
UC Irvine
ICS Technical Reports

Title
Dynamic object migration in logical networks

Permalink
https://escholarship.org/uc/item/3m2802vw

Authors
Gendelman, Eugene
Bic, Lubomir F.
Dillencourt, Michael B.

Publication Date
1999-11-04
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3m2802vw
https://escholarship.org
http://www.cdlib.org/


1
699
C3
no.99-52 ICS

TECHNICAL REPORT

Dynamic Object Migration in Logical Networks

Eugene Gendelman
Lubomir F. Bic

Michael B. Dillencourt

UCI-ICS Technical Report No. 99-52
Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

November 4, 1999

Notice; This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Information and Computer Science
University of California, Irvine

LiBRARy
.University of Caiffornia^

IRVINE



5L£>A^

Dynamic Object Migration in Logical Networks

io9'f
C3
M. 91-5%

Eugene Gendelman
University of California, Irvine 444
Computer Science Buiiding, ICS

Irvine, CA 92697-3425
1 949-856-2719

egendelm @ics.uci.edu

Lubomir F. Bic
University of California, Irvine

Computer Science Building, ICS
Irvine, CA 92697-3425

1 949-856-2719

bic@ics.uci.edu

Michael Dillencourt
University of Caiifornia, Irvine

Computer Science Building, ICS
Irvine, CA 92697-3425

1 949-856-2719

dillenco@ics.uci.edu

ABSTRACT

This paper presents a mechanism for migration of parts of
computations in systems based on distributed objects or
autonomous agents. In such systems load balancing and process
migration can be achieved by migrating objects, or logical nodes,
between participating computing nodes.

The presented migration mechanism uses minimal knowledge of
the system topology and requires only a moved object to stop
computing while in migration, which makes it usable in large
distributed computations.

Keywords

Dynamic load balancing, agent system support, agent system
architecture.

1. INTRODUCTION
The ability to migrate parts of the computation plays a very
important role in today's distributed systems. It is used for such
tasks as load balancing and process migration.

The computation migration can be accomplished by migrating the
whole process [1], migrating a computation thread [2], or
migrating objects [3]. The migration process can be broken down
into two parts: capturing a state of the computation and the
migration protocol. In this paper we discuss a novel migration
protocol for distributed systems based on objects or the
autonomous-agent paradigm [4]. The structure of such systems
allows to balance the load of the processors by migrating a
logical part of the computation; an object or a logical node. This
type of load balancing can be implemented in an application-
transparent, machine-independent way [1]. The logical topology
can be modified during the computation, and therefore migration
during such network modifications should be considered in the
protocol.

jce; This Material

may be protected
by Copyright Law
(Title 17 U.S.C.)

The migration mechanism presented here induces a minimal
overhead on the whole system, and requires minimal knowledge
of the global state of the distributed application, which makes it
useful for large distributed computations. This migration
mechanism was implemented in the MESSENGERS [4] mobile-
agent system.

The rest of this paper is organized as follows: section 2 gives an
overview of the MESSENGERS system, section 3 describes the
migration mechanism, section 4 presents related work and
concludes this paper.

2. THE MESSENGERS SYSTEM
MESSENGERS is a distributed system based on the principles of
autonomous objects. Autonomous objects in the MESSENGERS
system are called Messengers. MESSENGERS target general
purpose computing. The applications suitable for the
MESSENGERS system include individual-based simulations [6-
7], matrix multiplication [8], monte carlo simulations and others
[5]. The agents in the MESSENGERS system are cooperating in
solving one large problem. The computation is taking place on
the trusted hosts that could be distributed through a network, but
it assumes a common shared file system. The system is
implemented in C. Unlike most mobile agent systems [13-17]
agents in MESSENGERS are fully compiled into machine code.
On migration, agents don't carry code with them, but just a
pointer to the next executing function [8,9]. These qualities make
MESSENGERS suitable for high speed computing.

2.1 MESSENGERS PARADIGM
MESSENGERS distinguishes three separate levels of network:
the physical network, the daemon network, and the logical
network, as illustrated on figure 1. The physical network is the
underlying computational resource. The daemon network is a
collection of processes, whose task is to manage Messengers, and
interpret system commands. Examples of possible system
commands are initiation of checkpointing, daemon failure
notification, load balancing messages, and injection of a new
Messenger. There is one daemon per physical node. The logical
network is an application-specific computation network created at
run time on top of the daemon network. Multiple logical network
nodes may be created on the same daemon network node, and
thus are running on the same physical node. Logical nodes may
be interconnected by logical links into an arbitrary topology for
the purposes of navigation.



