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ABSTRACT: The hybrid approach in Life Cycle Assessment
(LCA) that uses both input-output and process data has been
discussed in the context of mitigating truncation error and
burdens of data collection. However, the implication of
introducing input-output data on the overall uncertainty of an
LCA result has been debated. In this study, we selected an
existing process LCA, performed a Monte Carlo simulation
after hybridizing each truncated flow at a time, and analyzed the
dispersion and position of the distribution in the results. The
results showed that hybridization effectively moved the mean of the life cycle greenhouse gas (GHG) emissions 38% higher
while maintaining the standard deviation within the 0.62−0.78 range (relative standard deviation, 3−4%). We identified key
activities contributing to the overall uncertainty and simulated the potential effect of collecting higher quality supplier-specific
data for those activities on the overall uncertainty. The results showed that replacing as few as 10 of the largest uncertainty
contributors with high precision supplier-specific data substantially narrowed the distribution. Our results suggest that
hybridizing truncated inputs improves accuracy of LCA results without compromising their precision, and prioritizing supplier-
specific data collection can further enhance precision in a cost-effective manner.

■ INTRODUCTION

Process life cycle assessment (LCA) has been the dominant
approach in LCA.1−3 Among the 30 most cited LCA studies
according to the Thomson Reuter’s Web of Science published
since 2010, only two used the input-output (IO) approach,
two used the hybrid approach, and the rest employed the
process LCA approach (see Table 1S; a full list can be found in
the SI).
Despite the dominance of process LCA, it has been

repeatedly pointed out that the process LCA approach may
suffer from truncation error,4−8 which refers to the error due to
the “impact not covered by the system boundary of the LCA”.2

Previous research showed that truncation error varies widely
across sectors12 and that modeling and methodological factors
significantly influence the magnitude of truncation error. Lave
and colleagues (1995), for example, used a paper cup example
to show that with a process LCA approach less than half of the
environmental discharges are accounted for and then
demonstrated the usefulness of IO analysis to address this
issue.6 Treloar analyzed truncation error (1997) in the
Australian residential building sector, demonstrating that the
energy intensities of the processes one, two, and three stages
upstream were 40.9%, 27.1%, and 7.61%, respectively (12.4%
were the building’s direct emissions).7 Lenzen (2001)
investigated truncation error in a broader range of applications,
demonstrating that across sectors and product types truncation
error was estimated at 50% in process LCA studies.8 Ward and
his colleagues (2017) reported a range of 30−80% truncation
error across their modeling scenarios.2

These estimates of truncation errors are the result of
simulations mostly using input-output tables as a proxy. In
reality, the magnitude of truncation error in a given LCA can
hardly be measured in an empirical setting, because no data is
collected for truncated flows, and thus their contribution to the
overall LCA result is unknown; if they are known, there is no
reason to truncate them.9−11 Furthermore, cutoff decisions are
made often inconsistently across LCA studies, making the
effort to standardize the procedure of measuring truncation
error a challenge.2

The hybrid LCA approach has been recommended in the
literature as a means to reduce the truncation error of process
LCA or to improve precision of input-output analysis.2,13−15

Questions still remain about the overall uncertainty implica-
tions of adding IO data to a process LCA using the hybrid
LCA approach. Recently, two publications have drawn
opposite conclusions about the implications of the hybrid
LCA approach on the accuracy of LCA study results; one study
concluded that “hybrid life cycle assessment (LCA) does not
necessarily yield more accurate results than process-based
LCA”, while a commentary to the article concluded that
“hybrid life cycle assessment (LCA) will likely yield more
accurate results than process-based LCA”.30,31 One of the
reasons for such contrasting views is that there is a trade-off

Received: January 4, 2019
Revised: February 28, 2019
Accepted: March 7, 2019
Published: March 7, 2019

Article

pubs.acs.org/estCite This: Environ. Sci. Technol. 2019, 53, 3681−3688

© 2019 American Chemical Society 3681 DOI: 10.1021/acs.est.9b00084
Environ. Sci. Technol. 2019, 53, 3681−3688

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
C

A
L

IF
O

R
N

IA
 S

A
N

T
A

 B
A

R
B

A
R

A
 o

n 
A

pr
il 

30
, 2

01
9 

at
 1

6:
25

:1
1 

(U
T

C
).

