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ABSTRACT

Crustal extension and magmatism during the mid-Cenozoic ignimbrite flare-up in the
Guazapares Mining District and Cerocahui basin regions, northern Sierra Madre Occidental,

western Chihuahua, Mexico

by

Bryan Patrick Murray

Silicic large igneous provinces are significant in the geologic record, due to their
unusually extensive areal coverage (>100,000 km?) and large volumes (>250,000 km®), and
may be characteristic of continental regions undergoing broad lithospheric extension. The
Sierra Madre Occidental of northwestern Mexico is the biggest and best-preserved silicic
large igneous province of the Cenozoic and is considered part of the extensive mid-Cenozoic
ignimbrite flare-up that affected much of the southwestern North American Cordillera.
Despite its size and preservation, very little is known about the geology of the Sierra Madre
Occidental, and the timing and spatial extent of ignimbrite flare-up volcanism in relation to
crustal extension is relatively unknown. This study presents new geologic mapping,
stratigraphy, zircon U-Pb laser ablation ICP-MS dating, modal analysis, and geochemical
data from the Guazapares Mining District and Cerocahui basin regions, two adjacent areas of
the northern Sierra Madre Occidental in western Chihuahua. The rock exposure and
topographic relief in this previously unmapped ~450 km? area make it ideal for studying the

relationships between silicic large igneous province volcanism and crustal extension.
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Three informal formations are identified in the study area: (1) the ca. 27.5 Ma Parajes
formation, a ~1-km-thick succession of primarily welded silicic outflow ignimbrite sheets
erupted from sources within ~50-100 km of the study area that were active during the Early
Oligocene pulse of the mid-Cenozoic ignimbrite flare-up; (2) the ca. 27-24.5 Ma Témoris
formation, composed primarily of locally erupted mafic-intermediate lavas and associated
intrusions with interbedded alluvial deposits, likely related to rocks of the Southern
Cordillera basaltic andesite province that were intermittently erupted across all of the
northern Sierra Madre Occidental following the Early Oligocene ignimbrite pulse; and (3) the
ca. 24.5-23 Ma Sierra Guazapares formation, composed of silicic vent to proximal facies
ignimbrites, lavas, plugs, and reworked equivalents that record the initiation of explosive and
effusive silicic fissure magmatism in the study area during the Early Miocene pulse of the
mid-Cenozoic ignimbrite flare-up. The Guazapares Mining District and Cerocahui basin
regions share this stratigraphy, but the rocks in the Cerocahui basin consist of a much higher
proportion of alluvial deposits.

The main geologic structures in the Guazapares Mining District and Cerocahui basin
regions are NNW-trending normal faults, with an estimated minimum of 20% total
horizontal extension. Many normal faults bound half-graben basins that show evidence of
syndepositional extension. Normal faulting began by ca. 27.5 Ma during deposition of the
youngest ignimbrites of the Parajes formation, concurrent with the end of the Early Oligocene
silicic ignimbrite pulse of the ignimbrite flare-up to the east and before magmatism began in
the study area. Preexisting normal faults localized mafic-intermediate volcanic vents of the
Témoris formation and silicic vents of the Sierra Guazapares formation, and were active
during deposition of these formations. In addition, the localization and timing of epithermal

mineralization in the Guazapares Mining District appears to be favored where pre-to-
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synvolcanic extensional structures are in close association with Sierra Guazapares formation
rhyolite plugs.

The timing of extensional faulting and magmatism in the Guazapares Mining District
and Cerocahui regions is consistent with regional-scale Middle Eocene to Early Miocene
southwestward migration of active volcanism and extension in the northern Sierra Madre
Occidental. Extension accompanied mafic-intermediate and silicic volcanism in the study
area, and overlapped with the peak of mid-Cenozoic ignimbrite flare-up in the Sierra Madre
Occidental; this supports the interpretation that there is likely a relationship between

lithospheric extension and silicic large igneous province magmatism.
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CHAPTER 1
SYNVOLCANIC CRUSTAL EXTENSION DURING THE MID-CENOZOIC
IGNIMBRITE FLARE-UP IN THE NORTHERN SIERRA MADRE OCCIDENTAL,
MEXICO: EVIDENCE FROM THE GUAZAPARES MINING DISTRICT REGION,
WESTERN CHIHUAHUA
(previously published as: Murray, B.P., Busby, C.J., Ferrari, L., and Solari, L., 2013,

Geosphere, Vol. 9, No. 5, p. 1201-1235)

ABSTRACT

The timing and spatial extent of mid-Cenozoic ignimbrite flare-up volcanism of the
Sierra Madre Occidental silicic large igneous province of Mexico in relation to crustal
extension is relatively unknown. Extension in the Sierra Madre Occidental has been variably
interpreted to have preceded, postdated, or begun during Early Oligocene flare-up volcanism
of the silicic large igneous province. New geologic mapping, zircon U-Pb laser ablation ICP-
MS dating, modal analysis, and geochemical data from the Guazapares Mining District
region along the western edge of the northern Sierra Madre Occidental silicic large igneous
province have identified three informal synextensional formations. The ca. 27.5 Ma Parajes
formation is a ~1-km-thick succession composed primarily of welded to nonwelded silicic
outflow ignimbrite sheets erupted from distant sources. The 27-24.5 Ma Témoris formation
is interpreted as an andesitic volcanic center composed of locally erupted mafic to
intermediate composition lavas and associated intrusions, with interbedded andesite-clast
fluvial and debris flow deposits, and an upper section of thin distal silicic outflow
ignimbrites. The 24.5-23 Ma Sierra Guazapares formation is composed of silicic vent facies

ignimbrites to proximal ignimbrites, lavas, plugs, dome-collapse deposits, and fluvially- or
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debris flow-reworked equivalents. These three formations record (1) the accumulation of
outflow ignimbrite sheets, presumably erupted from calderas mapped ~50-100 km east of the
study area that were active during the Early Oligocene pulse of the mid-Cenozoic ignimbrite
flare-up; (2) development of an andesitic volcanic field in the study area, likely related to
rocks of the Southern Cordillera basaltic andesite province that were intermittently erupted
across all of the northern Sierra Madre Occidental toward the end of and following the Early
Oligocene ignimbrite pulse; and (3) the initiation of explosive and effusive silicic fissure
magmatism in the study area during the Early Miocene pulse of the mid-Cenozoic ignimbrite
flare-up.

The main geologic structures identified in the Guazapares Mining District region are
NNW-trending normal faults, with an estimated minimum of 20% total horizontal extension.
Normal faults were active during deposition of all three formations (Parajes, Témoris, and
Sierra Guazapares), and bound half-graben basins that show evidence of synvolcanic
extension (e.g., growth strata) during deposition. Normal faulting began by ca. 27.5 Ma
during deposition of the youngest ignimbrites of the Parajes formation, concurrent with the
end of the Early Oligocene silicic ignimbrite pulse to the east and before magmatism began in
the study area. In addition, preexisting normal faults localized andesitic volcanic vents of the
Témoris formation and silicic vents of the Sierra Guazapares formation, and some faults were
reactivated during, as well as after, deposition of these formations.

We interpret extensional faulting and magmatism in the Guazapares Mining District
region to be part of a regional-scale Middle Eocene to Early Miocene southwestward
migration of active volcanism and crustal extension in the northern Sierra Madre Occidental.
We show that extension accompanied silicic volcanism in the Guazapares region, and

overlapped with the peak of mid-Cenozoic ignimbrite flare-up in the Sierra Madre
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Occidental; this supports the interpretation that there is a relationship between lithospheric

extension and silicic large igneous province magmatism.

INTRODUCTION

Silicic large igneous provinces are significant in the geologic record, due to their
unusually extensive areal coverage (>100,000 km?), large volumes (>250,000 km?), and
potential to induce environmental change (e.g., Bryan, 2007; Cather et al., 2009; Jicha et al.,
2009; Bryan and Ferrari, 2013). Compositions within silicic large igneous provinces range
from basalt to high-silica rhyolite, but are volumetrically dominated (>80%) by dacite-
rhyolite compositions, with >75% of the total magmatic volume emplaced during short
duration (~1-5 Myr) pulses over a maximum province lifespan of ~50 Myr (Bryan, 2007;
Bryan and Ernst, 2008). Previous studies suggest that silicic large igneous provinces may be
characteristic of continental regions undergoing broad lithospheric extension and typically
initiate as prerifting magmatic events (Bryan et al., 2002; Bryan, 2007; Best et al., 2013;
Bryan and Ferrari, 2013). Therefore, determining the timing of extensional deformation in
relation to magmatism is an important consideration toward understanding silicic large
igneous province processes, as crustal extension is suggested as one mechanism that favors
the generation of large silicic magma volumes (Hildreth, 1981; Wark, 1991; Hanson and
Glazner, 1995) as well as very large magnitude explosive silicic eruptions (Aguirre-Diaz and
Labarthe-Hernandez, 2003; Costa et al., 2011).

The Sierra Madre Occidental of western Mexico is the third largest silicic large
igneous province of the Phanerozoic and is the largest and best-preserved of the Cenozoic
(Fig. 1; Bryan, 2007; Ferrari et al., 2007). It extends for ~1200 km south from the U.S.-

Mexico border to the Trans-Mexican Volcanic Belt, forming a high plateau with an average
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elevation >2000 m, consisting primarily of Oligocene to Early Miocene ignimbrites that
cover an estimated area of 300,000-400,000 km? with an average thickness of 1 km
(McDowell and Keizer, 1977; McDowell and Clabaugh, 1979; Aguirre-Diaz and Labarthe-
Hernandez, 2003). The volcanism of the Sierra Madre Occidental silicic large igneous
province is contemporaneous with, and is considered part of, the extensive mid-Cenozoic
ignimbrite flare-up that affected much of the southwestern North American Cordillera from
the Middle Eocene to Late Miocene (e.g., Coney, 1978; Armstrong and Ward, 1991; Ward,
1991; Ferrari et al., 2002; Lipman, 2007; Cather et al., 2009; Henry et al., 2010; Best et al.,
2013). The core of the Sierra Madre Occidental is relatively unextended in comparison to the
surrounding Late Oligocene to Miocene extensional belts of the southern Basin and Range to
the east and the Gulf Extensional Province to the west (Fig. 1; Nieto-Samaniego et al., 1999;
Henry and Aranda-Gomez, 2000). Rocks related to the silicic large igneous province extend
beyond the Sierra Madre Occidental proper (Fig. 1), to the Mesa Central and parts of the
southern Basin and Range in eastern Chihuahua and Durango (Gunderson et al., 1986;
Aguirre-Diaz and McDowell, 1991, 1993), as well as southwesternmost mainland Mexico
and Baja California Sur (Umhoefer et al., 2001; Ferrari et al., 2002).

A large part of the Sierra Madre Occidental remains unmapped and undated (>90%;
Swanson et al., 2006). Previous work in the Sierra Madre Occidental has been primarily
restricted to the southern region of the igneous province (e.g., Nieto-Samaniego et al., 1999;
Ferrari et al., 2002), the vicinity of the Mazatlan—-Durango highway in the central region (e.g.,
McDowell and Keizer, 1977; McDowell and Clabaugh, 1979; Henry and Fredrikson, 1987),
and the areas around the Hermosillo—Chihuahua City highway and the Tomochic—Creel road
in the northern region (e.g., Swanson, 1977; Swanson and McDowell, 1984, 1985; Wark et

al., 1990; Cochemé and Demant, 1991; Wark, 1991; McDowell and Mauger, 1994; Albrecht
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and Goldstein, 2000; Swanson et al., 2006; McDowell, 2007; McDowell and Mclintosh,
2012) (Fig. 1). As aresult, the age relationships between ignimbrite flare-up volcanism and
crustal extension remain unclear. Previous workers have suggested that significant crustal
extension in the region did not occur until after the peak of large volume ignimbrite flare-up
volcanism, which was inferred to have occurred between ca. 32 and 28 Ma (Early Oligocene;
e.g., McDowell and Clabaugh, 1979; Wark et al., 1990; McDowell and Mauger, 1994; Gans,
1997; Grijalva-Noriega and Roldan-Quintana, 1998). However, other studies have inferred
that initial regional extension is recorded by the onset of large volume Early Oligocene
ignimbrite flare-up volcanism (e.g., Aguirre-Diaz and McDowell, 1993), or that extensional
deformation began before the flare-up (e.g., Dreier, 1984; Ferrari et al., 2007). Uncertainty
regarding the timing of extension relative to ignimbrite flare-up volcanism is also a problem
in the Basin and Range of the western U.S., where previous studies have inferred that
extension either preceded, postdated, or began during ignimbrite flare-up volcanism (e.g.,
Gans et al., 1989; Best and Christiansen, 1991; Axen et al., 1993; Best et al., 2013).

The Guazapares Mining District region of western Chihuahua, Mexico is located
~250 km southwest of Chihuahua City in the northern Sierra Madre Occidental (Fig. 1). The
excellent rock exposure and topographic relief in this previously unmapped area make it ideal
for studying the relationships between silicic large igneous province volcanism and crustal
extension. In this paper, we show that extension preceded the onset of magmatism in the
study area. We demonstrate that extension was active in the study area during deposition of
ca. 27.5 Ma outflow ignimbrites, presumably derived from calderas of similar ages identified
to the north and east by other workers. Extension continued during growth of a ca. 27-24.5
Ma andesitic volcanic center in the study area, followed by continued extension during ca.

24.5-23 Ma silicic flare-up magmatism in the study area. This study shows how extensional
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structures controlled the siting of the andesitic and silicic volcanic vents and shallow-level
intrusions. This study also shows that the onset of extension in the study area overlaps with
the end of peak Oligocene silicic magmatism to the east, and that extension in the study area
preceded and coincided with a second peak of magmatism in the Miocene, which is
represented in the study area. Last, we show that our data supports the interpretation that
silicic flare-up magmatism swept southwestward with time, due to rollback and/or removal of

the slab that was subducting beneath western Mexico.