Each link of the logical network has a name and several
(optional) weights, which Messengers use for determining which
links to route themselves along. Each logical node has a name
and provides a memory space commonly accessed by all
Messengers that gather on the node. This memory space, the
Node Variable Area, functions as both a node-unique database
and as an inter-Messengers communication channel.

Logical
Network

Daemon

Layer

^Purkinje

Physical
Network

Node

Noguchi

weight: 10

Darwin Purkinje Noguchi

Link F\irkinje Route

Figure 1

Eqch Messenger can access three types of variables: Messenger,
node, and environmental variables. Messenger variables are local
to'and carried by the Messenger as it propagates through the
lo^cal network. Node variables are node-resident and are
mapped to the Node Variable Area where the Messenger is
currently running. There they are shared among Messengers
running on the same node. Environmental variables provide
information such as the current node name, and the name and

weights of the last traversed link.

Messengers navigate through the logical network based on their
own internal program and state. This is accomplished by explicit
navigational statements, which also permit the creation or
destruction of logical links and/or nodes. Messengers may also
perform arbitrary computations in the nodes they visit. This can
take two forms. First, Messenger internal program may contain
corriputational statements, and second. Messengers may invoke
ordinary Cfunctions.

2.2 LOGICAL NETWORK
The logical network consists of logical nodes, connected by
logical links as shown in figure 1. Each link, although presented
as a single structure to the user, consists of two parts. One part of
the link is located on the daemon, where the first node resides,
and another part of the link resides on the daemon hosting the

Darwin Purkinje Noguchi Darwin

destination node. Each link has a daemon-unique id. Every link
also knows the id of its counterpart, and the daemon address
where the destination node resides. The link pointer is stored in
two data structures. One data structure is accessible from the

logical node. It is the list of pointers to all the links connected to
the logical node. Another data structure is a tree, accessible from
the daemon. This tree contains the pointers to all the links
residing on the daemon, sorted by the link id.

These structures are used to accommodate Messenger transfer
from one node to the other as follows. The Messenger finds the
link it wants to traverse from the link list of its current logical
node. From the link information the Messenger knows on what
physical machine the destination node resides, and the id of the
link on the destination daemon. The Messenger is transferred to

-fiSs^destination daemon, and it searches for the link using the link
id in the daemon link tree. From the link information the

Messenger acquires the pointer to the destination logical node.



arrows indicate the direction in which Messengers can traverse
the logical link.
Notation:

Node - migrating logical node.
Old Daemon - an old host of Node

New Daemon - a new host of Node
Connected Daemon - a host of logical nodes connected

to Node by logical links.

1. Old Daemon: send TransferNode message to the New
Daemon. This message includes the Node structure, node
variables, links connected to Node, and all Messengers
residing on the Node. After this step Messengers that arrive
at the Node are not executed, but stored in the node queue
instead. (Figure 3b).

2. New Daemon: send UpdateLink message to all Connected
Daemons. This message contains information needed to
update the information of connected links, such as new
destination link id and destination link daemon. All
Messengers arriving at the New Daemon are not executed,
but stored in the node queue until the completion of the
migration. (Figure 3c).

3. Connected Daemons: when daemon receives UpdateLink
message, it redirects the appropriate links and sends
LinksUpdated message to the Old Daemon. (Figure 3c)

4. Old Daemon: after all expected Links Updated messages are
received. Old Daemon sends ActivateNode message to the
New Daemon. This message contains the list of Messengers
that arrived to the Node after step 1. Old Daemon destroys
its copy of Node. (Figure 3d).

5. New Daemon: after receiving ActivateNode message. New
Daemon attaches its node queue to the node queue received
from the Old daemon, preserving FIFO order, then it
activates all the Messengers on the New Node. (Figure 3d).

3.2 CONCURRENT ALGORITHM
Depending on the strategy used to decide when to move logical
nodes, multiple nodes can be moved at the same time. In the
situation when two nodes, connected by logical link are migrating
simultaneously, the algorithm presented in section 3.1 may not
work correctly.

Consider the example in figure 4. Nodes "a" and "b" are
connected by a logical link. They are simultaneously being
migrated (figure 4a). Node "al" is created first, and it sends
UpdateLink message to node "bO" (figure 4b). "bO" updates the
link and sends LinksUpdated message to "aO" (figure 4c). Node
"aO" is deleted from its Old Daemon. At the same time "bl" is

created, and it sends an UpdateLink message to node "aO", but
there is no record of such a node (figure 4d).

