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Dynamic Models of Appraisal Networks
Explaining Collective Learning

Wenjun Mei , Noah E. Friedkin , Kyle Lewis , and Francesco Bullo , Fellow, IEEE

Abstract—This paper proposes models of learning pro-
cesses in teams of individuals who collectively execute a
sequence of tasks and whose actions are determined by
individual skill levels and networks of interpersonal ap-
praisals and influence. The closely-related proposed mod-
els have increasing complexity, starting with a centralized
manager-based assignment and learning model, and finish-
ing with a social model of interpersonal appraisal, assign-
ments, learning, and influences. We show how rational opti-
mal behavior arises along the task sequence for each model,
and discuss conditions of suboptimality. Our models are
grounded in replicator dynamics from evolutionary games,
influence networks from mathematical sociology, and
transactive memory systems from organization science.

Index Terms—Appraisal networks, collective learning,
evolutionary games, influence networks, multiagent sys-
tems, replicator dynamics, transactive memory systems
(TMS).

I. INTRODUCTION

A. Transactive Memory System(TMS) in Applied
Psychology

R ESEARCHERS in sociology, psychology, and organiza-
tion science have long studied the inner functioning and

performance of teams with multiple individuals engaged in
tasks. Extensive qualitative studies, conceptual model,s and em-
pirical studies in the laboratory and field reveal some statistical
features and various phenomena of teams [15], [17], [32], [33],
but only a few quantitative and mathematical models are avail-
able [1], [20].

Manuscript received September 28, 2016; revised June 29, 2017 and
October 31, 2017; accepted November 13, 2017. Date of publication
November 20, 2017; date of current version August 28, 2018. This
work was supported in part by the U.S. Army Research Laboratory and
in part by the U.S. Army Research Office under Grant W911NF-15-1-
0577 and Grant W911NF-16-1-0005. This paper was presented in part
at the 55th Conference on Decision and Control, Las Vegas, NV, USA,
December 12–14, 2016. Recommended by Associate Editor M. Cao.
(Corresponding author: Wenjun Mei.)

W. Mei and F. Bullo are with the Department of Mechanical Engineer-
ing and the Center for Control, Dynamical Systems, and Computation,
University of California at Santa Barbara, Santa Barbara, CA 93106
USA (e-mail: meiwenjunbd@gmail.com; bullo@engineering.ucsb.edu).

N. E. Friedkin is with the Department of Sociology and the Center for
Control, Dynamical Systems, and Computation, University of California
at Santa Barbara, Santa Barbara, CA 93106 USA (e-mail: friedkin@
soc.ucsb.edu).

K. Lewis is with the Technology Management Program, University of
California at Santa Barbara, Santa Barbara, CA 93106 USA (e-mail:
klewis@tmp.ucsb.edu).

Digital Object Identifier 10.1109/TAC.2017.2775963

A TMS is a conceptual model of team learning and perfor-
mance well-established in organization science, see the seminal
work by Wegner et al. [29] and other highly cited works [4],
[15], [17], [30]. A TMS is a collective “memory” system that
emerges in teams engaged in tasks, as the team members develop
the collective knowledge on who possesses what expertise. TMS
facilitates coordination and division of labor. Empirical research
across a range of team types and settings [16], [17], [34], as
well as some early simulation-based computational models [1],
[25], [26], demonstrates a strong positive relationship between
the development of a TMS and team performance. However,
the mechanisms through which team members come to share an
understanding of the distribution of expertise is typically treated
as “black box” processes in TMS research. It remains an open
problem how to mathematically characterize the TMS-related
social and cognitive processes, such as the division of labor and
the evolution of collective knowledge.

B. Problem Description

In this paper, we propose a class of multiagent dynamical
systems as mathematical formalizations of some important as-
pects of the TMS theory. We consider a natural social process,
in which a team of individuals, with unknown skill levels, is
completing a sequence of tasks. Each task is completed by sub-
dividing it into subtasks with different workloads and assigning
one subtask to each team member. The team performance is
maximized when the workload assignments are proportional to
the individuals’ underlying skill levels. We adopt the concept
of appraisal network, or equivalently its corresponding row-
stochastic appraisal matrix, to model the TMS of the team.
The appraisal network represents how the team members eval-
uate each other’s underlying skill level. The dynamics of the
appraisal matrix is as follows: First, after completing the task,
each individual receives a feedback signal equal to the deviation
of her/his own performance from the weighted average perfor-
mance of a subset of observed individuals. Second, based on the
feedback signal, each individual adjusts her/his own appraisal
and the appraisals of other team members. Third, the appraisal
network may or may not be updated via an interpersonal influ-
ence process. Fourth, the workload division for the next tasks is
computed as a function of the appraisal matrix. The evolution
of the appraisal network corresponds to the development of a
team’s TMS. This paper aims to mathematically formalize this
four-step process and investigate the conditions under which:
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i) the team as an whole achieves asymptotically the optimal
workload assignment;

ii) each individual learns asymptotically the true relative
skill levels of all the team members; and

iii) the learning fails to occur.
We refer to property (ii) as collective learning.

C. Literature Review

To the best of our knowledge, this paper is the first attempt to
model the development of TMS as a multiagent system and pro-
vide rigorous conditions for collective learning. To the best of
our knowledge, the only related previous works are the compu-
tational models proposed by Palazzolo et al. [25], Ren et al. [26],
and Anderson et al. [1]. The model in [1] is a two-dimension
(2-D) ordinary differential equations system and treats the col-
lective knowledge as a scalar variable, while the models in [25]
and [26] are multiagent. Palazzolo et al. [25] consider time-
varying skill levels. Ren et al. [26] consider multidimension
skills and task requirements. Both models take into account nu-
merous complicated and realistic individual/group actions, and
the analysis of both models is based on simulation.

In our models, collective learning arises as the result of the
coevolution of interpersonal appraisals and influence networks.
Related previous work includes social comparison theory [7],
averaging-based social learning [10], opinion dynamics [6],
[9], [18], reflected appraisal mechanisms [8], [12], and the com-
bined evolution of interpersonal appraisals and influence net-
works [11].

In the modeling and analysis of the evolution of appraisal
and influence networks, we build an insightful connection be-
tween our model and the well-known replicator dynamics in
evolutionary game theory; see the textbook [27], some control
and optimization applications [2], [21], and the recent contribu-
tions [5], [19].

Our models are also marginally related to distributed opti-
mization, e.g. [3], [23]. But, in this paper, we focus on modeling
the natural social behavior of individuals. Moreover, the evolu-
tion of the decision variable, i.e., the workload assignment, is
not directly modeled, but a byproduct of the dynamics for the
appraisal network.

D. Contribution

First, based on a few natural assumptions, we propose three
novel models with increasing complexity for the dynamics of
teams: the manager dynamics, the assign/appraise dynamics,
and the assign/appraise/influence dynamics. Without loosing
mathematical tractability and intuitive insights, our work inte-
grates several natural processes in a single model: the division of
workload, the update of interpersonal appraisals via observation,
and the opinion dynamics over the influence network. To the best
of our knowledge, this is the first time that such an integration
has been proposed and leads to rigorous and intuitive results.
For the baseline manager dynamics, the workload assignment is
adjusted in a centralized manner: the increase rate of workload
assigned to an individual is equal to the deviation of his/her per-
formance from the average. Under this intuitive assumption, the

evolution of the workload assignment obeys the well-established
replicator dynamics with novel fitness functions as the individ-
ual performances. The assign/appraise dynamics provides an
insightful perspective on the connection between team perfor-
mance and the appraisal network, by assuming that, instead of
by the manager, the workload assignment is determined by the
appraisal network in a social and distributed manner. The update
of the appraisals is driven by the individuals’ heterogeneous per-
formance feedback. In the assign/appraise/influence dynamics
model, we further incorporate the coevolution of appraisal and
influence networks.

Second, we present comprehensive theoretical analysis on the
dynamical properties of our models. For the assign/appraise dy-
namics and the assign/appraise/influence dynamics, we relate
the models’ asymptotic behavior with the connectivity prop-
erty of the observation network, which defines the heteroge-
neous feedback signals each individual observes. Our theoreti-
cal results on the asymptotic behavior can be interpreted as the
exploration of the most relaxed conditions for the emergence
of asymptotic optimal workload assignment. Moreover, some
theoretical results also reveal insightful interpretations that are
consistent with the TMS theory studied in organization science.
According to Lee et al. [14], in teams with well-developed
TMS, members’ agreements on the distribution of expertise fa-
cilitate high levels of coordination and division of labor, which
a centralized manager might otherwise provide. In our paper,
we prove that, along the assign/appraise dynamics and the as-
sign/appraise/influence dynamics, the evolution of the workload
assignment determined by the appraisal network does indeed
satisfy the manager (a.k.a., replicator) dynamics in a general-
ized form. In addition, the assign/appraise/influence dynamics
describes an emergence process by which team members’ per-
ception of “who knows what” become more similar over time,
a fundamental feature of TMS [14], [24].

Third, besides the models in which the team eventually learns
the individuals’ true relative skill levels, we propose one varia-
tion in each of the three phases of the assign/appraise/influence
dynamics: the assignment rule, the update of appraisal network
based on feedback signal, and the opinion dynamics for the
interpersonal appraisals. The variations reflect some sociologi-
cal and psychological mechanisms known to prevent the team
from learning. We investigate by simulation numerous possible
causes of failure to learn.

