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ABSTRACT OF THE DISSERTATION 
 

Control of Macrophage Function by the Microenvironment 
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Timothy Douglas Smith 
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Macrophages are versatile cells of the immune system that play an important role in both 

advancing and resolving inflammation through both signaling and phagocytosis. To 

perform their diverse functional roles, these cells respond dynamically to cues in their 

microenvironment. Although macrophage activation has been described as a binary and 

exclusive polarization to an inflammatory M1 function or a wound-healing M2 function, 

macrophages expressing markers associated with both M1 and M2 activity are observed in 

vivo. Using flow cytometry, the macrophage population’s response to combined M1 and 

M2 activation signals, presented either simultaneously or sequentially, was assessed. 

Macrophages exposed to a combination of LPS, IFN-γ, IL-4, and IL-13 acquired a mixed 

activation state, with individual cells expressing both M1 marker CD86 and M2 marker 

CD206 instead of polarizing to discrete phenotypes. These results corroborate a 

multidimensional model of macrophage activation and demonstrate that phenotypic 

markers evolve with time and with exposure to complex signals. Further, the migration of 

macrophages along extracellular matrix materials characteristic of the wound 
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environment was explored. Migration speed is sensitive to the composition and 

concentration of the matrix along which macrophages migrate. Activation with cocktails 

of LPS and IFN-γ slowed macrophage migration, while treatment with IL-4 and IL-13 

directed cells along linear tracks. The effect of macrophage activation on extracellular 

matrix (ECM) concentration-dependent macrophage migration was characterized and the 

effect of interrupting integrin-mediated cell-matrix interactions was assessed. Together, 

the studies help to elucidate the roles of the cytokine and ECM environment in 

macrophage polarization, plasticity, and migration. 
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1. Introduction 

Macrophages are immune cells with many functions. Macrophages are effector cells, 

taking up pathogens and debris by phagocytosis and destroying them with enzymes and 

peroxides; victorious macrophages will present the digested remains of the foreign 

material to cells of the adaptive immune system to stimulate antibody production. 

Macrophages also help to coordinate the immune onslaught by acting as signaling 

transducers and amplifiers, secreting inflammatory or immunomodulatory cytokines into 

their environment. This signaling role makes macrophages essential for both the 

advancement and the constructive resolution of inflammation. 

 

 
Figure 1.1. Ontogeny of macrophages. 
Macrophages arising from blood cells are derived from monocytes. (1) 
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Most macrophages in inflammatory contexts are derived from circulating monocytes 

(Figure 1.1). Monocytes mature in bone marrow before entering circulation, where they 

compose 2-10% of white blood cells (2). Monocytes patrol the circulation for signs of 

inflammation and respond by extravasation and migration towards the inflammatory 

signals; as they leave the circulation, monocytes mature irreversibly into macrophages or 

dendritic cells. Other populations of macrophages, known as tissue macrophages, are 

permanently resident in tissue and derived from the embryonic yolk sac (3,4). At 

equilibrium, most macrophages in a tissue are these self-replenishing tissue macrophages, 

rather than monocyte-derived macrophages (MDMs). The tissue-resident sentinels are 

quickly outnumbered by recruited MDMs in the presence of danger signals. 

1.1. Macrophage activation 

Macrophages exhibit stereotyped responses to certain signals in their environment 

through a process known as activation. Classical, or M1, activation is induced by 

recognition of pathogen-associated molecular patterns or the cytokine interferon-γ (5,6). 

M1 activation causes macrophages to begin secreting inflammatory cytokines, including 

TNF-α, and induces profound physiological shifts. Production of free radicals by 

upregulation of Nos2 is accompanied by a shift in mitochondrial respiration from 

oxidative phosphorylation to glycolysis (7). M1-activated mouse MDM also have a distinct 

flat, round morphology in vitro (8). M1 activation is essential for a robust immune 

response to pathogens (5). 

The discovery of factors that induced a different set of molecules and behaviors in 

macrophages while appearing to oppose classical activation led to the concept of 
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alternative, or M2, activation. The M1–M2 nomenclature arose because classical activation 

is closely associated with interferon-γ, which is secreted by Th1 cells, and alternative 

activation was first observed in response to IL-4, which is secreted by Th2 cells. M2 

macrophages are noted for their constructive participation in matrix organization and 

tissue repair (6). IL-4–exposed macrophages may be recognized by their increased 

expression of mannose receptor CD206. In mice, IL-4 treatment drives expression of 

arginase I, and also leads to an elongated shape in vitro (6,8). Other forms of alternative 

activation have been recognized, leading to a proliferation of “M” notations: M2a, M2b, 

M2c, Mox, and others (9,10). Indeed, recent work in human MDM identified several 

macrophage gene modules that can be persistently activated in response to different 

ligands (11). 

Inevitably, the M1 macrophages produced with IFN-γ and M2 macrophages produced 

with IL-4 and IL-13 in vitro represent caricatures of the traits of macrophages that exist in 

complex and dynamic milieus of the body. The M1/M2 nomenclature is nonetheless 

useful in describing macrophages during wound healing and regeneration, because 

observable changes in M1 and M2 markers do correlate with progress towards healing. 

The M1/M2 paradigm also captures the principle that the presence of macrophages may 

not imply unrestrained inflammation. 

1.2. Macrophage phenotype in wound healing 

Indeed, normal wound healing is marked by a progression from M1-like to M2-like 

macrophage phenotypes in the wound environment. MDMs play important roles in the 

wound healing process; animals depleted of monocytes or macrophages exhibit reduced 
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repair (12,13). M1 macrophages arrive at wounds early and help recruit an effective defense 

to pathogens (14). Despite their critical early role, chronic M1 activation delays wound 

healing (15,16). Over time, the emergence of a M2-like macrophage phenotype helps blunt 

inflammatory activation and organize matrix repair. An example of the necessity of M2 

macrophages in healing was shown in Trib–/– mice, which have impaired M2 activation of 

tissue-resident macrophages (17). After an experimental myocardial infarction, Trib–/– 

mice exhibit a deficiency of M2-like CD206+ macrophages in the left ventricle and 

experience delayed cardiac healing—even leading to cardiac rupture—compared to wild 

type mice (18). Yet, more is not better: unrestrained M2 activity can lead to fibrosis. The 

M2 role in fibrosis was seen in a study which depleted macrophages systemically in mice 

during the subacute healing phase after a skin graft. Macrophage depletion at a time 

when M2-like macrophages were otherwise observed to be present at the graft site 

reduced scar formation (19). 

Figure 1.2. Progression of macrophage phenotype in wound healing. 
Macrophages arrive in a wound in the first few hours after injury and become activated. Over time, as 
wounds resolve, macrophages shift from a M1-like phenotype towards a M2-like phenotype. Figure courtesy 
of Esther Chen. 
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1.3. Tumor-associated macrophages 

A particularly egregious dysregulation of the anti-inflammatory macrophage 

phenotype is observed in tumor-associated macrophages (20). Macrophages form a 

significant cellular component of many solid tumors (21); tumor macrophage populations 

are thought to be derived predominantly from circulating monocytes (4). Successful 

tumors secrete factors including CCL2 that recruit monocytes from blood alongside 

molecules including CSF1 and IL-4 that push macrophages away from a tumor-killing 

phenotype and towards stereotypical M2 activity. These tumor associated macrophages 

(TAMs) help to shield and develop the tumor. In even the earliest stages of metastasis, 

single tumor cells recruit and educate macrophages to protect the nascent metastasis 

from other components of the immune system (22). In many types of cancer, TAM 

burden is linked to poor prognosis, and tumorigenesis is limited when macrophages are 

depleted from animal models (23). The ways TAMs assist their patrons include secreting 

TGFβ, which promotes tumor growth, and IL-10, which is immunosuppressive. TAMs also 

migrate into hypoxic regions of the tumor and secrete VEGF, which promotes 

angiogenesis and in turn encourages greater tumor growth (23). Moreover, macrophages 

are direct enablers of metastasis. Macrophages along the tumor periphery direct 

metastasis by blazing a trail for tumor cells to follow (24,25). Macrophages have extensive 

matrix remodeling capabilities and tumor cells are observed to form migrating streams 

with macrophages to find a path through stromal tissue and into vessels. Tumor cells and 

macrophages are capable of entering a paracrine signal loop whereby macrophages 

secrete EGF, which encourages tumor cells to draw near and secrete CSF1, which 



6	
  

reinforces the macrophage behaviors. Through this process, tumor cells follow 

macrophages through matrix. Streaming migration behavior has been demonstrated in 

tumor models in vivo with intravital confocal microscopy (26,27) and reconstituted 

in  vitro (28). 

1.4. Macrophage phenotype in the foreign body response 

To biomedical engineers, macrophage phenotype is also important in the context of 

the macrophage-driven foreign body response to implanted materials (29,30). A chronic 

M1-type response can lead to implant failure from chemical attack and poor repair of 

surrounding matrix and tissue. A chronic M2-type response is associated with fibrotic 

encapsulation, which can constrain mechanical devices and disable sensors. Macrophages 

expressing M1– and M2–associated markers are often observed in the vicinity of devices 

retrieved for histological examination. 

1.5. This work 

This work extends the body of knowledge about macrophages in two ways. In Chapter 

2, I examine the phenomenon of macrophages which express markers of both M1 and M2 

activation. Creating an in vitro model for these macrophages, which are often seen in 

implant studies and in tumor stroma, and exploring how they may arise will improve our 

ability to assess how implanted materials or TAM-targeted therapies influence 

macrophage phenotype. In Chapter 3, I undertake a study of the quantitative migration of 

polarized macrophages on matrices characteristic of the wound environment.  
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2. Regulation of macrophage 
polarization and plasticity by complex 
activation signals 

Macrophages are functionally complex cells of the innate and acquired immune system. 

In addition to their roles as professional phagocytes and antigen-presenting cells, 

macrophages are sensitive integrators and transducers of biochemical signals with a wide 

repertoire of responses. A recent study of the macrophage transcriptomic response to a 

range of stimulatory molecules identified dozens of distinct mRNA coexpression 

modules (11). Two particular macrophage response patterns which have been widely 

recognized are the M1 and M2 programs, named because they are respectively elicited by 

products of Th1 and Th2 cells (31,32). The M1 response, also described as classical 

activation, is typically evoked in vitro by treating cells with interferon-𝛾 (IFN-𝛾) and 

lipopolysaccharide (LPS), a bacterial cell wall component and TLR4 agonist. The M1 

phenotype includes production of inflammatory cytokines including TNF-𝛼 and 

IL-1𝛽 (33). M1 macrophages also undergo a metabolic transition towards glycolysis and 

secrete free radicals. The M2 response, also known as alternative activation, is evoked by 

IL-4 and IL-13 treatment and is characterized by increased expression of CD206, 

scavenger receptors, and—in mice—arginase 1. The M2 response has been further 

classified as the M2a response after other forms of alternative activation were identified. 

