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Abstract

Objective—To identify a neuroimaging signature predictive of brain amyloidosis as a screening 

tool to identify individuals with mild cognitive impairment (MCI) that are most likely to have high 

levels of brain amyloidosis or to be amyloid-free.

Methods—The prediction model cohort included 62 MCI subjects with structural magnetic 

resonance imaging (MRI) and carbon-11-labeled Pittsburgh Compound B (11C-PiB) positron 

emission tomography (PET). We identified an anatomical shape variation based neuroimaging 

predictor of brain amyloidosis and defined a structural MRI-based brain amyloidosis score (sMRI-

BAS). Amyloid beta positivity (Aβ+) predictive power of sMRI-BAS was validated on an 

independent cohort of 153 MCIs with cerebrospinal fluid (CSF) Aβ1-42 biomarker data but no 

amyloid PET scans. We compared the Aβ+ predictive power of sMRI-BAS to those of 

Apolipoprotein E (ApoE) genotype and hippocampal volume, two most relevant candidate 

biomarkers for the prediction of brain amyloidosis.

Results—Anatomical shape variations predictive of brain amyloidosis in MCI embraced a 

characteristic spatial pattern known for high vulnerability to Alzheimer’s disease (AD) pathology, 

including the medial temporal lobe, temporal-parietal association cortices, posterior cingulate, 

precuneus, hippocampus, amygdala, caudate, and fornix/stria terminals. Aβ+ prediction 

performance of sMRI-BAS and ApoE genotype jointly was significantly better than the 

performance of each predictor separately (AUC=0.88 versus AUC=0.70 and AUC=0.81, 

respectively) with greater than 90% sensitivity and specificity at 20% FPR and FNR thresholds. 

Performance of hippocampal volume as an independent predictor of brain amyloidosis in MCI was 

only marginally better than random chance (AUC=0.56).
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Diseases, Building 13, 4150 Clement Street, San Francisco, CA 94121, USA. Phone: 415-221-4810 x4800, duygu.tosun@ucsf.edu. 
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Interpretation—As one of the first attempts to use an imaging technique that does not require 

amyloid-specific radioligands for identification of individuals with brain amyloidosis, our findings 

could lead to development of multidisciplinary/multimodality brain amyloidosis biomarkers that 

are reliable, minimally invasive, and widely available.

INTRODUCTION

Increasing evidence from in vivo imaging and post mortem studies indicates that the 

formation of amyloid plaques in the brain, mainly consisting of insoluble amyloid beta (Aβ) 

protein fragments, is a major factor that leads to a sequence of pathophysiological events 

occurring over two to three decades before the manifestation of Alzheimer’s Disease (AD) 

related dementia1. Brain amyloidosis can be detected by molecular imaging techniques such 

as positron emission tomography (PET) using an amyloid-specific radioligand (e.g., 11C-

labelled Pittsburgh compound-B (11C-PiB)) or through measurement of cerebrospinal fluid 

(CSF) Aβ1-42 concentration2–4, both showing high correlations with postmortem measures 

of fibrillar Aβ5–7. As amyloid PET and CSF biomarker collection rapidly become an integral 

part of research studies on normal aging and AD8, 9, the research findings have raised the 

possibility that biomarkers of brain amyloidosis may detect and quantify disease associated 

changes in the latent (i.e., normal cognitive function with evidence of AD pathology) and 

prodromal (i.e., mild cognitive impairment with stronger evidence of AD pathology) AD 

stages when disease-modifying therapeutic intervention may be most effective. However, 

many subjects are resistant to lumbar puncture required for CSF sample collection, 

especially if they are asymptomatic. Furthermore, limited availability, exposure to radiation, 

and financial burden of amyloid PET techniques hinder their widespread acceptance in 

clinical practice. Recently, three independent studies have shown that a combination of AD-

biomarkers, cognitive measures, ApoE genotype, and plasma protein measures, could be a 

predictor of amyloid-positivity (Aβ+) with accuracy high as 85%10–12. Different yet 

complementary to these approaches, our goal is to identify a low-cost and non-invasive 

neuroimaging signature predictive of brain amyloidosis as a screening tool to identify 

subjects that are most likely to have high levels of brain amyloid or to be amyloid-free.

Structural neuroimaging using magnetic resonance imaging (MRI), has been shown to be 

useful in AD13 diagnosis and is often used for assessment of subjects with memory 

problems, yet there is no protocol for identifying brain amyloidosis via MRI since no MR-

based molecular imaging with a contrast specific to amyloid plaques has been demonstrated. 

Widespread availability, no radioligand requirement, no exposure to radiation, and lower 

cost are potential advantages of structural neuroimaging as a screening tool to identify brain 

amyloidosis. Various imaging studies related the brain amyloidosis to the downstream 

structural brain alterations across a wide range of cognitive impairments to better understand 

the sequences of AD-related pathophysiological events, to identify biomarkers of early AD-

related brain changes, and to assess the effectiveness of these biomarkers on predicting 

individuals’ progression in the AD continuum14–20. Though neuroimaging research came a 

long way in its ability to link brain amyloidosis and AD-related neurodegeneration, to what 

extend structural imaging predicts brain amyloidosis has not been explored thoroughly yet. 

In this study, we aimed (1) to identify an anatomical shape variation based neuroimaging 

predictor of brain amyloidosis in mild cognitive impairment (MCI), a transitional stage 
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between normal aging and dementia with an increased risk of developing AD, and (2) to 

define a structural MRI-based brain amyloidosis score (sMRI-BAS), whose Aβ+ predictive 

power was validated on an independent MCI cohort. Furthermore, we compared the Aβ+ 

predictive power of the sMRI-BAS to those of Apolipoprotein E (ApoE) genotype and 

hippocampal volume, two most relevant candidate biomarkers for the prediction of brain 

amyloidosis. Specifically, hippocampal atrophy, one of the most established and reliable AD 

imaging biomarker, progresses through the disease course, and is present even in healthy 

elders and MCIs who are most like to develop AD21. The relevance of ApoE-ε4 genotype 

for AD and its associations with AD-related biomarkers such as amyloid PET binding, CSF 

biomarker concentrations, structural, especially hippocampal atrophy, are well 

documented22–24.