GEOLOGIC SETTING

Previous regional-scale studies in the Sierra Madre Occidental subdivided volcanic
rocks into: (1) the Late Cretaceous to Eocene Lower Volcanic Complex of dominantly
andesitic composition; (2) the Eocene to Early Miocene Upper Volcanic Supergroup of
dominantly silicic composition; and (3) the Early Oligocene to Early Miocene basaltic
andesite volcanic rocks of the Southern Cordillera basaltic andesite province (McDowell and
Keizer, 1977; Cameron et al., 1989; Ferrari et al., 2007). The Lower Volcanic Complex is
believed to underlie most of the Upper Volcanic Supergroup (Aguirre-Diaz and McDowvell,
1991; Ferrari et al., 2007), although the thick ignimbrite cover of the Upper Volcanic
Supergroup obscures much of the geologic relationships between these two subdivisions in
most areas. The volcanic rocks of the Lower Volcanic Complex generally consist of
intermediate composition lavas and lesser silicic tuffs and are interpreted as the products of
normal steady-state (i.e., non-flare-up-style) continental subduction-related magmatism
broadly contemporaneous with the Laramide orogeny in western North America (McDowell

and Keizer, 1977; McDowell et al., 2001).



The ~1-km-thick Upper Volcanic Supergroup broadly refers to the products of large-
volume flare-up-style (i.e., high output rate and large eruptive volumes) silicic magmatism,
also known as the mid-Cenozoic ignimbrite flare-up, and defines the extent of the Sierra
Madre Occidental silicic large igneous province (McDowell and Keizer, 1977; Bryan, 2007,
Ferrari et al., 2007). The Upper Volcanic Supergroup is composed of Eocene to Early
Miocene silicic ignimbrites, lavas, and intrusions, and lesser intermediate to mafic lavas
(McDowell and Keizer, 1977; McDowell and Clabaugh, 1979; Aguirre-Diaz and McDowell,
1991, 1993; Ferrari et al., 2002; Ferrari et al., 2007; McDowell, 2007). The large volume of
silicic ignimbrites and high output rate suggest multiple caldera and fissure sources for these
volcanic deposits (e.g., Swanson and McDowell, 1984; Aguirre-Diaz and Labarthe-
Hernandez, 2003; Swanson et al., 2006; McDowell, 2007). Ferrari et al. (2002; 2007)
proposed that there were at least two main pulses of large volume silicic ignimbrite flare-up
volcanism in the Sierra Madre Occidental during the mid-Cenozoic, one during the Early
Oligocene (ca. 32—28 Ma) and another during the Early Miocene (ca. 24-20 Ma). The Early
Oligocene ignimbrite pulse is inferred to have occurred throughout the Sierra Madre
Occidental, while the Early Miocene ignimbrite pulse was inferred to be volumetrically more
significant in the southern Sierra Madre Occidental and less abundant, with more mafic
compositions, in the north (Ferrari et al., 2002; Ferrari et al., 2007; Bryan et al., 2013). The
Early Oligocene pulse is estimated to have contributed at least half to three-quarters
(>200,000 km?®) of the erupted volume of the Upper Volcanic Supergroup, but at least
50,000-100,000 km® was erupted during the Early Miocene pulse (Cather et al., 2009; Bryan
et al., 2013). McDowell and Mcintosh (2012) suggested that most ignimbrites in the northern
and central Sierra Madre Occidental were erupted during discrete time intervals (36-33.5 Ma

and 31.5-28 Ma). In addition, an older Eocene pulse of ignimbrite eruptions between 46 and
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42 Ma is only recognized along the eastern margin of the Sierra Madre Occidental, and an
interval of ca. 24 Ma ignimbrite eruptions that coincides with the Early Miocene pulse of
Ferrari et al. (2002; 2007) is observed in the western regions of the igneous province
(McDowell and Mclintosh, 2012), west of our study area.

During the final stages of, and after each silicic ignimbrite pulse of the Upper
Volcanic Supergroup, basaltic andesite lavas were intermittently erupted across all of the
northern Sierra Madre Occidental (Ferrari et al., 2007). In the northern part of the Sierra
Madre Occidental these rocks were generally considered part of the Southern Cordillera
basaltic andesite province (Cameron et al., 1989) with ages ranging from 33 to 17.6 Ma,
although they mostly are Oligocene (Cameron et al., 1989, and references therein; Ferrari et
al., 2007). The rocks of the Southern Cordillera basaltic andesite province have been
interpreted as magmatism recording the initiation of crustal extension across the region (e.g.,
Cameron et al., 1989; Cochemé and Demant, 1991; Gans, 1997; McDowell et al., 1997;
Gonzalez Leon et al., 2000; Ferrari et al., 2007).

Several prior studies have recognized significant crustal extension in the Sierra Madre
Occidental immediately following the Early Oligocene ignimbrite pulse of the Upper
Volcanic Supergroup (e.g., McDowell and Clabaugh, 1979; Wark et al., 1990; McDowell and
Mauger, 1994; Gans, 1997; Grijalva-Noriega and Roldan-Quintana, 1998). The earliest
evidence of extensional faulting in the northern Sierra Madre Occidental is found in central
Chihuahua (younger than 29 Ma), immediately following the Early Oligocene ignimbrite
pulse (McDowell and Mauger, 1994). In east-central Sonora, the earliest age of crustal
extension is possibly as old as 27 Ma and synvolcanic deposition in many normal-fault basins
was active by 24 Ma, following the peak of Early Oligocene ignimbrite flare-up volcanism

(Gans, 1997; McDowell et al., 1997; Gans et al., 2003). However, extension in the Sierra
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Madre Occidental may have begun as early as the Eocene, prior to the eruption of the Early
Oligocene ignimbrite pulse, based on the orientation and age of epithermal vein deposits
(Dreier, 1984) and a moderate angular unconformity between the Lower VVolcanic Complex
and Upper Volcanic Supergroup (e.g., Ferrari et al., 2007). Direct evidence of Early Eocene
(pre—Upper Volcanic Supergroup) extensional faulting is observed in the Mesa Central region
to the east of the core of the southern Sierra Madre Occidental and includes a moderate
angular unconformity within continental clastic and andesitic volcanic sequences and
subvolcanic intrusions along normal faults (Aranda-Gémez and McDowell, 1998; Aguillon-
Robles et al., 2009; Tristan-Gonzalez et al., 2009), as well as ca. 32 Ma synvolcanic normal
faults that were active until ca. 24 Ma (Aguirre-Diaz and McDowell, 1993; Luhr et al., 2001).
However, Eocene-age extensional faulting has not been documented in the Sierra Madre
Occidental proper.

The Guazapares Mining District of western Chihuahua is located at the western edge
of the relatively unextended core of the northern Sierra Madre Occidental, at the boundary
with the highly extended Gulf Extensional Province (Fig. 1). Previous geologic studies in
this ~300 km? region were restricted to regional 1:50,000 and 1:250,000 geologic mapping by
the Mexican Geological Survey (Minjarez Sosa et al., 2002; Ramirez Tello and Garcia
Peralta, 2004) and mining company reports (e.g., Roy et al., 2008; Wood and Durgin, 2009;
Gustin, 2011, 2012). On these older maps and reports, Paleocene—Eocene Lower Volcanic
Complex andesitic rocks were inferred to underlie the Oligocene Upper Volcanic Supergroup
silicic ignimbrites, but we show here that these rocks (which we informally refer to as the
Témoris formation) are both underlain and overlain by silicic ignimbrites, and therefore
cannot be assigned to the Lower Volcanic Complex. Prior to this study there were no

geochronological data from the Guazapares Mining District region and the closest reported
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dates were from Upper Volcanic Supergroup ignimbrites approximately 50 km to the

northeast near Divisadero (~30 Ma; Swanson et al., 2006).

LITHOLOGY & STRATIGRAPHY

New geologic mapping in the Guazapares Mining District region (Figs. 2, 3, and 4;
Supplemental File 1)* provides the basis for the subdivision of three informally named
formations described in the following (from oldest to youngest): (1) the Parajes formation,
consisting mainly of silicic outflow ignimbrites; (2) the Témoris formation, composed mainly
of mafic to intermediate composition lavas and intrusions; and (3) the Sierra Guazapares
formation, consisting of silicic vent-proximal ignimbrites, lavas, and subvolcanic intrusions
(Fig. 5).

The volcanic and volcaniclastic terminologies used in this paper are those of Fisher
and Schmincke (1984), Fisher & Smith (1991), and Sigurdsson et al. (2000). Following
Fisher and Schmincke (1984), volcaniclastic refers to all fragmental rocks made dominantly
of volcanic detritus: these include (1) pyroclastic fragmental deposits, inferred to have been
directly fed from an eruption, e.g., pyroclastic fall, ignimbrites, autoclastic flow breccias, etc.;
(2) reworked fragmental deposits, inferred to result from downslope reworking of
unconsolidated eruption-fed fragmental deposits, e.g., block-and-ash-flow deposits
commonly pass downslope into debris flow and fluvial deposits; and (3) epiclastic deposits,
made of volcanic fragments inferred to have been derived from erosion of pre-existing rock.
When the distinctions cannot be made, the general term volcaniclastic is applied. Delicate

pyroclastic detritus such as pumice, shards, or euhedral crystals cannot be derived from

! Supplemental File 1: Geologic map of the Guazapares Mining District region (1:25,000 scale), submitted as
an additional file with dissertation
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Figure 2. Simplified geologic map of the Guazapares Mining District region, showing the extent of the three
formations discussed herein (see Fig. 5) and the locations of major faults. Boxes indicate the locations of the
detailed geologic maps of Figure 3. See Supplemental File 1 (see footnote 1) for more detailed geologic
mapping of the study area. Coordinates in black are Universal Transverse Mercator (UTM) zone 12, North
American Datum 1927 (NAD27).

Figure 3 (next 5 pages). Geologic maps of portions of the Guazapares Mining District region; key to the map
units and symbols is given in Figure 3C. Topographic base map from Instituto Nacional de Estadistica,
Geografia e Informatica (INEGI); original 1:50,000 scale ITRF92 datum projected to NAD27 UTM zone 12.
The entire geologic map for the study area is presented in Supplemental File 1 (see footnote 1). (A) (2 pages)
Geologic map of the southeastern portion of the Guazapares Mining District region between Puerto La Cruz and
Rancho de Santiago, east of Témoris. The locations of cross-sections A-A', B-B', and C-C' (Fig. 4) are
indicated. (B) (2 pages) Geologic map of the Guazapares fault zone between Témoris and Monte Cristo. (C)
Geologic map key, with lithostratigraphic correlation chart for the map units of the Guazapares Mining District
region, based on depositional relationships and geochronology presented in this study. The lithology of the map
units is described in Table 1.
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Figure 3C: lithostratigraphic correlation chart and key to map symbols
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Figure 5. Generalized stratigraphic column of the Guazapares Mining District region, depicting the
characteristics and depositional relationships between the Parajes formation, Témoris formation, and the Sierra
Guazapares formation.
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erosion of preexisting rock, so their presence in fluvial or debris flow deposits indicates that
at least some of the deposit consists of reworked pyroclastic material, indicating broadly
coeval explosive volcanism. Similarly, if a debris flow deposit is dominated by one volcanic
clast type, it can be inferred to record reworking of a block-and-ash-flow deposit or flow
breccia. However, the presence of a broad range of volcanic clast types is not proof of an
epiclastic origin, because a wide variety of volcanic clast types can become incorporated into
an eruption-triggered debris flow; in that case, a distinction between reworked and epiclastic
cannot be made, and the deposit is simply a volcaniclastic debris flow deposit. Debris-flow
deposits with blocks of welded ignimbrite, however, cannot be derived by any downslope
reworking process known in outflow ignimbrite fields, and instead likely record erosion of
preexisting rocks, so those can be classified as epiclastic (note that intracaldera ignimbrites
commonly have blocks of welded ignimbrite cannibalized from the caldera wall during
ongoing collapse; see discussion in Schermer and Busby, 1994).

The three formations in the Guazapares Mining District region are subdivided into 30
distinct lithologic units by outcrop and thin section characteristics, mineralogy, chemical
composition, and inferred volcanic or sedimentary processes (Fig. 3C; Table 1). These
lithologic units include volcanic rocks (e.g., lavas, ignimbrites), volcaniclastic rocks (e.g.,
sandstone, conglomerate, breccia), and hypabyssal intrusions (e.g., plugs, dikes). Modal
point-count analyses were carried out for 39 samples, chosen to represent most of the
volcanic and hypabyssal map units (Fig. 6). Reconnaissance whole-rock geochemical
analyses were performed on 15 relatively unaltered samples of volcanic rock and hypabyssal

intrusions from the Témoris and Sierra Guazapares formations (Fig. 7; Table 2).
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TABLE 1 (next 5 pages)

LITHOLOGIC DESCRIPTIONS OF THE MAP UNITS OF THE GUAZAPARES MINING DISTRICT

Map unit*

Lithology

Description

Qa

alluvium

Unconsolidated very poorly sorted debris flow deposits. Gray to light gray;
boulders to 5 m. Derived primarily from the Sierra Guazapares formation.

Tsiw

high-silica
rhyolite intrusion

Hypabyssal intrusions (dikes and plugs). White to light pink; aphyric to
10% phenocrysts (to 1 mm): plagioclase, biotite, trace quartz. Subvertical
flow banding. In Monte Cristo region (Fig. 3B), intruded into gray andesitic
feldspar porphyry (likely part of Témoris formation). Similar in appearance
to rhyolitic fault talus breccia (Tsv).