These stereotyped responses are likely only fully recognized in vitro, but M1-like and M2-

like phenotypes are readily identified in physiological contexts. 
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M1- and M2-activated macrophages exhibit characteristic transcriptional and 

secretory profiles. M1 activation is associated with STAT1 and IRF activation, and M2 

activation is associated with STAT6 activity (34). These pathways suppress each other; 

IL-4-induced STAT6 activation suppresses STAT1-dependent transcription in mouse 

macrophages (35), and STAT1 activation suppresses STAT6-dependent transcription (36). 

Further, costimulation with IL-4 reduces the IFN-𝛾-dependent surface expression of Fc𝛾R 

on human monocytes (37). Yet, despite the evidence of mutual repression, markers 

associated with both M1 and M2 phenotypes have been observed simultaneously on 

individual cells in vivo (38). This co-expression may reflect simultaneous co-activation of 

M1 and M2 programs. A similar process is observed in T cells, where differentiation of 

CD4+ T cells to IFN-𝛾-secreting Th1 cells or IL-4-secreting Th2 cells in mixed culture 

conditions yields a tunable continuum of cell fates (39). Modeling revealed that this 

outcome was consistent with gene regulation governed by a mutual inhibition, self-

activation (MISA) network, a common motif thought to govern alternative fate-decisions 

in many cell types (40), including macrophages (41,42). 

M1 and M2 marker coexpression may also indicate that cells are shifting from one 

phenotype to another as the microenvironment changes. Indeed, macrophages have been 

shown to exhibit phenotypic plasticity in vitro. M1-activated macrophages induced by 

exposure to bacteria (43) or IFN-𝛾, alone (44) or in combination with LPS (45), can be re-

polarized to express markers associated with an anti-inflammatory phenotype upon 

subsequent treatment with IL-4, alone or in combination with IL-13. Similarly, 

macrophages treated with IL-4 will express inflammatory markers upon subsequent 
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treatment with LPS or IFN-𝛾 (43). The plasticity of these influential cells has made them 

an attractive target for immunomodulation; scaffolds and materials that achieve 

controlled delivery of macrophage-activating agents is an active area of research for 

treatment of diseases involving macrophage dysregulation (reviewed in Ref. (46)). In 

atherosclerosis, sustained inflammation exacerbates oxidative stress in the plaque (47). 

Plaque shoulders, which are prone to rupture, are typically dominated by macrophages 

expressing markers associated with M1 activation (38). Reprogramming macrophages 

toward a M2 phenotype may prevent plaque rupture and promote plaque resolution by 

encouraging matrix deposition (48,49). In the case of cancer, tumor-associated 

macrophages (TAMs) are thought to induce anti-inflammatory signaling that helps 

protect the tumor from immune assault (23). Recent evidence suggests presenting M1-

activating factors to TAMs can help engage the immune system to attack the tumor (50). 

An improved understanding of how macrophages respond to stimuli that redirect their 

phenotype should help develop better therapeutic approaches for these important 

pathologies. 

In this study, we investigated how treatment with mixed M1 and M2 stimuli, either 

simultaneously or sequentially, regulates macrophage phenotype. We were motivated to 

understand whether a mixed phenotype represents a superposition of the M1 and M2 

phenotypes, a transition between states, or, as some findings have suggested (51), a 

unique mixed program. To consider the expression state of individual cells, we used flow 

cytometry to assay surface expression of M1 marker CD86 and M2 marker CD206. Mouse 

bone marrow derived macrophages were stimulated with LPS+IFN-𝛾 and/or IL-4+IL-13 at 
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various doses over durations of 24-96 hours. Our findings suggest that macrophages 

adopt a mixed phenotype dependent on the relative strength of stimuli present, and that 

cells progress towards a M2 phenotype over time. These temporal changes in expression 

were found to be consistent with a mathematical model comprising a modified MISA 

network. In addition, reprogramming of macrophages to the opposing phenotype is 

dependent on the extent of pre-polarization. More specifically, expression of CD206 in 

response to IL-4+IL-13 is enhanced by pre-polarization towards an M1 phenotype with 

LPS+IFN-𝛾. In contrast, expression of CD86 in response to LPS+IFN-𝛾, particularly at low 

doses, is inhibited by pre-polarization towards an M2 phenotype with IL-4+IL-13. 

Together, these data provide evidence of a macrophage phenotypic continuum by 

analysis of phenotypic markers at the single cell level, and suggest that macrophage 

reprogramming by combined activation signals is dependent on initial polarization state 

and dosage of stimulation. 

2.1. Results 

2.1.1. Co-stimulated macrophages express markers of both M1 and M2 activation 

We first sought to establish a dose range that would yield a submaximal response to 

facilitate detection of enhancement and repression effects. We exposed mouse bone 

marrow derived macrophages (BMDM) to varying doses of stereotypical M1 (LPS+IFN-𝛾) 

or M2 stimuli (IL-4+IL-13). To maximize the sensitivity of our assays, we selected doses 

from 0 to 0.3 ng/ml for LPS+IFN-γ and 0 to 1 ng/ml for IL-4+IL-13 based on a pilot 

experiment suggesting that doses in these ranges did not completely saturate expression 

of CD86 and CD206. Cells were exposed to stimulus for 48 hours and assayed for 
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expression of M1 marker CD86, a T-cell costimulatory molecule, and M2 marker CD206, a 

mannose receptor, by flow cytometry. We found that median CD86 labeling intensity 

increased tenfold as the dose of LPS+IFN-𝛾 was increased from 0 to 0.3 ng/ml 

(Supplementary Figure A1a and b). Labeling intensity of CD206 increased threefold as 

IL-4+IL-13 was increased from 0 to 1 ng/ml (Supplementary Figure A1c and d). At these 

concentration ranges, the expression of phenotypic markers was not saturating, so that 

the expression of markers generally increased with stimulation dose. 

To explore the effect of co-stimulation with M1 and M2 activation signals on 

macrophages, BMDM were exposed simultaneously to combinations of LPS+IFN-𝛾 and 

Figure 2.1. Co-stimulation with LPS+IFN-γ and IL-4+IL-13 leads to expression of both CD86 and 
CD206. 
(a) Schematic illustrating experimental conditions. Macrophages were exposed to LPS+IFN-𝜸 and/or 
IL-4+IL-13 for 48 hours before analysis. (b) Density plots of normalized CD206 versus CD86 staining 
intensity of macrophages subjected to different concentrations of LPS+IFN-𝜸 and/or IL-4+IL-13 (ng/ml) for 
48 hours, assessed by flow cytometry. CD86 is normalized to the LPS+IFN-𝜸-only condition and CD206 is 
normalized to the IL-4+IL-13-only condition. Representative plots from a single experiment. Median 
position is indicated by a red dot. (c) Average median normalized CD86 intensity ± SEM (n = 3) of 
LPS+IFN-γ treated cells vs. co-added IL-4+IL-13 dose, grouped by LPS+IFN-γ dose, normalized per 
experiment as in B. (d) Average median CD206 intensity ± SEM (n = 3) of IL-4+IL-13 treated cells vs. co-
added LPS+IFN-γ stimulus, grouped by IL-4+IL-13 dose, normalized per experiment as in B. Asterisk 
indicates significant difference by two-sided t test, p < 0.05. 
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IL-4+IL-13 at doses in the determined range for 48 hours. Expression of CD86 and CD206 

was analyzed by flow cytometry (Figure 2.1a and b). Notably, the population remained 

single-peaked in plots of CD86 expression vs CD206 expression, and did not show 

separation into distinct subpopulations. Cells generally did not individually commit to 

exclusive CD86 or CD206 expression. Indeed, CD86 and CD206 expression were only 

partially inhibited by exposure to their opposing polarization signal. Analysis of CD86 

expression in LPS+IFN-𝛾-stimulated cells (0.3 ng/ml) showed that moderate amounts of 

co-added IL-4+IL-13 (0.1 ng/ml) in fact increased the median expression of CD86 40% 

(± 22% SEM, n=3). Further increasing the IL-4+IL-13 dose to 1 ng/ml abrogated this 

enhancement. Meanwhile, the expression of CD206 in IL-4+IL-13 stimulated cells was not 

affected by the co-addition of LPS+IFN-𝛾 stimuli at any dose (Figure 2.1d). In sum, these 

data demonstrate that macrophages exposed to combinations of the activation signals 

LPS+IFN-𝛾 and IL-4+IL-13 express both CD86 and CD206 at 48 h of stimulation, and 

repression of the contrasting pathway was only partially observed with these phenotypic 

markers. 

2.1.2. Co-stimulated macrophages progress towards a M2-like phenotype 

To examine how macrophage phenotype evolves over time after exposure to stimulus, we 

exposed BMDM to stereotypical M1, M2, or mixed stimuli, and examined CD206 and 

CD86 expression at 24 hour intervals for 96 hours (Figure 2.2a). In conditions containing 

LPS+IFN-𝛾, including the mixed condition, cells began to express more CD206 and less 

CD86 over time. The IL-4+IL-13–only and no-treatment conditions exhibited a transient 

increase in CD206 that peaked at 48 hours, and relatively low and stable CD86 expression 
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(Figure 2.2b). In cells treated only with LPS+IFN-𝛾, the expression of CD86 decreased 

over the course of the 96 hour time period with the greatest decrease occurring between 

24 and 48 hours (Figure 2.2c). Macrophages exposed to mixed LPS+IFN-γ and IL-4+IL-13 

stimulation also displayed a decrease in CD86 expression, which was similar in profile to 

that of cells stimulated with only LPS+IFN-𝛾. In contrast, CD206 expression in response 

to IL-4+IL-13 increased up to 48 hours after stimulation, and then subsequently decreased 

after 72 hours, but the levels remain elevated when compared to expression in 

unstimulated macrophages even at 96 hours (Figure 2.2d). The extent of decrease was 

similar, but occurred at earlier time points, when the stimulus was washed out after 24 

Figure 2.2. Co-stimulated macrophages exhibit decreased CD86 expression and increased CD206 
expression over time. 
(a) Schematic illustrating experimental conditions. Macrophages were exposed simultaneously to LPS+IFN-
γ and/or IL-4+IL-13 for 24, 48, 72, or 96 hours. Each experiment used BMDM isolated from a single mouse. 
(b) Expression of CD206 versus CD86 of different stimulation conditions over time. Average of median 
population location ± SEM (n=5) is shown. (c) Expression of CD86 staining intensity over time for different 
stimulation conditions, normalized to the intensity of LPS+IFN-𝛾 condition at 24 hours. Average of median 
population location ± SEM (n=5) is shown. Asterisk indicates difference vs 24 hours by two-sided t test, p < 
0.05. (d) Expression of CD206 staining intensity over time for different stimulation conditions, normalized 
to the intensity of IL-4+IL-13 condition at 24 hours. Average of median population location ± SEM (n=5) is 
shown. Asterisk indicates difference vs 24 hours by two-sided t test, p < 0.05. 
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hours (Supplementary Figure A3). Interestingly, mixed stimulation conditions induced a 

marked increase in CD206 expression, which was significantly enhanced relative to the 

cells stimulated with only IL-4+IL-13.  

