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Abstract

Dominance is widely considered a pillar of rational choice and
has played a major role in the history of theorizing and devel-
oping models of human decision-making. A wealth of empir-
ical evidence reveals that humans’ violation of dominance is
both substantial and systematic. But could violation of domi-
nance be given a rational basis? Specifically, could it be un-
derstood in terms of the optimal use of limited cognitive re-
sources? In this work, we present the first resource-rational
account of stochastic dominance, the most empirically studied
version of dominance. Concretely, we show that a resource-
rational process model, sample-based expected utility (SbEU),
provides a unified account of a broad range of empirical results
on violation of stochastic dominance. We discuss the implica-
tions of our work for risky decision-making, and more broadly,
human rationality.
Keywords: stochastic dominance; resource-rationality; risky
choice; resource-rational process models

1 Introduction
A cornerstone of decision theory, dominance is arguably con-
sidered “the most obvious” principle of rational choice (Kah-
neman & Tversky, 1986), playing a major role in the history
of modeling human decision-making (Tversky & Kahneman,
1992; Birnbaum, 2005).1

In this work, we focus on the most empirically studied ver-
sion of dominance, called first-order stochastic dominance
(SD). A wealth of empirical evidence reveals that humans’
violation of SD (VoSD) is both substantial and systematic
(e.g., Birnbaum & Navarrete, 1998; Birnbaum, 2004a, 2004b;
Birnbaum et al., 1999; Birnbaum, 1999, Birnbaum & Martin,
2003; Birnbaum, 2005).

Although past work has suggested that bounded rationality
plays a role in VoSD (e.g., Birnbaum, 1999; Huck & Müller,
2012; Levy, 2008; Choi et al., 2014; Kourouxous & Bauer,
2019), it has remained largely unknown how bounded ratio-
nality shapes the algorithmic foundations of VoSD. We ask
whether VoSD could be given a resource-rational algorith-
mic basis (Griffiths, Lieder, & Goodman, 2015; Gershman,
Horvitz, & Tenenbaum, 2015; Nobandegani, 2017; Bhui, Lai,
& Gershman, 2021). Specifically, could VoSD be understood
in terms of the optimal use of limited cognitive resources?

In this work, we present the first resource-rational account
of VoSD. Concretely, we show that a resource-rational pro-

1Interestingly, due to its normative appeal, dominance was even
used by some scholastics to argue in favor of Christianity (see Cov-
ello & Mumpower, 1985).

cess model, sample-based expected utility (SbEU; Nobande-
gani et al., 2018), provides a unified account of a broad range
of empirical results on VoSD. Here, we particularly focus on
Birnbaum (2005) which is, to our knowledge, the most exten-
sive empirical study of VoSD.

We begin by formally defining SD (Sec. 2) and discussing
how SbEU works (Sec. 3). We then present our simulation
results, quantitatively comparing SbEU model predictions to
human data (Sec. 4). We conclude by discussing the impli-
cations of our work for risky decision-making, and more
broadly, human rationality.

2 Stochastic Dominance
In simple terms, SD can be described as follows. Gamble A
stochastically dominates gamble B, denoted by A �SD B, if
the probability of winning any given prize x or more is at least
as high in A as in B, and this probability is strictly higher in
A for at least one value of x. More formally, A �SD B, if ∀x:
Pr(winning a prize ≥ x|A) ≥ Pr(winning a prize ≥ x|B) and
∃x: Pr(winning a prize≥ x|A)> Pr(winning a prize≥ x|B).

As an example (Birnbaum, 2005), gamble P stochastically
dominates gamble Q (w.p. stands for “with probability”) :

P =

 $96 w.p. 90%
$14 w.p. 5%
$12 w.p. 5%

(1)

Q =

 $96 w.p. 85%
$90 w.p. 5%
$12 w.p. 10%

(2)

The rationale is as follows. The probability to win $96 or
more is .90 in gamble P, and only .85 in gamble Q; the prob-
ability to win $90 or more is the same in both gambles; the
probability to win $14 or more is .95 in gamble P and only
.9 in gamble Q; and the probability to win $12 or more is the
same in both gambles. Hence, P�SD Q.