METHODS

Participants

Participants were recruited through the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) from 56 centers in the U.S. and Canada25. Written consent was obtained from all 

subjects participating in the ADNI study. The ADNI study was approved by the institutional 

review board at each participating site. The study complies with the Health Insurance 

Portability and Accountability Act (HIPAA) guidelines. Details regarding subject inclusion 

and exclusion criteria are provided elsewhere25 (see Supplementary Material).

Modeling cohort consisted of 46 cognitively normal elderly individuals (CN) and 62 MCI 

subjects. Baseline MRIs of CN subjects were used to model the normal confounding effects 

of age, sex, and education on anatomical shape variation measure. Given that cumulative 

and regional Aβ burden in CNs correlate with regional brain atrophy, particularly in 

hippocampus, parietal cortex, and posterior cingulate regions, in a pattern similar to AD-

related atrophy pattern16, 26, modeling cohort included only the CNs identified as Aβ− either 

by PiB-PET or CSF biomarker data. Furthermore, ApoE ε2-allele or ApoE ε4-allele carrier 

CNs were excluded due to sample size limitations. 62 MCI subjects in the prediction model 

cohort had an ADNI imaging session when both structural MRI and 11C-PiB PET scans 

were acquired. A brain amyloidosis prediction model and an sMRI-BAS model were derived 

from the modeling MCI cohort data. Validation cohort to assess the Aβ+ predictive power of 

the sMRI-BAS consisted of an additional 153 MCIs, who had baseline CSF Aβ1-42 

biomarker data but no amyloid PET at any time points during ADNI project period. 

Individuals with ApoE ε2-allele were excluded from the modeling and the validation cohorts 

due to sample size limitations. Study group demographics are summarized in Table 1. We 

downloaded all related 11C-PiB PET, CSF biomarker, and structural MRI data from http://

adni.loni.ucla.edu/.

Measures of brain amyloidosis

The PET-Core of ADNI developed standardized protocols to compute uniform 

resolution 11C-PiB PET images normalized to the mean 11C-PiB retention value of the 

cerebellar cortex, i.e., 11C-PiB standardized uptake value ratio (SUVR), and further 

provided average PiB-SUVR measures of automatically identified cortical and subcortical 
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regions3. We used a composite PiB-SUVR measure as the average PiB-SUVR of frontal, 

lateral/mesial temporal, parietal, anterior cingulate, and precuneus regions. The Biomarker-

Core of ADNI who conducts studies on ADNI-derived lumbar puncture CSF samples 

provided measures of CSF Aβ1-42 in standardized assays2. Further details are provided in 

Supplementary Material.

Structural MRI

The participants at each site underwent a standardized 1.5 Tesla MRI protocol. Two T1-

weighted MRIs, using a sagittal volumetric magnetization prepared rapid gradient echo 

(MP-RAGE) sequence, with an echo time (TE) of 4ms, repetition time (TR) of 9ms, flip 

angle of 8°, and a nominal voxel size of 0.94×0.94×1.2mm3. A designated center selected 

the MP-RAGE image with higher quality and corrected for system-specific image artifacts 

such as geometry distortion, B1 non-uniformity, and intensity inhomogeneities25, 27.

Anatomical shape variations

Skull, scalp, and extra-cranial tissue were removed from each T1-weighted MRI using the 

automated Brain Surface Extraction (BSE) software28, followed by manual refinement if 

required. To avoid bias towards a particular subject’s geometry in analysis of anatomical 

shape variations, we used the MRI data from CNs to create a study-specific unbiased large 

deformation brain image template (ULD-template) by applying a framework of large 

deformation diffeomorphic metric mapping (LDDMM) as described in full elsewhere29. 

ULD-template generation incorporated an unbiased approach where all brain images were 

first simultaneously affine transformed to adjust for global variations in brain positioning 

and scale, and then simultaneously deformed. MCI brain images were first affine aligned 

and then nonlinearly warped to this ULD-template using the LDDMM framework. The 

LDDMM was modeled as an evolution in time, with an associated smooth velocity vector 

field controlling this evolution. A scalar initial momentum map, α0 parameterized the entire 

geodesic with which the optimal trajectory emanated from the ULD-template to reach a 

subject brain image on a Riemannian manifold of diffeomorphism29. These momentum 

maps uniquely encoded the anatomical shape variations of individual brains relative to the 

ULD-template.

Detrending α0 maps

We used a linear detrending method in terms of general linear model to control for normal 

confounding effects of age, sex, and education on the brain anatomy based on the 

anatomical shape variations in the CN cohort. Robustness of the fit was achieved by 

weighting the least squares residual at each iterative step using a bisquare weighting 

function. For each MCI subject, a detrended (i.e., corrected for confounding effects) 

deformation momenta map, αdt, was computed voxel-wise by removing each subject’s 

individual age, sex, and education variations from the original estimate of deformation 

momenta α0 (see Supplementary Material).
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High dimensionality neuroimaging predictors of brain amyloidosis

To find the anatomical shape variations that best predict brain Aβ burden, we performed a 

partial least squares (PLS)30 regression of the composite PiB-SUVR measure against the αdt 

of MCIs from the prediction model cohort. PLS regression determines the principal mode 

within a set of multiple explanatory variables (e.g., αdt values from every ULD-template 

imaging voxel) to predict a second set of response variable (e.g., composite PiB-SUVR)30. 