2.1.3. Modeling proposes a complex interdependence of M1- and M2-associated 
pathways 

In order to gain further insight into the logic of macrophage activation, we performed 

mathematical modeling of CD86 and CD206 expression in response to the different co-

stimulatory conditions. Our modeling strategy was designed to identify the key features 

of the regulatory logic linking CD86 and CD206 expression (“outputs”) to stimulation by 

Figure 2.3. Mathematical modeling of macrophage regulatory logic. 
(a) A representative set of minimal models for activation of M1 and M2 pathways under costimulation, 
comprised of a modified MISA (Mutual Inhibition/Self-Activation) network. Y: an unspecified regulator. 
Dashed line indicates that positive regulation of M2 by Y occurs cooperatively with M2. Models are shown 
in order of increasing number of parameters. RSS score indicates goodness of fit, and AIC score measures 
model quality, while penalizing presence of additional parameters. ΔAICc is reported relative to best 
(lowest) value, corresponding to Model 6. In general, successful models (3,5, and 6) incorporated both an 
incoherent feed-forward loop on M1 and positive regulation of M2, mediated by Y. (b) Simulated expression 
of CD86 and CD206 stimulated with LPS+IFN-γ and/or IL-4+IL-13 for 24, 48, 72, or 96 hours. Simulated 
data are from the model with both the best AICc and RSS score, Model 6, fit to the normalized time course 
data.  
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LPS+IFN-γ and/or IL-4+IL-13 (“inputs”). To this end, we analyzed a suite of candidate 

models and performed model selection based on fitting to the experimental 96-hour 

timecourse data (Figure 2.3). Mathematical descriptions of the models are provided as 

Supplementary Equations in Appendix A; the parameters are described in Supplementary 

Table A2 and the best-fit values are given in Supplementary Table A3. Rather than 

treating signaling and gene regulatory networks in detail (as quantitative parameters 

remain unknown), the network models comprise a small number of interacting nodes 

representing inputs, outputs, and M1- and M2-associated pathways. Models of T cell 

specialization (39,52,53) and fate-decisions in diverse cell types (40) commonly employ a 

core Mutual Inhibition, Self-Activation (MISA) network motif. We found that the basic 

MISA motif was insufficient to reproduce the observed temporal expression patterns, 

including the decrease of CD86 expression after 24 hours and the sharp increase of 

CD206 after 24 hours under co-stimulatory conditions.  

We explored a number of additional small-network topologies, consistent with 

current knowledge of macrophage activation pathways. In the MISA paradigm, 

costimulus results in a mixed response, in which both markers are expressed 

simultaneously, albeit at a somewhat reduced level as compared to the strongly polarized 

case. While the temporal expression of CD86 shows this behavior (dampened, but 

qualitatively similar kinetics, with addition of IL-4+IL-13), the CD206 kinetics suggests a 

more complex response to costimulation. We found that successful models (as assessed 

by either the error or the AICc information criterion) required at least two features 

extending the core MISA: an incoherent feed-forward loop on the M1 pathway, and a 



16	
 

mixed (both inhibiting and activating) character of M2 regulation by the M1-axis 

(Figure 2.3, Supplementary Figure A3). In the network models, these interactions are 

mediated by a single additional intracellular regulator (labelled Y). The predictions of the 

candidate model are presented alongside experimental results in (Figure 2.3b). Details of 

the mathematical modeling can be found in Appendix A. 
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Figure 2.4. Multiparametric characterization of macrophage phenotype. 
(a) Dendrogram and heat map of cytokine release from macrophage cultures exposed to LPS+IFN-γ and/or 
IL-4+IL-13 for 24 hours. All conditions are normalized to inflammatory stimulus. * indicates difference from 
LPS+IFN-γ–only condition by two-sided t test with Holm correction, p < 0.05. Average of 3 experiments. 
(b) Mean log2 transformed fold difference mRNA expression vs. (B) IL-4+IL-13 only or (C) LPS+IFN-γ–only 
stimulation condition at 24 hours. Missing values indicate amplification below limit of detection. n = 3. 
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2.1.4. Multiparametric characterization of macrophage phenotype 

To assess whether the expression of CD86 and CD206 are representative of macrophage 

function, we performed a multiplexed cytokine assay. We found that macrophages 

stimulated with LPS+IFN-𝛾 alone for 24 hours exhibited the highest secretion of 

inflammatory cytokines including IL-6, IP-10, MIG, MIP-1a, MIP-2, MIP-1B, RANTES, and 

TNF-𝛼, which were found at much lower levels in the supernatants of unstimulated cells 

or cells exposed only to IL-4+IL-13 (Figure 2.4a). Cells that were stimulated with mixed 

LPS+IFN-𝛾 and IL-4+IL-13 secreted somewhat lower levels of inflammatory cytokines, 

with the greatest proportional decrease observed in G-CSF, IL-6, IL-12, IL-15, and TNF-𝛼. 

Cytokines that were expressed in greater quantity by M1-stimulated cells compared to 

naïve cells were also expressed by cells exposed to mixed stimuli. This was consistent with 

a moderate but significant (17% ± 3.5% SEM, n=6) decrease in CD86 expression in cells 

treated with mixed cytokines compared to the LPS+IFN-𝛾 only condition at 24 hours 

(Figure 2.4c). Examining cytokines typically associated with M2 macrophages, we found 

that IL-10 was elevated, though not significantly, in the LPS+IFN-γ–only and mixed 

conditions. TGF-𝛽 1 and 2 expression was similar among all conditions examined. VEGF 

was strongly suppressed in conditions containing IL-4+IL-13. Indeed, none of the analytes 

in the ELISA panel were preferentially produced by IL-4+IL-13 treated cells. 

We also examined expression of genes associated with M2 (Figure 2.4b) and M1 

(Figure 2.4c) activation by RT-qPCR at 24 h after stimulation. Transcript expression of 

Cd206 as well as Arg1 showed an increase in expression in mixed cytokine conditions 

compared to IL-4+IL-13–only conditions (Figure 2.4b).
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Figure 2.5. Macrophage polarization state influences their plastic response to opposing activation 
signals. 
(a) Schematic illustrating experimental conditions. Macrophages were stimulated for 24 hours with 
inflammatory stimuli alone before anti-inflammatory stimuli were added for an additional 24 hours, and 
then assayed. 
(b) Expression of CD86 in cells in cells either pre-treated with 1 ng/ml LPS/IFN-𝛾 or untreated for 24 hours 
and then subsequently treated with IL-4/IL-13 at the indicated dosages. Data are normalized to CD86 
expression in 0.3 ng/ml LPS/IFN-𝛾-only condition, mean ± SEM (n=4). 
(c) Expression of CD206 in the same conditions as B. Data are normalized to CD206 expression in 1 ng/ml 
IL-4/IL-13-only condition, mean ± SEM (n=4). 
(d) Schematic illustrating experimental conditions. Macrophages were stimulated for 24 hours with anti-
inflammatory stimuli alone before inflammatory stimuli were added for an additional 24 hours, and then 
assayed. 
(e) Expression of CD86 in cells either pre-treated with 1 ng/ml IL-4 and IL-13 or untreated for 24 hours and 
then subsequently treated with LPS and IFN-𝛾 at the indicated dosages. Data are normalized to CD86 
expression in 0.3 ng/ml LPS/IFN-𝛾-only condition, mean ± SEM (n=3). 
(f) Expression of CD206 in the same conditions as E. Data are normalized to CD206 expression in 1 ng/ml 
IL-4/IL-13-only condition, mean ± SEM (n=3). Asterisks indicate significant differences compared to 
unstimulated cells by two-sided t test, p < 0.05. Dagger indicates differences between groups with and 
without pre-treatment by two-sided t test, p < 0.05. 
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However, expression of Retnla (Relm𝛼/Fizz1) and Chi3l3 (Ym1) was highest in the 

IL-4+IL-13–only condition, and co-addition of LPS+IFN-𝛾 inhibited expression of these 

genes, suggesting that M2 markers may be heterogeneously expressed. Expression of Nos2 

was highest in the LPS+IFN-γ only condition. Tnfa levels were lower in the LPS+IFN-γ 

condition compared to the unstimulated and mixed stimulus conditions at the examined 

timepoint (Fig. 4c), perhaps due to refractory downregulation after stimulation: Tnfa is 

coinduced with genes that degrade Tnfa transcripts, leading to a short transcript half-

life (54), and activity at the Tnfa promoter stops by 18 hours after stimulation with 

LPS (55). 

2.1.5. Macrophage state impacts reprogramming by a second activation signal 

It is thought that macrophages in wound environments are plastic and can transition 

from M1-like to M2-like states as signals in their environment change (13) or are presented 

by therapeutic materials (46). To investigate this transition in vitro, we examined how 

pre-exposure of macrophages to an inflammatory stimulus influences their response to 

IL-4 and IL-13. Macrophages were treated with LPS+IFN-𝛾 for 24 hours before IL-4+IL-13 

were added for an additional 24 hours. Cells were assayed for CD86 and CD206 

expression (Figure 2.5a). We found that expression of CD86 in LPS+IFN-𝛾 pre-treated 

macrophages showed a modest and non-statistically significant increase in response to 

subsequent addition of IL-4+IL-13 (Figure 2.5b). In addition, pre-treatment of cells with 

LPS+IFN-𝛾 did not block expression of CD206 upon IL-4+IL-13 stimulation, and thus cells 

pre-polarized to a M1 phenotype were still capable of acquiring characteristics of a M2 

phenotype (Figure 2.5c). Interestingly, at high doses of subsequent IL-4+IL-13 cytokine 
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addition, the extent of CD206 expression was 30% (± 9% SEM, n=5) higher in LPS+IFN-𝛾 

pretreated cells when compared to unpretreated cells. These data demonstrate that pre-

polarization towards an M1 phenotype with LPS+IFN-𝛾 does not prevent subsequent M2 

response to IL-4+IL-13, and in fact can enhance the expression of the M2 marker CD206. 