E. Organization

The rest of this paper is organized as follows: Section II
proposes our problem setup and centralized manager model;
Section III introduces the assign/appraise dynamics. Section IV
is the assign/appraise/influence model. Section V discusses
some causes of failure to learn. Section VI provides some fur-
ther discussions and conclusion. We put some preliminaries on
evolutionary games and replicator dynamics in Appendix A.

II. PROBLEM SETUP AND MANAGER DYNAMICS

In this section, we first mathematically formalize some con-
cepts related to the social processes we aim to model, and
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TABLE I
NOTATIONS FREQUENTLY USED IN THIS PAPER

� (≺ resp.) entrywise greater than (less than resp.).
� (� resp.) entrywise no less than (no greater than resp.).
1n (O n resp. ) n-dimension column vector with all entries equal to 1 (0

resp.)
x vector of individual skill levels, with

x = (x1 , x2 , . . . , xn )� � O n and x�1n = 1.
w workload assignment. w � O n and w�1n = 1
f a concave, continuously differentiable and increasing

function f : [0, +∞) → [0, +∞)
p(w) vector of individual performances.

p(w) =
(
p1 (w), . . . , pn (w)

)�
, where

pi (w) = f (wi/xi ) is the performance of individual i.
A appraisal matrix. A = (aij )n×n , where aij is

individual i’s appraisal of j’s skill level.
W influence matrix. W = (wij )n×n , where wij is the

weight individual i assigns to j’s opinion.
Δn the n-simplex {y∈Rn |y�1n = 1, y � O n }.
int(Δn ) the relative interior of Δn , i.e.,

int(Δn ) = {y ∈ Rn |y�1n = 1, y � O n }.
vleft(A) the left dominant eigenvector of the non-negative and

irreducible matrix A, i.e., the normalized entry-wise
positive left eigenvector associated with the eigenvalue
equal to A’s spectral radius.

G(B) the directed and weighted graph associated with the
adjacency matrix B ∈ Rn×n .

illustrate them by a concrete example. Then, we introduce a
baseline centralized model for team learning dynamics. Fre-
quently used notations are listed in Table I.

A. Model Assumptions and Notations

1) Team, Tasks, and Assignments: The basic assumption
on the individuals and the tasks are given below.

Assumption 1 (Team, Task Type, and Assignment): Consider
a team of n individuals characterized by a fixed but unknown
vector x = (x1 , . . . , xn )� satisfying x � On and x�1n = 1,
where each xi denotes the skill level of individual i. The tasks
being completed by the team are assumed to have the following
properties:

1) the total workload of each task is characterized by a pos-
itive scalar and is fixed as 1 in this paper;

2) the task can be arbitrarily decomposed into n subtasks ac-
cording to the workload assignment w = (w1 , . . . , wn )�,
where each wi is the subtask workload assigned to indi-
vidual i. The workload assignment satisfies w � O n and
w�1n = 1. The subtasks are executed simultaneously.

The scalar skill levels can be interpreted in an abstract way
as the individuals’ overall abilities of contributing to the tasks,
while the workload assignment corresponds to the individuals’
relative responsibilities.

2) Individual Performance: The measure of individual per-
formance is defined below.

Assumption 2 (Individual Performance): Given fixed skill
levels, each individual i’s performance, with the assignment
w, is measured by pi(w) = f(xi/wi), where f : [0,+∞) →
[0,+∞) is strictly concave, continuously differentiable and
monotonically increasing.

The function f is assumed concave since it is widely adopted
that the relation between the performance and individual ability
obeys the power law, i.e., f(x) ∼ xγ , with γ ∈ (0, 1) [1]. The
specific form f( xi

wi
) could be generalized by adopting different

measures of xi and wi .
3) Optimal Assignment: It is reasonable to claim that, in

a well-functioning team, individuals’ relative responsibilities,
characterized by the workload assignment, should be propor-
tional to their true relative abilities. We thereby refer to w∗ = x
as the optimal assignment. There are various team perfor-
mance models for which w∗ is the unique optimal solution
in Δn . For example, define the measure of the mismatch be-
tween workload assignment and individual’s true skill levels as
H1(w) =

∑n
i=1 |wi

xi
− 1|. This mismatch is minimized at w∗.

Alternatively, if we define the team performance as the weighted
average individual performance, i.e.,H2(w) =

∑n
i=1 wif( xi

wi
),

then the strict concavity of f implies that H2(w) is maximized
at w∗ = x.

We introduce a simple and concrete example to illustrate the
mathematical formalization introduced above.

Example (Intruder Detection Task): Consider a group of n
individuals monitoring an environment. The environment is di-
vided into numerous nonoverlapping regions with equal areas.
Each region is monitored by a CCTV camera connected to its re-
spective screen. The aim of the group is to detect the locations of
randomly-appearing intruders via monitoring the screens. The
appearance of the intruders is uniformly random in space and
is a homogeneous Poisson process. An intruder is successfully
detected if it is observed on a screen by one of the individu-
als within a certain time period since its appearance. The team
performance over a given task period is the fraction of success-
fully detected intruders. The task is conducted in the follows
way: each individual i monitors wi number of screens and each
screen is monitored by one and only one individual. Here, wi is
normalized such that

∑
i wi = 1. Each individual i has an intrin-

sic but unknown normalized skill level xi . Denote by pi(w) the
probability that an intruder is successfully detected by individ-
ual i, given the division of cameras w ∈ Δn . This probability
pi(w) increases with individual i’s intrinsic skill level xi and
decreases with the number of screens monitored by i, i.e., wi .
A natural assumption is that pi(w) = f( xi

wi
), where f is a con-

cave and monotonically increasing function, with f(0) = 0 and
f(∞) = 1. One can check that the expected team performance
is given by

∑
i wif( xi

wi
), which is maximized at w∗ = x.

B. Centralized Manager Dynamics

In this section, we introduce a continuous-time centralized
model on the evolution of workload assignment, referred to
as the manager dynamics. The diagram illustration is shown in
Fig. 1(a). Suppose that, at each time t, a team is completing a task
based on the assignment w(t). An outside manager observes the
individuals’ performance p

(
w(t)

)
. We adopt the intuitive as-

sumption that the manager increases the workload assigned to
individual i if her/his performance is above the weighted team
average and vice versa. In addition, the sum of all the individ-
uals’ workloads remains 1. The manager is assumed to adjust

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on April 05,2023 at 00:00:34 UTC from IEEE Xplore.  Restrictions apply. 



MEI et al.: DYNAMIC MODELS OF APPRAISAL NETWORKS EXPLAINING COLLECTIVE LEARNING 2901

Fig. 1. Diagram illustrations of manager dynamics, assign/appraise dynamics, and assign/appraise/influence dynamics. (a) Manager. (b) As-
sign/appraise. (c) Assign/appraise/influence.

the workload assignment according to the replicator dynamics
below, which is arguably the simplest model for the process
described above

ẇi = wi

(

pi(w) −
n∑

k=1

wkpk (w)

)

(1)

for any i ∈ {1, . . . , n}. Equation (1) takes the same form as the
classic replicator dynamics from evolutionary game theory [5],
[27], with the nonlinear fitness function f(xi/wi). We refer to
Appendix A for some preliminaries on evolutionary games and
replicator dynamics.

Theorem 1 (Manager Dynamics): Consider (1) for the
workload assignment as in Assumption 1 with performance as
in Assumption 2. Then

1) the set int(Δn ) is invariant;
2) for any w(0) ∈ int(Δn ), the manager’s assignment w(t)

converges to w∗ = x, as t → ∞.
The proof is given in Appendix B. We adopt the same Lya-

punov function used for the asymptotic stability analysis of the
replicator dynamics in [5] and [27]. The fitness function in the
manager dynamics is novel.

III. ASSIGN/APPRAISE DYNAMICS OF THE

APPRAISAL NETWORKS

Despite the desired property on the convergence of the work-
load assignment to optimality, the manager dynamics does not
capture the evolution of the team’s inner structures. In this sec-
tion, we introduce a multiagent system, in which workload as-
signments are determined by the team members’ interpersonal
appraisals, rather than any outside authority, and the appraisal
network is updated in a decentralized manner, driven by the
team members’ heterogeneous feedback signals.

A. Model Description and Problem Statement

1) Appraisal Network: Denote by aij the individual i’s
evaluation of j’s skill levels and refer to A = (aij )n×n as the ap-
praisal matrix. Since the evaluations are in the relative sense, we
assume A � O n×n and A1n = 1n . The directed and weighted
graph G(A), referred to as the appraisal network, reflects the
team’s collective knowledge on the distribution of its members’
abilities.

2) Assign/Appraise Dynamics: This multiagent model is
illustrated by the diagram in Fig. 1(b). We model three phases:
the workload assignment, the feedback signal, and the update of
the appraisal network, specified by the following three assump-
tions, respectively.

Assumption 3 (Assignment Rule): At any time t ≥ 0, the
task is assigned according to the left dominant eigenvector of
the appraisal matrix, i.e., w(t) = vleft

(
A(t)

)
.