Tsv

silicic
volcaniclastic &
fluvial-lacustrine
deposits’

Volcaniclastic lithofacies (too small to show at map scale of Fig. 3 and
Supplemental File 1). Consists of:

Rhyolitic fault talus breccia: clast-supported rhyolitic block to lapilli
breccia; white to light orange; primarily monomictic; angular lapilli to
blocks (>2 m) with some flow banding. Aphyric to trace quartz and
plagioclase phenocrysts. Contains zones of to 20% andesitic blocks that are
to 1.5 m. Block breccia transitions laterally into lapilli breccia, with the
block fragment size decreasing northeastward away from the Sangre de
Cristo fault (Fig. 3B) from >2 m blocks to lapilli-sized fragments supported
in an ash matrix of same composition.

Massive to bedded silicic lapilli-tuff: nonwelded lapilli-tuff, light red to
gray; <5% phenocrysts: plagioclase, biotite; trace to 20% lithic fragments
(intermediate volcanic). Slight fluvial reworking (planar lamination,
sorting, cut-and-fill structures), bedding to 5 m-thick. Local white reworked
ash layers and red very fine-grained thinly bedded sandstone.

Lacustrine deposits: fine- to medium-grained sandstone with graded
bedding (Bouma Sequences A, B) and small scale basal scouring; mudstone
with planar lamination to very thinly bedded; water-lain ash layers. Tan to
white. Soft sediment slumping and folding.

Fluvial sandstone: medium- to coarse-grained sandstone; white to light
gray; moderate to poor sorting; subangular silicic volcanic lithic fragments;
massive with faint laminations, cut-and-fill, and trough cross-bedding
structures. Minor clast-supported breccia with subangular cobble to boulder
silicic lapilli-tuff fragments interpreted as hyperconcentrated debris flows of
reworked silicic volcanic material.

Tsi

rhyolite intrusion

Hypabyssal intrusions (plugs and dikes). Light red to pink, typically with
light pink subvertical flow banding; aphanitic groundmass with 5-20%
phenocrysts: plagioclase (to 3 mm), biotite (1 mm), trace quartz. Likely
source for rhyolite lavas (Tsl).

Tsib

silicic brecciated
intrusion

Hypabyssal intrusion. White to light gray; silicic blocks (to 20 cm)
supported in crystal-rich aphanitic groundmass with 40% phenocrysts:
plagioclase, hornblende, quartz; locally massive and nonbrecciated.
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Tsl

rhyolite lava

Lava flows. Light gray to reddish gray, with light pink banding; 5-20%
phenocrysts: plagioclase (to 4 mm), biotite (to 2 mm), quartz. Lavas
consist of a 3-15 m-thick autoclastic breccia base of flow-banded blocks, a
coherent middle portion (at least 30 m thick) with well developed to minor
flow banding, and a flow top autoclastic breccia with flow-banded blocks
and sediment infilling the spaces between blocks. Spherulites and quartz-
filled vugs are common, and thundereggs are typically found within the top
portion of a lava. A ~4 m thick, basal block and ash flow is locally
observed. Rhyolite hypabyssal intrusions (Tsi) are likely the source for
these lavas.

Tst

massive to
stratified rhyolite
ignimbrite

Nonwelded to partially welded tuff to lapilli-tuff. Light pink, tan, or white
groundmass; 5-25% phenocrysts (to 2 mm): plagioclase, biotite; trace to 25
% (locally 40-50%) yellow-white long-tube pumice fragments (to 15 mm);
<5-40% lithic fragments (red, orange, gray intermediate volcanic, trace
white silicic volcanic; to 20 mm). Crudely to well stratified; thickly to very
thickly bedded (<1 m to ~10 m-thick); mild to intense fluvial reworking
locally observed (clast rounding, sorting, cross-bedding, and cut-and-fill
structures). Tsth: more fluvially reworked and more thinly bedded than
Tsti. Tsti: primary silicic nonwelded ignimbrite with thicker massive
bedding and less intense reworked sections.

Tsxi

very large-scale
cross-bedded
rhyolitic
ignimbrite

Nonwelded lapilli-tuff to tuff-breccia. Light pink, tan, or white groundmass;
5-10% phenocrysts (<1 mm): plagioclase, biotite, quartz; 5-10% (locally to
50%) tan to white long-tube pumice fragments (to 20 mm); alternating
lithic-rich (>50%) and lithic-poor (<30%) stratification with ~0.5-50 cm
lithic fragments (gray and red intermediate volcanic and white silicic
volcanic). Cross-bedding with ~5 m-thick sets (to ~20 m-thick).

Tti

rhyolite
ignimbrite and
reworked tuff

Nonwelded to partially welded lapilli-tuff and fluvially reworked tuff/lapilli-
tuff. Light pink to white groundmass; 5-10% phenocrysts: plagioclase,
biotite (to 2 mm), trace quartz, trace K-feldspar; <5-50% white and tan
long-tube pumice fragments (5 mm, to 10 mm); 5-30% lithic fragments
(gray and red intermediate volcanic; <5 mm, to 30 mm). Individual
ignimbrites are generally 5-10 m-thick with compaction foliation.

Reworked tuffs and lapilli-tuffs are well to crudely stratified, very thinly to
medium bedded; contain well to very poorly sorted, subangular to
subrounded intermediate and silicic volcanic clasts.

Tta

andesite lava

Nonvesicular lava flows. Gray; 5-10% phenocrysts (typically weathered
out): plagioclase, clinopyroxene. Average lava flow thickness ~15 m, lavas
generally have flow-top and bottom autoclastic breccias and resistant flow-
banded coherent interior.

Ttat

andesite lapilli-
tuff

Lapilli-tuff. Gray groundmass; trace phenocrysts: plagioclase; 15-30%
intermediate volcanic and silicic tuff lithic fragments (to 4 mm).

Tth

basaltic
trachyandesite
lava

Amygdaloidal lava flows. Dark gray to brick red; 5-20% phenocrysts:
plagioclase (some flow-alignment of laths), olivine (altered to iddingsite),
clinopyroxene; zeolite amygdules. Average lava flow thickness ~2 m, lavas
have vesicular top and bottom, locally with coherent flow interior. Local
multi-lobed flows with blocky autoclastic flow breccia (Fig. 10D).
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Ttba

basalt to andesite
lava

Predominantly amygdaloidal lava flows. Gray to dark gray with local red
hematitic and green propylitic alteration; 5-25% phenocrysts: plagioclase
(some flow-alignment of laths), clinopyroxene; zeolite amygdules. Average
lava flow thickness ~5 m, lavas are typically brecciated and vesicular with
secondary zeolite infilling vesicles and autoclastic flow breccia interstices
fragments, with lesser flow-banded and nonvesicular lavas with flow-top
and bottom autoclastic breccias.

Ttv andesitic Complexly intruded hematite-stained basalt to andesite lavas (Ttba, Tta),
volcanic center andesitic block and ash flows, aphyric basaltic andesite hypabyssal
(lavas, dikes, intrusions with quartz veinlets, and andesitic dikes or intrusions with
hypabyssal subvertical flow banding and to 10% phenocrysts (plagioclase,
intrusions) clinopyroxene). Dark gray to reddish gray.

Ttai andesitic Hypabyssal intrusions (dikes and sills). Dark gray with local red hematitic
intrusions and green propylitic alteration; aphanitic groundmass with 5-10%

phenocrysts: plagioclase, clinopyroxene.

Ttt silicic tuff Nonwelded to partially welded tuff. White to light tan groundmass; trace-
10% phenocrysts (<1 mm): plagioclase, biotite, + hornblende, + quartz;
trace to 25% lapilli-sized lithic fragments (red intermediate volcanic).

Ttss fluvial Feldspathic litharenite. Tan to red; moderately to poorly sorted, subrounded
sandstone: to subangular, predominantly fine- to medium-grained, to very coarse-
intermediate and | grained. Clasts consist of feldspar and intermediate and silicic volcanic
silicic volcanic lithic fragments with trace biotite. Contains very thin layers of matrix-
fragments supported granule to pebble pumice and silicic tuff fragments. Thinly to

thickly bedded, with horizontal bedding and trough cross-bedding. Local
red siltstone and clast-supported granule to pebble conglomerates with
silicic tuff and intermediate volcanic fragments.

Ttds debris flow Matrix-supported polymictic breccia and conglomerate. Tan to red; massive
deposits: to medium to very thickly bedded, average bed thickness ~5 m; subangular
intermediate and | to angular pebble to large cobble intermediate volcanic and lesser silicic tuff
silicic volcanic clasts, fine- to medium-grained sand matrix (locally silicic ash-rich with
fragments quartz and biotite crystals). Channel-cut and scour surfaces between

individual beds; interbedded with sandstone (Ttss) lenses.

Ttsa fluvial Feldspathic litharenite. Dark tan to reddish purple; moderately to poorly
sandstone: sorted, subrounded to subangular, medium- to coarse-grained with trace
intermediate granules. Clasts consist of feldspar and intermediate volcanic lithic
volcanic fragments. Contains lenses of clast-supported pebble conglomerates and
fragments matrix-supported pebble to cobble breccia with intermediate volcanic

fragments. Thinly to thickly bedded.

Ttda debris flow Matrix-supported breccia and conglomerate. Tan; massive to very thickly
deposits: bedded, nongraded, average bed thickness ~10 m; angular to subrounded
intermediate pebble to boulder (to 1.5 m) intermediate volcanic clasts, medium-grained
volcanic sand matrix. Channel-cut and scour surfaces between individual beds.
fragments

Ttdt talus and debris Debris flows: matrix-supported breccia; tan to gray; massive to very

flow deposits

crudely stratified; angular pebble to boulder intermediate volcanic clasts
(mostly small boulder [<0.5 m], to 2 m), with welded silicic ignimbrite
clasts found upsection (to 5 m), fine-to-medium-grained sand matrix. Talus:
clast-supported monolithic breccia; tan to gray; massive; angular cobble to
boulder intermediate volcanic clasts (most >0.5 m, to 4 m), limited fine- to
medium-grained sand matrix. Localized slide blocks of bedded sandstone to
15 m-thick (Fig. 10B).
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Ttdi

debris flow
deposits with
welded silicic
ignimbrite
fragments

Matrix-supported polymictic breccia. Tan to red; massive; primarily
subangular to angular cobble to boulder silicic welded ignimbrite clasts,
lesser pebble intermediate volcanic clasts, fine-to-medium-grained sand to
silt matrix. Larger (1-2 m) ignimbrite boulders weather to form small
hoodoos (Fig. 10A).

Tpt

Traza ignimbrite

Welded to nonwelded lapilli-tuff. Dark tan (welded) to white (nonwelded)
groundmass; 20% phenocrysts: plagioclase, pyroxene, trace quartz; gray
fiamme; 30% lithic fragments (red intermediate volcanic, gray silicic
volcanic and welded tuff; to 50 mm). Thickness: >40 m. Basal 1 m-thick
vitrophyre, transitions upsection from welded to nonwelded, top not
exposed.

Tpk

KM ignimbrite

Densely welded to nonwelded lapilli-tuff. Brownish red (welded) and white
to light gray (nonwelded) groundmass; <5% phenocrysts: plagioclase, trace
quartz; 30% gray fiamme (to 30 mm); 5-10% lithic fragments (red and gray
intermediate volcanic). Thickness: ~40 to 100 m. Basal 0.5 m thick black
vitrophyre below a ~ 10 m thick red densely welded lower portion that
transitions upsection into a white partially welded to nonwelded top.
Weathered-out pumice lenses (to 10 cm) near top.

Tpr

Rancho de
Santiago
ignimbrite

Welded to nonwelded lapilli-tuff. Welded portion: red to pinkish gray
groundmass; weak eutaxitic texture; 5-20% phenocrysts: plagioclase (to 3
mm), pyroxene, £ hornblende, £ quartz; 10-20% gray fiamme with dark
gray rims (altered to pink with orange rims near faults), typically to 30 mm,
maximum 1 m-length); trace to 5% lithic fragments (red intermediate
volcanic and gray silicic volcanic). Nonwelded portion: white to tan
groundmass; <5% phenocrysts: plagioclase, clinopyroxene, hornblende;
noncompacted pumice fragments (to 35 mm); 10-25% lithic fragments (red
and brown intermediate volcanic and gray silicic volcanic). Thickness: ~80
to 200 m. Basal 2 m-thick vitrophyre unit with 2 black vitrophyres
separated by ~0.5 m-thick welded tuff. Transitions upsection from welded
to nonwelded top. Weathered-out pumice lenses (to 25 mm) in upper middle
portion of unit. Fewer phenocrysts upsection. Larger size of lithic
fragments and fiamme found in easternmost exposures.

Tpb

Puerto Blanco
ignimbrite

Welded to nonwelded lapilli-tuff. Nonwelded lower portion: tan to white
groundmass; <5% phenocrysts: plagioclase, with trace biotite, hornblende,
pyroxene, quartz; 15% white pumice fragments (to 30 mm); 30-40% lithic
fragments (red and gray intermediate volcanic, to 50 mm). Welded portion:
tan groundmass; 10-15% phenocrysts: plagioclase, biotite, with trace
hornblende, quartz; 5% yellow fiamme (to 10 cm), mostly occur as
weathered-out lenses in outcrop; 15-20% lithic fragments (red & gray
intermediate volcanic, to 30 mm). Nonwelded top: white to light pink
groundmass; 15-20% phenocrysts: plagioclase, biotite; 10-15% yellowish-
white long-tube pumice fragments; 10% lithic fragments (red and gray
intermediate volcanic; to 15 mm). More than 190 m-thick, base not
exposed.