3 Resource-Rational Process Model
Extending an earlier risky decision-making model (Lieder,
Griffiths, & Hsu, 2018) to the realm of meta-reasoning,
sample-based expected utility (SbEU; Nobandegani et al.,
2018) is a resource-rational process model of risky choice that
posits that people rationally adapt their strategy depending on
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the amount of time available for decision-making. Concretely,
SbEU assumes that people estimate expected utility

E[u(o)] =
∫

p(o)u(o)do, (3)

using self-normalized importance sampling (Hammersley &
Handscomb, 1964; Geweke, 1989), with its importance distri-
bution q∗ aiming to optimally minimize mean-squared error
(MSE):

Ê =
1

∑
s
j=1 w j

s

∑
i=1

wiu(oi), ∀i : oi ∼ q∗, wi =
p(oi)

q∗(oi)
, (4)

q∗(o) ∝ p(o)|u(o)|

√
1+ |u(o)|

√
s

|u(o)|
√

s
. (5)

MSE is a standard measure of estimation quality, widely used
in decision theory and mathematical statistics (Poor, 2013).
In Eqs. (3-5), o denotes an outcome of a risky gamble, p(o)
the objective probability of outcome o, u(o) the subjective
utility of outcome o, Ê the importance-sampling estimate of
expected utility given in Eq. (3), q∗ the importance-sampling
distribution, oi an outcome randomly sampled from q∗, and s
the number of samples drawn from q∗.

SbEU assumes that, when choosing between a pair of risky
gambles A,B, people consider whether the expected value of
the utility difference ∆u(o) is positive or negative:

A =

{
oA w.p. PA
0 w.p. 1−PA

(6)

B =

{
oB w.p. PB
0 w.p. 1−PB

(7)

∆u(o) =


u(oA)−u(oB) w.p. PAPB
u(oA)−u(0) w.p. PA(1−PB)
u(0)−u(oB) w.p. (1−PA)PB
0 w.p. (1−PA)(1−PB)

(8)

In Eq. (8), u(·) denotes the subjective utility function of a
decision-maker. Fully consistent with past work (Nobande-
gani et al., 2018; Nobandegani et al., 2019a; Nobandegani,
Destais, & Shultz, 2020a, Nobandegani & Shultz, 2020b), in
this paper we use the following utility function:

u(x) =
{

x0.85 if x≥ 0,
−|x|0.95 if x < 0.

(9)

Also, in line with prospect theory (Kahneman & Tversky,
1979), we here assume that people perform a variant of segre-
gation, as a form of editing, prior to evaluating the gambles.
The purpose of editing is to obtain a simplified representation

of gambles prior to further evaluation (Kahneman & Tver-
sky, 1979).2 In this variant of segregation, a risky gamble
is decomposed into a sure thing (corresponding to the mini-
mum outcome of that gamble) and the remaining risky gam-
ble, with the branch corresponding to the sure thing fully re-
moved. In our simulations (Sec. 4), we assume that 50% of
participants adopt segregation.

In our simulations (Sec. 4), we also assume that people
draw between 1 to 10 samples when deciding. Specifically,
we adopt a uniform distribution and assume that one-tenth of
the population draw one sample (i.e., s = 1; see Eqs. (4-5)),
one-tenth of the population draw two samples (i.e., s = 2),
one-tenth of the population draw three samples and so on.
This is consistent with mounting evidence suggesting that
people draw only a few samples in probabilistic judgment and
reasoning (e.g., Vul et al., 2014; Battaglia et al., 2013; Lake
et al., 2017; Gershman, Horvitz, & Tenenbaum, 2015; Her-
twig & Pleskac, 2010; Griffiths et al., 2012; Gershman, Vul,
& Tenenbaum, 2012; Bonawitz et al., 2014; Nobandegani et
al., 2018; Nobandegani et al., 2020a).

Recent work has shown that SbEU provides a unified ac-
count of a broad range of major empirical findings across
risky, value-based, and strategic decision-making (Nobande-
gani et al., 2018; Nobandegani et al., 2019a, 2019b; Noban-
degani et al., 2020a; Nobandegani & Shultz, 2020b, 2020c,
2020d; Lizotte, Nobandegani, & Shultz, 2021), and also
bridges between decision-making under risk and decision-
making under uncertainty (Nobandegani et al., 2021). No-
tably, SbEU is the first rational process model to score near-
perfectly in optimality, economical use of limited cognitive
resources, and robustness, all at the same time (see Nobande-
gani et al., 2018; Nobandegani et al., 2019c).

4 Simulation Results
In this section, we simulate Experiments 1-7 in Birnbaum
(2005), conducted with a total of 1,802 human participants.