Justification of Assumption 3 is given in Appendix C. For
now, we assume A(t) is row-stochastic and irreducible for all
t ≥ 0, so that vleft

(
A(t)

)
is always well defined. This will be

proved later in this section.
Assumption 4 (Feedback Signal): After executing the work-

load assignment w, each individual i observes, with no noise,
the difference between her own performance and the quality of
some part of the whole task, given by

∑
k mikpk (w), in which

mik denotes the fraction of workload individual k contributes
to the part of task observed by i. The matrix M = (mij )n×n

defines a directed and weighted graph G(M), referred to as the
observation network, and satisfies M � O n×n and M1n = 1n

by construction.
The topology of the observation network defines the indi-

viduals’ feedback signal structure. Notice that, the feedback
signal for each individual i is only the deviation pi

(
w(t)

)−∑
k mikpk

(
w(t)

)
, while the matrix M is not necessarily known

to the individuals.
Assumption 5 (Update of Interpersonal Appraisals): With

the performance feedback signal defined as in Assump-
tion 4, each individual i increases her self appraisal and
decreases the appraisals of all the other individuals, if
pi(w) >

∑
k mikpk (w), and vice versa. In addition, the

appraisal matrix A(t) remains row-stochastic.
The following dynamical system for the appraisal matrix,

referred to as the appraise dynamics, is arguably the simplest
model satisfying Assumptions 4 and 5:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ȧii = aii(1 − aii)

(

pi(w) −
n∑

k=1

mikpk (w)

)

,

ȧij = −aiiaij

(

pi(w) −
n∑

k=1

mikpk (w)

)

.

(2)

The matrix form of the appraise dynamics, together with the
assignment rule as in Assumption 3, is given by

{
Ȧ = diag

(
p(w) − Mp(w)

)
Ad(In − A),

w = vleft(A),
(3)

and collectively referred to as the assign/appraise dynamics.
Here, Ad = diag(a11 , . . . , ann ).

3) Problem Statement: In Section III-B, we investigate the
asymptotic behavior of dynamics (3), including:
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1) convergence to the optimal assignment, which means that
the team as an entirety eventually learns all its members’
relative skill levels, i.e., limt→+∞ w(t) = x;

2) appraisal consensus, which means that the individuals
asymptotically reach consensus on the appraisals of all
the team members, i.e., aij (t) − akj (t) → 0 as t → +∞,
for any i, j, k.

Collective learning is the combination of the convergence to
optimal assignment and appraisal consensus.

B. Dynamical Behavior of the Assign/Appraise Dynamics

We start by establishing that the appraisal matrix A(t), as the
solution to (3), is extensible to all t ∈ [0,+∞) and the assign-
ment w(t) is well defined, in that A(t) remains row-stochastic
and irreducible. Moreover, some finite-time properties are in-
vestigated.

Theorem 2 (Finite-Time Properties of Assign/Appraise Dyn
amics): Consider the assign/appraise dynamics (3), based on
Assumptions 3–5, describing a workload assignment as in
Assumption 1, with performance as in Assumption 2. For any
observation network G(M), and any initial appraisal matrix
A(0) that is row-stochastic, irreducible and has strictly positive
diagonal,

i) the appraisal matrix A(t), as the solution to (3), is ex-
tensible to all t ∈ [0,+∞). Moreover, A(t) remains row-
stochastic, irreducible and has strictly positive diagonal
for all t ≥ 0;

ii) there exists a row-stochastic irreducible matrix C ∈
Rn×n with zero diagonal such that

A(t) = diag
(
a(t)

)
+
(
In − diag

(
a(t)

))
C (4)

for all t ≥ 0, where a(t) =
(
a1(t), . . . , an (t)

)�
and

ai(t) = aii(t), for i ∈ {1, . . . , n};
iii) define the reduced assign/appraise dynamics as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ȧi = ai(1 − ai)

(

pi(w) −
n∑

k=1

mikpk (w)

)

,

wi =
ci

(1 − ai)

/ n∑

k=1

ck

(1 − ak )
,

(5)

where c = (c1 , . . . , cn )� = vleft(C). This dynamics is
equivalent to system (3) in the following sense: The ma-
trix A(t)’s each diagonal entry aii(t) satisfies the dynam-
ics (5) for ai(t), and, for any t ≥ 0, aii(t) = ai(t) for any
i, and aij (t) = aij (0)

(
1 − ai(t)

)
/
(
1 − ai(0)

)
for any

i = j;
iv) the set Ω =

{
a ∈ [0, 1]n

∣
∣0 ≤ ai ≤ 1 − ζi

(
a(0)

)}
,

where ζi

(
a(0)

)
= ci

xi
mink

xk

ck

(
1 − ak (0)

)
, is a compact

positively invariant set for the reduced assign/appraise
dynamics (5);

v) the assignment w(t) satisfies the generalized repli-
cator dynamics with time-varying fitness function

Fig. 2. Visualization of the evolution of A(t) and w(t) obeying the as-
sign/appraise dynamics with n = 6. The observation network is strongly
connected. In these visualized matrices and vectors, the darker the entry,
the higher value it has. (a) t = 0. (b) t = 2. (c) t = 10. (d) t = 30.

ai(t)
(
pi

(
w(t)

)−∑l milpl

(
w(t)

))
for each i

ẇi = wi

(

ai

(

pi(w) −
n∑

l=1

milpl(w)

)

−
n∑

k=1

wkak

(

pk (w) −
n∑

l=1

mklpl(w)

))

. (6)

The proof for Theorem 2 is presented in Appendix D. With
the extensibility of A(t) and the finite-time properties, we now
present the main theorem of this section.

Theorem 3 (Asymptotic Behavior of Assign/Appraise Dynam
ics): Consider the dynamics (3), based on Assumptions 3–5,
with the workload assignment as in Assumption 1 and the
performance as in Assumption 2. Assume the observation
network G(M) is strongly connected. For any initial appraisal
matrix A(0) that is row-stochastic, irreducible and has positive
diagonal,

1) the solution A(t) converges, i.e., there exists A∗ ∈ Rn×n

such that limt→∞ A(t) = A∗;
2) the limit appraisal matrix A∗ is row-stochastic and ir-

reducible. Moreover, the workload assignment satisfies
limt→∞ w(t) = vleft(A∗) = x.

The proof is presented in Appendix E. Theorem 3 indicates
that, the teams obeying the assign/appraise dynamics asymp-
totically achieves the optimal workload assignment, but do not
necessarily reach appraisal consensus. Fig. 2 gives a visualized
illustration of the asymptotic behavior of the assign/appraise
dynamics.

Remark 4: From the proof for Theorem 3, we know that, the
teams obeying the following dynamics

{
ȧii = γi(t)aii(1 − aii)

(
pi(w) −∑k mikpk (w)

)
,

ȧij = −γi(t)aiiaij

(
pi(w) −∑k mikpk (w)

)
,

also asymptotically achieve the optimal assignment, if each γi(t)
remains strictly bounded from 0. This result indicates that our
model can be generalized to the case of heterogeneous sensitiv-
ities to performance feedback.

IV. ASSIGN/APPRAISE/INFLUENCE DYNAMICS OF THE

APPRAISAL NETWORKS

In this section, we further elaborate the assign/appraise dy-
namics by assuming that the appraisal network is updated via not
only the performance feedback, but also the influence process
inside the team.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on April 05,2023 at 00:00:34 UTC from IEEE Xplore.  Restrictions apply. 



MEI et al.: DYNAMIC MODELS OF APPRAISAL NETWORKS EXPLAINING COLLECTIVE LEARNING 2903

A. Model Description

The new model, named the assign/appraise/influence dynam-
ics, is defined by three components: the assignment rule as in
Assumption 3, the appraise dynamics based on Assumptions 4
and 5, and the influence dynamics, which is the opinion ex-
changes among individuals on the interpersonal appraisals. De-
note by wij the weight individual i assigns to j (including self
weight wii) in the opinion exchange. The matrix W = (wij )n×n

defines a directed and weighted graph, referred to as the influ-
ence network, is row-stochastic and possibly time-varying.

The diagram illustration of assign/appraise/influence dynam-
ics is presented in Fig. 1(c), and the general form is given as
follows:

{
Ȧ = 1

τave
Fave(A,W ) + 1

τapp
Fapp(A,w),

w = vleft(A).
(7)

The time index t is omitted for simplicity. The term Fapp(A,w)
corresponds to the appraise dynamics given by the right-hand
side of the first equation in (3), while the term Fave(A,W ) cor-
responds to the influence dynamics specified by the assumption.
Parameters τave and τapp are positive, and relate to the time scales
of influence dynamics and appraise dynamics, respectively.

Assumption 6 (Influence Dynamics): For the assign/
appraise/influence dynamics, assume that, at each time t ≥ 0,
the influence network is identical to the appraisal network, i.e.,
W (t) = A(t). Moreover, assume that the individuals obey the
classic DeGroot opinion dynamics [6] for the interpersonal
appraisals, i.e., Fave(W,A) = −(In − W )A.

Based on (7) and Assumptions 3–6, the assign/appraise/
influence dynamics is written as
⎧
⎨

⎩

Ȧ = 1
τave

(A2 − A)
+ 1

τapp
diag

(
p(w) − Mp(w)

)
Ad(In − A), .

w = vleft(A),
(8)

In the following section, we relate the topology of the ob-
servation network G(M) to the asymptotic behavior of the as-
sign/appraise/influence dynamics, i.e., the convergence to opti-
mal assignment and the appraisal consensus.

B. Dynamical Behavior of the Assign/Appraise/Influence
Dynamics

The following lemma shows that, for the assign/
appraise/influence dynamics, we only need to consider the all-
to-all initial appraisal network.

Lemma 5 (Entry-Wise Positive for Initial Appraisal): Consi-
der the assign/appraise/influence dynamics (8) based on
Assumptions 3–6, with the workload assignment and perfor-
mance as in Assumptions 1 and 2, respectively. For any initial
appraisal matrix A(0) that is primitive and row-stochastic, there
exists Δt > 0 such that A(t) � O n×n for any t ∈ (0,Δt].