 
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

 

pubs.acs.org/est
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.9b00084
http://dx.doi.org/10.1021/acs.est.9b00084


between a more complete system definition and additional
variability in input-output LCA data due to sector
aggregation,9,16 the net effect of which has not been empirically
tested in the literature.
This trade-off can be characterized as an accuracy vs

precision dilemma. Accuracy is the closeness of the estimates
to the true value.17 Precision is the closeness of agreement
among estimates.17 Truncation errors tend to result in an
underestimation in the result. Therefore, on the one hand, the
higher the truncation error, the lower the accuracy of an LCA
result. While the hybrid approach may be able to improve the
accuracy of an LCA result by mitigating truncation errors, the
generally wider distribution of input-output LCA data, on the
other hand, would exacerbate precision in an LCA result.
This paper aims to answer the question “how do the

accuracy benefits of hybridization weigh against precision
costs?” by using a case study. The answer to the question is
likely to be case dependent, and therefore drawing a general
conclusion would be a challenge. Therefore, the objective here
is to gain insight on the interplay between precision and
accuracy by means of a case study rather than by the
generalization of the relationship.

■ METHODOLOGY AND DATA
Study Design. Our study was conducted in three steps: (a)

select a process LCA case study and run Monte Carlo
simulation (MCS) with all available process data and
parametric uncertainty characterization, (b) hybridize the
LCA study by filling in data gaps with IO data and run
MCS after the addition of data to each process, and (c)
identify the top contributors to uncertainty and reduce the
parametric uncertainty values of these highest contributors to
simulate further data collection and refining of the LCA, and
run MCS again after the refinement of each process. Each of

the three steps is described in its own subsection below. This
approach aligns well with the recommendation from the
literature to employ an iterative process for the use of the
hybrid LCA methodology with assessment of uncertainty.9,10,33

The iterative approach leads to a gradual refinement and
highlights the optimized improvement of the overall study
results when refinement is used in combination with the hybrid
LCA approach. Each MCS included 1000 runs, varying each
parameter randomly within the log-normal distribution of
values possible, based on its geometric standard deviation
(GSD). A GSD is a measure of spread applied to log-normal
distributions. GSDs are commonly used to characterize
parametric uncertainty in LCA (including ecoinvent and
CEDA), where a significant portion of the data are log-
normally distributed.
The uncertainty of the results at each of the three steps (a, b,

c) was interpreted in the context of both precision (standard
deviation of the MCS results) and accuracy (evidence of
reduced truncation error). The following sections describe
each of the three steps and a high-level overview of the
computations involved. A more comprehensive explanation of
the data utilized and mathematical analysis including detailed
matrix equations and Matlab codes can be found in the
Supporting Information.

a. Case Study Selection and Process LCA Reconstruction.
Several criteria were used to select the case study for this
analysis: (1) the example needed to be from the “real world”,
not purely hypothetical, (2) the product needed to have a
complex supply chain that required a laborious data collection
effort, and (3) the “complete” set of unit processes in the
process LCA needed to be published. A study published by the
Mistra Future Fashion Consortium, titled “Environmental
assessment of Swedish fashion consumption”, was selected.19

