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Abstract

Background—To demonstrate that computer-extracted image phenotypes (CEIPs) of biopsy-

proven breast cancer on MRI can accurately predict pathologic stage.

Methods—We used a dataset of de-identified breast MRIs organized by the National Cancer 

Institute in The Cancer Imaging Archive. We analyzed 91 biopsy-proven breast cancer cases with 

pathologic stage (stage I = 22; stage II = 58; stage III = 11) and surgically proven nodal status 
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(negative nodes = 46, ≥ 1 positive node = 44, no nodes examined = 1). We characterized tumors 

by (a) radiologist measured size, and (b) CEIP. We built models combining two CEIPs to predict 

tumor pathologic stage and lymph node involvement, evaluated them in leave-one-out cross-

validation with area under the ROC curve (AUC) as figure of merit.

Results—Tumor size was the most powerful predictor of pathologic stage but CEIPs capturing 

biologic behavior also emerged as predictive (e.g. stage I+II vs. III demonstrated AUC = 0.83). No 

size measure was successful in the prediction of positive lymph nodes but adding a CEIP 

describing tumor “homogeneity,” significantly improved this discrimination (AUC = 0.62, p=.

003) over chance.

Conclusions—Our results indicate that MRI phenotypes show promise for predicting breast 

cancer pathologic stage and lymph node status.

Keywords

breast cancer stage; prognosis; quantitative image analysis; MRI

Introduction1

Historically, one of the most important roles of imaging in women with breast cancer was to 

accurately predict stage in order to direct patients to appropriate treatment and provide 

accurate prognosis. At the time of diagnosis, imaging is primarily used to establish “clinical” 

stage (as defined by the American Joint Committee on Cancer 7th edition —AJCC 7) prior 

to surgical intervention, after which time “pathologic” stage drives further decision-

making 1. However, the TNM staging system in the era of biomarkers, genomic analysis, 

and personalized medicine is increasingly viewed as limited 2,3. The emergence of tumor 

biology 4 as perhaps the most powerful factor driving prognosis has engendered substantial 

interest in understanding how biomarkers like those seen on breast MRI may help predict 

pathologic stage and thus inform optimal therapy.

Management decisions are driven by clinical stage including the use of whole-body imaging 

to evaluate for metastatic disease, election to undergo neoadjuvant chemotherapy, 

appropriate surgical management and radiation therapy planning 1. In general, women with 

clinical stage III disease, in contrast to women with clinical stage I or II disease, have a 

higher risk for metastatic disease and thus routinely undergo systemic imaging; are 

candidates for neoadjuvant chemotherapy; and are less likely to be candidates for breast 

conservation therapy and sentinel node procedures 5. As an example, the decision to proceed 

with neoadjuvant chemotherapy is necessarily a judgment based on clinical stage without 

knowledge of pathologic stage, thus is based primarily on imaging; with MRI often playing 

a key role. Breast MRI has been shown to be an accurate method for predicting extent of 

breast cancer 6 as well as demonstrating axillary lymph node involvement through direct 

evaluation of the axilla 7-10. However, MRI may overestimate tumor size 11 and 

underestimate axillary lymph node involvement, therefore, imaging has not yet obviated the 

need for surgical staging including sentinel biopsy or axillary lymph node dissection 8.

1Abbreviations: CEIP: computer-extracted image phenotype, TCGA: The Cancer Genome Atlas, TCIA: The Cancer Imaging Archive
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Current research indicates that quantitative MRI tumor biomarkers, i.e., phenotypes, rather 

than anatomic evaluation, may hold promise in predicting malignancy 12-15, breast cancer 

subtypes 16-21 molecular pathways 22, gene expression23,24 and lymph node status 10,25,26. 

However, little literature is available to demonstrate whether computer-extracted MRI 

phenotypes, can augment prediction of pathologic stage. Our goal in this study was to 

determine whether computer extracted phenotypes of biopsy-proven breast cancer on MRI 

can predict breast cancer pathologic stage and which phenotypes are most important.