The proof is given in Appendix F. Before discussing the
asymptotic behavior, we state a technical assumption.

Conjecture 6 (Strict Lower Bound of the Interpersonal App-
raisals): Consider the assign/appraise/influence dynamics (8)
based on Assumptions 3–6, with the workload assignment and

Fig. 3. Visualization of the evolution of A(t) and w(t) obeying the as-
sign/appraise/influence dynamics with n = 6. The observation network
contains a globally reachable node. In these visualized matrices and
vectors, the darker the entry, the higher value it has. (a) t = 0. (b) t = 2.
(c) t = 10. (d) t = 30.

performance as in Assumptions 1 and 2, respectively. For any
A(0) that is entry-wise positive and row-stochastic, there exists
amin > 0, depending on A(0), such that A(t) � amin1n 1�

n for
any time t ≥ 0, as long as A(τ) and w(τ) are well defined for
all τ ∈ [0, t].

Monte Carlo validation and a sufficient condition for Con-
jecture 6 are presented in Appendix G. Now we state the main
results of this section.

Theorem 7 (Assign/Appraise/Influence Dynamical Behavior):
Consider the assign/appraise/influence dynamics (8) based on
Assumptions 3–6, with the task assignment and performance as
in Assumptions 1 and Assumption 2, respectively. Suppose that
Conjecture 6 holds. Assume that the observation network G(M)
contains a globally reachable node. For any initial appraisal
matrix A(0) that is entrywise positive and row-stochastic, and
any time scales τave > 0 and τapp > 0 in (8):

i) the solution A(t) exists and w(t) = vleft
(
A(t)

)
is well

defined for all t ∈ [0,+∞). Moreover, A(t) � O n×n

and A(t)1n = 1n for any t ≥ 0;
ii) the assignment w(t) obeys the generalized replicator

dynamics (6), and ξ01n � w(t) � (1 − (n − 1)ξ0
)
1n ,

where

ξ0 =
(

1 + (n − 1)
maxk xk

minl xl
γ0

)−1

and

γ0 =
maxk xk/wk (0)
minl xl/wl(0)

iii) as t → +∞, A(t) converges to 1nx� and thereby w(t)
converges to x.

The proof is given in Appendix H. As Theorem 7 indicates, the
team obeying the assign/appraise/influence dynamics achieves
collective learning. A visualized illustration of the dynamics is
shown in Fig. 3.

Theorem 7 indicates that the asymptotic behavior of the as-
sign/appraise/influence dynamics is independent of the time
scales τave and τapp. The following argument adds some intuition
to this observation. The assign/appraise/influence dynamics can
be regarded a combination of the assign/appraise * dynam-
ics (3) and the influence dynamics Ȧ = A2 . As shown in Section
III, for an appraisal matrix A(t) obeying the assign/appraise
dynamics (3), the left dominant eigenvector vleft(A(t)) con-
verges to the optimal assignment x. Moreover, along the dy-
namics Ȧ = A2 , the eigenvector vleft(A(t)) remains unchanged.
Theorem 7 states that the introduction of the influence dynamics
does not affect the convergence of the left dominant eigenvector
of A(t) to x.
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Fig. 4. Examples of the assign/appraise (first row) and the as-
sign/appraise/influence (second row) dynamics in which the assignment
is based on the individuals’ in-degree centrality. The assign/appraise
dynamics does not achieve the collective learning, while the as-
sign/appraise/influence dynamics does. (a) no influence dynamics, t =
0. (b) no influence dynamics, t = 2. (c) no influence dynamics, t = 30.
(d) no influence dynamics, t = 50. (e) with influence dynamics, t = 0.
(f) with influence dynamics, t = 2. (g) with influence dynamics, t = 30.
(h) with influence dynamics, t = 50.

V. MODEL VARIATIONS: CAUSES OF FAILURE TO LEARN

The assign/appraise/influence dynamics (8) consists of three
phases: the assignment rule, the appraise dynamics, and the
influence dynamics. In this section, we propose one variation
in each of the three phases, based on some sociopsychologi-
cal mechanisms that may cause a failure in team learning. We
investigate the behavior of each model variation by numerical
simulation.

A. Variation in the Assignment Rule: Workload
Assignment Based on Degree Centrality

In Assumption 3, the workload assignment is based on the in-
dividuals’ eigenvector centrality in the appraisal network. If we
assume instead that the assignment is based on the individuals’
normalized in-degree centrality in the appraisal network, i.e.,
w(t) = A�(t)1n/1�

n A(t)1n , then the numerical simulation,
see Fig. 4, shows the following results: the team obeying the as-
sign/appraise dynamics does not necessarily achieve collective
learning, while the team obeying the assign/appraise/influence
dynamics still achieves collective learning.

B. Variation in the Appraise Dynamics: Partial
Observation of Performance Feedback

According to Assumption 4, the observation network G(M)
determines the feedback signals received by each individual. If
the observation network does not have the desired connectivity
property, the individuals do not have sufficient information to
achieve collective learning. Simulation results in Fig. 5 shows
that, if G(M) is not strongly connected for the assign/appraise
dynamics, or if G(M) does not contain a globally reachable
node for the assign/appraise/influence dynamics, the team does
not necessarily achieve collective learning.

C. Variation in the Influence Dynamics: Prejudice Model

In Assumption 6, we assume that the individuals obey the
DeGroot opinion dynamics. If we instead adopt the Friedkin–

Fig. 5. Examples of failure to learn with partial observation for a
six-individual team. The figures in the first row correspond to the as-
sign/appraise dynamics, in which the observation network is not strongly
connected but contains a globally reachable node. The figures in the
second row correspond to the assign/appraise/influence dynamics, in
which the observation network does not contain a globally reachable
node. In both cases, A(t) converges but limt→+∞ w(t) = x. (a) No
influence dynamics, t = 0. (b) No influence dynamics, t = 1. (c) No in-
fluence dynamics, t = 5. (d) No influence dynamics, t = 10. (e) With
influence dynamics, t = 0. (f) With influence dynamics, t = 5. (g) With
influence dynamics, t = 50. (h) With influence dynamics, t = 60.

Fig. 6. Example of the evolution of A(t) and w(t) in the prejudice
model with n = 6. The darker the entry, the higher value it has. The
simulation result shows that A(t) converges but w(t) = vleft

(
A(t)

)
does

not necessarily converges to x. (a) t= 0. (b) t = 1. (c) t = 5. (d) t= 10.

Johnsen opinion dynamics, given by

Fave(A,W ) = −Λ(In − W )A + (In − Λ)(A(0) − A)

where Λ = diag(λ1 , . . . , λn ) and each λi characterizes individ-
ual i’s attachment to her initial appraisals. Numerical simulation,
see Fig. 6, shows that the team does not necessarily achieve
collective learning. The Friedkin–Johnsen model captures the
social-psychological mechanism, in which individuals show an
attachment to their initial opinions, which causes the failure to
learn.

VI. FURTHER DISCUSSION AND CONCLUSION

A. Connections With TMS Theory

1) TMS Structure: As discussed in the introduction, one
important aspect of TMS is the members’ shared understand-
ing about who possess what expertise. For the case of 1-D
skill, TMS structure is approximately characterized by the ap-
praisal matrix, and thus, the development of TMS corresponds
to the collective learning on individuals’ true skill levels. Sim-
ulation results in Fig. 7 compare the evolution of some features
among the teams obeying the assign/appraise/influence model,
the assign/appraise model, and the team that randomly assigns
the subtasks, respectively. Fig. 7(a) shows that, for both the
assign/appraise/influence dynamics and the assign/appraise dy-
namics, the team performance measure H1(w), defined by the
mismatch between workload assignment and individual skill
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Fig. 7. Evolution of the measure of mismatch between assignment and
individual skill levels, and the number of nontransitive triads in the com-
parative appraisal graph. The solid curves represent the team obeying
the assign/appraise/influence dynamics. The dash curves represent the
team obeying the assign/appraise dynamics. The dotted curves repre-
sent the team that randomly assign subtask workloads. (a) e−H1 (w ,x) .
(b) Number of non-transitive triads.

levels, converges to 0, which exhibits the advantage of a devel-
oping TMS.

2) Transitive triads: As Palazzolo [24] points out, transitive
triads are indicative of a well-organized TMS. The underlying
logic is that inconsistency of interpersonal appraisals lowers the
efficiency of locating the expertise and allocating the incoming
information. In order to reveal the evolution of triad transitivity
in our models, we define an unweighted and directed graph,
referred to as the comparative appraisal graph G̃(A) = (V,E),
with V = {1, . . . , n}, as follows: for any i, j ∈ V , (i, j) ∈ E if
aij ≥ aii , i.e., if individual i thinks j has no lower skill level
than i herself. We adopt the standard notion of triad transitiv-
ity and use the number of nontransitive triads as the indicator
of inconsistency in a team. Fig. 7(b) shows that, the nontransi-
tive triads vanish along the assign/appraise/influence dynamics,
but persist along the assign/appraise dynamics or the random
assignments.