This study, commissioned by Mistra Future Fashion, analyzed

Figure 1. High-level process flow diagram for the life-cycle of a jacket (based on Roos et al. 201519).
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five generic Swedish garments, and the jacket was chosen for
our analysis due to its material and supply chain complexity in
comparison to the others.
The Mistra Future Fashion study had several goals,

including the assessment of potential consequences of
proposed interventions in future scenarios;19 however, in our
study, we focus on one aspect of the study’s goal: to map the
baseline environmental impact of one use of an average jacket.
Unit processes and material flows, 193 in total, were provided
by the Mistra study’s author and used to generate the process
flow diagram for the life cycle of a jacket. Ecoinvent was
employed as the primary source of background data LCI in the
Mistra study, but one specific version of the database was not
used consistently throughout. For the purpose of this study, we
use ecoinvent v3.1 (more details on data sources are described
below). The Mistra study includes 10 different impact
categories with characterization methods used according to
the ILCD guidelines. Of the impact categories they included,
we selected the climate change impact measured in Global
Warming Potential 100 (GWP100 in kgCO2eq) as the example
for our analysis. In the Mistra study, sensitivity analysis is used
to consider different scenarios that may significantly influence
the overall results, such as different use phase scenarios (i.e.,
washing at different frequencies). Aside from scenario
uncertainty, no other uncertainty was assessed or characterized
in the Mistra study. The study is reasonably complete and well
documented, but uncertainty was not quantified. We use the
jacket from the Mistra study as the case study for our analysis
to shed light on the usefulness of uncertainty assessment to
understand the likeliness of outcomes and how system
boundary decisions influence the overall results.
Figure 1 displays a high-level process flow diagram for the

life cycle of the jacket, modeled directly after the Mistra study
report.19 In reality, there were 193 processes included in both
the Mistra study and in the process-based LCA and subsequent
uncertainty analysis in step (a) of our study. The processes and
individual impact contributions for the process-based LCA are
listed in Table 5S in the Supporting Information. Many of the
Mistra study defined processes included are aggregate
processes (also referred to as system processes or rolled-up
processes) that connect a series of other unit processes but do
not have direct impacts themselves, such as the process
“weaving” which draws together “production of electricity
mix”, “production of modified starch”, and “disposal, textile”,
which itself flows into the larger processes of “production of
woven polyamide” and “production of woven polyester”. This
process is a good example of one that omits processes such as
“warehousing and storage” and “business support services” that
are typically considered to be negligible in process LCAs.
Using the process LCA approach, the technology matrix (A)

and environmental exchange matrix (B) were generated based
on the processes and emissions reported in the Mistra study.
After compiling all of the jacket’s unit processes from the
Mistra study, the authors used the ecoinvent v3.1 data set to
gather reported upstream process data. Ap

u was generated with
the subset of the Mistra study’s upstream unit processes that
were available in ecoinvent v3.1, and these processes were
linked to the full technology matrix in ecoinvent v3.1 (Ap) and
the corresponding environmental exchanges matrix (Bp), as
noted in eq 1. The total life-cycle impact calculated in step
(a),LCIAp, is then given by
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where y represents the functional unit in the Mistra study (use
of one jacket) and the C matrix includes the characterization
factors to transform the emissions associated with the life cycle
inventory into one life cycle impact based on the TRACI
methodology (climate change impact measured in kgCO2eq).
The original matrix notation that the ecoinvent database
follows is the A 1− form for the total direct and indirect
requirements as presented in Heijungs and Suh (2002)22 and
Suh (2004),13 instead of I A( ) 1− − form used here. In this
paper, however, we follow the I A( ) 1− − form for the sake of
simplicity.
The uncertainty characterization values (GSDs) were

extracted from the ecoinvent v3.1 database, and a Monte
Carlo simulation was performed by randomly varying each
parameter based on its distribution, ultimately generating 1000
results for LCIAP. The median and standard deviation of these
1000 results were calculated as a means of measuring the
precision of the result. The values in the technology matrix
(A), environmental exchange matrix (B), and upstream cutoff
matrix (Ap

u) did not accompany GSDs in the Mistra study, and
we have assumed that their GSD is 1. Similarly, our analysis
did not include characterized uncertainty for the character-
ization matrix (C). We recognize that overall uncertainty
estimates are likely underestimated without accounting for the
variation in these matrices.