Conversely, perturbing M2-like macrophages towards a M1-like phenotype could be 

therapeutically useful in diseases including cancer, where reprogramming tumor-

associated macrophages may help to inhibit tumor growth. To test M2-to-M1 plasticity in 

vitro, we pre-treated macrophages with IL-4+IL-13 for 24 hours, added LPS+IFN-𝛾 for a 

subsequent 24 hours, and assayed cells for CD86 and CD206 expression (Figure 2.5d). We 

found that at high doses of LPS+IFN-𝛾, pre-treatment with IL-4+IL-13 did not affect CD86 

expression when compared to naïve cells, suggesting that M2 pre-polarization does not 

impact reprogramming towards an M1 phenotype. However, pre-treatment with 

IL-4+IL-13 inhibited the expression of CD86 upon exposure to low doses of LPS+IFN-𝛾 

(Figure 2.5e). CD206 expression was modestly decreased in response to subsequent 

addition of LPS+IFN-𝛾 in both the IL-4+IL-13 pre-treated and naïve conditions, although 

these differences were not statistically different (Figure 2.5f). These data suggest that the 

ability of macrophages to acquire M1-like behavior after entering a M2-like state is 

dependent on the dosage of subsequent M1 stimulation, and that high doses may be 

necessary for reprogramming than for initial activation of naïve cells. 

2.2. Discussion 

We demonstrate that simultaneous exposure of macrophages to mixed cytokines leads to 

expression of both CD86 and CD206 in individual cells, which are established markers of 
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M1 and M2 activation, respectively (56–59). With 48 hours of stimulation, small quantities 

of co-added IL-4+IL-13 stimuli enhanced CD86 expression in LPS+IFN-𝛾-stimulated cells, 

whereas greater IL-4+IL-13 concentrations inhibited this enhancement. However, high 

concentrations of stimulus in the mixed condition induced expression of CD86 equivalent 

to expression in the LPS+IFN-γ–only condition, and expression of CD206 equivalent to 

expression in the IL-4+IL-13–only condition. Individual cell expressions of CD86 and 

CD206 expression formed single-peaked, broad distributions, suggesting that individuals 

do not strongly polarize in mixed cytokine environments. Consistent with this, analysis of 

the secretome of these populations showed that the presence of IL-4+IL-13 along with 

LPS+IFN-𝛾 only moderately dampens the level of inflammatory cytokine secretion when 

compared to LPS+IFN-𝛾 only stimulated cells. 

Although both M1 and M2 markers are present upon co-stimulation, their evolution 

over time is different. In cells stimulated in mixed conditions, the M1 marker CD86 

decreases after the first 24 hours and returns almost to basal levels after 96 hours, 

whereas the M2 marker CD206 continues to increase peaking at 48-72 hours, and 

remained sustained relative to unstimulated macrophages even after 96 hours. This 

difference may be indicative of the natural progression of macrophages from 

inflammatory to anti-inflammatory phenotype during a host response to a wound or 

infection with pathogen (13). Unexpectedly, macrophages exposed to mixed conditions 

had higher levels of CD206 when compared to cells treated with IL-4+IL-13 alone at the 

longer timepoints, suggesting that presence of an inflammatory stimulus may enhance 

the long term wound healing response. M2 marker Arg1 transcripts measured by 
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qRT-PCR were also elevated at each time point in the mixed stimulation condition, 

compared to IL-4+IL-13–only (Supplementary Figure A5). 

Our results suggest that macrophage reprogramming to a contrasting phenotype is 

dependent on initial polarization state and the strength of the second signal. For cells 

polarized towards an inflammatory phenotype with LPS+IFN-𝛾, CD206 expression with 

IL-4+IL-13 was enhanced compared to naïve cells. In contrast, cells polarized to an anti-

inflammatory state with IL-4+IL-13 were more resistant to reprogramming with 

LPS+IFN-𝛾 towards CD86 expression. This effect was observed specifically at the lower 

LPS+IFN-𝛾 doses; expression of CD86 with high LPS-IFN𝛾 doses was not significantly 

different between pre-polarized and naïve cells. These data suggest the anti-inflammatory 

phenotype is enhanced by an initial inflammatory signal, and that macrophage 

progression from M1-like to M2-like phenotypes is favored. 

While exploring signaling network topologies that could model macrophage responses, 

we discovered that the basic MISA motif was insufficient to account for the complex 

temporal expression patterns of CD86 and CD206, despite suggestions that elements of 

mutual inhibition and self activation may play a role in macrophage polarization (41,42). 

The mathematical models shed light on regulatory interactions which enable 

macrophages to achieve a spectrum of polarization states, depending quantitatively on 

microenvironmental cues. The models also suggest a regulatory logic by which individual 

cells co-stimulated by M1 and M2 signals can achieve transient M1 character followed by 

progression to a M2 phenotype.  Although each node in the small-network models 

represents the combined action of many species, ‘M1’ and ‘M2’ likely reflect (at least in 
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part) regulation by STAT1 and STAT6, respectively, consistent with their mutual 

antagonism induced by LPS-IFN𝛾 and IL-4+IL-13 (35–37,60–62). For construction of a 

parsimonious model in order to avoid overfitting, a single additional node (‘Y’) was 

introduced to mediate both the transient nature of CD86 expression, and the mixed 

inhibiting/activating effect of LPS-IFN𝛾 on CD206. As such, ‘Y’ likely comprises feedback 

inhibition mechanisms, including those mediated by SOCS and STAT3 (reviewed in ref. 

(63)). Furthermore, ‘Y’ may reflect regulation by NFκB, which is activated by LPS (64) and 

inhibited by IL-4 (41). Several studies have suggested a cooperative interaction between 

NκFB and STAT6 to promote genes downstream of IL-4 (65–68). Incorporating these 

interactions into the mathematical model enabled us to construct small networks that 

captured the temporal response to both mixed and polarizing stimuli. A limitation of this 

approach is that the model is trained on two markers, which captures only some of the 

changes associated with macrophage activation. A more comprehensive dataset could 

lead to a more predictive model at the cost of increasing the complexity of the model. 

A discrete “M3” or “switch” phenotype has been proposed to account for macrophage 

transitions from M1-like to M2-like in the presence of M1-inducing stimuli, or from M2-

like to M1-like in the presence of M2-inducing stimuli (69). The M3 state is hypothesized 

to yield an inverted, paradoxical response to stimuli. Stimulating M3 macrophages with 

polarizing factors should induce the opposite of the expected phenotype. Although we 

observe evolution of a M2-like response characterized by CD206 expression under 

continued treatment with M1-inducing factors, our mathematical model suggests that 

these transitions may be possible in the absence of a distinct switching state. 
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These findings may have implications for therapeutic strategies involving macrophage 

reprogramming. For modulating the host response to biomaterial implants, delivery of 

IL-4 and IL-13 has been shown to increase expression of CD206 in surrounding 

macrophages (70). Our results suggest that additional delivery of inflammatory cytokines, 

either concurrently or beforehand, may enhance anti-inflammatory activation and 

potentially improve the wound healing response. Along these lines, Spiller et al. recently 

demonstrated that delivery of IFN-𝛾 increases angiogenesis in response to a 

decellularized bone implant (71). For cancer treatment, reprogramming tumor associated 

macrophages, which are thought to be anti-inflammatory, towards an inflammatory 

phenotype may require high doses of inflammatory stimuli, since low dosages were not 

sufficient to induce this transition. 

In summary, we find that macrophages exposed to both M1 and M2 activation signals 

express markers of both phenotypes, but the M1 markers decay over time while the M2 

markers remain elevated. The distribution of markers suggest that macrophages do not 

exist in discrete polarized states. In addition, acquisition of the M2 phenotype appears to 

be enhanced by additional exposure to inflammatory stimulus, suggesting that 

inflammatory insult potentiates the wound healing response. Together, these results 

provide a better understanding of macrophage behavior in response to opposing 

activation signals, which is likely to be involved in the dynamic immune response to 

pathogens or injury. This improved understanding of macrophage activation will likely 

help design strategies for treatment of disease in which macrophages are involved. 
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2.3. Methods 

2.3.1. Cell isolation and culture 

Primary bone marrow derived macrophages were obtained by harvesting marrow from 

femurs of 6-12 week old female C57BL/6 mice, lysing red blood cells with ACK buffer, and 

then culturing cells for seven days on bacteriological polystyrene plates in DMEM 

supplemented with 10% FBS, 2% penicillin/streptomycin, 2 mM L-glutamine, and 

10% conditioned media from CMG 12-14 cells expressing recombinant mouse M-CSF. 

Macrophages were treated with the indicated doses of LPS (Sigma), IFN-𝛾, IL-4, or IL-13 

(all from Biolegend) for the indicated time. 

2.3.2. Flow cytometry 

Cells were fixed in 4% formaldehyde and stored at 4 °C until staining with anti-CD86 

(clone GL-1, APC conjugate; Tonbo Biosciences) and anti-CD206 (clone C068C2, Alexa 

488 conjugate; Biolegend) antibodies or isotype controls. Cells were analyzed on a BD 

LSR flow cytometer with post-processing in FlowJo (Tree Star). Cell populations were 

gated on forward and side scatter to select intact single cells. Events were acquired until 

10,000 events were collected in a preliminary analysis gate or the sample was exhausted. 