Once the mode, also known as latent variable (LV), have been determined, a set of weights 

can be calculated to predict an instance of the response variable from an explanatory 

variable (e.g., imaging data from a new subject). Specifically, by projecting αdt onto the LV, 

an sMRI-BAS was estimated for each MCI. We used non-parametric permutation tests 

(n=1000) to assess the significance of the regression of projected composite PiB-SUVR on 

projected αdt map and used the R2 as the test statistics. The distribution of the R2 statistic 

under the null hypothesis was calculated by randomly reordering the αdt map and composite 

PiB-SUVR pairings and then recalculating the new projection and the associated R2 each 

time. The significance at the 5% level of the LV was measured by the p-value from the 

empirical distribution.

Assessing the Aβ+ predictive power of sMRI-BAS in the validation MCI cohort

Only a small fraction of the ADNI MCI cohort received PiB-PET, limiting our statistical 

power for building and validating a brain amyloidosis prediction model using a single MCI 

cohort. However, the two measures of brain amyloidosis obtained by either PET or CSF 

sample are substantially related to one another regardless of whether evaluated as 

continuous or dichotomous variables. Specifically, dichotomous categorization (i.e., Aβ+ 

versus Aβ−) showed 91% agreement (κ=0.74) between PiB-PET and CSF Aβ1-4231. 

Majority of the disagreements between PiB-PET and CSF Aβ1-42 involved subjects whose 

biomarker values were close to the Aβ+/− dichotomization cut-offs. In this study, CSF 

Aβ1-42 levels of the MCI subjects in the validation cohort were outside the ±4 range of CSF 

Aβ1-42 cut-off. Taking advantage of the strong agreement between dichotomized PiB-PET 

and CSF Aβ1-42 measures, we assessed the Aβ+ predictive power of sMRI-BAS in a 

validation MCI cohort with CSF Aβ1-42 biomarker data but no PiB-PET scans. We 

performed an Aβ+ versus Aβ− classification analysis on the validation cohort of 153 MCIs 

using a linear logistic regression model with sMRI-BAS as the independent predictor. The 

validation cohort was dichotomized into Aβ+ and Aβ− subgroups based on a CSF Aβ1-42 

biomarker cutoff (i.e., Aβ+ if CSF Aβ1-42 < 192) derived and validated in an autopsy-

confirmed AD cohort2. Receiver Operation Characteristic (ROC) curve metrics including 

the area under the curve (AUC), sensitivity at 20% false positive rate (FPR), and specificity 

at 20% false negative rate (FNR) were used to assess the performance of the sMRI-BAS as a 

classifier. Furthermore, we compared the performance of sMRI-BAS to the performances of 

ApoE genotype (ApoE-ε3/ε3, ApoE-ε3/ε4, or ApoE-ε4/ε4) and intra-cranial vault volume 

(ICV)-adjusted hippocampal volume as independent predictors of Aβ+ in MCI. FreeSurfer 

(version 4.5) estimates of hippocampal volume and ICV were downloaded from the ADNI 

database. We also considered joint predictive power of sMRI-BAS and ApoE genotype in a 

multimodality Aβ+ classification model.
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RESULTS

Demographic characteristics of the subjects are shown in Table 1. There were no 

significant age, sex, and education group differences among the three cohorts. As expected, 

MCIs had significantly (p<10−4) lower MMSE and higher CDR-SB and ADAS-Cog scores 

relative to the CNs. In terms of the cognitive performance, the two MCI groups differed only 

in their CDR-SB scores (p=0.017).

Neuroimaging predictors of brain amyloidosis

Regression coefficients for controlling normal confounding effects of age, sex, and 

education as well as the raw and detrended (i.e., α0 and αdt, respectively) anatomical shape 

variation maps are shown in Fig. 1.

Fig. 2 shows the spatial signature of the LV inferred by PLS regression. Dark red/blue and 

white colors indicate greater contribution of the local anatomical shape variations to the LV, 

therefore to the brain amyloidosis prediction model. The anatomical shape variations 

predictive of brain amyloidosis were concentrated on the inferior parietal, precuneus, 

entorhinal, supramarginal, middle temporal cortices, hippocampus, amygdala, caudate 

nucleus, and fornix/stria terminals.

Fig. 3 shows the relation of sMRI-BAS against the actual composite PiB-SUVR for MCIs in 

the prediction model cohort, with an estimated correlation coefficient of 0.845 (p<10−4). 

Distributions of the sMRI-BAS for Aβ+ and Aβ− MCIs in the prediction model cohort are 

box-plotted in Fig. 4 to illustrate the excellent group separation. The established composite 

PiB-SUVR threshold of 1.47 based on a PiB-PET versus CSF biomarker study3 was used to 

dichotomize the prediction model MCIs as Aβ+ and Aβ−.

Aβ+ predictive power of the sMRI-BAS in the validation MCI cohort

The estimated performances of the proposed sMRI-BAS, ApoE genotype, and hippocampal 

volume as independent predictors of brain amyloidosis in MCI are summarized in Table 2. 

As an independent predictor of brain amyloidosis in MCI, ApoE genotype outperformed 

both sMRI-BAS and hippocampal volume neuroimaging measures (AUC=0.81 versus 

AUC=0.70 and AUC=0.56, respectively). sMRI-BAS as an independent predictor of brain 

amyloidosis in MCI performed with greater sensitivity (84.81% at 20% FPR threshold) and 

specificity (81.25% at 20% FNR threshold) compared to ApoE genotype and hippocampal 

volume. Performance of hippocampal volume as a predictor of brain amyloidosis in MCI 

was only marginally better than random chance (AUC=0.56). Finally, the joint performance 

of sMRI-BAS and ApoE genotype as predictors of brain amyloidosis in MCI was 

significantly better than the performance of each predictor separately (AUC=0.88) with 

greater than 90% sensitivity and specificity at 20% FPR and FNR thresholds.