B. Observation Network Structure and Learning Speed

Simulation results illustrate how the structure of the obser-
vation network affects the convergence speeds of our mod-
els, characterized by the convergence time Tc = min

{
t ≥

0
∣
∣e−H1 (w(t)) ≥ 0.99

}
. Tc is a function of the skill level x, the

initial condition A(0), and the observation network. We run 100
independent realizations of the assign/appraise dynamics for a
team with 7 individuals. In each realization, we first randomly
generate x and A(0), and then randomly generate 9 strongly
connected observation networks, G1 , . . . , G9 , where each Gi

is an Erdős–Rényi graph with the link probability plink,i =
0.2 + 0.1(i − 1) and the individuals’ out-degrees normalized
to 1. With the same x and A(0), we run the assign/appraise
dynamics with the observation networks G1 , . . . , G9 , respec-
tively, and denote by Tc,i the convergence time with respect to
the observation network Gi . In each realization, Tc,1 , . . . , Tc,9
are scaled by dividing them by maxi Tc,i . For the 100 realiza-
tions, we compute the mean value of each Tc,i and plot it as
a function of plink,i , see Fig. 8(a). The same simulation study
has also been done for the assign/appraise/influence dynamics,
see Fig. 8(b). Simulation results clearly indicate that, for both
the assign/appraise and the assign/appraise/influence dynamics

Fig. 8. Error bar plots for the mean convergence time of 100 ran-
dom realizations, as a function of the link probability of the Erdős–
Rényi observation network. The errors are set to be the standard de-
viation of the convergence time. Fig. 8(a) depicts the realizations for
the assign/appraise dynamics, while Fig. 8(b) depicts the realizations
for the assign/appraise/influence dynamics. (a) Assign/appraise. (b) As-
sign/appraise/influence.

with Erdős–Rényi observation network, the convergence speed
increases with the link probability.

C. Conclusion

This paper proposes a class of models closely connected with
the TMS theory in organization science. We generalize from
qualitative TMS theory the following two arguments, as the star-
ing point of the mathematical modeling: first, team performance
depends on whether the team members’ relative responsibilities
are proportional to their relative abilities in the team; second,
the team members’ relative responsibilities are determined by
how they evaluate each other’s relative ability. Theoretical anal-
ysis of the assign/appraise dynamics and the assign/appraise
influence dynamics can be interpreted as the exploration of the
most relaxed condition for the convergence to optimal workload
assignment, concluded as follows:

i) each individual only needs to know, as feedback, the
difference between her own performance and the average
performance of some subgroup of individuals, but do not
need to know exactly whom she is compared with;

ii) the individuals can have heterogeneous but strictly pos-
itive sensitivities to the performance feedback;

iii) with opinion exchange, the observation network with one
globally reachable node is sufficient for the convergence
to optimal assignment;

iv) without opinion exchange, strongly connected observa-
tion network is sufficient for the convergence to optimal
assignment.

The theoretical results in this paper can be broadly inter-
preted as follows. First, we note that the connectivity require-
ment on the observation network for asymptotic optimal assign-
ment is more relaxed in the assign/appraise/influence model
than in the assign/appraise model. Therefore, our models lend
credence to the argument that opinion exchanges inside the
group can compensate for the lack of sufficiently-rich observa-
tion of performance feedback. Second, the numerical compari-
son between the assignment simply by the average appraisals,
i.e., w(t) = 1�

n A(t)/n, and the assignment by the appraisal
centrality, i.e., w(t) = vleft(A(t)), shows that the former does
not always leads to asymptotic optimal assignment in the as-
sign/appraise dynamics, while the latter does. The main differ-
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ence between these two assignment rules is that, for the assign-
ment by the appraisal centrality, the opinions of the “highly-
appraised individuals” on how the workload should be assigned
are more important than those of the “lowly appraised,” whereas,
for the assignment by the average appraisals, all the individu-
als’ opinions are equally important. The interpretation of this
observation is that, in a well-functioning team, the individuals
with higher appraisal should have higher weights in decision-
making processes. Third, as illustrated by the numerical study
of the causes of failure to learn, our models indicate that in-
dividuals’ persistent attachment to their initial appraisals, i.e.,
prejudice, generally impedes collective learning and thus should
be avoided in team tasks.

Future research directions might include more realistic mod-
els considering noisy observation and finite individual memory.

APPENDIX A
PRELIMINARIES

Evolutionary games apply game theory to evolving popula-
tions adopting different strategies. Consider a game with n pure
strategies, denoted by the unit vectors e1 , . . . ,en , respectively.
A mixed strategy w is thereby a vector in the n-dimension sim-
plex denoted by Δn . Denote by π(v,w) the expected payoff
for any mixed strategy v against mixed strategy w. A strategy
w∗ is a locally evolutionarily stable strategy (ESS) if there
exists a deleted neighborhood Ǔ(w∗) in int(Δn ) such that
π(w∗,w) > π(w,w) for any w ∈ Ǔ(w∗), which implies that,
in a population adopting strategy w, a sufficiently small mutated
subpopulation adopting strategy w∗ gets more payoff than the
majority population.

Replicator dynamics models the evolution of subpopulations
adopting different strategies. The total population is divided into
n subpopulations. Individuals in each subpopulation i adopt the
pure strategy ei . Denote by wi(t) the fraction of subpopulation
i in the total population at time t. The fitness of subpopulation
i, denoted by πi

(
w(t)

)
, depends on the subpopulation distribu-

tion w(t) =
(
w1(t), . . . , wn (t)

)�
and is defined as the expected

payoff π
(
ei ,w(t)

)
. The growth rate of subpopulation i is equal

to the deviation of its fitness from the population average. The
replicator dynamics is given by

ẇi = wi

(
πi(w) −

n∑

k=1

wkπk (w)
)
. (9)

There is a simple connection between the locally ESS and the
replicator dynamics [5]: generally, a locally ESS in int(Δn )
is a locally asymptotic equilibrium of the replicator dynam-
ics; specifically, if there exists a matrix A such that π(v,w) =
v�Aw for any v,w ∈ Δn , then, a locally ESS in int(Δn ) is
a globally asymptotic stable equilibrium of the replicator dy-
namics. In addition, the replicator dynamics is also a mean-field
approximation of some stochastic population process, which is
out of the scope of this paper.

APPENDIX B
PROOF FOR THEOREM 1

The vector form of (1) is written as

ẇ = diag(w)
(
p(w) − w�p(w)1n

)
. (10)

Left multiply both sides by 1�
n . We get d(1�

n w)/dt = 0. More-
over, since ẇi = 0 whenever wi = 0, the n-dimension simplex
Δn is an positively invariant set.

Since the function f is continuously differentiable, the right-
hand side of (10) is continuously differentiable and locally Lip-
schitz in int(Δn ). Define

V (w) = −
n∑

i=1

xi log
wi

xi
.

Due to the strict concavity of log function and 1�
n w = 1, we

have that V (w) ≥ 0 for any w ∈ Δn and V (w) = 0 if and only
if w = x. Moreover, since V (w) is continuously differentiable
in w, the level set {w ∈ int(Δn )|V (w) = ξ} is a compact sub-
set of int(Δn ). Since the function f is monotonically increasing,
along the trajectory

dV (w)
dt

= −
∑

i∈θ1 (w)

(xi − wi)f(xi/wi)

−
∑

i∈θ2 (w)

(xi − wi)f(xi/wi) < 0

where θ1(w) = {i|xi ≥ wi} and θ2(w) = {i|xi < wi}. This
concludes the proof for the invariant set and the asymptotic sta-
bility of w∗ = x, and one can infer, from the inequality above,
that w∗ = x is the ESS for the evolutionary game with the pay-
off function πi(w) = f(xi/wi). Moreover, since V (w) → +∞
as w tends to the boundary of Δn , the region of attraction is
int(Δn ).

APPENDIX C
JUSTIFICATIONS OF ASSUMPTION 3

We provide some justification of Assumption 3 on the work-
load assignment rule w = vleft(A). First, the entries of vleft(A)
correspond to the individuals’ eigenvector centrality in the ap-
praisal network and thus reflect how much each individual is
appraised by the team. Second, each row i of A(t) can be con-
sidered as individual i’s opinion on how to divide the workload
for the task at time t. Suppose the group of individuals exchange
their opinions over the influence network defined by W = A(t)
and eventually reach consensus on the workload assignment.
We have that the consensus workload assigned to any individ-
ual j, denoted by wj (t), satisfies wj (t) = limk→∞ WkAj (t) =
1nvleft(A(t))�Aj (t), where Aj (t) denotes the jth column
of A(t). Therefore, w�(t) = vleft(A(t))�A(t), which leads to
w(t) = vleft(A(t)). Third, our eigenvector assignment rule is
consistent with the following natural property: in a team with-
out performance feedback, due to the lack of information inflow,
the team’s task assignment does not change. These arguments
justify Assumption 3; recall also Section V-A with a numerical
evaluation of a different assignment rule.
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APPENDIX D
PROOF FOR THEOREM 2

Before the proof, we state a useful lemma summarized from
Pages 62–67 of [31].

Lemma 8 (Continuity of eigenvalue and eigenvector): Supp-
ose A,B ∈ Rn×n satisfy |aij | < 1 and |bij | < 1 for any
i, j ∈ {1, . . . , n}. For sufficiently small ε > 0:

1) the eigenvalues λ and λ
′
of A and (A + εB), respectively,

can be put in one-to-one correspondence so that |λ′ −
λ| < 2(n + 1)2(n2ε)

1
n ;

2) if λ is a simple eigenvalue of A, then the corresponding
eigenvalue λ(ε) of A + εB satisfies |λ(ε) − λ| = O(ε);

3) if v is an eigenvector of A associated with a simple
eigenvalue λ, then the eigenvector v(ε) of A + εB as-
sociated with the corresponding eigenvalue λ(ε) satisfies
|vi(ε) − vi | = O(ε) for any i ∈ {1, . . . , n}.