2.3.3. Cytokine analysis 

Macrophages were plated at 3e5 cells/ml, allowed to adhere overnight, and treated with 

indicated doses of IL-4, IL-13, TNF-𝛼, and IFN-𝛾. Supernatants were collected at 24, 48, 

72, and 96 hours after stimulation and analyzed with a Luminex 31-plex mouse cytokine 

array (Eve Technologies). Hierarchical clustering was performed in R using a complete 

linkage method and presented with the gplots package (72). 
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2.3.4. RT-PCR 

For gene expression analysis, cells were lifted from culture plates 24 hours after 

stimulation, pelleted by centrifugation, and frozen at -80 °C. Cells were lysed and RNA 

was extracted with the Qiagen RNeasy Mini kit. Reverse transcription was performed with 

the Qiagen Quantitect Reverse Transcription kit, which uses random priming and 

includes a DNase treatment. Resulting cDNA was observed to be free of contaminating 

gDNA by testing with the mVPA1 primer set (73). qPCR was performed with BioRad 

SsoFast EvaGreen master mix on a BioRad CFX96 thermocycler using recommended 

cycling parameters (hot-start activation at 95 °C for 30 s, followed by 40 cycles of 5 s 

denaturation at 95 °C and 5 s annealing/extension at 55 °C, followed by melt curve 

collection from 65-95 °C in 0.5 °C increments at 5 s/step). Inhibition was cleared by 

diluting samples 1:100 in ddH2O before analysis. Amplification was confirmed to be 

target-specific with Primer-BLAST (74) and by observing that melt curves had a single 

peak consistent with predicted amplicon melting temperature. Primer sequences and 

target and amplicon details are presented in Supplementary Table A1. Gene-of-interest 

expression was determined relative to an ensemble of Hprt, Gapdh, and Ldha expression 

using the GeNorm method (75) implemented by the package eleven 

(https://github.com/tdsmith/eleven). 

2.3.5. Mathematical modeling 

We constructed mathematical models comprising minimal nonlinear Ordinary 

Differential Equation (ODE) networks. Network nodes included input signals 

(LPS+IFN-𝛾) and (IL-4+IL-13), output markers (CD86 and CD206), and M1- and M2-
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associated pathways. Model quality was assessed based on optimization of parameters by 

fitting to the 96-hour timecourse data (Figure 2.2) of four timepoints (24, 48, 72, 96 h) for 

four different stimulation conditions ({0.3,0}, {0.3,1}, {0,0}, {0,1}). Parameter optimization 

was performed using the trust-region-reflective algorithm with the MATLAB 

optimization toolbox. Model selection was performed using the corrected Akaike 

Information Criterion (AICc) (76). Details of the mathematical models, optimization, and 

selection protocol can be found in Appendix A. 
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3. Effects of extracellular matrix 
identity, ligand density, and 
activation on macrophage motility 

Migration is an essential function of macrophages. Although monocytes, the circulating 

precursors to macrophages, are responsible for extravasation and homing to insults, 

macrophages also live dynamic and motile lives. Macrophage efflux to draining lymph 

nodes is characteristic of the resolution of inflammation (77). In a more sinister mode, 

macrophage migration plays a key role in tumor metastasis. Macrophages interact closely 

with tumor cells to form migrating streams of cells that migrate from the tumor 

environment into the vasculature, increasing the circulating tumor cell burden (26,27). 

Defects in macrophage migration can also cause morbidity. For example, the 

pathogenesis of atherosclerosis is characterized by macrophages which fail to depart fatty 

plaques (78), and HIV infection can induce migration defects that contribute to 

pathological accumulation of macrophages in the brain and gut in HIV+ patients (79). 

Macrophages acquire a characteristic set of cell adhesion molecules upon 

differentiation from monocytes (80). Among them are integrins, a family of heterodimeric 

transmembrane proteins. Integrins function mechanically to anchor cells to their 

substrata, transduce extracellular signals to intracellular pathways (“outside-in” 

signaling), and can respond to intracellular signals by changing their affinity for 

extracellular ligands, mediated through conformation (“inside-out” signaling) (81). 
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Macrophages express several different integrins with affinity for ECMs including collagen, 

laminin, and fibronectin. Macrophage integrins are summarized in Table 3.1. 

 
Table 3.1. Mouse BMDM ECM integrins. 

RGD is the peptide motif arginine-glycine-aspartate. Adopted from (82). 

α β ECM	ligand 
1	

1 

Collagen 

2	 Collagen, 
laminin 

3	 Laminin 
4	 Fibronectin 
5	 Fibronectin 
6	 Laminin 
M	 2 Fibrinogen 
V	 3 RGD 
V	 5 RGD 

 
Macrophages depend on integrins for their normal migratory functions. Macrophage 

efflux from resolving inflammatory environments can be interrupted by blocking 

integrins with soluble RGD peptides or targeting the α4β1 and α5β1 integrin 

complexes (83). An accelerated LPS-dependent efflux process depends on the αMβ2  

integrin (84). Integrins can influence cell function more broadly; when functional 

integrin signaling was impeded by culturing cells in suspension, applying EDTA to 

chelate cationic cofactors, or soluble RGD peptides, the intensity of macrophage 

inflammatory activation was reduced (85). Integrins also play roles in signaling (86). 

Studies have assessed the random migration of unstimulated macrophages in 2D as a 

function of ligand density on fibronectin (87) and the motility and force production of 

activated macrophages (88). We extend these studies by investigating how activation-
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mediated differences in integrin expression are responsible for changes in migratory 

behavior. 

3.1. Results 

3.1.1. Macrophage migration velocity decreases with increasing surface 
fibronectin density 

Polydimethylsiloxane (PDMS; Sylgard 184) was used as a receptive substrate for protein 

adsorption. The amount of rhodamine-fibronectin deposited on a PDMS-coated glass 

surface increased with the concentration of the coating solution over the range 1-100 

µg/ml, as detected by fluorescence microscopy of the PDMS surface. The surface begins 

to saturate between 30 and 100 µg/ml (Supplementary Figure B1). 

 

 
Figure 3.1. Motility of unstimulated macrophages on fibronectin. 
A) Migration velocity and B) maximum displacement as a function of fibronectin coating solution 
concentration. C) Trajectory plots of macrophages migrating on different concentrations of fibronectin, 
labeled in µg/ml. Sampled from Figure 3.3, below. 
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BMDM were observed migrating on the fibronectin-coated PDMS surfaces for 6 hours. 

The migration velocity and average maximum displacement of unstimulated 

macrophages decreased as the ligand density of fibronectin increased on the surface 

(Figure 3.1A, B). Macrophages on low densities of fibronectin exhibit erratic trajectories 

characteristic of a random walk with low persistence. On higher densities of fibronectin, 

elongated macrophages shuttle back and forth along a linear track (Figure 3.1C). 

3.1.2. Macrophage migration velocity has a multiphasic relationship with 
fibrinogen surface density 

 
Figure 3.2. Motility of unstimulated macrophages on fibrinogen. 
A) Migration velocity and B) maximum displacement as a function of fibrinogen coating solution 
concentration. C) Trajectory plots of macrophages migrating on different concentrations of fibrinogen, 
labeled in µg/ml. 

On fibrinogen, macrophage migration velocity as a function of ligand density resembles 

the classic multiphasic relationship described by DiMilla, Barbee, and Lauffenburger (89) 

(Figure 3.3A). At very low ligand densities, macrophages interact with the surface weakly. 

Near 0.3 µg/ml, macrophage migration velocity decreases, as macrophages begin to 
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interact with the surface but are unable to generate significant force. Macrophage 

migration peaks near 3 µg/ml, where force production and adhesive forces balance. 

Migration velocity decreases with further increasing concentration as adhesive forces 

dominate the surface interaction. At high ligand densities, macrophages on fibrinogen 

display the same linear migration behavior as macrophages on fibronectin (Figure 3.3B). 

3.1.3. M1 polarization slows macrophage migration on fibronectin and fibrinogen 

 
Figure 3.3. Combined effects of activation and fibronectin ligand density on macrophage 
migration. 
A) BMDM migration velocity, B) maximum displacement, and C) representative (n=10) trajectory plots of 
moving cells as a function of fibronectin concentration and macrophage polarization. 

On fibronectin, macrophage migration was slowed by LPS+IFN-γ treatment (Figure 3.3A). 

LPS+IFN-γ–treated macrophages were less likely to migrate far from their starting 

position. On low ligand densities, macrophage migration appeared qualitatively random, 

regardless of activation (Figure 3.3B). IL-4+IL-13–treated macrophages migrated in linear 
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tracks at intermediate ligand densities, while unstimulated macrophages still retained a 

more random migratory pattern. 

 

 
Figure 3.4. Combined effects of activation and fibrinogen ligand density on macrophage migration. 
A) BMDM migration velocity, B) maximum displacement, and C) representative (n=10) trajectory plots of 
moving cells as a function of fibrinogen concentration and macrophage polarization. 

LPS+IFN-γ activation also slowed cells on fibrinogen (Figure 3.4A). Migration on 

fibrinogen was, in general, slower than migration on fibronectin. Unlike cells on 

fibronectin, cells on fibrinogen did not display any increased tendency towards more 

linear migration after cytokine stimulation (Figure 3.4C). 
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3.1.4. Macrophage polarization drives differential integrin expression 

 
Figure 3.5. Integrin expression changes 24 h after macrophage activation. 
A) Median fluorescence intensity of flow cytometry data, expressed as log2 fold expression vs untreated 
macrophages. The colors from the heat map are mapped on to Table 3.1 to relate integrin expression to 
expected matrix affinities. Asterisks indicate significant differences vs unstimulated by pairwise t-test, FDR 
< 0.05. B) log10 absolute value of median fluorescence intensity of flow cytometry data for integrins, to 
illustrate approximate relative abundance. 

We proposed that activation-driven changes in integrin expression could be responsible 

for changes we observed in migratory behavior and assessed integrin expression by flow 

cytometry. LPS+IFN-γ treatment increased the surface expression of α5, β1, and β2 

integrins, which is consistent with higher affinity for both fibrinogen and fibronectin 

(Figure 3.5A). Expression of αV and β3 integrin was slightly reduced. IL-4+IL-13–stimulated 

macrophages showed a substantially opposite trend, with increased surface expression of 

the RGD-binding β3 integrin, sensitive to both fibronectin and fibrinogen, and lower 

expression of the β1 integrin. All flow cytometry histograms were essentially unimodal, so 
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changes in median fluorescence intensity (MFI) are a useful description of the integrin 

expression of the cell population (Supplementary Figure B2). Absolute MFI after 

multicolor compensation was plotted to give an approximate indication of integrin 

abundance (Figure 3.5B) since isotype staining intensity was similar in each condition. As 

expected for macrophages, αM integrin is highly expressed; the αM integrin showed 

relatively little variation between activation conditions. The α4 and α5 integrins had lower 

expression. 