Subgroup analysis of the validation MCI cohort by median age split

To assess the performance of amyloid prediction models in different age groups of the 

validation MCI cohort, age was dichotomized using a median split (median age = 74.9 

years), yielding a younger MCI validation cohort (MCI-Y) and an older MCI validation 
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cohort (MCI-O). The group demographics and the performance of brain amyloidosis 

predictors for each age group are summarized in Table 3. The MCI-Y and MCI-O groups 

did not differ on any cognitive test scores, suggesting comparable MCI symptom severity 

between the two age groups. MCI-Y included a higher percent of female subjects compared 

to MCI-O. As an independent predictor of brain amyloidosis, sMRI-BAS performed 

similarly in both age groups, i.e., AUC = 0.69 in discriminating Aβ+ versus Aβ− MCI-Y and 

AUC = 0.71 in discriminating Aβ+ versus Aβ− MCI-O. The performance of ApoE genotype 

as an independent predictor of brain amyloidosis was better in MCI-O group than in MCI-Y 

group (AUC = 0.77 versus AUC = 0.70), but slightly worse in both age groups than in full 

validation cohort. Joint performance of sMRI-BAS and ApoE genotype in predicting the 

brain amyloidosis was better in MCI-O than in MCI-Y (AUC = 0.88 versus AUC = 0.81). In 

MCI-Y, ICV-adjusted hippocampal volume was a predictor of the brain amyloidosis with an 

AUC = 0.75. ICV-adjusted hippocampal volume neuroimaging measure was not able to 

discriminate Aβ+ versus Aβ− MCI-O at a rate any better than chance.

Subgroup analysis of the validation MCI cohort by median CDR-SB split

The validation MCI cohort was dichotomized to early versus late MCI cases (MCI-E and 

MCI-L, respectively) using a median CDR-SB split (median CDR-SB=1.5) to indirectly 

assess the influence of MCI symptom severity on Aβ+ predictive power of the sMRI-BAS, 

ApoE genotype, and ICV-adjusted hippocampal volume (Table 3). MCI-E was significantly 

older than MCI-L, suggesting later age of onset in MCI-E group. Percentage of ApoE-ε3/ε4 

carriers in MCI-L was significantly greater than the percentage in MCI-E. CSF Aβ1-42 levels 

in MCI-L were significantly lower than the levels in MCI-E with a greater percentage of Aβ

+ cases. Although both imaging measures, sMRI-BAS and ICV-corrected hippocampal 

volume, independently and jointly with ApoE genotype yielded better discrimination of Aβ+ 

versus Aβ− subjects in MCI-L compared to their performances in MCI-E, the relatively 

higher level of Aβ+ versus Aβ− imbalance in MCI-L makes generalization of these results 

difficult.

DISCUSSION

In this study, we used a novel measure of regional anatomical shape variation and PLS 

regression to determine the neuroimaging predictors of brain amyloidosis and to derive an 

sMRI-BAS, whose predictive power in identifying Aβ+ and Aβ− MCIs were measured. 

Anatomical shape variations predictive of brain amyloidosis (detected by 11C-PiB PET) in 

MCI embraced a characteristic pattern of brain structures known for high vulnerability to 

AD pathology. The sMRI-BAS when combined with ApoE genotype, the most relevant 

genotype for AD, yielded a brain amyloidosis prediction with AUC=0.88 and greater than 

90% sensitivity and specificity at 20% FPR and FNR thresholds in identifying Aβ+ and Aβ− 

MCIs in an independent validation cohort. Although as an independent predictor of brain 

amyloidosis ApoE genotype outperformed neuroimaging measures, we observed a 

significant 9% improvement in Aβ+ versus Aβ− classification accuracy and a drastic 

increase in sensitivity and specificity of the prediction model when sMRI-BAS and ApoE 

genotype jointly act as the predictors of brain amyloidosis. These results implicate 

independent contribution of each predictor in identifying MCIs with brain amyloidosis and 
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the added value of the MRI measures beyond the effects of ApoE genotype. This study 

represents one of the first attempts to use an imaging technique that do not require amyloid-

specific radioligands for identification of individuals with brain amyloidosis. Although, the 

dosimetry of amyloid PET is suitable for clinical and research applications, the effective 

doses range from 1.6 to 3.7 mSv32, 33, on the average greater than the natural radiation 

exposure of 2.0 mSv per year. Thus, amyloid PET contributes to a patient’s overall long-

term cumulative radiation exposure, which is associated with an increased risk of cancer34.

The spatial extent of neuroimaging predictors of brain amyloidosis observed in the 

prediction model MCI cohort is consistent with previous studies on biomarkers for early 

diagnosis of AD25. Multiple groups have now reported associations between Aβ levels and 

brain tissue atrophy rates, especially the hippocampal and medial temporal cortical atrophy 

rates and ventricular expansion, even at mild stages of cognitive deficits15, 35, 36. 

Furthermore, brain atrophy in a characteristic pattern involving the medial temporal lobes 

(i.e., hippocampus and entorhinal cortex), paralimbic and temporoparietal cortices is a 

biomarker of AD-related neurodegeneration25. A surprising finding in this study is though 

the poor performance of hippocampal volume in classification of Aβ+ and Aβ− MCIs. One 

explanation could be the fact that both prediction model and validation cohorts included 

primarily amnestic MCIs to whom atrophy within the hippocampal complex25 is common 

but might not be differentiating. Several research groups have independently investigated 

the relationship between brain amyloidosis and hippocampal volume in MCIs. It has been 

consistently reported that the global, regional, and also voxel-based correlations 

between 11C-PiB PET brain amyloidosis measures and hippocampal volume are not 

significant15, 16, 37. Similarly, correlation between CSF Aβ1-42 and hippocampal volume 

failed to reach statistical significance in various MCI studies38–40.