b. Hybridization Process. In this study, we used the tiered
hybrid LCA approach to hybridize the Mistra case study,1,13

first identifying the upstream processes that may have been
excluded during boundary selection. The authors of the Mistra
study reported the omission of certain upstream processes that
are commonly excluded from process LCA calculations:
“Generally, manufacturing of machinery and equipment are
not included in the models unless there has been a specific
reason for doing so”.19 LCA databases, such as ecoinvent,
however, aim to incorporate capital goods including machinery
and equipment within the system boundary, while the degree
of success may vary widely across unit processes and databases.
To determine the magnitude of these and similar processes

that are typically excluded, the direct economic flows into the
sectors relevant for the jacket’s production were analyzed using
the CEDA 5 input-output LCA database. Five sectors were
considered in the analysis to be directly relevant to the jacket’s
upstream production: (1) fiber, yarn, and thread mills, (2)
fabric mills, (3) textile and fabric finishing and fabric coating
mills, (4) other textile product mills, and (5) apparel
manufacturing. By analysis of only the inputs into these five
sectors, the average contribution of each commodity was
determined, and the contributions were ranked. Only the
inputs contributing at least 0.1% of the total cost to produce
each output of the five jacket-related sectors were included in
the hybridization, and the sectors that overlapped with the
process LCA data used in step (a) were excluded. For example,
the contribution of the “fabric mills” commodity was not
included in the hybridization, since several fiber production
processes were already included in the Mistra study’s LCA;
however, the “management of companies and enterprises”
commodity was not already included in the process LCA and
so was added using input-output data during the hybridization.
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Table 3S in the Supporting Information contains the list of
sectors identified during the aforementioned analysis and those
included in the hybridization process (36 in total).
After establishing the baseline process LCA scenario and

results in step (a), the additional upstream processes identified
from analyzing the jacket-related sectors in the CEDA database
were added through the integrated hybrid approach.13

However, as discussed in Suh and Huppes (2005), the
integrated hybrid approach and the tiered hybrid approach1

would, in this particular case, generate identical results, as there
are no feedback loops between the input-output and process
systems through the downstream cutoff matrix.18,32 The price
of the jacket, estimated at $40 USD, was used to quantify the
size of the contribution of each upstream process, since the
contribution of each commodity per USD jacket production
was previously determined. The magnitude for each of these
commodities were modeled as upstream processes in the AIO

u

matrix and then linked to the CEDA technology matrix data
(AIO) and environmental exchanges data (BIO) using the
hybrid approach.
Using the tiered hybrid approach, both the processes using

process-based data and those using input-output data were
modeled as upstream processes (Ap

u and AIO
u, respectively) to

distinguish between the two data sets (both matrices are
included in the Supporting Information). The overall
computation using the tiered hybrid approach is given by
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which represents the total life cycle impact generated by the
jacket in step (b) of our study.1,13 No uncertainty information
was provided for the price of the jacket itself; however, the
uncertainty distributions for the contribution of each of the
commodities to the jacket-related sectors (standard deviation
of the average of all five sectors) and the CEDA data inputs
(GSDs) are used, along with the uncertainty information for
the environmental exchanges from ecoinvent (GSDs), to vary
parameters during the Monte Carlo simulations. Just as in step
(a), the median and standard deviation of these 1000 results
were calculated for comparison. It is important to note that
without characterized uncertainty for the jacket, overall
uncertainty is likely underestimated in the study.
c. Iterative Refinement of Hybrid LCA Results. Progressive

replacement of more uncertain, secondary data sets by less
uncertain primary data sets was simulated in two steps: (1)
identification of the major uncertainty contributors, and (2)
simulating the effects of replacing those major uncertainty
contributors by primary data. First, in order to identify the
major uncertainty contributors, a local sensitivity analysis was
performed to identify the sensitivity of the results to the
variation of each upstream process (from both process-based
and IO data sources). Monte Carlo simulations were run by
varying all of the parameters associated with one process and
calculating the standard deviation of the results when only the
uncertainty of that process was included. This exercise was
repeated for all of the processes, and the standard deviations of
the results (100 simulations each) were compared. The use of
IO data, which is holistic in nature due to a top-down
modeling approach, using the hybrid approach, is currently the