Proof of Theorem 2: In this proof, we extend the definition
of vleft(A) to the normalized entry-wise positive left eigenvector,
associated with the eigenvalue of A with the largest magnitude,
if such an eigenvector exists and is unique. According to Perron–
Frobenius theorem and Lemma 8, vector vleft(A), as long as well
defined, depends continuously on the entries of A. Therefore, for
system (3), there exists a sufficiently small τ > 0 such that A(t)
and w(t) are well defined and continuously differentiable at
any t ∈ [0, τ ], and, moreover, pi

(
w(t)

)−∑k mikpk

(
w(t)

)
re-

mains finite. Therefore, for any t ∈ [0, τ ] and i, j ∈ {1, . . . , n},
aij (t) > 0 if aij (0) > 0; aij (t) = 0 if aij (0) = 0, and thus,
A(t) is row-stochastic and primitive for any t ∈ [0, τ ].

For any i ∈ {1, . . . , n}, there exists k = i such that aik (0) >
0. According to (2)

daij (t)
daik (t)

=
aij (t)
aik (t)

, ∀t ∈ [0, τ ], ∀j ∈ {1, . . . , n} \ {i, k}

which leads to aij (t)/aik (t) = aij (0)/aik (0). Let C be an n ×
n matrix with the entries cij defined as:

1) cii = 0 for any i ∈ {1, . . . , n};
2) cij = aij (0)

/(
1 − aii(0)

)
for any j = i.

One can check that C is row-stochastic and A(t) is given

by (4), for any t ∈ [0, τ ], where a(t) =
(
a1(t), . . . , an (t)

)�

with ai(t) = aii(t). Since the digraph, with C as the adjacency
matrix, has the same topology with the digraph associated with
A(0), matrix C is irreducible and c = vleft(C) is well defined.

Since the matrix A(t) has the structure given by (4), according
to Lemma 2.2 in [12], for any t ∈ [0, τ ]

wi(t) =
ci

1 − ai(t)

/∑

k

ck

1 − ak (t)
.

Therefore, for any t ∈ [0, τ ]

pi

(
w(t)

)
= f

(
xi

ci

(
1 − ai(t)

)∑

k

wk (t)
ck

1 − ak (t)

)

.

According to (2), ȧj (t) ≤ 0 for any j ∈ argmink
xk

ck

(
1 −

ak (t)
)
. Therefore, argmink

xk

ck

(
1 − ak (t)

)
is increasing, and

similarly, argmaxk
xk

ck

(
1 − ak (t)

)
is decreasing with t, which

implies that, the set

ΩA

(
A(0)

)

=
{

A ∈ Rn×n
∣
∣
∣A = diag(a) + (I − diag(a))C,

0 ≤ ai ≤ 1 − ci

xi
min

k

xk

ck

(
1 − akk (0)

)
,∀i
}

is a compact positive invariant set for system (3), as long as
A(0) is row-stochastic, irreducible, and has strictly positive di-
agonal. Moreover, one can check that, for any A ∈ ΩA

(
A(0)

)
,

w = vleft(A) is well defined and strictly lower (upper resp.)
bounded from 0 (1 resp.). Therefore, the solution A(t) is
extensible to all t ∈ [0,+∞) and (4) and (5) hold for any
t ∈ [0,+∞). Moreover, since pi

(
w(t)

)−∑k mikpk

(
w(t)

)

remains bounded, we have aij > 0 if aij (0) > 0 and
aij (t) = 0 if aij (0) = 0. This concludes the proof for
(i)–(iv).

For statement (v), differentiate both sides of the equation
w�(t)A(t) = w�(t) and substitute (3) into the differentiated
equation. We obtain
(

w�diag(p(w) − Mp(w))Ad − dw�

dt

)
(In − A) = O �

n

where time index t is omitted for simplicity. Equation (6) in
statement (v) is obtained due to w�(t)1n = 1.

APPENDIX E
PROOF FOR THEOREM 3

We prove the theorem by analyzing the generalized replicator
dynamics (6) for w(t), and the reduced assign/appraise dynam-
ics (5) for a(t), given any constant, normalized and entrywise
positive vector c. According to (5), the assignment w = vleft(A)
can be considered as a function of the self appraisal vector a,
that is, w(t) = w

(
a(t)

)
for any t ≥ 0. In this proof, let φ(a) =

p
(
w(a)

)− Mp
(
w(a)

)
and denote by D : Rn × Rn → R≥0

the distance induced by the two-norm in Rn . For any x ∈ Rn

and subset S of Rn , defined D(x, S) = infy∈S D(x,y).
First of all, for any given a(0) ∈ (0, 1)n , we know that the set

Ω, as defined in Theorem 2(iv), is a compact positively invariant
set for dynamics (5), and w(t) is well defined and entrywise
strictly lower (upper resp.) bounded from O n (1n resp.), for all
t ∈ [0,+∞).

Second, for any a ∈ Ω, define a scalar function V : Rn → R
as

V (a) = log
maxk xk/wk (a)
mink xk/wk (a)

and the following index sets

θ(a) =
{

i
∣
∣
∣∃ti > 0 s.t.

xi

wi

(
a(t)

) = max
k

xk

wk

(
a(t)

)

for any t ∈ [0, ti ], with a(0) = a
}

, and
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θ(a) =
{

j
∣
∣
∣∃tj > 0 s.t.

xj

wj

(
a(t)

) = min
k

xk

wk

(
a(t)

)

for any t ∈ [0, tj ], with a(0) = a
}

.

Then, the right time derivative of V
(
a(t)

)
, along the solution

a(t), is given by

d+V
(
a(t)

)

dt
= aj (t)φj

(
a(t)

)− ai(t)φi

(
a(t)

)

for any i ∈ θ
(
a(t)

)
and j ∈ θ

(
a(t)

)
. Define

E =
{
a ∈ Ω

∣
∣ajφj (a) − aiφi(a) = 0

for any i ∈ θ(a), j ∈ θ(a)
}

E1 =
{
a ∈ E

∣
∣φ(a) = On

}

E2 =
{
a ∈ E

∣
∣φ(a) = On

}
.

One can check that E and E1 are compact subsets of Ω,
E = E1 ∪ E2 , and E1 ∩ E2 is empty. Denote by Ê the largest
invariant subset of E. Applying the LaSalle Invariance Principle,
see Theorem 3 in [13], we have D(a(t), Ê

)→ 0 as t → +∞.

Note that, lim
t→+∞D(a(t), Ê

)
= 0 does not necessarily leads to

lim
t→+∞w(t) = x. We need to further refine the result.

For set E1 , it is straightforward to see that E1 ⊂ Ê and
w(a) = x for any a ∈ E1 . Now we prove by contradiction that,
if E2 ∩ Ê is not empty, then, for any a ∈ E2 ∩ Ê, there exists
i ∈ θ(a) such that ai = 0. Suppose ai > 0 for any i ∈ θ(a).
Since the observation network G(M) is strongly connected,
there exists a directed path i, k1 , . . . , kq , j on G(M), where
i ∈ θ(a) and j ∈ θ(a). We have k1 ∈ θ(a), otherwise, starting
with ã(0) = a, there exists sufficiently small Δt > 0 such that
φi

(
ã(t)

)
> 0 and ãi(t) > 0, which contradicts the fact that a

is in the largest invariant set of E. Repeating this argument,
we have j ∈ θ(a), which contradicts φ(a) = On . Similarly,
we have that, for any a ∈ E2 ∩ Ê, there exists j ∈ θ(a) with
aj = 0.

If the fixed vectors c and x satisfy c = x, then, there can not
exist a ∈ E2 ∩ Ê satisfying all the following three properties:

i) there exists i ∈ θ(a) such that ai = 0;
ii) there exists j ∈ θ(a) such that aj = 0;

iii) φ(a) = On . In this case, E2 ∩ Ê is an empty set, which
implies that a(t) → Ê = E1 and thus w(t) → x as t →
+∞.

Before discussing the case when c = x, we present some
properties of the individual performance measure:

P1: For any k, l ∈ {1, . . . , n}, xk

ck
(1 − ak ) ≤ xl

cl
(1 − al)

leads to pk (a) ≤ pl(a), and xk

ck
(1 − ak ) > xl

cl
(1 − al) leads to

pk (a) > pl(a);
P2: If there exists τ ≥ 0 such that i ∈ θ

(
a(τ)

)
and ai(τ) = 0,

then, i ∈ θ
(
a(t)

)
for all t ≥ τ ;

P3: p(a(t)) is finite and strictly bounded from 0, satis-
fying f

(
xi

ci
(1 − ζi(a(0)))

) ≤ pi(a(t)) ≤ f
(

xi

ci

∑
k

ck

ζk (a(0))

)
,

with ζi(a) defined in Theorem 2(iv).

For the case when c = x, consider the partition ϕ1 , . . . , ϕm

of the index set {1, . . . , n}, with m ≤ n, satisfying the following
two properties:

1) xk/ck = xl/cl for any k, l in the same subset ϕr ;
2) xk/ck > xl/cl for any k ∈ ϕr , l ∈ ϕs , with r < s.

For any a ∈ E2 ∩ Ê, since there exists j ∈ θ(a) with aj = 0,
we have ϕm ⊂ θ(a). For any i ∈ ∪m−1

r=1 ϕr , let

E2,i =
{

a ∈ Ω
∣
∣
∣ai = 0, aj = 0 for any j ∈ ϕm ,

1 − xi

ci

ck

xk
≤ ak ≤ 1 − min

l∈{1,...,n}
xl

cl

ck

xk
,

for any k ∈ ϕ1 ∪ · · · ∪ ϕm−1 \ {i}
}

.