 
3.1.5. Blockade of αVβ3 integrin has minimal effects on migration 

 
Figure 3.6. Effects of cilengitide on macrophage migration. 
A) Mean velocity of BMDM migrating on fibrinogen and fibronectin surfaces with or without cilengitide 
treatment. B) Mean maximum displacement from the origin. C) Representative trajectory plots of BMDM 
(n=10) on fibrinogen. D) Representative trajectory plots of BMDM (n=10) on fibronectin. 
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Cilengitide is a cyclic RGD pentapeptide with blocking activity against the RGD-binding 

αVβ3 and αVβ5 integrins (90). Expression of β3 integrin was highest on IL-4+IL-13–treated 

macrophages and modestly lower on LPS+IFN-γ–treated macrophages. On fibronectin 

and fibrinogen surfaces coated with 3 µg/ml ECM solutions, cilengitide treatment had a 

modest effect on the average maximum displacement of unstimulated macrophages 

(Figure 3.6B), which could indicate a less persistent migratory mode. Migration velocity 

was not affected (Figure 3.6A) and trajectories were otherwise qualitatively similar 

(Figure 3.6C-D). 
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3.1.6. Antibody blockade of β integrins has minimal effects on migration 

 
Figure 3.7. Effects of antibody blockade on macrophage migration. 
A) Mean velocity and B) mean maximum displacement of BMDM trajectories. C) Representative trajectories 
of BMDM (n=10) on fibronectin. D) Representative trajectories of BMDM (n=10) on fibrinogen. 

We tested the ability of a cocktail of anti-β-integrin antibodies targeting the β1, β2, and β3 

integrin chains to disrupt cell-matrix interactions by assessing macrophage motility. 

There were no significant differences in migration velocity (Figure 3.7A) although 2 of 3 

biological replicates indicated a non-significant decrease in the velocity of unstimulated 

or IL-4+IL-13–treated macrophages on fibrinogen. There was also a non-significant 
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decrease in maximum attained displacement in the unstimulated condition on 

fibronectin (Figure 3.7B). 

3.1.7. siRNA-mediated knockdown of integrins affects motility and changes cell 
shape 

 
Figure 3.8. Effect of siRNA-mediated integrin knockdown on macrophage motility and shape. 
A) Mean velocity of BMDM. B) Inverse aspect ratio of BMDM. c) Representative trajectories of cells (n=10) 
migrating on fibrinogen and fibronectin after integrin knockdown. 

We performed a pilot experiment to assess the ability of siRNA-mediated knockdown to 

modify macrophage migration behaviors. After demonstrating successful knockdown by 

Western blot (data not shown), motility was observed. On fibronectin, disrupting β1 

integrin activity increased the speed of unstimulated cells (Figure 3.8A) and caused 

macrophages to adopt a rounder shape with and without LPS+IFN-γ treatment (Figure 
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3.8B). The trajectories of the unstimulated β1
KO cells appeared more random than controls 

(Figure 3.8C). Interestingly, in contrast to the NTC control, the velocity of cells in the β3 

integrin KO condition on fibrinogen was not affected by LPS+IFN-γ treatment, although 

the number of cells that were available for analysis was small. Cells in the β3
KO LPS+IFN-γ 

condition were also elongated. 

3.2. Discussion 

We confirm results from recent studies that macrophage migration depends on 

polarization and the area density of ECM ligands. We additionally observe distinct 

random and linear migration modes as a function of fibronectin, but not fibrinogen, 

ligand density. Macrophage activation is found to provoke changes in the surface 

expression of integrins. In the case of LPS+IFN-γ treatment, the integrin expression 

pattern favors greater adhesion to fibrinogen and fibronectin; in the case of IL-4+IL-13 

treatment, expression of the RGD-binding β3 integrin is favored. Cilengitide had a modest 

effect on the track persistence of unstimulated macrophages; an anti-β-integrin antibody 

blockade did not effectively interrupt ligand-matrix interactions. A siRNA-mediated 

knockdown experiment demonstrated control of adhesion to fibronectin. 

The relationship between migration velocity and fibronectin density did not resemble 

the classical biphasic distribution predicted by modeling (89) and recently observed in 

RAW 264.7 macrophages (87). In the latter study, macrophage trajectories did not 

resemble the linear migration tracks that we observed here on fibronectin and that we 

and other commenters (91) have observed incidentally on glass (data not shown), where 

serum vitronectin is the dominant adhesive intermediary (92). Notably, the shift to linear 
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migration tracks from random tracks occurred at a lower matrix density in the 

IL-4+IL-13–treated case, which resulted in increased β3 integrin expression, and 

vitronectin is a β3 integrin ligand, which suggests the possibility that the linear migration 

behavior requires a sufficient degree of β3-mediated adhesion. Further work could 

examine whether siRNA-mediated β3 knockdown changes the BMDM preference for the 

linear migration mode on glass and fibronectin surfaces, or whether the β3 inhibitor 

cilengitide affects the threshold ligand density for random-dominant vs. linear-dominant 

trajectories. 

Another possibility is suggested by the finding that, in fibroblasts and epithelial cells, 

increased Rac1 activity was associated with a greater degree of random, versus persistent, 

migration; suppressing Rac1 led to enhanced directional persistence (93). Some 

information about the regulation of macrophage migration has been derived using 

biochemical inhibitors; for example, random migration of unstimulated RAW 264.7 

macrophages depends absolutely on PI3K, is independent of Cdc42, and is reduced by 

ROCK inhibition on high ligand densities (87). Assessing Rac1 activity with a reporter 

assay could also shed light on the hypothesis that the linear migration behavior we 

observed is Rac1-dependent. Reporter assays are more technically challenging than 

pharmacological inhibition but severe off-target effects have been reported for the most 

popular small-molecule Rac1 inhibitors (94,95). 

Macrophage activation is linked to migration through several interacting factors of 

different weights. Null results do not exclude the possibility of integrin mediation but 

may place a limit on its influence. For instance, BMDM from mice deficient for the M2 
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marker CD206 exhibit faster random migration on glass coverslips relative to WT BMDM, 

by an undetermined mechanism (96). In Chapter 2, it was demonstrated that LPS+IFN-γ 

treatment downregulates CD206, yet LPS+IFN-γ–treated macrophages clearly migrate 

more slowly overall. As well, there may be a dynamic relationship between macrophage 

migration and integrin expression. RhoB–/– macrophages have similar expression of β1 

integrins and reduced expression of β2 and β3 integrins compared to WT BMDM (97); 

since mechanical tension can activate Rho GTPases, this suggests that integrin-derived 

feedback may regulate integrin expression in macrophages, which could complicate 

integrin-blocking assays. 

The statistical treatment of migration data poses thorny questions. Random migration 

is a fundamentally stochastic process wherein individual cells exposed to nominally 

identical conditions behave differently. Because the variation between cells is large, it is 

necessary to observe a large number of cells to confidently describe the population within 

each biological replicate. Because BMDMs resist labeling with nuclear stains, tracking 

cells is laborious. Primary cells also exhibit biological variation between mice. This work 

has adopted the practice of averaging the measurements of all cells observed from a 

single mouse and treating the 3 or 4 resulting means for each parameter as independent 

observations, i.e. the basis of n. Although this approach is principled, it is not very 

powerful, in the sense that a larger basis of observations is probably necessary to permit 

statistical resolution of differences on the scale we observed. 

Another challenge is parameterizing migration trajectories. Random-walk models are 

often used to describe cell motility (98), including of macrophages (87,88), and we 
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explored applying random-walk models to the data we collected. Our experience was that 

the random-walk models did not contribute information that was not accessible from the 

velocity and displacement parameters. The random-walk models do not naturally 

represent the kind of linearly directed back-and-forth migration that we observed in 

several conditions, which undercuts the utility of and theoretical basis for their 

application. Random-walk models have been rejected for migration in 3D contexts (99) in 

favor of models incorporating an explicit treatment of cellular heterogeneity, and 

anisotropic speed and self-correlation terms (100). Applying a more sophisticated model 

could allow us to more finely parse the differences we can observe by eye in macrophage 

migration trajectory plots although the intrinsic stochasticity of migration may not 

permit an accurate estimation of additional parameters. 

Direct measurement of cell adhesion strength, as by a spinning disk (101), 

micropipette aspiration, or timed exposure assay could provide interesting adjunct 

information about the interactions between macrophages and the substrate that could 

support an interpretation of the integrin blockade and knockout experiments.  

Regulating macrophage migration has been proposed as a therapeutic avenue (102). In 

fact, the small molecule anti-inflammatory drug pirfenidone works in part by interrupting 

macrophage chemotaxis (103). Polymers eluting a RGD-blocking peptide resulted in a 

thinner capsule in WT mice than control polymers (104). This study supports the 

principle that macrophage phenotype is linked to adhesion and motility.  
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3.3. Methods 

3.3.1. Cell culture 

BMDM were prepared and used as described in Chapter 2. Lyophilized fibrinogen (Sigma) 

was prepared to a stock concentration of 2 mg/ml, passed through a 0.2 µm filter, and 

stored at -20 °C until use. Fibronectin (Corning) was prepared to a stock concentration of 

1 mg/ml following manufacturer’s directions and stored at -20 °C until use. Cilengitide 

(Tocris) was used at a concentration of 10 µg/ml. Antibodies were used at a concentration 

of 10 µg/ml each. 

3.3.2. Random migration 

8-well chamber slides (Thermo Scientific Lab-Tek II) were coated with a thin layer of 9:1 

Sylgard 184 (Dow Corning) PDMS:crosslinker and cured at 60 °C overnight. PDMS 

surfaces were rendered hydrophilic by UV/ozone treatment for 8 minutes (105). Protein 

solution was applied in PBS for 1 hour at room temperature, rinsed thoroughly with PBS, 

and replaced by 0.2% Pluronics F-127 in PBS for an additional hour to block remaining 

exposed PDMS. After additional rinsing, 2,000 cells were seeded in each well. Cytokines 

and/or integrin-blocking agents were applied at 24 hours after seeding and slides were 

observed for 6 hours at 2 minute intervals at 48 hours after seeding. Chambers were 

observed with an Olympus IX-83 inverted microscope equipped with a Tokai Hit stage 

incubator and controlled by Micro-Manager. Incubator settings were chosen to maintain 

cells at 37 °C, as measured by a thermoresistive probe, in a 5% CO2 atmosphere. At least 

three fields of view were sampled in each well of the chamber slide. 
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Nuclear tracking dyes commonly used for live cell imaging, including Hoechst 33342, 

DRAQ5, and CyTrak Orange, were rapidly toxic to BMDM and could not be used. The 

centers of cell nuclei were annotated by hand using MTrackJ (106). Cells migrating fewer 

than 20 µm from their origin were considered non-moving and were excluded from 

analyses. 