Tpp

Portero
ignimbrite

Densely welded to welded lapilli-tuff. Pink groundmass; eutaxitic texture;
trace to 25% phenocrysts: plagioclase, pyroxene, + hornblende, trace
quartz; 20% dark reddish-gray fiamme (to 30 cm); trace to 10% lithic
fragments (red and gray volcanic; to 15 mm). Thickness: ~20 to 180 m.
Basal 1 m-thick vitrophyre, top eroded. Increased amount of phenocrysts,
lithic fragments, and vapor-phase alteration upsection.
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Tpe

Ericicuchi
ignimbrite

Welded to nonwelded lapilli-tuff. Reddish-gray (welded) to light gray or
white (nonwelded) groundmass; compaction foliation; 5-15% phenocrysts:
plagioclase, pyroxene, + biotite, + hornblende, trace quartz; 5-10% dark
gray fiamme with orange rims (to 10 mm), noncompacted white to brown
pumice in nonwelded portion; trace to 10% (locally to 30%) lithic fragments
(red, purple, and orange intermediate and gray silicic volcanic; to 2 mm,
locally to 30 mm). Thickness: ~210 m. Base located in inaccessible cliff
exposures, transitions upsection from welded interior to nonwelded top.

Tpc

Chepe ignimbrite

Densely welded lapilli-tuff. Light red groundmass; eutaxitic texture; 30%
phenocrysts: quartz (embayed), plagioclase, biotite (to 2 mm), hornblende;
15% pink-orange colored fiamme. More than 140 m-thick, base not
exposed. Likely correlative to the Divisadero tuff of Swanson et al. (2006)
(see text).

Tps

fluvial reworked
tuff, sandstone,
and
conglomerate

Reworked tuff: white; white pumice fragments; 5-10% crystal fragments:
plagioclase, biotite, hornblende; <5% lithic fragments (~1 cm), thinly-to-
thickly-bedded. Sandstone: orange to tan; moderately well to poorly sorted,
fine- to medium-grained, white pumice and tuff fragments; cross-bedding
and graded bedding; local well-sorted pumice-rich granule lenses.
Conglomerate: reddish orange; matrix-supported; massive; monomictic;
subrounded pebble to cobble silicic ignimbrite (welded to nonwelded)
clasts, fine-to-medium-grained sand matrix.

*Figure 3; Supplemental File 1 (see footnote 1)

“further descriptions of the silicic volcaniclastic and fluvial-lacustrine deposits (Tsv) are given in Chapter 2
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Figure 6. Modal point-count analyses of representative volcanic and intrusive rocks from the three formations of
the Guazapares Mining District region showing the percentage of phenocrysts in each sample. Map unit
symbols correspond to Figure 3 and Table 1. DIV-2 is a sample of the upper Divisadero tuff (e.g., Swanson et
al., 2006) collected from Divisadero, ~50 km east-northeast of the Guazapares Mining District region, and
analyzed during this study for compositional comparison with welded ignimbrites of the Parajes formation. One
thin section was analyzed per sample, with 1000 point counts per thin section. GPS coordinates of the samples
and details of individual modal point-count analyses, including the proportions of lithic, pumice, and volcanic
glass fragments in each sample, are shown in Appendix 1.
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Figure 7. Total alkali-silica (TAS) classification diagram (after Le Bas et

al., 1986) for selected volcanic rocks

of the Guazapares Mining District region. The boundary between the alkaline and subalkaline fields (thicker
line) is after Irvine and Baragar (1971). Samples were analyzed from the Témoris formation (squares) and the
Sierra Guazapares formation (circles). Details of each analysis and GPS coordinates of samples are given in
Table 2 and sample locations are plotted in Supplemental File 1 [see footnote 1]. The field of the Southern
Cordillera basaltic andesites, based on Figure 5 of McDowell et al. (1997) is included here for comparison

(dashed line).
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Parajes formation

The Parajes formation is primarily exposed in the eastern part of the study area;
continuous stratigraphic sequences are found in the vicinity of Rancho de Santiago (Fig. 3A).
The base of this formation is not exposed in the study area. The formation is composed of
seven lithologically distinct silicic ignimbrites, with lesser locally interbedded sandstone,
conglomerate, and reworked tuff (Figs. 6, 8 and 9; Table 1). Individual ignimbrites are
informally named in this study, and are distinguished based on phenocryst assemblages and
outcrop characteristics such as degree of welding, weathering style, color, and percentage and
type of pumice and/or fiamme and lithic fragments (Figs. 6 and 8; Table 1).
Description

Each ignimbrite of the Parajes formation has a densely welded to partially welded
lower part that passes upward into a less welded to nonwelded top (Figs. 8 and 9A), forming
a single cooling unit, as well as a single flow unit with normal coarse-tail grading of lithic
fragments and inverse coarse-tail grading of pumice. Where the bases of ignimbrites are
exposed, 0.5-2-m-thick basal vitrophyres are present. The ignimbrites are generally crystal-
poor to crystal-moderate (<20%) with a dacitic phenocryst assemblage (no chemical analyses
were done) consisting primarily of plagioclase and pyroxene phenocrysts, with minor
amounts of hornblende, biotite, and quartz in some ignimbrites; sanidine is lacking in all of
the ignimbrites of the Parajes formation (Fig. 6). The thickness of individual ignimbrites
range from ~20 to ~210 m; the total thickness of the Parajes formation is ~1 km (Fig. 8;
Table 1). Some ignimbrites appear to thicken due to ponding in paleotopographic lows (e.g.,
Rancho de Santiago [Tpr] and KM [TpKk] ignimbrites); ponded thicknesses are 2.5 times

greater than nonponded parts of the same ignimbrite (Figs. 3A and 4; Table 1).
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top eroded

base not exposed

Traza ignimbrite (Tpt): 20% phenocrysts: plagioclase, pyroxene, trace
quartz; gray fiamme; 30% lithic fragments (intermediate-silicic volcanic,
welded tuff;, to 50 mm). Basal 1 m-thick vitrophyre. Thickness: =40 m,
top not exposed.

KM ignimbrite (Tpk): <5% phenocrysts: plagioclase, trace quartz; 30%
gray fiamme (to 30 mmy), 5-10% lithic fragments (red and gray
intermediate volcanic). Thickness: ~40 to 100 m. Basal 0.5 m thick
black vitrophyre below ~ 10 m thick red densely welded lower portion
Weathered-out pumice lenses (to 10 cm) near top

Rancho de Santiago ignimbrite (Tpr): 5-20% phenocrysts (decreasing
amount upsection): plagioclase (to 3 mm), pyroxene, + hornblende,
guartz; 10-20% gray flamme with dark gray rims (typically to 30 mm,
maximum 1 m-length); trace to 25% lithic fragments (intermediate-silicic
volcanic). Thickness: ~B0 to 200 m. Basal 2 m-thick vitrophyre unit.
Weathered-out pumice lenses (to 25 mm) in upper middle portion of unit.

Puerto Blanco ignimbrite (Tpb): <=5-20% phenocrysts (increasing
amount upsection): plagioclase, biotite, with trace hornblende,
pyroxene, quartz; 10-15% yellowish-white pumice fragments (to 30 mm),
5% yellow fiamme (to 10 cm) in welded section; 10-40% lithic fragments
(intermediate volcanic, to 50 mmy), with normal coarse-tail grading and
decreasing amount upsection. =190 m-thick, base not exposed

27.6+0.3 Ma

Partero ignimbrite (Tpp): pink groundmass with eutaxitic texture; trace
to 25% phenocrysts: plagioclase, pyroxene, + hornblende, trace quartz;
20% dark reddish-gray fiamme (to 30 cm); trace to 10% lithic fragments
(intermediate volcanic; to 15 mm). Thickness: ~20 to 180 m. Basal 1
mi-thick vitrophyre, top eroded. Increased amount of phenocrysts, lithic
fragments, and vapor-phase alteration upsection.

Ericicuchi ignimbrite (Tpe): 5-15% phenocrysts: plagioclase, pyroxene,
+ biotite, + hornblende, trace quartz; 5-10% dark gray flamme with
orange rims (to 10 mm); trace to 10% (locally to 30%) lithic fragments
(intermediate-silicic volcanic; to 2 mm, locally to 30 mm). Thickness:
~210 m. Base located in inaccessible cliff exposures

27.6 + 0.3 Ma; 27.0 £ 0.7 Ma

Chepe ignimbrite (Tpc): 30% phenocrysts: quartz (embayed),
plagioclase, biotite (to 2 mm), hornblende; 15% pink-orange colored
fiamme. More than 140 m-thick, base not exposed. Likely correlative to
the Divisadero tuff of Swanson et al. (2008) (see text)

Figure 8. Generalized stratigraphic column describing the key characteristics of the seven distinct ignimbrites of
the Parajes formation (see Table 1 for detailed descriptions). Zircon U-Pb LA-ICP-MS ages of the two
ignimbrites dated from the Parajes formation are indicated by bold text (Fig. 14; Table 3).
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Figure 9. Representative photographs of the
Parajes formation; locations of photos are
given (NAD27 UTM zone 12). Unit
abbreviations as in Table 1. (A) View east
towards Cordén Bairomico from Chapotillo
(777340E 3027305N; Fig. 3A), with the cliff-
forming welded portions of the KM ignimbrite
(Tpk) and Rancho de Santiago ignimbrite
(Tpr) separated by a ~150-m-thick sequence
of reworked tuff and sandstone (Tps). (B)
Welded ignimbrite near the base of the
Rancho de Santiago ignimbrite (Tpr), with
large dark-rimmed gray fiamme (e.g., arrow)
at 780913E 3028802N. Head of hammer is
~12.5 cm. (C) Subrounded welded ignimbrite
clast with eutaxitic texture (ign) below
hammer (head is ~12.5 cm), likely derived
from the Parajes formation, in a monomictic
matrix-supported pebble-to-cobble
conglomerate (Tps) deposited above the
Rancho de Santiago ignimbrite (Tpr) near
Mesa de Cristal (777551E 3033189N;
Supplemental File 1 [see footnote 1]). (D)
Depositional contact between the nonwelded
upper portion of the Ericicuchi ignimbrite
(Tpe) and the densely welded lower portion
the Portero ignimbrite (Tpp) with basal ~1-m-
thick vitrophyre (Tpp-v) at 775567E
3024552N. A thin (<1 m) layer of fine-to-
medium-grained sandstone is observed along
the contact between the two units (arrow).



Each ignimbrite of the Parajes formation has distinguishing outcrop and/or
compositional characteristics, described in ascending stratigraphic order (Figs. 6 and 8; Table
1). The Chepe, Ericicuchi, and Portero ignimbrites form the oldest continuous stratigraphic
sequence, which is only found on the southwest (footwall) side of the Chapotillo fault in the
Guazapares Mining District region (Fig. 3A). The Chepe ignimbrite (Tpc) is the only crystal-
rich (~30%) ignimbrite in the study area, with embayed quartz and biotite phenocrysts to 2
mm in diameter. The Ericicuchi ignimbrite (Tpe) has dark gray fiamme to 1 cm in length,
typically with orange rims, and it has a mafic phenocryst assemblage that includes pyroxene,
hornblende, and biotite. The Portero ignimbrite (Tpp) is characterized by a pink groundmass
with eutaxitic texture in the densely welded lower portion, dark reddish-gray fiamme to 30
cm-length, and trace quartz phenocrysts.

The Puerto Blanco, Rancho de Santiago, KM, and Traza ignimbrites form a second,
younger continuous stratigraphic sequence that is only found on the northeast (hanging wall)
side of the Chapotillo fault (Fig. 3A); the depositional relationship between the two
stratigraphic sequences on either side of the fault is not known, but is considered younger
than the previously described sequence on the footwall based on the sense of fault offset (Fig.
4) and inferred regional correlations (described in the Discussion following). The base of the
Puerto Blanco ignimbrite (Tpb) is not exposed; however the exposed portion of its lower
part, as well as its upper part, are nonwelded, with a welded middle. The Puerto Blanco
ignimbrite (Tpb) has the greatest amount and size of lithic fragments (10%—40%, to 5 cm)
compared to the other ignimbrites of the Parajes formation, with normal coarse-tail grading
and upsection decrease in lithic fragments (from ~40% to 10%); it also shows an upsection
increase in phenocrysts (from <5% to 20%) and an upsection increase in fiamme, which are

distinctively yellow. The Rancho de Santiago ignimbrite (Tpr) is similar in appearance and
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composition to the Portero ignimbrite (Tpp) described above, but has gray fiamme with dark
gray rims (Fig. 9B); these are generally 3 cm (to 1 m) in length. It has a 2-m-thick basal
vitrophyre at the contact with the underlying Puerto Blanco ignimbrite. The KM ignimbrite
(TpkK) is similar to the underlying Rancho de Santiago ignimbrite (Tpr), but is distinguished
by the presence of a brownish-red, ~10-m-thick, crystal-poor (<5%) lower welded section and
an overall lower lithic fragment content (5%-10%). The youngest unit of the Parajes
formation is the Traza ignimbrite (Tpt), which is similar in appearance to both the Chepe and
Puerto Blanco ignimbrites, but is distinguished by having gray fiamme and a moderate crystal
content (20%) with trace quartz and no biotite.