With properties P1 and P2 of p(a), for any a ∈ E2,i , we have
i ∈ θ(a) and ai = 0. Moreover

1) E2,i ⊂ Rn is compact for any i ∈ ϕ1 ∪ · · · ∪ ϕm−1 ;
2) ∪i∈ϕ1 E2,i , . . . ,∪i∈ϕm −1 E2,i are disjoint and compact

subsets of Rn ;
3) E2 ∩ Ê ⊂ ⋃i∈ϕ1 ∪···∪ϕm −1

E2,i .

For any a ∈ E2 ∩ Ê, since there exists i ∈ θ(a) and j ∈ θ(a)
such that ai = aj = 0, on the observation network G(M), there
must exists a path i, k1 , . . . , kq satisfying:

i) i ∈ θ(a) and ai = 0;
ii) akq

= 0 and xkq
/ckq

< xi/ci ;
iii) akl

> 0 for any l ∈ {1, . . . , q − 1}.
Consider the trajectory ã(t) with ã(0) = a, we have

˙̃akq −1 ≥ ãkq −1 (1 − ãkq −1 )

·
(

f

(
xkq −1

ckq −1

(1 − ãkq −1 )
n∑

l=1

cl

1 − ãl

)

− f

((
mkq −1 kq

xkq

ckq

+ (1 − mkq −1 kq
)
xi

ci

) n∑

l=1

cl

1 − ãl

))

.

The inequality is due to properties P1–P3 of pi(a) for i ∈ θ(a)
with ai = 0, and the concavity of the function f . Moreover, since
ãkq −1 is strictly bounded from 1 and

∑
l cl/(1 − ãl) is strictly

lower bounded from 0, there exists Tkq −1 (M,a(0),a) > 0 such
that

pkq −1

(
ã(t)

)

<
2 − mkq −1 kq

2
pi

(
ã(t)

)
+

mkq −1 kq

2
pkq

(
ã(t)

)
.

Applying the same argument to kq−2 , . . . , k1 , we have that,
there exists Tk1 (M,a(0),a) > 0 and ηik1 ...kq

(M) ∈ (0, 1)
such that, for the solution ã(t) with ã(0) = a

pk1

(
ã(t)

)
<
(
1 − ηik1 ...kq

(M)
)
pi

(
ã(t)

)

+ ηik1 ...kq
(M)pkq

(
ã(t)

)
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for all t ≥ Tk1 (M,a(0),a). This inequality implies that

φi

(
ã(t)

) ≥ mik1 ηik1 ...kq
(M)

(
pi

(
ã(t)

)− pkq

(
ã(t)

))

≥ mik1 ηik1 ...kq
(M)f ′

(
xi

ci

)

·
n∑

l=1

cl

1 − ζl

(
a(0)

)
(xi

ci
− xkq

ckq

)
> 0.

Since the choices of i and the paths i, k1 , . . . , kq are finite, there
exists a constant η > 0 such that, for any a ∈ E2 ∩ Ê, there
exists T

(
a(0),a

)
> 0 such that, for any t ≥ T

(
a(0),a

)
> 0,

the solution ã(t), with ã(0) = a, satisfies i ∈ θ
(
ã(t)

)
and

φi

(
ã(t)

) ≥ η > 0.
For any i ∈ ϕ1 ∪ · · · ∪ ϕm−1 , define

Ê2,i =

{

a ∈ E2,i

∣
∣pi(a) −

n∑

k=1

mikpk (a) ≥ η

}

.

We have: 1) each Ê2,i is a compact subset of Rn ; 2)
∪i∈ϕ1 Ê2,i , . . . ,∪i∈ϕm −1 Ê2,i are disjoint and compact subsets
of Rn . Let Ê2 = ∪m−1

r=1

( ∪r∈ϕr
Ê2,i

)
. For dynamics (5), due

to the continuous dependency on the initial condition, for
any a ∈ (E2 ∩ Ê) \ (Ê2 ∩ Ê), there exists δ > 0 such that,
for any ã(0) ∈ U(a, δ) ∩ (E2 ∩ Ê), where U(a, δ) =

{
b ∈

Ω
∣
∣D(b,a) ≤ δ

}
, ã(t) ∈ Ê2 ∩ Ê for sufficiently large t. There-

fore, a can not be an ω-limit point of a(0). We thus ob-
tain that, the ω-limit set of a(0) is in the set E1 ∪ (Ê2 ∩ Ê).
Moreover, since E1 ,∪i∈ϕ1 Ê2,i , . . . ,∪i∈ϕm −1 Ê2,i are disjoints
compact subsets of Rn , and the ω-limit set of a(0) is con-
nected and compact, a(t) can only converge to one of the sets
E1 ,∪i∈ϕ1 Ê2,i , . . . ,∪i∈ϕm −1 Ê2,i .

Now, we prove limt→+∞ D(a(t), E1) = 0 by contradic-
tion. Suppose ω

(
a(0)

) ∈ ∪i∈ϕr
Ê2,i for some r ∈ {1, . . . , m −

1}. Since each Ê2,i is a compact set, there exists ε >
0 and η(ε) > 0 such that φi(a) ≥ η(ε) > 0 for any a ∈
U(Ê2,i , ε). For this given ε > 0, since ω

(
a(0)

) ∈ ∪i∈ϕr
Ê2,i

leads to D(a(t),∪i∈ϕr
Ê2,i

)→ 0 as t → +∞, we conclude
that, there exists T > 0 such that, for any t ≥ T , a(t) ∈
∪i∈ϕr

U(Ê2,i , ε). Define Vr (a) = mini∈ϕr
ai , for any a ∈

∪i∈ϕr
U(Ê2,i , ε). The function Vr (a) satisfies that, Vr (a) ≥ 0

for any a ∈ ∪i∈ϕr
U(Ê2,i , ε) and Vr (a) = 0 if and only if

a ∈ ∪i∈ϕr
Ê2,i . Therefore, D(a(t),∪i∈ϕr

Ê2,i

)→ 0 leads to

Vr

(
a(t)

)→ 0 as t → +∞. Moreover since a ∈ U(Ê2,i , ε) for
any i ∈ argmink∈ϕr

ak , we have

d+Vr

(
a(t)

)

dt
= min

i∈argmin
k ∈ϕ r

ak (t)
ȧi(t) ≥ δai(t)

(
1 − ai(t)

)
.

According to Theorem 2(i), for any given a(0) ∈ (0, 1)n ,
a(t) ∈ (0, 1)n for all t ≥ 0. Therefore, d+Vr (a(t))/dt > 0 for
all t ≥ T , which contradicts limt→+∞ Vr

(
a(t)

)
= 0. Therefore,

we have limt→+∞ D(a(t), E1) = 0 and limt→+∞ w(t) = x.
Since Ȧ(t) → On×n as φ

(
a(t)

)→ On , there exists an entry-
wise nonnegative and irreducible matrix A∗, depending on A(0)
and satisfying vleft(A∗) = x, such that A(t) → A∗ as t → +∞.

APPENDIX F
PROOF FOR LEMMA 5

Since A(0) is primitive and row-stochastic, following the
same argument in the proof for Theorem 2(i), we have that,
there exists Δt̃ > 0 such that, for any t ∈ [0,Δt̃]:

1) w(t) is well defined and w(t) � On ;
2) A(t) is bounded, continuously differentiable to t, and

satisfies A(t)1n = 1n ;
3) p

(
w(t)

)− Mp
(
w(t)

)
is bounded.

Therefore, for any t ≥ 0, there exists μ, depending on t and
A(0), such that Ȧ(t) � 1

τave
A2(t) − ( 1

τave
+ μ)A(t).

Consider the equation Ḃ(t) = 1
τave

B2(t) − ( 1
τave

+ μ)B(t),
with B(0) = A(0). According to the comparison theorem,
A(t) � B(t) for any t ≥ 0. Let bi(t) be the ith column
of B(t) and let yk (t) = e( 1

τ ave
+μ)tbk (t). We obtain ẏk (t) =

1
τave

B(t)yk (t).
Denote by Φ(t, 0) the state transition function for the equa-

tion ẏk (t) = 1
τave

B(t)yk (t), which is written as Φ(t, 0) =
In +

∑∞
k=1 Φk (t), where Φ1(t) =

∫ t

0 B(τ1)dτ1 and Φl(t) =
∫ t

0 B(τ1)
∫ τ1

0 . . . B(τl−1)
∫ τl−1

0 B(τl)dτl for l ≥ 2. By comput-
ing the MacLaurin expansion for each Φk (t) and summing them
together, we obtain that

Φ(t, 0) = In + h1(t)B(0) + h2(t)B2(0) + . . .

+ hn−1(t)Bn−1(0) + O(tn )

where hk (t) is a polynomial with the form hk (t) = ηk,k tk +
ηk,k+1t

k+1 + . . . , and, moreover, ηk,k > 0 for any k ∈ N.
Therefore, for t sufficiently small, we have hk (t) > 0 for
any k ∈ {1, . . . , n − 1}. Moreover, since Bk (0) � On×n for
any k ∈ N and B(0) + · · · + Bn−1(0) � On×n , there exists
Δt ≤ Δt̃ such that Φ(t, 0) � On×n for any t ∈ [0,Δt].