only streamlined approach to LCA that addresses the
truncation error prevalent in all process LCAs. The focus of
this paper is on the implications of the hybrid approach for
uncertainty, and the authors recognize that there are several
available methods to optimize refinement of the results once
truncation error has been properly addressed. These
alternatives include the sensitivity analysis method based on
first-order approximation discussed in Heijungs and Suh
(2002)22 or the probabilistic triage method presented in
Olivetti et al. (2013),33 both of which could be complementary
to the methods presented in this paper. The sensitivity analysis
results are included in the Supporting Information (Table 4S),
and the calculated uncertainty distributions for each process
were used to rank the processes on the basis of how sensitive
the results were to the variance introduced by each process.
Second, the progressive collection of primary data for and
replacement of those top uncertainty contributors was
simulated by running a Monte Carlo simulation with 1000
runs (same as with steps (a) and (b)) by using eq 2 each time
a process was refined by eliminating the parametric uncertainty
associated with that one parameter, simulating the collection of
primary data to fill in the data gap. A new Monte Carlo
simulation was run each time a new process was refined, and
the processes determined to be the highest contributors to
uncertainty were refined one-by-one in the rank order
described above. The median and standard deviation of each
of these Monte Carlo simulation results were calculated to
measure how the precision of the results changed with each
refinement.

Data Sources. The appendices of the Mistra study
included tables with all of the processes utilized and the
flows between the processes for the jacket (on pages 90−132).
This data was manually extracted from the report, as it was in
PDF form, and replicated in an excel spreadsheet format. After
determining that our initial results did not match that of the
Mistra study, we contacted the authors and they provided a
more complete set of unit processes and material flows, which
is now incorporated into our case study. The Supporting
Information (SI) of our study includes this more complete set
of data in the “A_mistra” matrix in the excel workbook. This
workbook in the SI describes in detail what ecoinvent and
CEDA data were utilized as well as the background
calculations. It is notable that our reconstruction of the Mistra
study for the global warming potential of the jacket did not
reproduce the exact same result that the original report
presented; however, this 7% difference may be attributed to
the use of only ecoinvent v3.1 in our study (as opposed to
drawing from several ecoinvent versions) and the TRACI
method for characterization instead of the ILCD guidelines
used in the Mistra study’s calculations.
The ecoinvent v3.1 database is used as the primary source of

process-based LCI data in this study. Ecoinvent v3.1 contains
over 11000 unit processes, and uncertainty information in the
form of distribution of parameters is provided for each unit
process data.23 The distribution of parameters in the ecoinvent
database are derived from an estimate of basic uncertainty
(stochasticity) and several other criteria incorporated through
a pedigree matrix approach, which translates reliability,
completeness, temporal correlation, geographic correlation,
and further technology correlation into a distribution.24 The
information on distribution of the underlying parameters at a
unit process level can be used to simulate the overall
distribution in the LCA results.20,21,25
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The pedigree approach has been developed to incorporate
both quantitative and qualitative dimensions of uncertainty
into one numeric indicator of uncertainty.26 The pedigree
approach has been criticized for its subjectivity and reliance on
expert judgment;27 however, viable alternatives to incorporate
the inherent uncertainties in LCA are lacking.
The Comprehensive Environmental Data Archive (CEDA)