Our finding of a distributed spatial pattern of anatomical shape variations as the 

neuroimaging predictor of brain amyloidosis suggests a greater involvement of a memory 

network including hippocampal complex in amyloidosis-related pathology in MCI. The 

transneuronal-spread hypothesis41 proposes that an injury in a vulnerable site triggers a 

process, which then spreads across interconnected components. In a similar manner, the 

anatomical shape variations at the primary AD-pathology brain sites (e.g., middle temporal 

regions) may have driven the contribution from the brain regions traditionally not 

considered as AD-pathology-specific via the brain’s intrinsic connectivity.

Strengths of this study include the use of an advanced anatomical shape variation measure, 

unique detrending of cofounding effects, and use of a modern statistical analysis method. 

Most of the earlier studies on characterization of neuroanatomical changes have focused on 

the study of deformation maps, either using the associated Jacobian determinate of the 

transformations, as in the now ubiquitous deformation-based morphometry42, or have done 

the analysis directly on the displacement maps. Rather than using the associated Jacobian 

determinate of transformations or the vector-valued velocity or deformation fields, we 

formulated the prediction problem in terms of scalar initial momenta maps that completely 

encoded the geodesics on the manifold of diffeomorphisms. Use of a modern statistical 

method, PLS, allowed us to identify co-varying brain networks, providing maximum 

predictive value for brain amyloidosis in MCI. Conventional voxel-based methods, such as 
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statistical parametric mapping, are not suitable for prediction models where the data from all 

imaging voxels are the high-dimensional and partly collinear predictors. When the space of 

the explanatory variables is of full rank, ordinary multilinear regression can be used but in 

practice the explanatory variable space is likely to be singular due to collinearity in the 

predictors. PLS is designed to deal with small sample size and multicollinearity issues in 

high-dimensional prediction modeling and searching for modes that explain maximal 

covariance between the explanatory and response spaces30.

A relative weakness of this study is related to the etiologic and pathologic uncertainty in the 

MCI diagnosis as at least 30% of the MCI subjects have been found to harbor a non-AD 

pathology43, 44. Specific to our prediction model cohort, 8% of the MCI subjects were 

diagnosed with additional non-memory features, 6% were identified as due to etiology other 

than AD, and about 4% presented with depressive symptoms. These heterogeneities in the 

prediction model MCI cohort may have contributed to the brain amyloidosis and atrophy 

covariations in unexpected brain regions including the mid-brain and basal ganglia 

regions45, 46. Validation cohort MCI subjects that are identified as due to etiology other than 

AD and/or with non-memory features presented with relatively lower MRI-BAS (i.e., mean 

MRI-BAS of −1.73 compared to mean MRI-BAS of −1.35 estimated for amnestic MCI due 

to AD), resulting in greater false positive rates in predicting brain amyloidosis in this 

subgroup. A proper study with a larger sample size is warranted to better model the 

etiological and pathological heterogeneities in prediction of brain amyloidosis in MCI. 

Another limitation of our study is that both CSF and amyloid-PET biomarkers are proxy 

measures for the retention of fibrillar form of Aβ and not necessarily provide a measure of 

oligomeric form of Aβ accumulation, which might be the most relevant to synaptic toxicity.

The pathophysiological process of AD is thought to begin many years before the diagnosis 

of AD dementia. An understanding of the neuroanatomy associated with brain amyloidosis 

is significant because it may aid to identify individuals in prodromal phase of AD providing 

a critical opportunity for therapeutic intervention. The extend to which biomarkers of AD 

pathology --- e.g., Aβ accumulation and structural alterations --- predict an MCI subject’s 

subsequent clinical course remains to be determined since some of these individuals with 

AD pathology will never manifest AD related dementia in their lifetime. Multi-center 

studies enriched with neuroimaging and biomarker data will ensure future studies focused 

on the prediction of brain amyloidosis in a wider AD cognitive continuum including the 

latent AD stage. Together with the work of others10, 11, our findings could result in 

development of multidisciplinary and multimodality biomarkers of brain amyloidosis that 

are reliable, minimally invasive, simple to perform, and widely available. These may include 

detailed demographic characteristics such as family history, cognitive performance, and 

high-throughput biomarker technologies such as genomics and proteomics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Tosun et al. Page 9

Ann Neurol. Author manuscript; available in PMC 2015 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

This work was funded by a research resource grant from the National Institute of Biomedical Imaging and 
Bioengineering of the National Institutes of Health (grant: P41 RR023953). Data collection and sharing for this 
project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health 
Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical 
Imaging and Bioengineering, and through generous contributions from the following: Abbott; Alzheimer’s 
Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer 
HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals 
Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE 
Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; 
Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale 
Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda 
Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical 
sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health 
(www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the 
study is Rev March 26, 2012 coordinated by the Alzheimer’s Disease Cooperative Study at the University of 
California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of 
California, Los Angeles. This research was also supported by NIH grants P30 AG010129 and K01 AG030514. The 
work was possible by using resources of the Veterans Affairs Medical Center, San Francisco, California.

References

1. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta 
Neuropathologica. 1991; 82(4):239–59. [PubMed: 1759558] 

2. Shaw LM, Vanderstichele H, Knapik-Czajka M, et al. Cerebrospinal fluid biomarker signature in 
Alzheimer’s disease neuroimaging initiative subjects. Annals of Neurology. 2009; 65(4):403–13. 
[PubMed: 19296504] 

3. Jagust WJ, Bandy D, Chen K, et al. The Alzheimer’s Disease Neuroimaging Initiative positron 
emission tomography core. Alzheimer’s and Dementia. 2010; 6(3):221–9.

4. Lister-James J, Pontecorvo MJ, Clark C, et al. Florbetapir F-18: A Histopathologically Validated 
Beta-Amyloid Positron Emission Tomography Imaging Agent. Seminars in Nuclear Medicine. 
2011; 41(4):300–4. [PubMed: 21624563] 

5. Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral PET with florbetapir compared with 
neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. 
The Lancet Neurology. 2012; 11(8):669–78. [PubMed: 22749065] 

6. Driscoll I, Troncoso J, Rudow G, et al. Correspondence between in vivo 11C-PiB-PET amyloid 
imaging and postmortem, region-matched assessment of plaques. Acta Neuropathologica. 2012:1–9.