4.1 Experiments 1-2

In Experiments 1-2, Birnbaum (2005) empirically investi-
gated how split of probabilities among the branches of risky
gambles affects VoSD. Experiments 1-2 involved 7 pairs of 3-
branch gambles with positive outcomes, with each pair com-
prising a stochastically dominant gamble G+and a stochasti-
cally dominated gamble G−(see Appendix for the gambles).
Hence, choosing G−over G+indicates VoSD.

Fig. 1(a) shows SbEU model predictions for Birnbaum’s
(2005) Experiments 1-2, along with the empirical data. The
model predictions correlate highly with the empirical data
(Pearson r = .9523, p < .001).

2As such, editing is broadly consistent with resource-rationality
as it correctly acknowledges the representational constraints that
people are naturally faced with (see Bhui & Gershman, 2018). To
show that editing is fully consistent with resource-rationality, future
work should investigate whether people boundedly-optimally allo-
cate their representational bandwidth in editing.
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(a) (b)

(c) (d)

Figure 1: Comparing human data (Birnbaum, 2005) with SbEU model predictions. In each subplot, the x-axis indicates the
choice problem number (see Appendix for details), and the y-axis shows the percentage of participants choosing G−over G+,
hence violating stochastic dominance. (a) Birnbaum’s (2005) Experiments 1-2, (b) Birnbaum’s Experiment 3, (c) Birnbaum’s
Experiment 4, and (d) Birnbaum’s Experiment 5. We simulated 10,000 participants in each condition of each experiment.

4.2 Experiment 3
In Experiment 3, Birnbaum (2005) empirically investigated
the effect of redistribution of probabilities on VoSD, previ-
ously predicted in Birnbaum (1997). Experiment 3 involved 7
pairs of 3-branch gambles with positive outcomes, with each
pair comprising a stochastically dominant gamble G+and a
stochastically dominated gamble G−(see Appendix for the
gambles). Hence, choosing G−over G+indicates VoSD.

Fig. 1(b) shows SbEU model predictions for Birnbaum’s
(2005) Experiment 3, along with the empirical data. The
model predictions correlate highly with the empirical data
(Pearson r = .7708, p < .05).

4.3 Experiment 4
In Experiment 4, Birnbaum (2005) empirically ruled out a
heuristic account of VoSD, the consequence counting heuris-
tic, according to which people should pay excess attention
to outcome values in risky choice. Experiment 4 involved 7
pairs of 3-branch gambles with positive outcomes, with each
pair comprising a stochastically dominant gamble G+and a
stochastically dominated gamble G−(see Appendix for the
gambles). Hence, choosing G−over G+indicates VoSD.

Fig. 1(c) shows SbEU model predictions for Birnbaum’s
(2005) Experiment 4, along with the empirical data. The
model predictions correlate highly with the empirical data
(Pearson r = .7988, p < .05).

4.4 Experiments 5-7
In Experiment 5, Birnbaum (2005) empirically investigated
the effect of manipulating the outcomes of the dominated
gamble G−on VoSD. Experiment 5 involved 7 pairs of 3-
branch gambles with positive outcomes, with each pair com-
prising a stochastically dominant gamble G+and a stochasti-
cally dominated gamble G−(see Appendix for the gambles).
Hence, choosing G−over G+indicates VoSD.

Fig. 1(d) shows SbEU model predictions for Birnbaum’s
(2005) Experiment 5, along with the empirical data. The
model predictions again correlate highly with the empirical
data (Pearson r = .8261, p< .05). As can be seen in Fig. 1(d),
although the model prediction is quantitatively off in Choice
Problems 7a, 11, 15a, and 13a, the model nevertheless ac-
curately captures the qualitative trend of the empirical data
for those Choice Problems, with both model predictions and
empirically observed data gradually decreasing when moving
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from Choice Problem 7a to 11, then to 15a, and finally to 13a.
Birnbaum’s (2005) Experiment 6 contained only a single

test of VoSD using a pair of 5-branch mixed gambles (empiri-
cally observed VoSD = 63% vs. model prediction = 54.76%).
Birnbaum’s Experiment 7 contained two tests of VoSD again
using pairs of 5-branch mixed gambles (empirically observed
VoSD = 66.5% vs. model prediction = 54.62%; empirically
observed VoSD = 65.5% vs. model prediction = 57.66%).