Material and Methods

Study population

All patient data used in this study were obtained under IRB-approved HIPAA compliant 

protocols. The current study had access to de-identified data only and the project derived 

cases from the cohort collected via The Cancer Genome Atlas—TCGA (https://tcga-

data.nci.nih.gov) Breast Cancer (BRCA) initiative for which cases were solicited from five 

comprehensive cancer centers across the US. The TCGA was established to create a 

repository of tissue samples sufficient for deep genomic and proteomic analysis. Each tissue 

sample was required to contain 200-300 mg of tissue. Thus, for breast a surgical excision 

was necessary to obtain this amount of tissue. Each tissue sample was also required to be 

“treatment-naïve,” therefore, each patient eligible for inclusion in the TCGA database could 

not have had preoperative treatment of any kind. Collection of MRI images followed, as a 

secondary initiative, after the tissue samples met the criteria for inclusion in the TCGA. At 

the time of our study, 1,078 breast cancer cases had been collected under the auspices of the 

ongoing TCGA initiative. Active collection of breast MRI data for a subset of these 

individuals had established an MRI dataset of 108 examinations made available in The 

Cancer Imaging Archive—TCIA (http://http://www.cancerimagingarchive.net). The 

majority of these breast MRI studies were performed following a breast cancer diagnosis 

established by image-guided core needle biopsy and all of the MRI examinations included in 

this study were performed prior to any treatment. Of these cases, 48 MRI cases had been 

previously analyzed by Mazurowski et al., who related MRI enhancement dynamics to the 

luminal B subtype, however the analysis was not conducted as part of the TCIA Breast 

Cancer group [22].

For our study, all breast MRI data were downloaded from the TCIA and clinical, 

pathological, and genetic information was compiled using TCGA assembler, a free open-

source publicly available tool 27. In order to impose imaging uniformity, we included the 

majority of breast MRI studies similar in acquisition and technique (1.5 Tesla magnet 

strength using GE Medical Systems, Milwaukee, Wisconsin, USA); a total of 93 cases. We 

excluded cases that had missing images (1 patient) or missing genetic data (1 patient). 

Hence, we included a data set of 91 breast MRI cases.

Image data

Breast MRIs analyzed in this study were contributed by four institutions (of the five 

contributing to TCIA): Memorial Sloan Kettering Cancer Center, The Mayo Clinic, The 

University of Pittsburgh Medical Center, and Roswell Park Cancer Institute. The cases 
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contributed by each institution were 9 (date range 1999-2002), 5 (1999-2003), 46 

(1999-2004), and 31 (1999-2002), respectively. All MRIs were acquired using a standard 

double breast coil on a 1.5T GE whole-body MRI system (GE Medical Systems, 

Milwaukee, Wisconsin, USA). Only T1-weighted dynamic contrast-enhanced MR images 

were used in our current study. The imaging protocols included one pre- and three to five 

post-contrast images obtained using a T1-weighted 3D spoiled gradient echo sequence with 

a gadolinium-based contrast agent (Omniscan; Nycomed-Amersham, Princeton, NJ). 

Typical in-plane resolution was 0.53-0.86 mm, and typical spacing between slices was 2-3 

mm.

Three expert board-certified breast radiologists blinded to outcome data independently 

reviewed each breast MRI examination. Each radiologist identified and annotated the image 

location of the primary breast tumor and measured maximal tumor diameter using a linear 

measurement tool. Tumor location on MRI was determined using radiologist reviewer 

information (via a posteriori consensus). The average maximal diameter as measured by the 

3 readers (heretofore called “radiologist size”) was used for comparison to our computer-

derived measurements (Figure 1). Each primary breast tumor was then automatically 

segmented in 3D from the surrounding parenchyma 28.

Extraction of MRI-based computer-extracted image phenotypes

A total of 38 MRI features, each heretofore referred to as a computer-extracted image 

phenotype (CEIP), were calculated based on the automatically derived 3D tumor 

segmentations. Since, computationally speaking, many CEIPs can describe a single physical 

characteristic (such as shape), we divided the CEIPs into six phenotype categories (Figure 2, 

Supplemental Table 1): 1) size—measuring tumor dimensions (4 CEIP), 2) shape—

quantifying the three-dimensional geometry (3 CEIP), 3) morphology—combining shape 

and margin characteristics such as margin sharpness (3 CEIP), 4) enhancement texture—

describing the texture of the contrast uptake in the tumor on the first post-contrast MR 

images (14 CEIP), 5) kinetic curve assessment—describing the shape of the kinetic curve 

and assessing the physiological process of the uptake and washout of the contrast agent in 

the tumor during the dynamic imaging series (10 CEIP), and 6) enhancement-variance 
kinetics—characterizing the time course of the spatial variance of the enhancement within 

the tumor (4 CEIP).