APPENDIX G
DISCUSSION ON CONJECTURE 6

The Monte Carlo method [28] is adopted to estimate the prob-
ability that Conjecture 6 holds. For any randomly generated
A(0) ∈ int(Δn ), define the random variable Z : int(Δn ) →
{0, 1} as

1) Z
(
A(0)

)
= 1 if there exists amin > 0 such that A(t) �

amin1n 1�
n for all t ∈ [0, 1000];

2) Z
(
A(0)

)
= 0 otherwise.

Let p = P
[
Z
(
A(0)

)
= 1
]
. For N independent random sam-

ples Z1 , . . . , ZN , in each of which A(0) is randomly gener-
ated in int(Δn ), define p̂N =

∑N
i=1 Zi/N . For any accuracy

1 − ε ∈ (0, 1) and confidence level 1 − ξ ∈ (0, 1), |p̂N − p| < ε
with probability greater than 1 − ξ if

N ≥ 1
2ε2 log

2
ξ
. (11)

For ε = ξ = 0.01, the Chernoff bound (11) is satisfied by
N = 27 000. We run 27 000 independent MATLAB simula-
tions of the assign.appraise/influence dynamics with n = 7 and
find that p̂N = 1. Therefore, for any A(0) ∈ int(Δn ), with 99%

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on April 05,2023 at 00:00:34 UTC from IEEE Xplore.  Restrictions apply. 



2910 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 9, SEPTEMBER 2018

confidence level, there is at least 0.99 probability that A(t) is en-
trywise strictly lower bounded from On×n for all t ∈ [0, 10 000].

Moreover, we present in the following lemma a sufficient
condition for Conjecture 6 on the initial appraisal matrix A(0)
and the parameters τave, τapp.

Lemma 9 (Strictly Positive Lower Bound of Appraisals):
Consider the assign/appraise/influence dynamics (8), based on
Assumptions 3–6, with the assignment w(t) and performance
p(w) as in Assumptions 1 and 2, respectively. For any
initial appraisal matrix A(0) that is entrywise positive and
row-stochastic, as long as

τapp

τave
≥ 1 − ξ0

ξ0

(
f

(
xmax

ξ0

)
− f

(
xmin

1 − (n − 1)ξ0

))

where the constant ξ0 is defined as in Theorem 7(ii), then there
exists amin > 0 such that A(t) � amin1n 1�

n .
Proof: First of all, by definition we have ws(t) =∑
k wk (t)aks(t). The right-hand side of this equation is

a convex combination of {a1s(t), . . . , ans(t)}. Therefore,
maxk aks(t) ≥ ws(t) ≥ ξ0 for all t ∈ [0,+∞).

At any time t ≥ 0, for any pair (i, j) such that aij (t) =
mink,l akl(t), the dynamics for aij (t) is

ȧij (t) =
1

τave

(
∑

k

aik (t)akj (t) − aij (t)

)

− 1
τapp

aii(t)aij (t)
(
pi

(
w(t)

)−
n∑

k=1

mikpk

(
w(t)

))
.

For simplicity, in this proof, denote φi = pi

(
w(t)

)−∑n
k=1 mikpk

(
w(t)

)
. Suppose amj (t) = maxk akj (t). We have

ȧij (t) ≥ 1
τave

aij (t)amj (t) − 1
τave

a2
ij (t)

− 1
τapp

aii(t)aij (t)φi.

Therefore

ȧij

aij
≥ 1

τave
ξ0 − 1

τapp
(1 − ξ0)

(

f

(
xmax

ξ0

)

− f

(
xmin

1 − (n − 1)ξ0

))

.

The condition on 1
τave

/ 1
τapp

in Lemma 9 guarantees that

ȧij (t)
/
aij (t) is positive if aij (t) = mink,l akl(t). �

APPENDIX H
PROOF FOR THEOREM 7

Statement (i) is proved following the same argument
in the proof for Theorem 2(i). For any given A(0)
that is row-stochastic and entrywise positive, the closed
and bounded invariant set Ω for A(t) is given by Ω ={
A ∈ Rn×n

∣
∣A � amin1n 1�

n , A1n = 1n

}
, where amin > 0 is

given by Conjecture 6.
Since w�(t)

(
A2(t) − A(t)

)
= O �

n for all t ≥ 0, we con-
clude that, w(t) in the assign/appraise/influence dynamics also

obeys the generalized replicator dynamics (6). Consider w(t)
as a function of A(t). Define φ(A) = p

(
w(A)

)− Mp
(
w(A)

)

and

V (A) = log
maxk xk/wk (A)
mink xk/wk (A)

.

For any t ∈ [0,+∞), there exists i ∈ argmaxk xk/wk

(
A(t)

)

and j ∈ argmink xk/wk

(
A(t)

)
such that V

(
A(t)

)
=

log
(
xiwj

(
A(t)

)/
xjwi

(
A(t)

))
, and d+ V (A)

dt = ajjφj (A) −
aiiφi(A) ≤ 0. Therefore, V

(
A(t)

)
is nonincreasing with t,

which in turn implies

xi

xj

wj (t)
wi(t)

≤ maxk xk/wk (0)
mink xk/wk (0)

= γ0

for any i, j ∈ {1, . . . , n}. This inequality, combined with the
fact that

∑
k wk (t) = 1 for any t ≥ 0, leads to the inequalities

in statement (ii).
Similar to the proof for Theorem 3, define

θ(A) =

{

i
∣
∣
∣∃ ti > 0 s.t.

xi

wi

(
A(t)

) = max
k

xk

wk

(
A(t)

)

for any t ∈ [0, ti ] with A(0) = A

}

θ(A) =

{

j
∣
∣
∣∃ tj > 0 s.t.

xj

wj

(
A(t)

) = min
k

xk

wk

(
A(t)

)

for any t ∈ [0, tj ] with A(0) = A

}

and let E =
{
A ∈ Ω

∣
∣d+V (A)/dt = 0

}
. For any A ∈ E, since

A � amin1n 1�
n , we have φi(A) = φj (A) = 0 for any i ∈ θ(A)

and j ∈ θ(A). Suppose individual s is a globally reachable
node in the observation network. There exists a directed path
i, k1 , . . . , kq , s. Without loss of generality, suppose q ≥ 1. For
any A in the largest invariant subset of E, we have k1 ∈ θ(A)
and therefore φk1 (A) = 0. This iteration of argument leads
to s ∈ θ(A). Following the same line of argument, we have
s ∈ θ(A). Therefore, for any given A(0) � On×n that is row-
stochastic, the solution A(t) converges to Ê = {A ∈ Ω|φ(A) =
On} = {A ∈ Ω|vleft(A) = x}.

Let Ã = maxj

(
maxk akj − mink akj

)
. One can check that

d+ Ṽ (A)/dt along the dynamics (8) is a continuous function
of A for any A ∈ Ω. Define Êε/2 =

{
A ∈ Ê

∣
∣‖A − 1nx�‖2 ≥

ε/2
}

. Since Ê is compact, Êε/2 is also a compact set. For any

A ∈ Êε/2 , since d+ Ṽ (A)/dt is strictly negative and depends
continuously on A, there exists a neighborhood U(A, rA ) =
{Ã ∈ Ω|‖Ã − A‖2 ≤ rA} such that d+ Ṽ (Ã)/dt < 0 for any
Ã ∈ U(A, rA ). Due to the compactness of Êε/2 and according
to the Heine–Borel finite cover theorem, there exists K ∈ N
and {Ak , rk}k∈{1,...,K }, where Ak ∈ Êε/2 and rk > 0 for any

k ∈ {1, . . . , K}, such that Êε/2 ⊂ ∪K
k=1U(Ak , rk ).
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Define the distance D : Rn × Rn → R≥0 as in the proof for
Theorem 3. Let δ = min{r1 , . . . , rk , ε/2} and

B1 =
{
A ∈ Ω

∣
∣D(A, Ê) ≤ δ,D(A, Êε/2) > δ

}

B2 =
{
A ∈ Ω

∣
∣D(A, Ê) ≤ δ,D(A, Êε/2) ≤ δ

}
.

We have B1 ∩ B2 is empty. For any A ∈ B1 , since
D(A, Ê) ≤ δ, D(A, Êε/2) > δ, there exists Ã ∈ Êε/2 such
that D(A, Ã) ≤ δ. Since D(Ã, 1nx�) < ε/2, we have
D(A, 1nx�) ≤ D(A, Ã) + D(Ã, 1nx�) < ε. Therefore, B1 ⊂
U(1nx�, ε). Moreover, since B2 is compact, Ṽ (A) is lower
bounded and d+ Ṽ (A)/dt is strictly upper bounded from 0 in
B2 . Since limt→+∞ D(A(t), Ê) = 0, there exists t0 > 0 such
that A(t) ∈ B1 ∪ B2 for any t ≥ 0. Therefore, for any t ≥ t0 ,
there exists t1 ≥ t such that A(t1) ∈ B1 . This argument is valid
for any ε > 0, which implies that 1nx� is an ω-limit point for
any given A(0).

Since Ê is compact, D(A, Ẽ) is strictly positive. Since
limt→+∞ D(A(t), Ê

)
= 0, any A ∈ Ω \ Ê can not be an ω-

limit point of A(0). For any A ∈ Ê \ {1nx�}, since the so-
lution passing through A asymptotically converges to 1nx�,
A ∈ Ê \ {1nx�} can not be an ω-limit point of A(0) either.
Therefore, the ω-limit set of A(0) is {1nx�}.
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