The algorithm has to be adjusted so that the node on the Old
Daemon is not deleted before any UpdateLink message that may
be coming to it. To solve this problem, in the LinksUpdated
message, the Coimected Daemon also includes the address of any
local node that is being moved. This will prevent the first
daemon to complete step 4 of the algorithm before receiving the
UpdateLinks message from the second daemon.

3.3 HANDLING LOGICAL NETWORK

MODIFICATIONS
Section 2.3 described how Messengers can modify the logical
network. The node migration algorithm needs to be adjusted for
these operations. To lessen the number of possible interleaving
combinations between the node migration protocol and protocols
that modify the logical network, the node that initiates the
modification of the logical network can not migrate before the
network modification protocol is completed. This means that
node "a" in figure 2 can not migrate during modification of the
link, (only node "b" can).

TransferNode ,% ,© ©̂ LinksUpdate^
UpdateLink

TransferNode U)U

a) b)

Figure 4

This algorithm avoids loosing or duplicating Messengers. Before
step 3 Messengers that travel to Node will go to the Old
Daemon. After step 3 these Messengers will go to the New
Daemon. Since Connected Daemons send LinksUpdated
messages to the Old Daemon, if the system uses FIFO channels,
receiving LinksUpdated message guarantees that there are no
more Messengers traveling from that daemon to the Node. After
LinksUpdated message is received from every Connected
Daemon, the node on the Old Daemon can be deleted.

.JJpdateLink

c) d)

When a link is created to the node "b", first a FindNode message
is broacasted to all daemons. Both Old Daemon and New

Daemon register this message. Old Daemon replies, and does not
complete step 4 of the node migration protocol until the
Messenger that creates the link arrives. Then, in step 4, this
Messenger, together with others, and together with the list of
FindNode messages of the Old Daemon is transferred to the New
Da,emon. At the New Daemon the Messenger is processed and a
new link is created.



Thereis a shortperiod between steps 4 and 5 when the Node at
the Old Daemon does not exists, and the Node at the New
Daemon is not activated yet. If the FindNode message arrives in
this interval, it will be ignored by the Old Daemon. When
ActivateNode message arrives at the New Daemon, the attached
list of FindNode messages is compared with the local list, and if
this contains extra messages, the corresponding replies are sent
to the senders of these messages.

Another situation that has to be considered during creation of the
link to the existing node is when node "b" replies to the
CreateLink message, specifying the id of the local link, and then
starts migrating. Then a new node "b" is created, and a message
is sent to the node "a" (figure 2) updating the link ids. If the
CreateLink message from the old host of "b" comes after the
UpdateLink message sent from the new hostof "b", it should be
discarded.

When a Messenger that deletes or modifies a link arrives to the
Old Daemon, it is transferred to the New Daemon with other
Messengers and executed there. So these modifications of the
logical network do not affect node migration.

4. CONCLUSION
Load balancing based on the migration of logical nodes provides
an application-independent approach to load balancing. The
decision on when and what to move can aim at balancing the
amount of computation per processor, at minimizing
interprocessor communications, or both. The parameters that
could be considered to decide on node migration include the
number of logical nodes per daemon, the number of Messengers
per daemon, the number of remote logical links, and traffic on
each logical link. This information is collected independently of
the user application, allowing reuse of the same load balancing
strategies for different applications.

Such a load balancing mechanism was proposed by Brunner and
Kale in [3]. The authors implement and evaluate several policies
that can trigger migration in the Charm-H- system [11]. Even
though the Charm-H- system is based on what they refer to as
data-driven objects, while MESSENGERS is based on
autonomous agents operating in the logical network, the same
load balancing strategies can be used to balance both systems. A
load balancing algorithm for dynamic grid applications was
presented in [12].

The Charm-H- system, however, uses a different object migration
mechanism, presented in [1]. In Charm-H- each processor has a
map of locations of every object participating in the application.
As objects migrate, these maps become out of date. The solution
is to forward messages to each element's (object's) original host
processor. Since each processor is kept informed of the location
of each element it originally hosted, it can forward the message
to its new destination.

A description of the thread migration mechanism was presented
in [2]. Their strategy for migration of computation threads is
similar to the one presented here. In their strategy it is the
responsibility of the connected threads to establish the
connection with the new thread. To do this each connected thread

(corresponding to a neighboring node in MESSENGERS
implementation) spawns a child thread to establish that
connection whenever a new thread (corresponding to a new node)
is created. By allowing the new node to establish the connections
with the neighboring nodes (steps 2 and 3 of the algorithm) the
need for such a child thread is eliminated. The system in [2] also
does not consider the situation when thread migration is
happening while connections are created, deleted or modified.
Our approach, as described in this paper, permits migration in a
dynamically changing network.