We investigated the relationship between “radiologist size” and pathologic stage and lymph 

node status. We also similarly calculated Pearson correlation coefficients to assess the 

relationship between pathologic T-stage with “radiologist size” and computer extracted 

CEIPs from the size category. Actual clinical stage (including T-stage) was not available in 

our dataset, so we use radiologist size as a surrogate for clinical T-stage. This substitution is 

reasonable because clinicians commonly use the largest measurement on any imaging 

modality to establish the T-stage. If MRI is performed, the MRI measurement, often, though 

not always, informs the clinical T stage.

We assessed five classification tasks. Four tasks involved prediction of pathologic stage: a) 

stage I versus stage III, b) stage II versus stage III, c) stage I versus stage II, and d) stage I

+II versus stage III tumors. The fifth task predicted nodal status: distinguishing between 
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tumors with negative nodes and those with one or more positive nodes. For each of the 

classification tasks, we determined which single CEIP obtained the best performance in 

distinguishing between the two sub-groups (e.g. stage I+II versus stage III tumors). 

Subsequently, for each of the five classification tasks, we determined which CEIP was the 

next best performer and from a different phenotype category than the best performing CEIP. 

Correlation coefficients were calculated between the first and the second CEIPs to assess 

whether the CEIPs revealed complementary or largely dependent information. The top 2 

CEIPs for each classification task, determined as detailed above, were combined in linear 

discriminant models (one “2-CEIP model” for each classification task). We also calculated 

the Pearson correlation coefficients between the top two CEIPs from different categories 

(those included in the 2-CEIP models) in order to determine to what extent these variables 

were related. For the prediction of lymph node status, the CEIPs were also evaluated 

stratified by radiologist size estimates, our surrogate for clinical T-stage (≤ 2 cm [T1]; >2 to 

≤ 5 cm [T2]; or > 5 cm [T3]).

Statistical analysis

Leave-one-out cross-validation was used to train/test the 2-CEIP tumor assessment models 

for each of the classification tasks. Performance (whether for “radiologist size”, single 

CEIPs, or 2-CEIP models) was evaluated using receiver operating characteristic (ROC) 

analysis, with the area under the curve (AUC) as the figure of merit, using the semi-

parametric ‘proper’ ROC model 29-31. We determined statistical significance of differences 

in AUC through bootstrapping (1000 iterations) using a p-value threshold of 0.05 to indicate 

statistical significance for a single comparison. We corrected for multiple comparisons using 

the Holm-Bonferroni method.32

Results

Patient Population

Ninety-one breast MRIs in patients with biopsy-proven invasive tumors met our inclusion 

criteria (Table 1 and Table 2). The included invasive carcinomas demonstrated a 

preponderance of estrogen and progesterone receptor positivity (85% and 79%, 

respectively). Though the human epidermal growth factor receptor type 2 (HER-2) status 

was known in only 69% (63/91) of cases, and the majority of these were HER-2 negative 

(49/63, 78%) as compared to HER-2 positive (14/63, 22%). Lymph node status was almost 

equally divided between negative and positive with only one case unknown. No patients 

were documented to have distant metastatic disease. Tumor stage is outlined in Table 2.

Tumor size analysis

For the 91 tumors, the mean “radiologist size” was 2.41 cm (STD ± 0.91; range 0.78-5.93). 

There were 36 (39.6%) tumors ≤ 2 cm, 54 (59.3%) > 2 cm but ≤ 5 cm, and 1 tumor (1.1%) > 

5 cm. The comparison of radiologist size versus pathologic stage (Figure 3a) and versus 

lymph node status (Figure 3b) demonstrate that the “radiologist size” alone has limited 

ability to predict stage or lymph node status (also illustrated by Table 4). The correlation 

coefficients between the “radiologist size” and the four “computer size” CEIPs ranged from 

0.63 (surface area) to 0.79 (effective diameter) all with significant p-values (ranging from 
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10-19 to 10-11). Correlation coefficients between pathologic stage and different size 

estimates: “radiologist size,” surface area, maximum linear size, and effective diameter were 

0.66, 0.63, 0.61 and 0.61 respectively (p-values 10-12— 10-10).

MRI-based computer-extracted image phenotypes analysis

For all the five classification tasks, the CEIP providing the best distinction was always 

related to tumor size (Table 3), with the surface area (Figure 4a) being the best performer in 

three tasks and effective diameter in two tasks. All of the discrimination tasks performed 

statistically significantly better than chance (AUC=0.50) except for the prediction of lymph 

node status, for which size-based phenotypes alone (human or computer) failed to 

demonstrate statistical significance over baseline chance (Table 4). We used box plots to 

visualize how well the most promising CEIPs were able predict pathologic stage (Figure 4).