7. Clark CM, Xie S, Chittams J, et al. Cerebrospinal Fluid Tau and β-Amyloid: How Well Do These 
Biomarkers Reflect Autopsy-Confirmed Dementia Diagnoses? Arch Neurol. Dec 1; 2003 60(12):
1696–702. [PubMed: 14676043] 

8. Rabinovici GD, Jagust WJ. Amyloid imaging in aging and dementia: Testing the amyloid 
hypothesis in vivo. Behavioural Neurology. 2009; 21(1):117–28. [PubMed: 19847050] 

9. Nordberg A. Amyloid imaging in Alzheimer’s disease. Current Opinion in Neurology. 2007; 20(4):
398–402. [PubMed: 17620873] 

10. Apostolova, L.; Hwang, K.; Kohannim, O., editors. Predicting brain amyloidosis in MCI using 
clinical, cognitive, imaging and peripheral blood protein measures; Alzheimer’s Association 
International Conference; 2012 July 14–19; Vancouver, British Columbia, Canada. 

11. Mielke MM, Wiste HJ, Weigand SD, et al. Indicators of amyloid burden in a population-based 
study of cognitively normal elderly. Neurology. 2012 Oct 9; 79(15):1570–7. [PubMed: 22972644] 

12. Bahar-Fuchs A, Villemagne V, Ong K, et al. Prediction of amyloid-beta pathology in amnestic 
mild cognitive impairment with neuropsychological tests. J Alzheimers Dis. 2013; 33(2):451–62. 
[PubMed: 23011220] 

13. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s 
disease: Recommendations from the National Institute on Aging-Alzheimer’s Association 
workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia. 2011; 
7(3):263–9.

Tosun et al. Page 10

Ann Neurol. Author manuscript; available in PMC 2015 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. Jack CR Jr, Lowe VJ, Senjem ML, et al. 11C PiB and structural MRI provide complementary 
information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain. 
Mar 1; 2008 131(3):665–80. [PubMed: 18263627] 

15. Chetelat G, Villemagne VL, Bourgeat P, et al. Relationship between atrophy and beta-amyloid 
deposition in Alzheimer disease. Annals of Neurology. 2010; 67(3):317–24. [PubMed: 20373343] 

16. Bourgeat P, Chetelat G, Villemagne VL, et al. β-Amyloid burden in the temporal neocortex is 
related to hippocampal atrophy in elderly subjects without dementia. Neurology. Jan 12; 2010 
74(2):121–7. [PubMed: 20065247] 

17. Archer HA, Edison P, Brooks DJ, et al. Amyloid load and cerebral atrophy in Alzheimer’s disease: 
An 11C-PIB positron emission tomography study. Annals of Neurology. 2006; 60(1):145–7. 
[PubMed: 16802294] 

18. Mormino EC, Kluth JT, Madison CM, et al. Episodic memory loss is related to hippocampal-
mediated β-amyloid deposition in elderly subjects. Brain. May 1; 2009 132(5):1310–23. [PubMed: 
19042931] 

19. Vemuri P, Wiste HJ, Weigand SD, et al. MRI and CSF biomarkers in normal, MCI, and AD 
subjects: Diagnostic discrimination and cognitive correlations. Neurology. Jul 28; 2009 73(4):287–
93. [PubMed: 19636048] 

20. Vemuri P, Wiste HJ, Weigand SD, et al. MRI and CSF biomarkers in normal, MCI, and AD 
subjects: Predicting future clinical change. Neurology. Jul 28; 2009 73(4):294–301. [PubMed: 
19636049] 

21. Apostolova LG, Dutton RA, Dinov ID, et al. Conversion of Mild Cognitive Impairment to 
Alzheimer Disease Predicted by Hippocampal Atrophy Maps. Arch Neurol. May 1; 2006 63(5):
693–9. [PubMed: 16682538] 

22. Vemuri P, Wiste HJ, Weigand SD, et al. Effect of apolipoprotein E on biomarkers of amyloid load 
and neuronal pathology in Alzheimer disease. Annals of Neurology. 2010; 67(3):308–16. 
[PubMed: 20373342] 

23. Pievani M, Rasser PE, Galluzzi S, et al. Mapping the effect of APOE ε4 on gray matter loss in 
Alzheimer’s disease in vivo. Neuro Image. 2009; 45(4):1090–8. [PubMed: 19349226] 

24. Schuff N, Woerner N, Boreta L, et al. MRI of hippocampal volume loss in early Alzheimer’s 
disease in relation to ApoE genotype and biomarkers. Brain. Apr 1; 2009 132(4):1067–77. 
[PubMed: 19251758] 

25. Weiner MW, Veitch DP, Aisen PS, et al. The Alzheimer’s Disease Neuroimaging Initiative: A 
review of papers published since its inception. Alzheimer’s and Dementia. 2012; 8(1 
Supplement):S1–S68.

26. Becker JA, Hedden T, Carmasin J, et al. Amyloid-beta associated cortical thinning in clinically 
normal elderly. Ann Neurol. 2011 Jun; 69(6):1032–42. [PubMed: 21437929] 

27. Jack CR, Bernstein MA, Fox NC, et al. The Alzheimer’s disease neuroimaging initiative (ADNI): 
MRI methods. Journal of Magnetic Resonance Imaging. 2008; 27(4):685–91. [PubMed: 
18302232] 

28. Shattuck DW, Leahy RM. BrainSuite: an automated cortical surface identification tool. Med Image 
Anal. 2002 Jun; 6(2):129–42. [PubMed: 12045000] 

29. Jiang, T.; Navab, N.; Pluim, J., et al., editors. Medical Image Computing and Computer-Assisted 
Intervention – MICCAI 2010. Springer; Berlin/Heidelberg: 2010. Multivariate Statistical Analysis 
of Deformation Momenta Relating Anatomical Shape to Neuropsychological Measures. 