5 Discussion
Considered as arguably “the most obvious” principle of ra-
tional choice (Kahneman & Tversky, 1986), dominance has
played a major role in the history of theorizing and devel-
oping models of human decision-making (Tversky & Kahne-
man, 1992; Birnbaum, 2005; Kourouxous & Bauer, 2019).

Interestingly, a wealth of empirical evidence reveals that
humans’ violation of dominance is both substantial and
systematic (e.g., Birnbaum & Navarrete, 1998; Birnbaum,
2004a, 2004b; Birnbaum et al., 1999; Birnbaum, 1999, Birn-
baum & Martin, 2003; Birnbaum, 2005). For example, by
examining the health plan choices of 23,894 employees at a
U.S. firm, recent work has shown that the majority of employ-
ees chose dominated plans, which resulted in excess spend-
ing equivalent to 24% of chosen plan premiums (Bhargava,
Loewenstein, & Sydnor, 2017; see also Handel, 2013).

Here, we ask whether violation of dominance could be
given a rational basis. Specifically, could it be understood
in terms of the optimal use of limited computational and cog-
nitive resources? In this work, we focus on the most em-
pirically studied version of dominance, first-order stochastic
dominance (SD), and provide the first resource-rational ac-
count of violation of SD (VoSD). We show that a single pa-
rameterization of SbEU, a resource-rational process model of
risky choice, provides a unified account of a broad range of
empirical results on VoSD (Birnbaum, 2005).

To be consistent, we use the exact same utility function
(Eq. 9) used in past work, without optimizing it to improve
model fit. Future work should optimize model fits to empiri-
cal data and make comparisons with other prominent models
(e.g., the transfer of attention exchange model (TAX), Birn-
baum, 2005).

Although this work particularly focuses on violation of
dominance in single-agent risky decision-making, there is ev-
idence that this modeling approach can also explain violation
of dominance in multi-agent settings. Recently, Nobandegani
et al. (2019a) provided a resource-rational account of (osten-
sibly irrational) cooperation in one-shot Prisoner’s Dilemma
(OPD). In OPD, defection is the dominant strategy whereas
cooperation is the dominated strategy. Hence, choosing co-
operation over defection is a violation of dominance in OPD
— a violation that Nobandegani et al.’s (2019a) SbEU-based,
resource-rational model accounted for. Future work should
investigate whether a resource-rational account of violation of
dominance that goes beyond the specific game of OPD could
be developed in multi-agent decision-making.

An intimately related concept to dominance is the sure-
thing principle (STP) (Savage, 1954). According to STP, a
decision-maker who takes action A both when event E has
occurred and when the negation of E has occurred, should
take the same action A even when they know nothing about
E. Although Savage (1954) provided a strong normative ba-
sis for STP by appealing to dominance, substantial empirical
evidence revealed that people violate STP across a range of
domains (e.g., Khrennikov & Haven, 2009; Tversky & Shafir,
1992; Li et al., 2010; Croson, 1999). Given this intimate
link between dominance and STP, the work presented here
suggests that resource-rationality might hold the key for de-
veloping a normative basis for violation of STP. The obser-
vation that the Allais paradox and the Ellsberg paradox, as
two notable instances of violation of STP, can both be given
a resource-rational account further elevates this possibility
(Nobandegani et al., 2021). Future work should investigate
whether STP could be given a resource-rational foundation.

In this work, we look at VoSD through the lens of mod-
ern psychological theories of bounded rationality (see Bhui et
al., 2021), providing a resource-rational, algorithmic founda-
tion for VoSD. Given the broad empirical coverage of SbEU
across risky, value-based, and strategic decision-making (see
Sec. 3), this result is particularly interesting as it brings us
a step closer to developing a unified, boundedly-optimal ac-
count of human decision-making. The work presented here is
a step in this important direction.
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Appendix
For brevity, we use the following shorthand, à la Birnbaum
(2005). Gamble P given in (1) in the main text can be alterna-
tively represented as follows: P= ($96, .9;$14, .05;$12, .05).