The most frequent “next-best performing” CEIP for our selected classification tasks (not in 

the size category) was enhancement texture homogeneity (Table 3), i.e. the homogeneity of 

the contrast uptake within the tumor at the first post-contrast time-point, with later stage 

cancers trending towards a more homogeneous appearance (Figure 4b). For the 2-CEIP 

models, 3 out of the 5 discrimination tasks showed improvement over size alone preserving 

AUC statistical significance over chance (Table 4). In addition, the performance of the 2-

CEIP for lymph node assessment was moderate (AUC=0.62) and became statistically 

different from baseline chance (p=0.003)—the AUC using the size alone (either radiologist 

or computer) was not statistically significantly different than chance (Table 4). Correlation 

coefficients between the two “top-performing” CEIPs (surface area and effective diameter) 

and the “next-best-performing” CEIP (homogeneity) revealed that there was a low 

correlation between surface area and homogeneity r = 0.16 (p = 0.12) but moderate 

correlation between effective diameter and homogeneity r = 0.31 (p=0.003).

After stratifying by “radiologist size”, the CEIP most promising for the distinction between 

tumors ≤2cm with positive and negative lymph nodes, respectively, was irregularity, a 

morphological feature (AUC=0.73, Figure 4c). Irregularity, however, had little if any 

discriminatory capabilities for larger tumors (>2cm and ≤5cm). For those larger tumors, the 

best performing CEIP was enhancement texture homogeneity (AUC=0.74, Figure 4d). 

Homogeneity, in turn, added no benefit in identifying node status for small lesions ≤2cm.

Discussion

Our results demonstrate that computer-extracted image phenotypes (CEIP) of invasive 

breast cancer derived from MRI examinations has the potential to help predict pathologic 

stage. As expected, tumor size metrics (extracted by either the human or the computer) 

consistently appeared as the most powerful predictor of pathologic stage. We saw a non-

significant trend that computer extracted CEIPs related to size were superior to the human 

extracted size, perhaps because these features are highly correlated with each other as well 

as pathologic stage. Importantly, we found another, more biologic phenotype—enhancement 

texture homogeneity—consistently exhibited discriminative ability for pathologic stage. It is 

important to note that this enhancement texture phenotype describes the homogeneity of the 

contrast agent distribution, i.e., pattern, within the tumor at a specific (the first post-contrast) 
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time point. Further stratification by tumor size demonstrated that homogeneity predicted 

lymph node status well in larger tumors while “irregularity,” another CEIP, was more 

predictive in smaller tumors.

Tumor size is an important part of clinical stage and thus it is consistent that tumor size 

measurements as determined by the computer perform well in the prediction of pathologic 

stage. Clinicians routinely use the single largest tumor measurement (either on imaging or 

clinical exam) to determine the “T-stage.” It is interesting to note that, the best computer-

extracted size measurement was “surface area” or “effective diameter” (the diameter of a 

sphere with the same volume as the lesion) (Table 3) rather than “maximum linear size”, 

which most closely resembles the radiologists' linear tumor measurement. This result makes 

sense because a linear tumor size measurement in one dimension does not fully represent the 

3D tumor structure and hence has limitations as an indicator for actual tumor burden. It is 

also noteworthy that homogeneity of contrast uptake is more predictive of pathologic stage 

than other biologically-related variables and was not well correlated with size CEIPs (thus 

adding unique predictive power). Increased enhancement texture homogeneity was 

associated with increased tumor stage. A physiologic explanation for the homogeneity of 

stage III cancers is their increased microvascular density, compared to stage I and II cancers. 

Increased microvascular density is the sequelae of tumor related angiogenesis, which, in the 

absence of central necrosis, allows for rapid and evenly-distributed contrast uptake in the 

entire tumor (Figure 5)33,34. In smaller tumors, where the microvascular density is less, the 

homogeneity CEIP, and thus angiogenesis, may be less important while morphologic CEIPs, 

like irregularity, conveying an invasive growth pattern, may dominate in predictive tasks 

with regard to pathologic stage.