Sedimentary rocks occur locally between ignimbrite units. A ~150-m-thick sequence
of reworked tuff and cross-bedded sandstone with fragments of tuff and pumice (Tps) is
between the Rancho de Santiago ignimbrite (Tpr) and KM ignimbrite (Tpk) southwest of the
Arroyo Hondo—Puerto Blanco fault (Figs. 3A and 4). Also present at this stratigraphic
interval in the Mesa de Cristal area east of Rancho de Santiago (Supplemental File 1 [see
footnote 1]) is a monomictic matrix-supported pebble to cobble conglomerate with welded
ignimbrite clasts similar in appearance to ignimbrites of the Parajes formation (Fig. 9C). In
addition, a thin (<1 m) layer of fine- to medium-grained sandstone is present along the
contact between the Ericicuchi ignimbrite (Tpe) and Portero ignimbrites (Tpp) (Fig. 9D).
Interpretation

The Parajes formation represents medial facies of silicic outflow ignimbrite sheets,
based on the sheet-like geometry of the flow units, the moderate thicknesses of flow units
(each <~200-m-thick, locally thicker where ponded by paleotopography), the presence of
welding textures and vitrophyres, and the lack of associated lithic lag breccias. No caldera or

vent-proximal lithofacies have been identified for these outflow ignimbrites, so the locations
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of their sources are not known. However, lithic fragments and fiamme within the Rancho de
Santiago ignimbrite (Tpr) increase in size eastward, suggesting that the source for this
ignimbrite is located toward this direction. Based on flow thicknesses and degree of welding
relative to distance from the source recorded in large-volume silicic ignimbrites in the
western U.S. (e.g., Smith, 1960; Lipman, 2007), the ignimbrites of the Parajes formation
were likely erupted from calderas located within 50-100 km. The large size and
concentration of lithic fragments within the Puerto Blanco ignimbrite (Tpb) are suggestive of
a somewhat closer source.

Sedimentary rocks (Tps) interbedded with the ignimbrites of the Parajes formation
record both erosion of welded units and reworking of unconsolidated pyroclastic debris, with
deposition by fluvial and debris flow processes (Figs. 9C, 9D). The debris flow deposits are
massive, poorly sorted matrix-supported conglomerates, while fluvial sandstones and
fluvially reworked tuffs have trough cross-bedding, normal grading, and well-sorted granule
conglomerate lenses. The clasts in these sedimentary rocks are predominantly silicic volcanic
fragments, including welded and nonwelded tuff and pumice (e.g., Fig. 9C); there are no
andesitic volcanic fragments in these rocks. This suggests that the Parajes formation
ignimbrites were uplifted and partly eroded prior to deposition of overlying andesitic rocks of
the Témoris formation.

Témoris Formation

The Témoris formation overlies the Parajes formation in angular unconformity, and is
best exposed in the central and western portions of the study area in the vicinity of Puerto La
Cruz and Guazapares (Fig. 3). This formation is primarily composed of mafic to
intermediate composition lavas (flow-banded and/or vesicular) and hypabyssal intrusions,

intercalated conglomerates, breccias, and sandstones dominated by mafic to intermediate
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volcanic lithic fragments, and lesser thin silicic nonwelded ignimbrites and reworked silicic
tuff (Figs. 6, 7, and 10; Tables 1 and 2). This formation has undergone mild hematitic and
propylitic alteration, with infilling of vesicles and autoclastic flow breccia interstices with
zeolite minerals; the most intense alteration is in the rocks within the Guazapares fault zone
(Fig. 3B).

Description

The basal deposits of the Témoris formation consist of sandstones with silicic tuff
fragments (Ttss), matrix- to clast-supported breccias with welded silicic ignimbrite boulders
(Ttdi, Ttdt; Figs. 10A, 10B), and lesser interbedded silicic tuffs (Ttt). The welded ignimbrite
clasts were derived from the underlying Parajes formation, indicating continued erosion of
this formation. One ignimbrite of the Parajes formation (Portero ignimbrite, Tpp), located
east of Ericicuchi near 12R 775504E 3024974N (Universal Transverse Mercator coordinates,
North American Datum 1927; Fig. 3A), contains clastic dikes directly below the Parajes—
Témoris formation contact. These dikes are composed of overlying Témoris formation
sandstone that infills fissures formed in the top of the Portero ignimbrite.

The Témoris formation is subdivided into three sections based on volcanic rock
compositions and types (Figs. 6, 7, and 11; Tables 1 and 2; Appendix 1). These subdivisions
have gradational contacts and consist of: (1) a lower section of pyroxene-plagioclase +
olivine-bearing amygdaloidal basalt, basaltic andesite, and andesite lavas and autoclastic flow
breccias (Ttba, Ttb; Figs. 10C, 10D); (2) a middle section of pyroxene-plagioclase-bearing
flow-banded andesite lavas (Tta; Fig. 10E); and (3) an upper section of several thin (<5-m-
thick) primary and reworked rhyolite ignimbrites (Tti; Figs. 10F, 10G); this upper section is
only locally preserved beneath the angular unconformity with the overlying Sierra

Guazapares formation. Conglomerates, breccias, and sandstones with well-sorted gravel
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Figure 10 (next 2 pages). Representative photographs of the Témoris formation; locations of photos are given
(NAD27 UTM zone 12). Unit abbreviations as in Table 1. (A) Matrix-supported polymictic breccia with
cobble-to-boulder-sized welded silicic ignimbrite clasts (ign) and lesser pebble-sized mafic to intermediate
volcanic clasts (below ign boulder) from the basal section of the Témoris formation (Ttdi), weathering to form a
small hoodoo in the Rancho de Santiago area (776990E 3031055N). The large (1-2 m) welded ignimbrite
boulders (ign) were likely derived from the Parajes formation. (B) Clast-supported monolithic breccia of
angular intermediate volcanic cobble-to-boulder-sized clasts (Ttdt), which includes a 15-m-thick slide block of
bedded sandstone (ss), in the Rancho de Santiago half-graben basin adjacent to Rancho de Santiago fault
(777781E 3028522N; Fig. 3A). (C) Autoclastic flow breccia on top of andesitic lava (Ttba) at 769403E
3032339N. (D) Blocky autoclastic flow breccia in basaltic trachyandesite lavas (Ttb) at 771976E 3032195N.
(E) Andesite lava (Tta) with basal autoclastic flow breccia infilling a channel (arrow) incised into underlying
reddish orange sandstone (Ttsa) and debris flow deposits (Ttda) in the middle section of the Témoris formation
in the Puerto La Cruz area (773685E 3022996N). (F) Lithic-rich 2-3-m-thick ignimbrite deposit (Tti), with
~30% mafic-intermediate and silicic volcanic lithic fragments to 3 cm, deposited over medium-bedded
sandstone (Ttss) at 768484E 3027278N. (G) Medium-bedded matrix-supported tuffaceous conglomerate
(reworked tuff) from the upper section of the Témoris formation (Ttds), with subangular to subrounded mafic-
intermediate and silicic volcanic clasts. Located in the Puerto La Cruz measured section (~25 m; Fig. 11D) at
773391E 3023300N. Head of hammer is ~12.5 cm. (H) Sandstone (Ttsa) filling in depression on top of
amygdaloidal basalt lava (Ttba) at 771675E 3021604N. (I) Matrix-supported polymictic conglomerate with
subangular to subrounded mafic-intermediate and silicic volcanic clasts (Ttds), interbedded fine- to medium-
grained sandstone (Ttss), located in the half-graben basin adjacent to the Agujerado fault (776328E 3025345N;
Fig. 3A). A white pumice-rich lens (wht) is located near base of the 33-cm-long hammer, and a thin (~1 cm)
siltstone layer is located directly above the head of hammer (arrow). (J) Matrix-supported polymictic breccia
from the upper section of the Témoris formation (775590E 3025137N), with subangular to subrounded mafic-
intermediate volcanic and silicic ignimbrite clasts (Ttds). Breccia grades upsection into sandstone with a thin
white pumice-rich lens located below the head of the 38-cm-long hammer (arrow). (K) Down-dip view of
sandstone from the upper section of the Témoris formation (Ttss), with trough cross-bedding (e.g., arrow) and
lenses of white pumice and tuff fragments at 767952E 3027759N. Hammer in photo is 38-cm-long. (L) Wet
sediment-lava (peperitic) intermixing along the depositional contact between orange-tan sandstone (Ttss) and
reddish-gray basaltic andesite (Ttba) at 776571E 3032292N. Hammer in photo is 38 cm.
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Figure 11. Four continuous measured stratigraphic sections (A-D) of the Témoris formation to Sierra

(see Fig. 3A), with lithologies, depositional

7

émoris

eastof T
structures, and stratigraphic positions of analyzed samples (Figs. 6, 7, and 14; Tables 2 and 3; Appendices 1 and

Guazapares formation in the Puerto La Cruz area

formation and the boundary between the Témoris and Sierra

2). The three subdivisions of the Témoris

Guazapares formations are indicated.
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lenses and trough cross-bedding are interbedded with and laterally interfinger with all of the
volcanic rocks listed above (Figs. 10B, 10F-10K, and 11; Table 1). These volcaniclastic
deposits contain detritus similar in composition to the interstratified lavas and ignimbrites:
amygdaloidal and flow-banded basaltic andesite to andesite clasts dominate the lower and
middle sections of the Témoris formation (Ttda, Ttsa, Ttdt), while the upper section of the
Témoris formation has mixed mafic-intermediate and silicic volcanic clasts, including
pumice fragments in tuffaceous sandstones and tuffaceous conglomerates (Ttss, Ttds, Tti).
Lavas and autoclastic flow breccias locally infill channels incised into the underlying
sedimentary rock (Fig. 10E), and wet sediment-magma (peperitic) interactions are locally
observed where lavas were apparently emplaced over wet sand (Fig. 10L).

In the area around Témoris, the Témoris formation thickens from ~100-400 m to
>700 m (Fig. 3; Supplemental File 1 [see footnote 1]). There, basalt to andesite lavas of the
lower and middle sections of the Témoris formation are heavily hematite stained and are
complexly intruded by numerous andesitic dikes and aphyric hypabyssal rocks (Ttv; Table 1).
Interpretation

The rocks of the Témoris formation are interpreted as the products of vent to proximal
mafic to intermediate composition magmatism and distal silicic ignimbrite volcanism.
Deposition in a terrestrial environment, likely part of alluvial fan systems (e.g., Kelly and
Olsen, 1993; Blair and McPherson, 1994; Hampton and Horton, 2007; Murray et al., 2010),
is indicated by interstratified matrix-supported debris flow breccias and conglomerates (Ttda,
Ttds, Ttdi), clast-supported avalanche and/or talus breccias (Ttdt), well-sorted stratified and
cross-bedded fluvial sandstones and conglomerates (Ttas, Ttss), and some lavas infilling
fluvial channels and forming peperites within them (Fig. 10). The composition of fragments

in the fluvial and debris flow deposits is similar to that of the interstratified volcanic rocks,
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indicating intrabasinal reworking of eruptive products. The upper section of rhyolite
ignimbrites in the Témoris formation likely erupted from distal sources, because they are thin
and nonwelded, with a high proportion of interstratified fluvially reworked tuff (Tti; Figs.
10F-G; Table 1).

We interpret the Témoris area to be the site of an andesitic volcanic center in the
Témoris formation, based on dramatic thickening of the lava section, abundant plugs and
dikes, and increased alteration (Fig. 3; Supplemental File 1 [see footnote 1]). This andesitic
volcanic center, roughly defined by map unit Ttv, greatly thickens towards its subvolcanic
intrusion-dominated core located along the ridge east of Témoris, with a minimum volume of
9 km® based on the mapped area and exposed thickness (Fig. 3; Supplemental File 1 [see
footnote 1]). A feeder dike emanating from the volcanic center can be traced upward into an
andesitic lava flow in the Puerto La Cruz area (Fig. 11). In addition, andesitic dikes crosscut
rocks of the Témoris formation away from the volcanic center, locally along faults.

Sierra Guazapares Formation

The Sierra Guazapares formation comprises much of the central and northwestern part
of the study area, with best exposures located along the N-S-trending ridge east of
Guazapares (Fig. 3; Supplemental File 1 [see footnote 1]). This formation is composed of
plagioclase-biotite £ quartz + sanidine-bearing rhyolitic ignimbrites, rhyolite lavas, flow-
banded rhyolite hypabyssal intrusions, and lesser silicic volcaniclastic deposits (Figs. 3, 6, 7,
and 12; Table 1). The Sierra Guazapares formation is flat-lying to gently-dipping (<10°) and
overlies the Témoris formation in low to moderate angular unconformity (Fig. 13A). The
Sierra Guazapares formation is >200-m-thick; it is not known how much of the formation is
preserved, because the top is eroded. The formation locally infills lows cut into older

stratigraphic units, recording paleotopography produced by erosion or faulting.
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Figure 12 (next page). Representative photographs of the Sierra Guazapares formation; locations of photos
given (NAD27 UTM zone 12). Unit abbreviations as in Table 1. (A) Massive to stratified rhyolite ignimbrites
(Tsti) forming prominent cliff north of Ericicuchi. Photo taken from 775509E 3024976N. (B) Tuffaceous
sandstone (reworked tuff) with cross bedding (arrow) in stratified rhyolite ignimbrite unit (Tst); very fine-to-
medium-grained, well to moderately sorted, subrounded. Head of hammer is 12.5 cm (771650E 3031928N).
(C) View west from 769131E 3028438N at very large-scale cross-bedded rhyolitic ignimbrite unit (Tsxi)
forming a ~30 m-tall cliff face (arrow) at Cerro San Miguel on west side of Guazapares fault zone (Fig. 3B).