database is the source of all input-output data used in this
study.28 CEDA 5 represents over 430 industrial sectors,
commodities, and the linkages between them according to a
2014 base year. GSD values for individual parameters in CEDA
are derived from the same pedigree approach used to estimate
uncertainty for the parameters in ecoinvent to ensure
comparability. In general, GSD values in CEDA are higher
than those in ecoinvent due to the uncertainty caused by
aggregation error. The median GSD in ecoinvent v3.1 is 1.2
while that for CEDA 5 is 1.8. Despite the fact that CEDA
GSDs are generally higher than that of ecoinvent, the median
GSDs for CEDA and ecoinvent data utilized in our analysis
were quite similar (median GSD from CEDA = 1.3, median
GSD from ecoinvent = 1.4). This is likely because the
ecoinvent data in this study was utilized for the more complex
processes, such as the production of various chemicals, while
CEDA data was used for many processes that predominantly
required energy consumption, such as warehousing and
business services. While the median GSDs were comparable,
Figure 2 demonstrates that the ecoinvent data used in this

study has a broader range of parameter uncertainty (GSD
values); therefore, we cannot conclude that IO data is always
more uncertain than process-based data.
It is important to note that while the GSD values for each

CEDA process used in our study were comparable to those of
ecoinvent, there was additional uncertainty introduced through
the use of IO data. As described in section (c) of the
methodology, the contribution of each upstream process was
based on an average of the total direct and indirect inputs of
each commodity to the five jacket-related sectors in the CEDA
5 database. The standard deviation of these five contributions
(relative standard deviation ranging from 0.03−1.11 for each
commodity) was included in the MCSs by varying each of the
CEDA-based technology (A) matrix parameters according to
these corresponding standard deviations. Therefore, the overall
uncertainty introduced through the use of CEDA data is higher
than that of the ecoinvent inputs, but the broad range of GSD

values in ecoinvent demonstrates that process-based LCA
input data is not without uncertainty on its own.

■ RESULTS
The mean greenhouse gas emissions of the process LCA for
one jacket in step (a) was 15.9 kg CO2eq. As previously
mentioned, this is slightly (7%) lower than the reported results
in the original Mistra study; the use of different versions of
ecoinvent database and characterization factor data are likely to
explain the difference. Using the hybrid LCA approach, input-
output data was then used to fill in all the upstream data gaps
during step (b). IO data was used for 36 additional processes
(bringing the total to 229), a list of which is included in Table
3S in the Supporting Information. The overall impact
increased considerably after hybridization (21.9 kg CO2eq,
or a 38% increase from step (a)), demonstrating a reduction in
truncation error using the hybrid approach. Despite the large
increase in the mean greenhouse gas emissions, the top five
contributing processes do not change. This is expected, given
that system boundaries and cut-offs in a process LCA should
be defined to include the most significant unit processes in the
life cycle.
Resulting probability distributions from the Monte Carlo

simulations are portrayed in Figure 3 for each of the steps
described in the study design: (a) process LCA approach using
only the available process data, (b) hybrid LCA approach with
all available process data and IO data to fill in the upstream
data gaps, and (c) refined hybrid LCA approach by reducing
the uncertainty (individual GSD values) of the top-ten highest
contributors to overall uncertainty. The standard deviation of
the characterized results for climate change impact changed
from 0.62 (a) to 0.75 (b) by the inclusion of IO data using the
hybrid approach. After refining the top ten processes that
contribute to uncertainty, the precision improved dramatically
(standard deviation in (c) = 0.11) and the median remained
closer to that of the unrefined hybrid LCA than of the baseline
process LCA results (median of (a) = 15.9, (b) = 21.9, (c) =
21.7). Of the top-ten processes identified through a sensitivity
analysis as the highest contributors to overall uncertainty, four
were using process-based data and six were unit processes
using input-output data, indicating that the higher expected
uncertainty associated with the IO data used in the hybrid
approach did not overpower the process LCA results.
Step-wise analysis of hybridization and refinement of the

jacket LCA case study showed improvement of both accuracy
and precision made possible with the hybrid LCA approach.
To elaborate on the hybridization process (step (b)), the
hybridization was repeated with only one data gap filled in with
IO data at a time, prioritizing the larger data gaps first. The
point of this exercise was to demonstrate how the uncertainty
changes, both in precision and accuracy, with the inclusion of
each additional input-output process. Figure 4 displays the
climate change impact results generated using MCS after each
additional data gap is filled in with IO data using the hybrid
method (left of the blue vertical line) as well as those results
after each of the processes contributing most to overall
uncertainty are refined (right of the blue vertical line).
Precision improvements alone could be achieved without the
use of the hybrid approach; however, accuracy would be
difficult to address since truncation error is a prevalent
outcome in the process-based approach to LCI data collection.
Improving precision when using only the process LCA
approach would therefore refine the results around a value