We have found no previously published studies using MRI phenotypes to predict pathologic 

stage, however, two manuscripts outline attempts to predict lymph node status, a related 

task. Bhooshan et al. found that homogeneity as well as other MRI phenotypes predicted 

lymph node positivity for women with invasive breast cancers 35. Loiselle et al. found that 

MRI phenotypes (total persistent enhancement and volume adjusted peak enhancement) 

predicted lymph node burden (≥ 4 axillary nodes) in women with a positive sentinel lymph 

node biopsy 10. Booshan et al also explored the use of computer extracted MRI phenotypes 

to augment the prediction of invasive breast cancer grade exhibiting equivalent AUCs to 

those we found (grade I vs. III, AUC = 0.80; grade II vs. III, AUC = 0.62; and grade I vs. II, 

AUC = 0.78) 35. We found that improvement in pathologic stage prediction was most 

notable when stage III cancers were included in the prediction task. Predicting patients with 

stage III breast cancer is clinically important because these individuals have a worse 

prognosis; may require whole-body imaging such at PET-CT to evaluate for metastatic 

disease; may be considered for neoadjuvant chemotherapy; and surgical management is less 

straightforward 5. Breast MRI enhancement texture homogeneity (in larger stage III tumors) 

and irregularity (in smaller stage I and II tumors) may help to distinguish women of higher 

stage, particularly if conventional imaging and physical examination are limited such as in 

the case of dense breasts. Future work will include an analysis of a larger cohort segregated 

by grade and characteristics for identification of the best combination of predictors through a 

multivariate linear regression model.
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Limitations of this study should be considered when interpreting results. Our patient 

population was predetermined by the inclusion criteria of the TCGA initiative. The TCGA 

initiative collected pathologic samples in women with large enough tumors to provide the 

requisite 200-300 mg of tissue needed for the study. Only women who were surgical 

candidates (i.e. did not have metastatic disease), were eligible for this study. Therefore, our 

results can only be generalized to this group. Though the TCGA is a select patient 

population, it is an important and clinically relevant population. Because the majority of 

women in our cohort had core-biopsy-proven breast cancer and subsequently underwent 

breast MRI prior to definitive surgical (or any other) therapy, these patients represent the 

population for which prediction of pathologic stage to determine clinical management is 

most pertinent. Our patient sample was relatively small because only a limited number of 

breast MRI examinations are available in the TCGA/TCIA database. Our data set contained 

only 11 stage III cancers. For this reason, we did not perform automated feature selection 

but instead used a more targeted approach to CEIP-based model development. Furthermore, 

it appears that a large number of our breast cancer cases are ER+, PR+ and HER2+ (i.e. 

likely luminal A or B) 4, thus perhaps limiting the generalizability of our results to these 

types of tumors. In addition, the MRIs that we analyzed were acquired over a decade ago, 

raising the possibility that our results may not reflect existing MRI technology, which has 

advanced substantially in the interval. Given improved spatial resolution, higher signal-to-

noise, and more standardized protocols, our results may, therefore, be conservative. We did 

not have access to clinical stage or patient outcome, therefore, it will be important to verify 

whether MRI CEIPs augment prediction of clinical course in addition to pathologic stage to 

truly target personalized care and thus impact important outcomes like morbidity and 

mortality. Despite these limitations, the TCGA dataset provided a unique opportunity to 

examine CEIPs from breast MRI examinations from multiple institutions (on the cutting 

edge of breast MRI technique at the time of data collection) in a clinically relevant patient 

population.

Conclusions

We found that while tumor size remains important, computer-extracted image phenotype, 

like enhancement texture homogeneity and irregularity, appear to augment prediction of 

pathologic stage. To date, breast cancer clinical stage comprises the criteria on which 

appropriate therapy has been based despite assertions that biologic features should be 

included in algorithms that drive management 2,3. While our results do not indicate that MRI 

features are ready to replace pathologic stage, CEIPs, like texture heterogeneity and 

irregularity, may have the potential to provide prognostic information to augment pathologic 

stage or when pathologic stage is not available, for example when women undergo 

neoadjuvant chemotherapy. Predicting disease behavior and personalizing care based on 

anatomic as well as biologic imaging features will likely improve outcomes and effectively 

leverage resources in the pursuit of optimal breast cancer care. In the future, continued 

investigation of human and computer assessed phenotypes that uniquely characterize tumors 

will likely play a role in advancing personalized breast cancer care.
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Figure 1. 
Representative breast MRI case depicting a sagittal fat saturated T1-weighted image with an 

annotation identifying the tumor and measurement (“radiologist-size”).
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Figure 2. Schematic of the MRI-based computer-extracted image phenotypes
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Figure 3. 
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The “radiologist size” distribution (the mean value for the maximal tumor diameter assigned 

by the 3 expert radiologists) for a) pathologic stage, and b) pathologic lymph node status.
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Figure 4. 
Distribution of CEIP values for pathologic stage: a) surface area, b) enhancement texture 

homogeneity (the inverse difference moment of the gray-level co-occurrence matrix 

calculated within the tumor at the first post-contrast image), and distribution of CEIP for 