(D) Very large-scale cross-bedded rhyolitic ignimbrite (Tsxi), with person (outlined) standing on set boundary.
The orientation of cross-stratification is emphasized by black dashed lines. Dark colored band to left of person
(arrow) is a lithic-rich layer with ~50% lithic fragments (Fig. 12E), lighter colored bands contain ~10-20% lithic
fragments (771904E 3026715N). (E) Close-up of lithic-rich layer in silicic surge-like ignimbrite (Tsxi) in
Figure 12D, with reddish mafic-intermediate volcanic fragments (e.g., arrow) likely derived in part from the
Témoris formation, having diameters ranging from 0.5 cm to 50 cm. White pumice and crystal fragments are
present in an ash matrix (771904E 3026715N). (F) Subvertically flow-banded crystal-poor to aphyric rhyolitic
hypabyssal intrusion (Tsi), Cerro Salitrera plug (770909E 3030955N; Fig. 3B). Red dashed lines emphasize
orientation of flow banding. (G) Depositional contact between a rhyolite lava (Tsl; lower right) and overlying
very large-scale cross-bedded rhyolitic ignimbrite (Tsxi; upper left). Map board (~30 cm-length) is located
along the contact. The top of the rhyolite lava consists of an autoclastic flow breccia that has a red sandy matrix
surrounding the flow-banded blocks, interpreted as sand infilling in the top of the lava prior to eruption of the
rhyolitic ignimbrite (772569E 3023871N).
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Figure 13. Interpreted photographs of depositional relationships between the Témoris formation and the Sierra
Guazapares formation; locations of photos given (NAD27 UTM zone 12). Unit abbreviations as in Table 1.
(A) Angular unconformity between gently-dipping (~5° NE) massive and stratified rhyolite ignimbrites of the
Sierra Guazapares formation (Tst) and the underlying moderately-dipping (~20° E) lavas (Ttba, Tta) and debris
flow deposits (Ttda) of the Témoris formation. View north towards Cerro Cuadro Blanco (Fig. 3B) from
772093E 3022247N. (B) View northeast from 772915E 3021769N towards silicic plug (Tsi) that intrudes the
La Palmera fault and is the source for the silicic lava (Tsl) that flowed to the northwest over silicic ignimbrites
of the Sierra Guazapares formation (Tst) and tilted rocks of the Témoris formation (Tt). The dip of flow
banding (thin red lines) in the lava increases in proximity to the plug, where the flow banding is subvertical.
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Description

The dominant lithofacies of the Sierra Guazapares formation is massive to stratified
nonwelded to partially welded rhyolite ignimbrites (Tst; Fig. 12A; Table 1). Locally, these
ignimbrites show evidence of reworking, including sorting and rounding of lithic, pumice,
and crystal fragments, stratification and cut-and-fill structures, and small- to medium-scale
cross-lamination (Fig. 12B).

Very large-scale cross-bedded rhyolitic ignimbrites (Tsxi) form a distinctive
lithofacies of the Sierra Guazapares formation (Fig. 12C, 12D; Table 1). These deposits are
mainly restricted to a linear belt ~11-km-long and 3-km-wide within and immediately
adjacent to the Guazapares fault zone—La Palmera fault (Fig. 3B) and laterally grade away
from this linear belt into massive to stratified ignimbrites (Tst; Figs. 3 and 5; Supplemental
File 1). The very large-scale cross-bedded ignimbrites have average set heights of ~5 m;
some are as great as ~20 m (Figs. 12C, 12D). The cross-bedding in these ignimbrites is
defined by alternating lithic-rich (>50%) and lithic-poor (<30%) layers (Fig. 12D). The lithic
fragments are very coarse-grained, with blocks to 50-cm-diameter; these are dominantly
mafic to intermediate volcanic rocks likely derived from the underlying Témoris formation
(Fig. 12E). The matrix of the very large-scale cross-bedded ignimbrites is an unsorted
mixture of angular pumice, euhedral crystals, and glass shards, and the very large-scale cross-
beds lack internal laminations, sorting, or other fine-scale sedimentary structures indicative of
reworking by water.

Rhyolite lavas (Tsl) and hypabyssal intrusions (Tsi, Tsiw, Tsib) occur in the same
linear belt along the Guazapares fault zone—La Palmera fault as the very large-scale cross-
bedded ignimbrites, and also occur along additional NNW-striking faults in the region (Figs.

2 and 3; Supplemental File 1 [see footnote 1]). The silicic hypabyssal intrusions (Fig. 12F)
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are typically plugs with related dikes that intrude the ignimbrites (Tst, Tsxi) of the Sierra
Guazapares formation, and some of the plugs pass continuously upward into rhyolite lavas
(Tsl) (Fig. 13B). The rhyolite lavas typically overlie the ignimbrites, but are locally
interstratified (Fig. 12G).

In addition to silicic ignimbrites, lavas, and plugs, the Sierra Guazapares formation
also includes a volcaniclastic unit (Tsv) in the Monte Cristo area (Fig. 3B). This unit
includes a rhyolitic breccia associated with the growth of a rhyolite dome complex (Tsiw)
that overlies and interfingers with normal graded sandstones, mudstones with soft-sediment
deformation features, and moderately to poorly sorted sandstone with trough cross-bedding
and cut-and-fill structures (Table 1; Chapter 2).

Interpretation

We interpret the very large-scale cross-bedded ignimbrites to be vent-proximal lag
breccias deposited from energetic, turbulent pyroclastic density currents erupted during
several events from a major fissure vent along the Guazapares fault zone—La Palmera fault
(Figs. 2 and 3). Their linear map distribution indicates they were erupted from fissure vents,
rather than a central vent, and likely formed coarse-grained ramparts. Interstratified silicic
lavas and plugs are concentrated along either side of the same fault zone, in the same linear
map distribution, supporting the interpretation that the Guazapares fault zone—La Palmera
fault controlled the siting of an 11-km-long silicic fissure vent.

The very large-scale cross-bedded ignimbrites (Tsxi) represent a gradation between
the pyroclastic surge and pyroclastic flow end members of pyroclastic density current
classification (e.g., Fisher and Schmincke, 1984; Branney and Kokelaar, 2002). The
abundant very coarse-grained lithic layers in these cross-bedded ignimbrites are similar to

lithic lag breccias described from other vent to proximal ignimbrites (e.g., Fisher and
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Schmincke, 1984; Carey, 1991; Freundt et al., 2000; Branney and Kokelaar, 2002). The
angularity of the lithic components and their derivation from the underlying Témoris
formation suggests they were fragmented and incorporated into the pumice-rich pyroclastic
material as it ascended through the vent. However, the very large-scale cross-stratification is
unusual for ignimbrite lithic lag breccias. Very large-scale cross-bedding has been described
in vent to proximal ignimbrites in other localities, including Mount St. Helens (e.g., Rowley
et al., 1985), Tenerife (e.g., Brown and Branney, 2004), Santorini (e.g., Gertisser et al.,
2009), and Volcén Villarrica, Chile (e.g., Silva Parejas et al., 2010), however, these cross-
bedded ignimbrites are generally dominated by ash- to lapilli-sized material and do not
contain the large lithic blocks such as in the very large-scale cross-bedded ignimbrite (Tsxi)
described here.

Given their coarse-grained nature and large-scale cross-stratification, the very large-
scale cross-bedded ignimbrites (Tsxi) suggest deposition from highly-energetic low-
concentration pyroclastic flows in a vent to proximal setting, due to the high amount of
turbulent energy required to produce these very large bedforms while transporting the large
lithic fragments (e.g., Wright et al., 1981; Carey, 1991; Branney and Kokelaar, 2002). The
gradational lateral transition from very large-scale cross-bedded ignimbrites (Tsxi) into
massive to stratified ignimbrites (Tst) within 1-2 km of the Guazapares fault zone-La
Palmera fault (Fig. 3; Supplemental File 1 [see footnote 1]) suggests decreased turbulence
and an increased pyroclastic sedimentation rate farther from the vent.

Lithostratigraphic Summary
The three informal formations defined in the Guazapares Mining District region

represent three distinct volcanic episodes:
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(1) The Parajes formation consists of welded to nonwelded silicic outflow ignimbrite
sheets that were erupted from caldera sources within 50-100 km of the study area, with
intercalated volcaniclastic rocks derived from erosion of these ignimbrites.

(2) The lower and middle Témoris formation consists dominantly of locally erupted
mafic to intermediate composition lavas and associated subvolcanic intrusions, including an
andesitic center in the area around Témoris, as well as fault-controlled dikes that likely fed
flows outside the main center. The lower and middle Témoris formation also contains
interstratified volcaniclastic fluvial and debris flow deposits. Detritus at the base of the
formation that was derived from the underlying Parajes formation silicic ignimbrites records
erosion of that formation, perhaps along fault scarps. In contrast, the andesitic detritus that
dominates higher in the section could record resedimentation of primary eruptive products,
such as the collapsing fronts of lavas, or block-and-ash flows or tephras, although erosion of
constructional volcanic features or fault scarps is also probable, particularly for polymictic
deposits. The distal thin nonwelded silicic ignimbrites and sedimentary rocks of the upper
section of the Témoris formation record waning of local mafic to intermediate volcanism
prior to the onset of local silicic volcanism, and indicate continuing or recurring silicic
ignimbrite-forming eruptions from distant sources.

(3) The Sierra Guazapares formation records the local eruption of silicic volcanic
rocks within the Guazapares Mining District region. These include ignimbrites with vent
facies lithic lag breccias that formed very large-scale cross-beds along either side of an 11-
km-long fault-controlled fissure, which also controlled the emplacement of silicic plugs and
eruption of silicic lavas. The Sierra Guazapares formation also includes silicic fault talus
breccias and interstratified silicic lavas and volcaniclastic rocks that interfinger with

lacustrine deposits preserved in a half-graben basin.
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GEOLOGIC STRUCTURES & BASIN DEVELOPMENT

The main geologic structures in the Guazapares Mining District region are primarily
NNW-trending normal faults, including the Guazapares fault zone and faults to the northeast
of Témoris (Figs. 2, 3, and 4; Supplemental File 1 [see footnote 1]). The Guazapares fault
zone extends from Témoris northward to the Monte Cristo resource area, and is a complex
system of NNW-striking normal faults with numerous splays that dip both east and west, with
several changes of fault dip polarity along strike (Fig. 3B; and Supplemental File 1 [see
footnote 1]; Chapter 2). This fault zone hosts the majority of mineralization within the
mining district (e.g., Gustin, 2012). The normal faults located northeast of Témoris have
significant vertical offset and bound half-graben basins (Figs. 3A & 4). Although many of
the half graben faults die out upsection, making them relatively easy to recognize, faults of
the Guazapares fault zone were reactivated many times, and cut all formations (Figs. 2 and
5), making their earlier history more difficult to document.
Synvolcanic Half-Graben Basins

Several normal faults bound half-graben basins in the Guazapares Mining District
region, including: the NNW-striking, W-dipping Arroyo Hondo—Puerto Blanco, La Palmera,
and Agujerado faults; the NNE-striking, W-dipping Rancho de Santiago fault; and the NNW-
striking, E-dipping Sangre de Cristo fault (Figs. 3 and 4). In general, these half-graben basins
contain sedimentary and volcanic deposits that thicken and/or coarsen towards basin-
bounding normal faults, faults, which either terminate at the fault or thin onto the footwall,
indicating synextensional deposition (Fig. 4). Angular unconformities occur between each of

the formations and fanning dips (e.g., Fig. 13A) indicate synextensional deposition, with the
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Parajes and Témoris formations dipping more steeply than the gently dipping to flat-lying
Sierra Guazapares formation.

The upper part of the Parajes formation (younger than the Puerto Blanco ignimbrite
[Tpb]) was likely deposited into synvolcanic extensional basins, based on the variable
thicknesses of individual outflow ignimbrite sheets and distribution of interbedded
sedimentary rocks across faults. Evidence for synextensional deposition includes (1) the
presence of reworked tuff, sandstone, and conglomerate (Tps) above the Rancho de Santiago
ignimbrite (Tpr) within the half-graben basin adjacent to Arroyo Hondo—Puerto Blanco fault
and in the Mesa de Cristal area, which thicken toward and terminate at faults and are not
present on the footwall blocks, and (2) thickening of the Rancho de Santiago ignimbrite (Tpr)
within the half-graben basin bounded by the Arroyo Hondo—Puerto Blanco fault (~200 m-
thick), relative to the ~80 m thickness on the footwall block (Figs. 3A, 4, and 9C;
Supplemental File 1 [see footnote 1]).

Synextensional deposition of the Témoris formation is evident in the three half-
graben basins bounded by the La Palmera, Agujerado, and Rancho de Santiago—Arroyo
Hondo-Puerto Blanco faults (Figs. 3A and 4). In these basins, the Témoris formation is
deposited in angular unconformity on the more steeply dipping Parajes formation, and the
thickness and average grain size of sedimentary deposits increases dramatically eastward
towards each of the basin-bounding normal faults (Fig. 4). In the half-graben bounded by the
Agujerado fault, a coarse-grained debris flow (Ttds) deposited proximal to the basin-
bounding fault interfingers basinward with finer grained sandstone and siltstone (Ttss; Figs.
3A and 4B).

The largest of the three synvolcanic half-grabens of the Témoris formation is the

Rancho de Santiago basin, which is unique in that it developed as a half-graben bounded by
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two W-dipping normal faults on the eastern side of the basin; the southernmost fault is the
NNE-striking Rancho de Santiago fault, which is crosscut on the north end by the NNW-
striking Arroyo Hondo—Puerto Blanco fault (Fig. 3A). In this basin, a clast-supported breccia
(Ttdt) containing large (to 4 m) intermediate volcanic and lesser silicic ignimbrite rock
fragments, as well as slide blocks of fractured but intact sedimentary strata up to 15 m-thick
and 20 m-long, is adjacent to the Rancho de Santiago fault (Figs. 3A, 4C, and 10B; Table 1).
This breccia is interpreted as talus and avalanche deposits that were shed from the uplifted
footwall fault scarps directly into the half-graben basin to the west.