5. REFERENCES
[1] Robert K. Brunner and Laxmikant V. Kale. Adapting

to Load on Workstation Clusters. The Seventh

Symposium on the Frontiers of Massively Parallel
Computation.

[2] A. Haidt, P. Stellmann. Novel Migration Mechanism
for Load Balancing of Parallel Applications.
Mannheim SuParCup, 1999.

[3] Robert K. Brunner and Laxmikant V. Kale. Handling
Application-Induced Load Imbalance using Parallel
Objects. Publication Information Not Available.
http://charm.cs.uiuc.edu/.

[4] L. F. Bic, M. Fukuda, M. B. Dillencourt, F. Merchant.
MESSENGERS: Distributed Programming Using
Mobile Autonomous Objects. Journal of Information
Sciences, 1998.

[5] Hairong Kuang, Lubomir F. Bic, Michael B.
Dillencourt. Paradigm-Oriented Distributed
Computing Using Mobile Agents. Technical Report
No99-38, Department of Computer Science,
University of California, Irvine.

[6] Eugene Gendelman, Archana Mulay. Bio-Net
Simulator"

http://\vww.ics.uci.edu/~egendelm/prof/publications.ht
ml.

[7] Susan L. Mabry, Lubomir F. Bic, Kenneth M.
Baldwin. CVSys: A Coordination Framework for
Dynamic and Fully Distributed Cardiovascular
Modeling and Simulation. Int'l Biomedical Optics
Symposium (BIOS'98), special section on Biomedical
Sensing, Imaging and Tracking Technologies, San
Jose, CA, Jan. 1998.

[8] Christian Wicke, Lubomir F. Bic, Michael B.
Dillencourt, Munehiro Fukuda. Automatic State

Capture of Self-Migrating Computations in
Messengers. ICSE98 Int'l Workshop on Computing
and Conununication in the Presence of Mobility,
Kyoto, Japan, April 1998.
http://www.ics.uci.edu/~bic/messeneers/messengers.ht

/ i®*- t-' c

ml.



[9] Christian Wicke, Lubomir F. Bic, Michael B.
Dillencourt. Compiling for Fast State Capture of
Mobile Agents. Parallel Computing 99 (ParCo99). TU
Delft, The Netherlands. August 1999.

[10]Eugene Gendelman, Lubomir F. Bic, Michael B.
Dillenourt. An Application-Transparent, Platform-
Independent Approach to Rollback-Recovery for
Mobile-Agent Systems. In submission.
http://www.ics.uci.edu/~egendelm/profi'publications.ht
ml.

[11]L. V. Kale, S. Krishnan. Charm++: Parallel
Programming with Message-Driven Objects. In G. V.
Wilson and P. Lu, editors. Parallel Programming
using C++, pages 175-213. MIT Press, 1996.

[12] Andreas D. Haidt. Dynamic Load Balancing with
Self-Organizing Maps, Parallel Computing '99
(ParCo99), Delft, The Netherlands, Aug. 1999.

[13] Introduction to the Odyssey API.
http://www.genmagic.com/technology/odyssey.html.

[14] Bill Venners. Under the Hood: The architecture of
aglets. JavaWorld, April 1997

http://www.javaworld.eom/javaworld/Jw-04-1997/jw-
04-hood.html.

[15] H. Peine and T. Stolpmann. The Architecture of the
Ara Platform for Mobile Agents. In Kurt Rothermel,
Radu Popescu-Zeletin, editors, Proc. of the First
International Workshop on Mobile Agents MA'97.
(Berlin, Germany), April 1997. http://www.uni-
kl.de/AGNehmer/Projekte/Ara/index_e.html.

[16] Robert Gray, George Cybenko, David Kotz, and
Daniela Rus. Agent Tel. In William Cockayne and
Michael Zypa, editors. Itinerant Agents: Explanations
and Examples with CDROM. Manning Publishing,
1997.

ftp://ftp.cs.dartmouth.edU/pub/kotz/papers/gray:bookc
hap.ps.Z.

[17] Johansen, D., van Renesse, R. and Schneider, F. B.
An Introduction to the TACOMA Distributed System,
Technical Report 95-23, Dept. of Computer Science,
University of Tromco, Norway, 1995.
http://www.cs.uit.no/Localt/Rapporter/Reports/9523.ht
ml.