“radiologist size” stratified by pathologic lymph node (LN) status c) irregularity, and d) 

enhancement texture homogeneity
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Figure 5. 
Example dynamic contrast-enhanced images of primary tumor (both pathologic stage II) at 

the first post-contrast time point: a) demonstrates a tumor proven to be lymph node negative 

with “low” enhancement texture homogeneity (imaged at 1 minute, 29 seconds post-

contrast), and b) demonstrates a tumor proven to be lymph node positive with “high” 

enhancement texture homogeneity (imaged at 1 minute, 16 seconds post-contrast).
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Table 1

Population demographics.

Patient characteristics

Gender Female

Age 53.6 (±11.5) years (range 29—82 years)

Tumor characteristics

Origin Ductal 86.8% (79/91)

Lobular 11.0% (10/91)

Other/mixed 2.2% (2/91)

Estrogen receptor (ER) positive 84.6% (77/91)

negative 15.4% (14/91)

Progesterone receptor (PR) positive 79.1% (72/91)

negative 2.9% (19/91)

Human epidermal growth factor receptor 2 (HER2) positive 15.4% (14/91)

negative 53.8% (49/91)

undetermined 30.8% (28/91)

Lymph node status positive 48.4% (44/91)

negative 50.5% (46/91)

unknown 1.1% (1/91)
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Table 2
Pathologic T,N, and stage (note that percentages may not add up to exactly 100% due to 
rounding)

Pathologic T

T1 4.4% (4/91)

T1b 3.3% (3/91)

T1c 34.1% (31/91)

T2 54.9% (50/91)

T3 3.3% (3/91)

Pathologic N

N0 36.3% (33/91)

N0 (i-) 12.1% (11/91)

N0 (i+) 2.2% (2/91)

N1 7.7% (7/91)

N1a 24.2% (22/91)

N1mi 5.5% (5/91)

N2 1.1% (1/91)

N2a 5.5% (5/91)

N3 2.2% (2/91)

N3a 2.2% (2/91)

NX 1.1% (1/91)

Pathologic stage

I 19.8% (18/91)

IA 4.4% (4/91)

II 1.1% (1/91)

IIA 44.0 (40/91)

IIB 18.7 (17/91)

IIIA 7.7% (7/91)

IIIB 0% (0/91)

IIIC 4.4% (4/91)
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Table 3

Stage and lymph node classification tasks: Computer-extracted image phenotypes with the best performance 

in predicting pathological stage and lymph node (LN) status.

Task Computer-extracted image phenotypes

Best performing Next-best performing and of different phenotype category

Stage I vs. III (N=33) Size: surface area Morphological: resemblance to radial pattern

Stage II vs. III (N=69) Size: effective diameter Enhancement texture: homogeneity

Stage I vs. II (N=80) Size: surface area Shape: irregularity

Stage I+II vs. III (N=91) Size: effective diameter Enhancement texture: homogeneity

LN status (N=90) Size: surface area Enhancement texture: homogeneity
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Table 4

Stage and lymph node classification tasks: The performance of a) “radiologist size”, which is the average of 

measurements performed by three breast radiologists, b) “computer size”, which is the best-performing MRI-

based computer-extracted image phenotype (CEIP) of the size category, and c) “computer size + biology”, 

which is the 2-CEIP model based on the best performing CEIPs (Table 3), with all AUC values significantly 

better than baseline chance (AUC=0.50, with p≤0.003, i.e., 15 comparisons at 0.05 confidence level) except 

where noted

Task AUC (±standard error)

“Radiologist size” “Computer size” “Computer size + biology”

Stage I vs. III (N=33) 0.79 (±0.07) 0.88 (±0.06) 0.88 (±0.06)

Stage II vs. III (N=69) 0.60 (±0.08) 0.67 (±0.08) 0.80 (±0.07)

Stage I vs. II (N=80) 0.69 (±0.06) 0.73 (±0.07) 0.73 (±0.07)

Stage I+II vs. III (N=91) 0.65 (±0.08) 0.74 (±0.07) 0.83 (±0.06)

LN status (N=90) 0.53 (±0.05)† 0.55 (±0.06)† 0.62 (±0.05)

†
p≫0.05 with respect to AUC=0.50
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