Experiments 1-2:
Choice Problem 5a:
G+ = ($96, .9;$14, .05;$12, .05)
G− = ($96, .85;$90, .05;$12, .1)
Choice Problem 18:
G+ = ($97, .9;$15, .05;$13, .05)
G− = ($97, .85;$91, .05;$13, .1)
Choice Problem 13:
G+ = ($97, .9;$15, .05;$13, .05)
G− = ($97, .75;$91, .05;$13, .2)
Choice Problem 11a:
G+ = ($96, .9;$14, .05;$12, .05)
G− = ($96, .65;$90, .05;$12, .3)
Choice Problem 7:
G+ = ($97, .9;$15, .05;$13, .05)
G− = ($97, .55;$91, .05;$13, .4)
Choice Problem 15a:
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G+ = ($96, .9;$14, .05;$12, .05)
G− = ($96, .45;$90, .05;$12, .5)
Choice Problem 21a:
G+ = ($96, .9;$14, .05;$12, .05)
G− = ($96, .25;$90, .05;$12, .7)

Experiment 3:
Choice Problem 5:
G+ = ($96, .9;$14, .05;$12, .05)
G− = ($96, .85;$90, .05;$12, .1)
Choice Problem 18a:
G+ = ($97, .9;$15, .05;$13, .05)
G− = ($97, .85;$91, .05;$13, .1)
Choice Problem 13a:
G+ = ($97, .9;$15, .05;$13, .05)
G− = ($97, .65;$91, .25;$13, .1)
Choice Problem 15:
G+ = ($96, .9;$14, .05;$12, .05)
G− = ($96, .55;$90, .35;$12, .1)
Choice Problem 7a:
G+ = ($97, .9;$15, .05;$13, .05)
G− = ($97, .65;$91, .25;$13, .1)
Choice Problem 21:
G+ = ($96, .9;$14, .05;$12, .05)
G− = ($96, .25;$90, .65;$12, .1)
Choice Problem 11:
G+ = ($96, .9;$14, .05;$12, .05)
G− = ($96, .15;$90, .75;$12, .1)

Experiment 4:
Choice Problem 21:
G+ = ($96, .9;$14, .05;$12, .05)
G− = ($96, .85;$90, .05;$12, .1)
Choice Problem 7a:
G+ = ($97, .9;$15, .05;$13, .05)
G− = ($97, .85;$91, .05;$13, .1)
Choice Problem 5:
G+ = ($96, .9;$14, .05;$12, .05)
G− = ($94, .85;$90, .05;$10, .1)
Choice Problem 18a:
G+ = ($97, .9;$15, .05;$13, .05)
G− = ($95, .85;$91, .05;$11, .1)
Choice Problem 15:
G+ = ($96, .9;$14, .05;$12, .05)
G− = ($96, .85;$70, .05;$12, .1)
Choice Problem 13a:
G+ = ($97, .9;$15, .05;$13, .05)
G− = ($97, .85;$41, .05;$13, .1)
Choice Problem 11:
G+ = ($96, .9;$14, .05;$12, .05)
G− = ($96, .85;$20, .05;$12, .1)

Experiment 5:
Choice Problem 5:

G+ = ($96, .9;$14, .05;$12, .05)
G− = ($96, .85;$90, .05;$12, .1)
Choice Problem 21a:
G+ = ($97, .9;$15, .05;$13, .05)
G− = ($97, .85;$91, .05;$13, .1)
Choice Problem 18:
G+ = ($96, .9;$14, .05;$12, .05)
G− = ($90, .85;$84, .05;$6, .1)
Choice Problem 7a:
G+ = ($97, .9;$15, .05;$13, .05)
G− = ($90, .85;$80, .05;$10, .1)
Choice Problem 11:
G+ = ($96, .9;$14, .05;$12, .05)
G− = ($85, .85;$75, .05;$4, .1)
Choice Problem 15a:
G+ = ($97, .9;$15, .05;$13, .05)
G− = ($80, .85;$70, .05;$5, .1)
Choice Problem 13a:
G+ = ($97, .9;$15, .05;$13, .05)
G− = ($70, .85;$60, .05;$2, .1)

Experiment 6:
Choice Problem:
G+ = ($100, .35;$0, .37;−$95, .04;−$97, .04;−$100, .20)
G− = ($100, .10;$99, .10;$96, .10;$0, .40;−$100, .30)

Experiment 7:
Choice Problem 4:
G+ = ($100, .35;$0, .37;−$95, .04;−$97, .04;−$100, .20)
G− = ($100, .10;$99, .10;$96, .10;$0, .40;−$100, .30)
Choice Problem 21:
G+ = ($100, .35;$0, .37;−$90, .04;−$95, .04;−$100, .20)
G− = ($100, .12;$99, .10;$97, .10;$0, .38;−$100, .30)
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