30. Wold S, Geladi P, Esbensen K, Öhman J. Multi-way principal components-and PLS-analysis. 
Journal of Chemometrics. 1987; 1(1):41–56.

31. Jagust WJ, Landau SM, Shaw LM, et al. Relationships between biomarkers in aging and dementia. 
Neurology. Oct 13; 2009 73(15):1193–9. [PubMed: 19822868] 

32. Scheinin NM, Tolvanen TK, Wilson IA, Arponen EM, Nagren KA, Rinne JO. Biodistribution and 
radiation dosimetry of the amyloid imaging agent 11C-PIB in humans. J Nucl Med. 2007 Jan; 
48(1):128–33. [PubMed: 17204709] 

33. O’Keefe GJ, Saunder TH, Ng S, et al. Radiation dosimetry of beta-amyloid tracers 11C-PiB and 
18F-BAY94-9172. J Nucl Med. 2009 Feb; 50(2):309–15. [PubMed: 19164222] 

Tosun et al. Page 11

Ann Neurol. Author manuscript; available in PMC 2015 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. Griffey RT, Sodickson A. Cumulative radiation exposure and cancer risk estimates in emergency 
department patients undergoing repeat or multiple CT. AJR Am J Roentgenol. 2009 Apr; 192(4):
887–92. [PubMed: 19304691] 

35. Tosun D, Schuff N, Mathis CA, Jagust W, Weiner MW. Initiative AsDN. Spatial patterns of brain 
amyloid-β burden and atrophy rate associations in mild cognitive impairment. Brain. Apr 1; 2011 
134(4):1077–88. [PubMed: 21429865] 

36. Tosun D, Schuff N, Truran-Sacrey D, et al. Relations between brain tissue loss, CSF biomarkers, 
and the ApoE genetic profile: a longitudinal MRI study. Neurobiology of Aging. 2010; 31(8):
1340–54. [PubMed: 20570401] 

37. Chetelat G, Villemagne VL, Pike KE, et al. Independent contribution of temporal beta-amyloid 
deposition to memory decline in the pre-dementia phase of Alzheimer’s disease. Brain. Mar 1; 
2011 134(3):798–807. [PubMed: 21310725] 

38. Apostolova LG, Hwang KS, Andrawis JP, et al. 3D PIB and CSF biomarker associations with 
hippocampal atrophy in ADNI subjects. Neurobiology of Aging. 2010; 31(8):1284–303. [PubMed: 
20538372] 

39. Hampel H, Burger K, Pruessner JC, et al. Correlation of Cerebrospinal Fluid Levels of Tau Protein 
Phosphorylated at Threonine 231 With Rates of Hippocampal Atrophy in Alzheimer Disease. 
Arch Neurol. May 1; 2005 62(5):770–3. [PubMed: 15883264] 

40. Henneman WJP, Vrenken H, Barnes J, et al. Baseline CSF p-tau levels independently predict 
progression of hippocampal atrophy in Alzheimer disease. Neurology. Sep 22; 2009 73(12):935–
40. [PubMed: 19770469] 

41. de LaCoste M-C, White CL. The role of cortical connectivity in Alzheimer’s disease pathogenesis: 
A review and model system. Neurobiology of Aging. 1993; 14(1):1–16. [PubMed: 8450928] 

42. Ashburner J, Hutton C, Frackowiak R, Johnsrude I, Price C, Friston K. Identifying global 
anatomical differences: Deformation-based morphometry. Human Brain Mapping. 1998; 6(5–6):
348–57. [PubMed: 9788071] 

43. Stephan BCM, Hunter S, Harris D, et al. The neuropathological profile of mild cognitive 
impairment (MCI): a systematic review. Mol Psychiatry. 2012; 17(11):1056–76. [PubMed: 
22143004] 

44. Schneider JA, Aggarwal NT, Barnes L, Boyle P, Bennett DA. The neuropathology of older persons 
with and without dementia from community versus clinic cohorts. J Alzheimers Dis. 2009; 18(3):
691–701. [PubMed: 19749406] 

45. Madsen SK, Ho AJ, Hua X, et al. 3D maps localize caudate nucleus atrophy in 400 Alzheimer’s 
disease, mild cognitive impairment, and healthy elderly subjects. Neurobiology of Aging. 2010; 
31(8):1312–25. [PubMed: 20538376] 

46. Looi JC, Rajagopalan P, Walterfang M, et al. Differential putaminal morphology in Huntington’s 
disease, frontotemporal dementia and Alzheimer’s disease. Aust N Z J Psychiatry. 2012 Dec; 
46(12):1145–58. [PubMed: 22990433] 

Tosun et al. Page 12

Ann Neurol. Author manuscript; available in PMC 2015 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. 
Flowchart of the creation of maps of anatomical shape variation, controlling for the 

confounding effects including age, sex, and education. MCI = mild cognitive impairment. 