3.3.3. Antibodies 

For flow cytometry, antibodies against αM (M1/70 PE), αV (RMV-7 PE), β2 (M18/2 FITC), 

and β3 (2C9.G2 APC) integrins were from Biolegend. PE-conjugated antibodies against α4, 

α5, and β1 integrins were from Santa Cruz Biotechnology. Isotype controls were purchased 

from the corresponding vendor. Fc block antibody was from Tonbo. For blocking, LEAF-

grade antibodies against β1 (HMβ1-1), β2 (M18/2), and β3 (2C9.G2) integrins and matching 

isotype controls were purchased from Biolegend. 

3.3.4. siRNA 

Day 7 BMDM were transformed with the Lonza 4D-Nucleofector system using 

proprietary primary solution 3, supplement 1, and program DS-137. siGENOME siRNAs 

were ordered for each target gene from Dharmacon. After transformation, cells were 

maintained in RPMI 1640 supplemented with 10% supernatant from Ltk- cells secreting 

recombinant mouse MCSF and 10% heat-inactivated FBS. 
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4. Conclusions and future directions 

The studies described in this work investigate how macrophages integrate and respond to 

signals in their microenvironment. Chapter 2 presented an in vitro model of macrophages 

displaying markers for both M1 and M2 activation, demonstrated that these mixed 

macrophage phenotypes can arise as a response to simultaneous presentation of 

activation signals, and showed that costimulated macrophages shift from a M1-dominant 

to a M2-dominant presentation over time. Chapter 3 explored how macrophage activation 

and surface ligand density conspire to influence macrophage motility and revealed that 

this interaction is different on fibrinogen, which is abundantly displayed on biomaterial 

surfaces and in the early stages of wound healing, and fibronectin, which is an important 

constituent of the provisional matrix that forms in the middle stages of wound healing. 

Both studies underscore the plastic nature of macrophage response to their environment. 

Extending our studies of migrating macrophages to 3D matrices would represent a 

natural progression. Macrophages are known to migrate through 3D matrices in ways that 

depend on macrophage phenotype and the properties of the matrix. Macrophages in 3D 

use both adhesion-dependent mesenchymal cell migration mode and adhesion-

independent amoeboid migration mode depending on the structure of the local 

ECM (107). These migratory behaviors are known to be influenced by macrophage 

activation; M2 macrophages showed enhanced abilities to penetrate and degrade dense 

matrices compared to unactivated macrophages or cells of different lineages (108). 
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Models of wound matrix are an interesting system where migration has not been 

characterized. 

The understanding that different modes of macrophage activation confer different 

abilities to degrade and remodel extracellular matrices also offers a basis for developing 

the results of the migration study. A pilot experiment we performed on surfaces coated 

with fluorescent fibronectin revealed cell-associated dark spots presumably related to 

cell-mediated degradation of the matrix. Assessing ECM monolayer degradation as a 

function of ligand density or adapting this assay to a format suitable for live-cell imaging 

could reveal whether the patterns we observed in macrophage migration trajectories can 

be explained by matrix remodeling. In particular, it could explain the tendency for cells to 

shuttle back and forth or double back on their tracks. 

Studies of macrophage migration can also proceed to higher or lower length scales. 

Macrophage adhesion is unusual in that it is mediated by podosomes, which are similar 

to but distinct from focal adhesions; they are characteristically smaller and shorter-lived 

than focal adhesions (109). Focal adhesions are the primary sites of integrin-matrix 

contact and are indispensable for migration in most cell types. Macrophages, however, 

have been observed to migrate even after podosome formation was abolished (91). 

Understanding how cell-matrix adhesion is organized and regulated during migration 

and how activation alters podosome formation could add an important dimension to this 

work. At the higher length scale, studies of collective migration are of interest. 

Macrophage interactions with tumor cells leading to streaming migration towards the 

circulation may be an important event in metastasis (27,28). Understanding how 
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activation affects these interactions and how to disrupt them could lead to a better 

understanding of metastasis and how to interrupt it. 

Development of alternative models for quantifying migration could help present the 

trends evident in the geometric but not the scalar descriptions of migration trajectories. 

These metrics could be as simple as a descriptive measure of the linearity of the cell 

position point clouds or as complex as introducing new formalisms to explore underlying 

mechanisms (110). 

The activation study in Chapter 2 and the migration study in Chapter 3 employed 

different methods of assessing macrophage behavior. The activation study reflected a 

marker-based approach to macrophage phenotyping. Many markers are easy to detect 

but have uncertain or untranslatable biological effects. Classifying mouse macrophages 

on the basis of arginase I expression is an example; Arg1 transcript levels in mouse BMDM 

change more than 1,000-fold upon IL-4 stimulation, but, while Arg1 expression in mice is 

linked to regulation of nitric oxide synthesis (111) and has a speculative association with 

matrix synthesis (112), Arg1 is not expressed in human macrophages at all. Nonetheless, 

Arg1 expression at the transcript or protein levels is conveniently and inexpensively 

assayed and, because the products of macrophage activation are generally co-regulated, 

can predict mouse macrophage function. The majority of work on macrophage activation 

relies on markers. Conversely, functional studies can observe behaviors like migration, 

giant cell formation, and phagocytosis directly related to macrophage-driven outcomes, 

which lends a stronger sense that the assays measure something biologically important. 

Functional assays are often more laborious to perform, difficult to multiplex, and more 
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subtle to quantify. Cytokine secretion is something of a middle ground, in that cytokine 

secretion is straightforward to detect and part of the functional role of the macrophage. 

Recent work has highlighted that it is possible to use omics approaches to parse 

macrophage responses to stimuli more finely (e.g., (11)). These studies necessarily 

function at the marker level. While the straightforward M1–M2 paradigm is useful 

because it concisely reflects observable and, importantly, druggable (113), differences in 

cell behavior, characterizing macrophages in wound and tumor models with higher-

dimensional models may shed light on how the response of macrophages is modulated by 

the additional factors present in pathological environments. Indeed, a complementary 

opportunity is to characterize macrophage behavior under more complex activation 

conditions. Tumor cell line coculture models provide a less reductionist but still 

accessible approach for evaluating how the tumor environment influences immune 

behavior (114–117). Models for assessing macrophage migration in the context of tumor 

spheroids have also been proposed (118). Using decellularized organ slurries as 

components of an in vitro study of the effects of matrix components on macrophage 

phenotype has also been explored (119). Of course, the challenge of recapitulating a 

physiological environment is to ensure that the greater specificity of the experimental 

system actually contributes greater realism and not just different artefacts. Recent 

progress in efficiently isolating tissue macrophages and tumor-associated macrophages 

offers the promise of being able to examine macrophages in a genuinely physiological 

context (120,121).  
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The work in chapter 3 reflects progress towards demonstrating that changes in cell-

surface integrin expression driven by activation can influence migration. Ongoing studies 

in the lab are examining the effects of siRNA-mediated integrin knockdown on 

macrophage activation responses; integrins are required for some signaling responses and 

pattern recognition in macrophages (86). The migration assays developed for this work 

describe a functional property of macrophages and will naturally complement our 

marker-based assessments. 

The evolution of macrophage phenotypes over time, as observed in wound healing 

and in the response to implanted materials, and the migration of macrophages in 

response to activation and their substrata represent fundamental processes of these 

versatile and powerful cells. There are opportunities to translate these findings towards 

the clinic. Integrin-targeted therapies have been proposed to help control the 

macrophage foreign body response to materials (104,122) and finding ways to interrupt 

tumor-associated macrophage migration could lead to therapeutic breakthroughs in 

cancer treatment. With further study, deeper understanding of these processes should 

lead to finer control of macrophage responses to improve human health. 
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Appendix A. Supplement to Chapter 2 

We constructed mathematical models comprising minimal nonlinear Ordinary 

Differential Equation (ODE) networks. Our models were developed from previously 

described models of T cell subset specialization,1–3 adding additional connectivities and 

species to account for the complex kinetics of CD86 and CD206 after stimulation. We 

constructed 70 models with different topologies. A representative set of the studied 

topologies, models 1-6, are illustrated in Figure 2 and Supplementary Figure A4. A model 

described by the mutual-inhibition self-activation (MISA) motif (Model 2) fits the data 

better than one in which the M1- and M2-associated pathways are activated 

independently (Model 1). However, the MISA is nevertheless insufficient to capture the 

complex kinetics of CD86 and CD206 expression after co-stimulation. 

Models that extend the MISA topology by introducing a new species Y that interacts 

with the M1- and M2-associated pathways, and representing unknown processes 

downstream of LPS+IFN-γ and/or IL-4+IL-13 signalling events improve the model score 

(see AICc below) (Models 3, 5, 6). Specifically, we found that an incoherent feed-forward 

loop on M1, mediated by an additional species Y, was necessary to capture the decay of 

CD86 expression in costimulated cells at 96 hours.4 An activating link between Y and M2 

was also consistent with the increased expression of CD206 of costimulated cells at later 

times. In particular, cooperative activation of M2 from Y and M2 improved the overall fit. 

To discover extended topologies, we were guided by the features of the temporal data and 

the literature on macrophage activation, as discussed in the main text. 
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Model quality was assessed based on optimization of parameters by fitting to the 96-hour 

time course data (Fig. 2) of four timepoints (24, 48, 72, 96 h) for four different stimulation 

conditions ({0.3,0}, {0.3,1}, {0,0}, {0,1} ng/ml {LPS/IFN-𝛾, IL-4/IL-13}). The number of 

replicates was between three and five for each timepoint, giving 72 experimental data 

points. The error metric used was the sum of squared residuals (RSS) with normalized 

mean weighting. Parameter estimation was performed by minimizing the RSS of the 

model predicted CD86 and CD206 values to the normalized mean-weighted experimental 

values. The Matlab Optimization Toolbox and the trust-region-reflective algorithm were 

used to perform 1,000 individual fits. Parameters were initialized from a lognormal 

distribution with a mean and variance of 2, and were constrained to be positive. 

Parameters were optimized to the normalized timecourse data, and thus are expressed in 

arbitrary concentration and time units. Initial fits were performed using 400 trust-region-

reflective iterations, or until convergence, using normalized unweighted experimental 

values. A second fit was then performed to the normalized mean-weighted experimental 

values. All models were assessed using the AICc criterion, a scoring metric for model 

selection that includes penalties for increasing the number of fitted parameters.5 

To replicate the cell-to-cell variability in the flow cytometry data, individual cells were 

given static parameters drawn from a distribution. Cell populations with between 3000 

and 10000 cells were simulated, and model parameters for each cell were drawn from a 

lognormal distribution centered on the optimized parameters and with a variance of one 

percent of the mean. The resulting CD86 and CD206 expression levels for all models in 

Figure 2 and fitted parameters (Supplementary Figure A4) showed single-peaked 
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distributions shifting with dosage, in qualitative agreement with the experimental density 

plots. 