Synvolcanic extension during emplacement of the Sierra Guazapares formation is
recorded by silicic fault talus deposits, reworked tuffs, and fluvial-lacustrine deposits (Tsv)
preserved within the half-graben basin bounded by the Sangre de Cristo fault in the Monte
Cristo resource area at the northern mapped end of the Guazapares fault zone (Fig. 3B; Table
1; Chapter 2). In this basin, a rhyolitic fault talus breccia thickens and coarsens towards the
Sangre de Cristo fault and interfingers basinward with basal lacustrine sedimentary rocks.
Additional evidence of synvolcanic extension in this basin includes the development of a
normal fault within the hanging wall block of the Sangre de Cristo fault that provided a
conduit for a small silicic plug and coulee (Tsl) to intrude and flow over the actively
depositing volcaniclastic unit (Tsv; Fig. 3B; Chapter 2).

Relative Timing and Amount of Extensional Deformation

Extensional deformation in the Guazapares Mining District region was concurrent
with deposition of at least the upper part of the Parajes formation, the Témoris formation, and
the Sierra Guazapares formation, with continued extension following deposition of the Sierra
Guazapares formation. Pre—Sierra Guazapares formation extension is suggested by the low

to moderate angular unconformities between the Témoris formation and the underlying
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Parajes formation and the overlying Sierra Guazapares formation (Fig. 13A). Older normal
faults that offset the Parajes and Témoris formations localized the vents and silicic plugs of
the Sierra Guazapares formation, which utilized these preexisting structures as pathways for
magma accent (e.g., La Palmera and La Escalera faults, Guazapares fault zone; Figs. 2, 3, and
13B, Supplemental File 1 [see footnote 1]). In addition, unfaulted Sierra Guazapares
formation lavas bury some faults that offset the Parajes and Témoris formations (Figs. 2, 3,
and 4; Supplemental File 1 [see footnote 1]).

Further evidence of pre-Sierra Guazapares formation extension includes greater fault
offsets of the older formations compared to offset of the Sierra Guazapares formation (Figs.
3A and 4). The minimum vertical displacement of the base of the Témoris formation across
the Ericicuchi fault is >300 m, ~110 m across the Agujerado fault, and >450 m across the La
Palmera fault (Fig. 4). In comparison, these faults offset the Sierra Guazapares formation to a
lesser degree: the base of the Sierra Guazapares formation is only offset ~60 m across the
Ericicuchi fault, ~30 m across the Agujerado fault, and ~100 m across the La Palmera fault
(Fig. 4). This shows that a significant amount of extensional deformation (at least 350 m
vertical displacement) occurred prior to the eruption of the Sierra Guazapares formation.

A minimum of 20% total horizontal extension is estimated in the Guazapares Mining
District region (for the area shown in Fig. 4), based on the vertical displacement of
stratigraphic units across normal faults. This amount of extension is significantly lower than
that of the Gulf Extensional Province to the west in Sonora, where ~90% extension is
estimated to have occurred (Gans, 1997). The structural style also differs between these two
areas; high-angle normal faults are found in the Guazapares Mining District region, while

highly extended core complexes are located in Sonora (e.g., Gans, 1997; Wong et al., 2010).
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Although not directly quantifiable, several faults within the Guazapares Mining
District region appear to accommodate considerable amounts of deformation based solely on
the juxtaposition of stratigraphic units. The La Palmera fault has significant vertical offset
(over 450 m) based on the offset of the Parajes—Témoris formation contact; the Parajes
formation is exposed on the footwall, but is not exposed in the hanging wall, which suggests
that it is deeply buried beneath Témoris formation deposits there (Figs. 2 and 4). A distinct
lithologic boundary in the Parajes formation occurs across the Chapotillo fault, as the
younger outflow ignimbrite sheets in the hanging wall of this fault are not exposed on the
footwall to the southwest (Fig. 3A). Postdepositional drag folding related to normal fault
deformation is observed in the Témoris formation adjacent to many of the NNW-striking
faults with significant offset (e.g., La Palmera, Agujerado, and La Escalera faults, Figs. 3A
and 4); the underlying Parajes formation has small-scale normal faulting to accommodate this

deformation.

AGE CONSTRAINTS
Methodology

We report new U-Pb zircon ages from each of the three informally defined
formations, providing constraints on the age of the previously undated volcanic rocks of the
Guazapares Mining District region. Laser ablation—inductively coupled plasma—mass
spectrometry (LA—ICP-MS) U-Pb analyses were performed at the Laboratorio de Estudios
Isotopicos, Centro de Geociencias, Universidad Nacional Autonoma de México on zircons
separated from 13 silicic rock samples (Fig. 14; Table 3; Appendix 2). The zircons were
hand-picked under binocular microscope, mounted in an epoxy cast, polished, and imaged by

cathodoluminescence (CL). The zircons selected for U-Pb geochronology were analyzed
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Figure 14 (next 2 pages). Summary of zircon U-Pb LA-ICP—MS analyses for samples listed in Table 3, with
mean 2%°Pb/?*8U ages of the youngest zircon population (interpreted emplacement age) for each sample is listed.
Tera-Wasserburg concordia plots with inset probability density distribution plots are arranged by major
stratigraphic division and lithologic unit. MSWD—mean square of weighted deviates. Parajes formation: (A-
B) Ericicuchi ignimbrite (Tpe); (C) Puerto Blanco ignimbrite (Tpb). Témoris formation: (D) silicic tuff
interbedded in sandstone from the basal deposits of the formation; (E-F) silicic ignimbrites (Tti) from near the
top of the formation. Sierra Guazapares formation: (G) very large-scale cross-bedded rhyolitic ignimbrite
(Tsxi); (H-J) rhyolitic lavas (Tsl); (K-L) rhyolitic plugs (Tsi); (M) rhyolitic fault talus breccia clast from the
Monte Cristo resource area. Details on the experiments and mean age plots are given in Appendix 2.
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TABLE 3. SUMMARY OF ZIRCON U-Pb LA-ICP-MS RESULTS

Sample Map unit Lithology Age (Ma)* 20 (Ma) n MSWD UTM(E) UTM (N)

BM100304-2  Tsv rhyolite breccia (clast) 24.2 0.2 24 1.6 767557 3035421
25.8 0.5 9 1.9

BM100305-3 Tsi rhyolite plug 24.6 0.2 23 1.5 774042 3023376

BMO080717-3 Tsi rhyolite plug 25.0 0.3 18 1.7 770970 3030952

BM100304-1 Tsl rhyolitic lava flow 22.9 0.3 3 0.18 767453 3035862
25.1 0.2 22 1.5

BM100305-2 Tsl rhyolite lava flow 23.9 0.3 8 0.94 773462 3023389
25.7 0.3 23 1.5

BM100307-1 Tsl rhyolite lava flow 23.7 0.2 5 0.97 771277 3030018
25.8 0.3 17 1.7

BM100304-4  Tsxi cross-bedded ignimbrite 24.7 0.2 19 1.3 767878 3027817

BM100305-1 Tti rhyolite lapilli tuff 241 0.3 10 049 773365 3023281
25.6 0.3 17 1.6

BM100304-5 Tii rhyolite lapilli tuff 24.6 0.2 12 096 768511 3027340
26.1 0.3 20 1.5

BM100305-4  Ttss silicic tuff 27.3 0.3 18 1.7 776588 3031515
29.7 0.7 11 21

BM100306-6  Tpb nonwelded silicic ignimbrite 27.6 0.3 31 2.6 778205 3029101

BM100306-3 Tpe nonwelded silicic ignimbrite 27.0 0.7 6 25 776541 3026289
29.0 0.3 16 1.6

BM100306-1 Tpe nonwelded silicic ignimbrite 27.6 0.3 6 1.04 775513 3024576
29.6 0.3 22 1.6

Notes : LA-ICP-MS—Iaser ablation—inductively coupled plasma—mass spectrometry. Ages in italics represent the
zircon antecryst (proposed by Charlier et al., 2004; crystals that predate crystallization and eruption of a host
magma, but formed during an earlier phase of related magmatism) age population in a given sample. The youngest
age population of each sample is interpreted as the preferred eruption or emplacement age. n—number,
MSWD—mean square of weighted deviates. Universal Transverse Mercator (UTM; E—east, N—north) coordinates
are based on the North American Datum 1927 (NAD27) zone 12. Map unit labels correspond to Table 1.

Locations of the samples are shown on Supplemental File 1 (see footnote 1). Details of each analysis are given in
Appendix 2.

* Mean **Pb/***U age
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following the procedure reported by Solari et al. (2010), employing a Resonetics M050
excimer laser ablation workstation coupled to a Thermo XSeries 1l ICP-MS. Based on CL
imaging, one ablation site was selected on each zircon analyzed, located either in the middle,
near rim, or core of the crystal (Appendix 3). The Plesovice standard zircon (ca. 337 Ma;
Slama et al., 2008) was used as a bracketing standard, interdispersed and measured after
every 5 unknown zircons. The observed uncertainties of the 2°°Pb/?*8U, 2’Pb/?°®Pb, and
208p}y/%32TH ratios, during the different sessions in which the current samples were analyzed,
as measured on the Plesovice standard zircon, were 0.65%, 1.0%, and 1.1%, respectively.
These values are quadratically propagated to the quoted uncertainties of the unknown zircons,
to take into account the heterogeneities of the natural standard zircon. A second standard
(NIST 610) is used to recalculate the elemental concentrations for each zircon, measured
together with the isotopes of interest for U-Pb geochronology. The common Pb correction
cannot be performed measuring the 2**Pb isotope with the current setup; common Pb is
evaluated using the 2°’Pb/?®®Pb ratio, graphing the results using Tera-Wasserburg diagrams
(Tera and Wasserburg, 1972). If a correction is needed, the algebraic method of Andersen
(2002) is used. Filters are then applied to reduce outliers: largely discordant analyses (e.g., >
50% discordant) and those with > 4% 1c error on the corrected 2°°Ph/?*®U ratio are
eliminated. A further screening is applied to check for possible microscopic inclusions of
minerals other than zircons that could have been inadvertently hit during the analysis. This
screening is performed during data reduction, employing a script written in R (UPb.age;
Solari and Tanner, 2011). Additional screenings are performed, checking for analyses with
high P and light rare earth elements, which could be indicative of apatite inclusions, and

those few analyses which present high concentrations of U and Th (generally >1000 ppm),
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which could yield to a Pb loss and a consequent discordant or, in any case, younger and
geologically meaningless ages.

Concordia plots, probability density distribution and histogram plots, mean age, and
age-error calculations were performed using Isoplot v. 3.70 (Ludwig, 2008). The mean
206pp /238 age is especially useful for the Tertiary ages presented here, because the 2°’Pb
measurement is problematic in these young zircons and the consequent uncertainty on the
207pp/2%ph ratio is not a good indicator of geologically meaningful discordance. In Tertiary
zircons, it is also common to observe scattering of the mean 2°Pb/***U ages that yields
MSWD (mean square of weighted deviates) values that are largely >1, an indication that a
mixed age population possibly exists. An example of this scenario was presented by Bryan et
al. (2008). In order to recognize possible different age components in samples that showed
an initial MSWD of >3, the deconvolution method, based on the mixture modeling method of
Sambridge and Compston (1994), was implemented in Isoplot.

When two mixture components are recognized, their respective mean 2*°Pb/***U ages
are plotted together with errors and recalculated MSWD. The mean *®°Pb/?*®U age of the
older mixture component in a sample represents the crystallization age of inherited zircons
within the host magma, while the younger mean 2®°Pb/?*®U age population represents the
phenocryst crystallization age of the sample. This youngest age population of each sample is
interpreted as the preferred eruption or emplacement age of the rock, as it is consistent
(within error) with stratigraphic relationships in the study area. Age results are presented in
the following and summarized in Figure 14 and Table 3; detailed analytical data are given in

Appendix 2.
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Results
Parajes formation

Three samples were dated from the Parajes formation (Figs. 14A-14C; Table 1),
including two samples from the Ericicuchi ignimbrite (Tpe) and one sample from the Puerto
Blanco ignimbrite (Tpb). Sample BM100306-1 is Ericicuchi ignimbrite (Tpe), which has
separated zircons that are bipyramidal to short and stubby, and to 220 um long. Under CL,
the zircons show uniform areas with limited luminescence; in a few cases, oscillatory zoning
is present around possible inherited cores. The U-Pb geochronological analysis, as well as
the screening and filtering, shows the presence of inherited cores that are slightly discordant
but older than 40 Ma. Most of the analyzed, nearly concordant crystals range from ca. 26 Ma
to 31 Ma (Fig. 14A). Two zircon age populations can be distinguished: the oldest population
has a mean age of 29.6 £ 0.3 Ma (n =22, MSWD = 1.6), whereas the youngest has a mean
age of 27.6 £ 0.3 Ma (n = 6, MSWD = 1.04). A second sample from the Ericicuchi
ignimbrite (sample BM100306-3; Fig. 14B) yielded fewer and smaller zircon crystals (to 180
pm in length) that are euhedral to subhedral with a prevalence of stubby morphologies with
short pyramidal terminations. These zircons show bright CL zoning around darker cores.
The U-Pb geochronology for this sample also revealed the presence of inherited cores of ca.
76, 50 and 38 Ma and two main zircon age populations consisting of an older grouping
having a mean age of 29.0 £ 0.3 Ma (n = 16, MSWD = 1.6) and a younger grouping with a
mean age of 27.0 £ 0.7 Ma (n = 6, MSWD = 2.5). The third sample of the Parajes formation
is from the Puerto Blanco ignimbrite (Tpb; sample BM100306-6; Fig. 14C). The zircons in
this sample are larger (to 260 um in length) with elongated shapes that are mostly prismatic

with well-developed pyramids. Under CL they show evident bright rims developed outside
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darker zones. The dated zircons define a homogeneous group with few outliers and have a
mean age of 27.6 + 0.3 Ma (n = 31, MSWD = 2.6).
Témoris Formation