Figure 2. Histogram of geometric standard deviation (GSD) values
for all process (ecoinvent) and input-output (CEDA) data used in the
study (does not include the processes that had no quantified
uncertainty or GSD = 1).
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that was knowingly inaccurate due to the underestimation
caused by truncation error.

■ DISCUSSION

This study assessed the uncertainty implications of the hybrid
LCA approach through the lens of interplay between precision
and accuracy. We selected an existing process LCA and used
Monte Carlo simulation to analyze the shape and position of
the distribution in the results after hybridizing one flow at a
time. An application of the hybrid approach resulted in 38%
higher mean and median life-cycle GHG emissions. The
standard deviation remained consistently in the 0.62−0.78
range throughout the hybridization process. The magnitude of
truncation error from undocumented cut-offs and system
boundary decisions is unknown, but it is likely that what has
been accounted for in our study is a subset of the total
truncation.

It is notable that truncation error is unidirectional, meaning
that it is always presented as an underestimation bias, while the
errors in the input-output data or other proxy data for cut-offs
are generally random.4,29 When it comes to refinement of data
to improve the quality of an LCA result, the simple distinction
between IO or process cannot serve as the guide for choosing
data; best quality data considering both precision and accuracy
should be prioritized regardless of whether the data at hand is
from an IO LCA database or from a process LCA database. In
doing so, an LCA analyst should consider the trade-offs
between precision and accuracy; i.e., inclusion of less precise
data should be considered if its benefits of improving system
completeness and accuracy outweigh the cost. For example, if
one process contributes an overwhelming majority of the total
impacts, it may be unwise to use input-output data, since the
introduction of less precise data for that process may spread
the range of possible results too broad to be useful in decision
making. The decisions associated with data selection have to
be based on the scope and objective of the LCA study.

Figure 3. Histograms of LCA results based on Monte Carlo simulation (MCS) at each study step: (a) process LCA only, (b) hybrid LCA with
input-output (IO) data to fill in gaps, and (c) refined hybrid LCA with reduced geometric standard deviations (GSDs) for top ten processes
contributing most to overall uncertainty.

Figure 4. Progression of life cycle impact assessment (LCIA) results using the iterative hybrid LCA approach (gray represents the standard
deviation of the Monte Carlo simulation (MCS) results at each step; black line represents the median of the MCS results). Median values: (a) =
15.9, (b) = 21.9, (c) = 21.7.
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Furthermore, prioritizing the largest contributors to overall
uncertainty can substantially reduce the time and resources
needed for further improvement in the quality of LCA results.
We therefore recommend the iterative hybrid procedure,10

starting from the rough but complete picture and progressively
refining the key contributors to overall uncertainty.
Our study is limited by the existing uncertainty distribution

data from both ecoinvent and CEDA. The subjectivity of the
pedigree approach and reliance on expert judgment to estimate
certain contributors to these uncertainties are also recognized
as a limitation, and future research should focus on developing
more objective and scientific alternatives to measure parameter
uncertainty in both process-based and IO data sets.
While our work attempted to capture and assess uncertainty

more holistically than typical LCA studies, not all sources of
uncertainty could be included in our assessment. Specifically,
uncertainty associated with the technology matrix was not
presented in the Mistra study and therefore not included in our
analysis. Additionally, the uncertainty of the characterization
factors in impact assessment was outside the scope of our
study. Future work should address how to measure these
sources of uncertainty as well.
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