[Color figure can be viewed in the online issue, which is available at 

www.annalsofneurology.org.]
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FIGURE 2. 
Neuroimaging predictors of brain amyloidosis in mild cognitive impairment. Spatial 

signature of the latent variable inferred by partial least squares regression for the prediction 

of brain amyloidosis is shown. The dependent outcome measure is the composite Pittsburgh 

compound B standardized uptake value ratio. The independent predictors are the detrended 

anatomical shape variation measures from every imaging voxel in the unbiased brain 

template space. [Color figure can be viewed in the online issue, which is available at 

www.annalsofneurology.org.]
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FIGURE 3. 
Structural magnetic resonance imaging (MRI)-based brain amyloidosis score against actual 

composite Pittsburgh compound B (PiB) standardized uptake value ratio measures for mild 

cognitive impairment subjects in the prediction model cohort. [Color figure can be viewed in 

the online issue, which is available at www.annalsofneurology.org.]
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FIGURE 4. 
Distributions of the structural magnetic resonance imaging (MRI)-based brain amyloidosis 

score for amyloid beta-positive (Aβ+; ie, composite Pittsburgh compound B standardized 

uptake value ratio > 1.47) and Aβ− MCI subjects in the prediction model cohort. [Color 

figure can be viewed in the online issue, which is available at www.annalsofneurology.org.]
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Table 1

Study group demographics

Prediction model cohort Validation cohort

CN (@baseline) MCI (@ 1st 11C-PiB PET imaging) MCI (@baseline)

N 46 62 153

Age, years 75.87 ± 5.38 74.24 ± 7.77 74.43 ± 7.52

Sex, % female 51% 32% 35%

Education, years 15.91 ± 2.22 16.26 ± 2.77 15.47 ± 3.00

ApoE- ε3/ε4 carriers, % 0% 42% 40%

ApoE- ε4/ε4 carriers, % 0% 11% 11%

MMSE 29.20 ± 0.92 26.98 ± 2.331 26.72 ± 1.861

CDR-SB 0.02 ± 0.10 2.24 ± 1.601 1.61 ± 0.921,2

ADAS-Cog 6.00 ± 3.08 11.11 ± 5.411 11.94 ± 4.531

Composite PiB-SUVR - 1.63 ± 0.29 -

% Aβ+ (i.e., Composite PiB-SUVR > 1.478) - 66% -

CSF Aβ1-42 243.00 ± 22.99 162.23 ± 54.071, 3 162.29 ± 53.831

% Aβ+ (i.e., CSF Aβ1-42 < 1929) 0% 76%3 73%

1
Two sample t-test group difference in comparison to CN at p<10−9 level

2
Two sample t-test group difference in comparison to prediction model MCI cohort at p=0.017 level

3
Based on 34 MCI subjects who had baseline CSF protein assay
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Table 2

Estimated performances of the proposed sMRI-BAS, ApoE genotype, and hippocampal volume in predicting 

Aβ+ in the validation MCI cohort.

Brain amyloidosis predictor Area under the ROC curve Sensitivity at 20% FPR Specificity at 20% FNR

sMRI-BAS 0.70 ± 0.05 84.81 ± 10.73 81.25 ± 8.53

ApoE genotype 0.81 ± 0.021 80.80 ± 2.641 50.90 ± 3.461

Hippocampal volume (ICV-adjusted) 0.56 ± 0.041,2,3 58.44 ± 8.461,2 57.89 ± 9.311,2

sMRI-BAS + ApoE genotype 0.88 ± 0.031,2 90.97 ± 4.491,2 92.82 ± 7.171,2

1
Statistical significance (p<10−6) in two-sample t-test comparison to the performance of sMRI-BAS as an independent predictor of brain 

amyloidosis in MCI.

2
Statistical significance (p<10−6) in two-sample t-test comparison to the performance of ApoE genotype as an independent predictor of brain 

amyloidosis in MCI.

3
Statistically no different than random chance.

ROC: Receiver Operating Characteristic

ICV: Intra-Cranial Vault volume

FPR: False Positive Rate

FNR: False Negative Rate
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Table 3

Subgroup analyses of the validation MCI cohort

Median age split Median CDR-SB split

MCI-Y MCI-O MCI-E MCI-L

N 71 78 61 53

Age, years 68.35 ± 4.97 80.23 ± 3.911 76.03 ± 6.91 72.59 ± 7.354

Sex, % female 46% 24%1 30% 42%

Education, years 15.52 ± 3.02 15.42 ± 3.06 15.33 ± 3.21 15.2 ± 2.75

ApoE-ε3/ε4 carriers, % 48% 40% 34% 51%4

ApoE-ε4/ε4 carriers, % 17% 6% 16% 9%

MMSE 26.87 ± 1.80 26.55 ± 1.91 27.00 ± 1.99 26.62 ± 1.78

CDR-SB 1.59 ± 0.85 1.63 ± 1.00 0.80 ± 0.25 2.61 ± 0.774

ADAS-Cog 11.89 ± 4.99 12.04 ± 4.14 11.05 ± 4.37 13.11 ± 4.394

CSF Aβ1-42 155.78 ± 50.02 168.18 ± 56.66 177.41 ± 63.86 145.12 ± 34.384

% Aβ+ (i.e., CSF Aβ1-42 < 1929) 76% 70% 61% 88%4

Brain amyloidosis predictor Area under the ROC curve

sMRI-BAS 0.69 ± 0.06 0.71 ± 0.05 0.68 ± 0.05 0.87 ± 0.054

ApoE genotype 0.70 ± 0.042 0.77 ± 0.041,2 0.75 ± 0.052 0.67 ± 0.082,4

Hippocampal volume (ICV-adjusted) 0.75 ± 0.062,3 0.59 ± 0.051, 2,3 0.61 ± 0.062,3 0.75 ± 0.092,3, 4

sMRI-BAS + ApoE-ε4 genotype 0.81 ± 0.052,3 0.88 ± 0.041, 2,3 0.84 ± 0.052,3 0.92 ± 0.042,3, 4

1
Two sample t-test or Fisher’s exact test group difference in comparison to MCI-Y at p<0.001 level

2
Statistical significance (p<10−6) in two-sample t-test comparison to the performance of sMRI-BAS as an independent predictor of brain 

amyloidosis in MCI.

3
Statistical significance (p<10−6) in two-sample t-test comparison to the performance of ApoE genotype as an independent predictor of brain 

amyloidosis in MCI.

4
Two sample t-test or Fisher’s exact test group difference in comparison to MCI-E at p<0.001 level
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