1 EDU STR;

OUTPUT:

stdyx;

###########################################

######## R CODE

###########################################

Required packages

library(mitml)

library(rstudioapi)

# set working directory to location of R script

setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

impdata - read.table(paste0(getwd(), “/imps.dat”))

names(impdata) - c(“imputation”, “HS1”, “WS1”, “EDU”, “STR”, “HS2”)

analyze data and pool estimates

implist – as.mitml.list(split(impdata, impdata$imputation))

analysis – with(implist, 1m(HS2 ~ HS1 WS1 EDU STR))

estimates – testEstimates(analysis, var.comp T, df.com NULL)

estimates
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Figure 1. 
Average relative biases of β3 from the Bayesian latent variable selection model, the 

misspecified method with an MAR assumption, and the ordinary least squares estimation 

(OLS) with the original complete data in Simulation Study 1 (MNAR selection process of Y
is denoted as Rry∗

2 , Y missingness is denoted as Py, MAR selection process of X1 is denoted as 

Rrx1
∗2 , and X1 missingness is denoted as Px1 ).
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Figure 2. 
Average relative biases of β0 and β1 from the Bayesian latent variable selection model, the 

misspecified method with an MAR assumption, and the ordinary least squares estimation 

(OLS) with the original complete data in Simulation Study 1 (MNAR selection process of Y 

is denoted as Rry∗
2  Y missingness is denoted as Py, MAR selection process of X1 is denoted as 

Rrx1
∗2  and X1 missingness is denoted as Px1).
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Figure 3. 
Average relative biases of, β2 and σε

2 from the Bayesian latent variable selection model, the 

misspecified method with an MAR assumption, and the ordinary least squares estimation 

(OLS) with the original complete data in Simulation Study 1 (MNAR selection process of Y 

is denoted as Rry∗
2  Y missingness is denoted as Py, MAR selection process of X1 is denoted as 

Rrx1
∗2 , and X1 missingness is denoted as Px1).
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Figure 4. 
Coverage rates of β0, β1, β2, β3, and σε

2 from the Bayesian latent variable selection model and 

the misspecified method with an MAR assumption in Simulation Study 1 (MNAR selection 

process of Y is denoted as Rry∗
2  and Y missingness is denoted as Py).
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Figure 5. 
Average relative biases of β3 from the Bayesian latent variable selection model, the 

misspecified method with an MAR assumption, and the ordinary least squares estimation 

(OLS) with the original complete data in Simulation Study 2 (MNAR selection process of Y 

is denoted as Rry∗
2 , Y missingness is denoted as Py, MNAR selection process of X1 is denoted 

as Rrx1
∗2 , and X1 missingness is denoted as Px1).
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Figure 6. 
Average relative biases of β0 and β1 from the Bayesian latent variable selection model, the 

misspecified method with an MAR assumption, and the ordinary least squares estimation 

(OLS) with the original complete data in Simulation Study 2 (MNAR selection process of Y 

is denoted as Rry∗
2 , Y missingness is denoted as Py, MNAR selection process of X1 is denoted 

as Rrx1
∗2 , and X1 missingness is denoted as Px1).
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Figure 7. 
Average relative biases of β2 and σε

2 from the Bayesian latent variable selection model, the 

misspecified method with an MAR assumption, and the ordinary least squares estimation 

(OLS) with the original complete data in Simulation Study 2 (MNAR selection process of Y 

is denoted as Rry∗′
2 , Y missingness is denoted as Py, MNAR selection process of X1 is denoted 

as Rrx1
∗2 , and X1 missingness is denoted as Px1).
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Figure 8. 
Coverage rates of β0, β1, β2, β3, and σε

2 from the Bayesian latent variable selection model and 

the misspecified method with an MAR assumption in Simulation Study 2 (MNAR selection 

process of Y is denoted as Rry∗
2  and Y missingness is denoted as Py).
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