A.1. Supplementary Figures 

 
Supplementary Figure A1. Expression of phenotypic markers CD86 and CD206 in response to 
LPS+IFN-γ and IL-4+IL-13 stimuli is dose-dependent. 
(A) Representative flow cytometry histograms of CD86 intensity after 48 hours of treatment with indicated 
dose of LPS+IFN-𝛾. (B) Average median normalized CD86 expression ± SEM as a function of increasing 
LPS+IFN-𝛾 dose. Data are normalized to 0.3 ng/ml treatment condition. Asterisk indicates difference vs. 
untreated, p < 0.05; n = 3. (C) Representative flow cytometry histograms of CD206 intensity after 48 hours 
of treatment with indicated dose of IL-4+IL-13. (D) Average median normalized CD206 intensity ± SEM as a 
function of increasing IL-4+IL-13 dose. Data are normalized to 1 ng/ml treatment condition. Asterisk 
indicates difference vs. untreated by two-sided t test, p < 0.05; n = 3. 
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Supplementary Figure A2. Cytokines present in culture media of macrophages exposed to 
LPS+IFN-γ ± IL-4+IL-13 for the indicated time in hours, assessed by multiplex ELISA. 
Data presented as mean ± SEM, n=3. 

Eotaxin (14) G-CSF (13) GM-CSF (15) IFNy (19) IL-1a (21) IL-1B (25)

IL-2 (26) IL-3 (29) IL-4 (28) IL-5 (30) IL-6 (34) IL-7 (36)

IL-9 (38) IL-10 (43) IL-12 (p40) (45) IL-12 (p70) (47) IL-13 (52) IL-15 (54)

IL-17 (56) IP-10 (57) KC (61) LIF (51) LIX (53) M-CSF (67)

MCP-1 (62) MIG (74) MIP-1a (64) MIP-1B (66) MIP-2 (73) RANTES (75)

TGF-B1 (18) TGF-B2 (54) TGF-B3 (36) TNFa (77) VEGF (76)
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Supplementary Figure A3. Pulse-chase experiment. 
Cells were treated with LPS+IFN-𝛾 or IL-4+IL-13 at t=0. Media was replaced with untreated media at t=24 
hours. Cells were collected at t=24, 48, 72, and 96 hours for analysis of CD86 and CD206 expression by flow 
cytometry to observe how marker expression evolved over time in the absence of continued stimulus. 
Median normalized fluorescence intensity from each experiment (n=2) is plotted in gray and the mean is 
plotted in black. 
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Supplementary Figure A4. Simulated timecourse experiment from each model shown in Figure 2.3. 
Points mark experimental data, as shown in Figure 2.3b. 
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Supplementary Figure A5. qRT-PCR timecourse data for Arg1 expression, relative to the IL-4+IL-13–
only condition at 24 hours. 
Gray points are individual observations and gray lines connect points from the same experiment; the black 
points and line represent the average. Missing points indicate missing data due to signals below limit of 
quantitation. Headings describe stimulation condition as ng/ml concentration of LPS/IFN-𝛾 x IL-4/IL-13. 
Timepoint is in hours. 
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A.2. Supplementary Equations 
The parameters of these equations are described in Supplementary Table A2 and fitted 

numeric values are given in Supplementary Table A3. 

Equation A1. Model 1: Self-activation 
 

 
 
 

Equation A2. Model 2: MISA 
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Equation A3. Model 3: MISA with IFFL and inhibition between Y and M1 
 

 
 
 

Equation A4. Model 4: MISA with cooperative IFFL 
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Equation A5. Model 5: MISA with cooperative IFFL and inhibition between Y and M1 
 

 
 
 

Equation A6. Model 6: MISA with cooperative IFFL, inhibition between Y and M1, and 
inhibition on Y 
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A.3. Supplementary Tables 
 
Supplementary Table A1. qPCR primers 

Gene Direction Sequence 

Amplicon 
length 
(bp) 

Arg1 F CTCTGTCTTTTAGGGTTACGG 152 
 R CTCGAGGCTGTCCTTTTGAG  
Chi3l3 F AGTGCTGATCTCAATGTGGATTC 142 
 R TAGGGGCACCAATTCCAGTC  
Gapdh F GTCAAGCTCATTTCCTGGTATGAC 131 
 R TCTCTTGCTCAGTGTCCTTGC  
Hprt F TGGACAGGACTGAAAGACTTGCTCG 81 
 R CCTTGAGCACACAGAGGGCCAC  
Il10 F CCCACTTCCCAGTCGGCCAG 300 
 R GGAGAAATCGATGACAGCGCCTC  
Kdm6b F GGTTCACTTCGGCTCAACTTAG 75 
 R CTCCACCGTATGTTCACCGC  
LdhaA F TGTCTCCAGCAAAGACTACTGT 155 
 R GACTGTACTTGACAATGTTGGGA  
Mrc1 F TGTTTTGGTTGGGACTGACC 269 
 R TGCAGTAACTGGTGGATTGTC  
mVPA16 F GGAGCCCAGTGTAGAAGAGCA 87 
 R AGCCAGCGAACCATATCCTGA  
Nos2 F TTGGGTCTTGTTCACTCCAC 211 
 R TGTATTGTTGGGCTGAGAACAG  
Retnla F GCCAATCCAGCTAACTATCCC 187 
 R AGTCAACGAGTAAGCACAGG  
SdhaB F CTTGAATGAGGCTGACTGTG 87 
 R ATCACATAAGCTGGTCCTGT  
Tnfa F CCCACGTCGTAGCAAACCACCA 172 
 R TCGGGGCAGCCTTGTCCCTT  

A RTPrimerDB7 3720; B RTPrimerDB 3875 
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Supplementary Table A2. Description of model parameters 
Parameter Meaning 
k1 Maximum stimulation rate of M1 cascade under 

induction with S1 
k2 Maximum stimulation rate of M2 cascade under 

induction with S2 
k3 Maximum stimulation rate of M1 cascade under self-

activation 
k4 Maximum stimulation rate of M2 cascade under self-

activation 
k5 Basal rate of M1 activation 
k6 Basal rate of M2 activation 
k7 Maximum rate of M2 stimulation from Y and M2 

cooperative stimulation 
k8 Maximum rate of Y production under S1 induction 
KY Level of Y to reach half-maximum inhibition of M1 
KCY Level of Y to reach half-maximum cooperative activation 

of M2 
KCM2 Level of M2 to reach half-maximum cooperative 

activation of M2 
Krep1 Level of M1 to reach half-maximum inhibition of M2 
Krep2 Level of M2 to reach half-maximum inhibition of M1 
Kind1 Level of S1 to reach half-maximum induction of M1 
Kind2 Level of S2 to reach half-maximum induction of M2 
Kact Level of M1 or M2 to reach half-maximum self-activation 
d1 M1 decay rate 
d2 M2 decay rate 
d3 Y decay rate 
d4 CD86 decay rate 
d5 CD206 decay rate 
g1 CD86 production rate 
g2 CD206 production rate 
n Hill coefficient 
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Supplementary Table A3. Model parameter values 
Representative best fit parameter values for each model from optimization. Parameters are in arbitrary 
units of concentration and time, relative to the rate of degradation of the M1 species (d1), which is 
approximated to be 1 [/hr] according to the half-life of STAT1.8 The parameters were optimized to 
normalized CD86 and CD206 expression levels. Parameters with an asterisk were fixed to constrain 
parameter space during optimization. Fixed values were chosen based on initial parameter searches. 
Alternative constraints yielded different quantitative values, but the same ordering of model scores 
according to the AICc. The threshold parameters for induction, Kind1 and Kind2 are based on the dose-
response of CD86 and CD206 under the single-stimulus conditions. Kact is approximated from the 
experimental data condition with no induction stimulus at 24 hours. A Hill coefficient of 2 was used for all 
parameter sets. Parameter sets estimated using a Hill coefficient of 1 produced AICc scores equivalent or 
worse than the AICc scores using a Hill coefficient of 2. 

Model 1 2 3 4 5 6 
k1 0.4341 0.5871 10.421 0.7595 2.2698 2.8511 
k2 1.1124 1.6691 1.4815 1.4998 0.8939 1.0146 
k3 0.8322 0.791 1.0512 0.6856 1.1102 0.7833 
k4 1.6865 0.311 0.9216 0.4332 1.5412 1.1121 
k5 0.0456 0.0679 0.0421 0.0968 0.0332 0.1067 
k6 0.0172 0.5813 0.3239 0.541 0.0831 0.1589 
k7 N/A N/A 0.1977 4.3814 2.8281 2.2411 
k8 N/A N/A 0.1096 0.1594 0.7288 0.1206 
KM2 N/A N/A N/A 9.9178 1.3292 0.0012 
KCY N/A N/A 0.3438 8.4118 5.4604 5.4965 
KY N/A N/A N/A N/A 0.0209 0.9182 
Krep1 N/A 2.8882 2.2441 1.9004 2.4051 1.0306 
Krep2 N/A 14.228 1.4216 2.0858 1.0162 1.195 
Kind1* 1 1 1 1 1 1 
Kind2* 0.3 0.3 0.3 0.3 0.3 0.3 
Kact* 1 1 1 1 1 1 
d1* 1 1 1 1 1 1 
d2* 1 1 1 1 1 1 
d3* N/A N/A 0.05 0.05 0.05 0.05 
d4* 0.05 0.05 0.05 0.05 0.05 0.05 
d5* 0.05 0.05 0.05 0.05 0.05 0.05 
g1* 1 1 1 1 1 1 
g2* 1 1 1 1 1 1 
n N/A 2 N/A 2 2 2 
Free parameters 6 8 11 12 13 13 
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Appendix B. Supplement to Chapter 3 

 
Supplementary Figure B1. Fibronectin adsorption curve. 
Fluorescence from surface-bound rhodamine-fibronectin increases with the concentration of the coating 
solution and begins to saturate between 30 and 100 µg/ml. 

 
Supplementary Figure B2. Representative flow cytometry plots of BMDM integrin expression as a 
function of macrophage polarization. 
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Supplementary Figure B3. Integrin expression changes 24 h after macrophage polarization on 
different ECMs. 
Median fluorescence intensity of flow cytometry data, expressed as log2 fold expression vs M0 on TCPS. 
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