Three samples of silicic tuffs from basal and upper sections of the Témoris formation
were dated (Figs. 14D-14F; Table 3). Sample BM100305-4 was collected from the basal
section of the Témoris formation (Fig. 14D) and has zircons to 300 um in length that are
prismatic and elongated. Under CL, the zircons are characterized by darker cores surrounded
by bright zones. Despite similar crystal morphologies, two zircon age populations are
identified; the oldest group has a mean age of 29.7 £ 0.7 Ma (n = 11, MSWD = 2.1), whereas
the youngest mean age is 27.3 £ 0.3 Ma (n = 18, MSWD = 1.7). Sample BM100304-5 was
collected from the upper section of the Témoris formation (Tti; Fig. 14E) and has zircons that
are indistinguishable in size, morphology, and CL imaging from those of the previous
sample. Two well-constrained zircon age populations are also defined; the oldest has a mean
age of 26.1 £ 0.3 Ma (n = 20, MSWD = 1.5), whereas the youngest mean age is 24.6 £ 0.2
Ma (n = 12, MSWD= 0.96). Sample BM100305-1 is from the uppermost section of the
Témoris formation (Tti), ~35 m below the Sierra Guazapares formation contact (Figs. 11 and
14F). Its zircons are also prismatic and very elongated, although they are somewhat smaller
(to 200 pm in length) in this sample. Under CL, the zircons are also characterized by darker
cores surrounded by bright zones. U-Pb analyses identified two zircon age populations in
this sample; the oldest group yields a mean age of 25.6 £ 0.3 Ma (n = 17, MSWD = 1.6),
whereas the youngest group yields a mean age of 24.1 £ 0.3 Ma (n = 10, MSWD = 0.49).
Sierra Guazapares Formation

Seven samples from the various lithologies of the Sierra Guazapares formation were

chosen for U-Pb geochronology (Figs. 14G-14M; Table 3). Sample BM100304-4 was
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collected from the very large-scale cross-bedded ignimbrite unit (Tsxi; Fig. 14G). It has
somewhat small (to 150 um) euhedral zircons that range in shape from prismatic to stubby
and bipyramidal morphologies. CL imaging is not different from the previously described
samples, although cores are not as evident as in other samples. The dated zircons define only
one coherent group, in which the mean age is 24.7 £ 0.2 Ma (n = 19, MSWD = 1.3).

Three rhyolite lava (Tsl) samples were analyzed. Sample BM100307-1 (Fig. 14H) is
characterized by prismatic euhedral zircons (to 300 um in length) with the same CL
characteristics as those previously described. Two zircon age groups are also defined; the
oldest group yields a mean age of 25.8 + 0.3 Ma (n =17, MSWD = 1.7), whereas the mean
age of the youngest group is 23.7 £ 0.2 Ma (n =5, MSWD = 0.42). Sample BM100305-2
(Fig. 141) also has prismatic zircons (to 200 pm in length) with most showing oscillatory
zoning. U-Pb zircon dating of this sample defines two age populations; the oldest group with
a mean age of 25.7 £ 0.3 Ma (n = 23, MSWD = 1.5) and the youngest group with a mean age
0f 23.9 £ 0.3 Ma (n =8, MSWD = 0.94). Sample BM100304-1 (Fig. 14J) was collected from
a small lava in the Monte Cristo area (Fig. 3B). It also has prismatic zircons (to 180 um in
length), although in this sample they are somewhat more needle shaped. Two age
populations are identified in this sample; the oldest has a mean age of 25.1 + 0.2 Ma (n = 22,
MSWD = 1.5), whereas a few grains define the youngest group with a mean age of 22.9 + 0.3
Ma (n = 3, MSWD = 0.18).

Two samples collected from rhyolite plugs (Tsi) were analyzed. Sample BM080717-3
(Fig. 14K) is characterized by stubby to bipyramidal zircons (to 150 um in length) that are
sector zoned under CL. Its U-Pb dating yields only one age group, with a mean age of 25.0 +

0.3 Ma (n =18, MSWD = 1.7). The zircons belonging to the sample BM100305-3 (Fig. 14L)
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are prismatic and large (to 340 um in length). The U-Pb dating yields a homogeneous age
group, with a mean age of 24.6 £ 0.2 Ma (n = 23, MSWD = 1.5).

Sample BM100304-2 was collected from a clast in a rhyolitic breccia locally exposed
in the Monte Cristo area (Tsv; Figs. 3B and 14M). Its zircons are prismatic and large (to 250
pm in length). Two age populations are recognized; the oldest group has a mean age of 25.8
+ 0.5 Ma (n =9, MSWD = 1.9), whereas the youngest group has a mean age of 24.2 + 0.2 Ma
(n = 24, MSWD = 1.6).
Age Interpretations

Previous dating of silicic volcanic rocks in the Sierra Madre Occidental using zircon
U-Pb LA-ICP-MS showed that zircon ages are occasionally older (to 1-4 Myr) than the ages
obtained from the same rocks using K/Ar and “°Ar/**Ar dating methods (Bryan et al., 2008).
The older zircon ages in their study are attributed to the presence of 'antecrysts’, a term
proposed by Charlier et al. (2004) to describe crystals that predate the crystallization and
eruption of a host magma, but formed during an earlier phase of related magmatism. In a
region of long-lived magmatism like the Sierra Madre Occidental, the antecryst ages could
predate the phenocryst age by more than 10 Myr, making it difficult to distinguish antecrysts
from xenocrysts (Bryan et al., 2008). In addition, the occurrence of antecrysts tends to be
greater in the younger silicic volcanic rocks of a sequence, when the probability of remelting
partially molten or solidified upper crustal rocks formed during a preceding magmatic phase
is higher (Bryan et al., 2008).

The presence of antecrysts in a zircon population for a sample will tend to produce
initial MSWD values much greater than unity and probability density function curves of
zircon ages that are positively skewed and asymmetric, and/or have broad, bimodal, or

polymodal peaks. In comparison, a well-defined unimodal peak likely indicates the
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crystallization age of phenocrysts with limited antecrysts, which is a close approximation to
the eruption age of the host magma (Charlier et al., 2004; Bryan et al., 2008).

The ages obtained for most of the samples dated for this study in the Guazapares
Mining District region suggest the presence of antecrysts in the zircon population. The
probability density function curves tend to be positively skewed and asymmetric, and several
have broad or bimodal peaks (Fig. 14; Appendix 2). The oldest zircon population in a
sample represents the crystallization age of antecrysts, which generally correspond to zircons
with crystal core to middle ablation sites. In comparison, the youngest zircon population
indicates the age of phenocryst crystallization and typically represents the zircons with
middle to near-rim ablation sites. The antecryst age populations in these samples tend to be
~1.5-2 Myr older than the phenocryst age populations (Table 3); antecryst ages tend to
cluster around 29.5 Ma for samples from the Parajes formation and 25.5 Ma for samples from

the overlying Témoris and Sierra Guazapares formations.

DISCUSSION
Volcanic & Tectonic Evolution

The new geologic mapping and geochronology presented in this study show that the
three informal formations in the Guazapares Mining District region (Fig. 5) record Late
Oligocene to Early Miocene synextensional volcanic activity during the mid-Cenozoic
ignimbrite flare-up in the northern Sierra Madre Occidental: (1) the synextensional
deposition of outflow ignimbrite sheets (Parajes formation) at ca. 27.5 Ma, which were likely
erupted from calderas ~50-100 km from the study area; these overlap in time with the end of
peak ignimbrite flare-up volcanism to the east; (2) synextensional growth of an andesitic

volcanic center (Témoris formation) between ca. 27 Ma and ca. 24.5 Ma; and (3)
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synextensional silicic fissure magmatism (Sierra Guazapares formation), including vent-
facies ignimbrites, lavas, and intrusions, between ca. 24.5 and ca. 23 Ma (Fig. 15).

Stratigraphic and structural evidence show that the outflow ignimbrite sheets of the
Parajes formation younger than the 27.6 £ 0.3 Ma Puerto Blanco ignimbrite (Tpb) were
deposited in a developing half-graben basin (Fig. 15A). It is uncertain whether the older
outflow ignimbrite sheets in the formation (older than 27.5 Ma) were deposited in half-
graben basins. The Parajes formation was tilted by extension and partly eroded from normal
fault footwalls prior to and during deposition of the overlying Témoris formation (Figs. 4,
9C, and 10A).

The ca. 27-24.5 Ma Témoris formation records the onset of magmatism in the area,
which was primarily andesitic, with compositions ranging from basalt to andesite (Fig. 7).
Like the Parajes formation, the Témoris formation was deposited in synvolcanic half-graben
basins (Fig. 15B). Fluvial and debris flow processes developed alluvial fan systems that
prograded into the half-grabens to become interbedded with andesitic lavas. At least some of
these alluvial deposits were likely eroded from andesitic lavas exposed in uplifted normal
fault footwall blocks, although some of the detritus could also have been reworked from
unconsolidated primary volcanic fragmental eruptive products (Fig. 15B). Normal faults in
the study area control the siting of some vents of the Témoris formation, including andesitic
feeder dikes along normal faults and the andesitic volcanic center (Ttv) in the area around
Témoris, which is located at the southern projection of the Guazapares fault zone (Figs. 2 and
3; Supplemental File 1 [see footnote 1]). The presence of distal silicic ignimbrites (Tti) in the
uppermost part of the mafic to andesitic Témoris formation, below the silicic ignimbrite-

dominated Sierra Guazapares formation (Figs. 5, 11, and 13A) records a hiatus between local
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Figure 15 (next page). Schematic block diagrams illustrating the tectonic and volcanic evolution of the three
formations in Guazapares Mining District region during the Late Oligocene to Early Miocene. The colors
correspond to the geologic map units in Figure 3C. (A) By ca. 27.5 Ma, outflow ignimbrite sheets of the Parajes
formation were erupted from medial sources during the end of the Early Oligocene pulse of the mid-Cenozoic
ignimbrite flare-up in northern Mexico. The base of this stratigraphic division is not exposed in the field area; it
is inferred that the Parajes formation is deposited over the pre-Oligocene Lower Volcanic Complex (LVC)
based on regional studies (e.g., Ferrari et al., 2007). At least the upper part of the Parajes formation was
deposited during crustal extension, indicated by reworked tuffs, cross-bedded sandstones, and pebble-to-cobble
conglomerates with Parajes formation ignimbrite clasts interbedded between outflow ignimbrite sheets and
thinning of ignimbrites on normal fault footwall blocks. Continued uplift and partial erosion of the formation
occurred prior to eruption of the Témoris formation. (B) Between ca. 27 and 24.5 Ma, the Témoris formation
was erupted from an andesitic volcanic center sited along the Guazapares fault zone and from smaller vents
located along normal faults in the region. Primary volcanic rocks and volcaniclastic rocks derived from
intrabasinal reworking of eruptive products were deposited into alluvial fan systems in synvolcanic half-graben
basins. (C) Following a period of waning locally erupted mafic to intermediate volcanism in the region marked
by an increase in distal ignimbrite deposition in the upper section of the Témoris formation, the Sierra
Guazapares formation was erupted during the Early Miocene ignimbrite pulse of the mid-Cenozoic ignimbrite
flare-up, ca. 24.5-23 Ma. Fissure vents are located along preexisting normal faults in the Guazapares Mining
District region; there is a lateral volcanic facies transition away from the faults from vent (very large-scale cross-
bedded ignimbrites, lavas, plugs) to proximal with slight fluvial reworking (massive to stratified ignimbrites).
Rhyolitic plugs intrude normal faults and are the source for many of the rhyolitic lavas.
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andesitic and silicic magmatism in the region, modified by extension, tilting, and erosion, to
produce an angular unconformity.

The ca. 24.5-23 Ma Sierra Guazapares formation records the onset of silicic
magmatism within the Guazapares Mining District region. Based on composition and
geochronology (Figs. 6, 7, and 14; Table 3), the vent to proximal facies along the Guazapares
fault zone—La Palmera fault records several eruption events of high-energy explosive
volcanism that resulted in deposition of very large-scale cross-bedded ignimbrites with lag
breccias (Tsxi) in a wedge that defines a linear, fault-controlled fissure-type vent system
(Figs. 3 and 15C). The eruptive style of each event of the Sierra Guazapares formation likely
transitioned into effusive volcanism, with the emplacement of rhyolite plugs along the
fissures and the deposition of related rhyolite lavas over the ignimbrites (e.g., Fig. 13B). This
sequence of fissure-fed ignimbrites and effusive lava and plugs is similar to the fissure
ignimbrite eruption model proposed by Aguirre-Diaz and Labarthe-Hernandez (2003) to
explain the origin of large volume silicic ignimbrites and related effusive volcanic deposits in
other extended regions of the Sierra Madre Occidental. Their model suggests that during
crustal extension, a volatile-rich silicic magma chamber reaches high crustal levels and
encounters preexisting normal faults that provide a conduit for magma ascent. Magma
decompression follows, resulting in an explosive eruption event with deposition of proximal
pyroclastic volcanic facies adjacent to the fault-controlled vents; silicic lava domes and dikes
follow the pyroclastic rocks and close the vents as the magma becomes depleted of volatiles
(e.g, Aguirre-Diaz and Labarthe-Hernandez, 2003). Each explosive and effusive volcanic
event of the Sierra Guazapares formation may have progressed in a fashion similar to this
fissure ignimbrite eruption model proposed by Aguirre-Diaz and Labarthe-Hernandez (2003),

with several silicic magma chambers interacting at high crustal levels with the Guazapares
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fault zone—La Palmera fault to develop a fissure-vent system. Further mapping is needed in
the region to determine whether the fissure continues to the south of Témoris, where resistant
silicic intrusions are obvious from a distance (Fig. 2; Supplemental File 1 [see footnote 1]).
Regional Correlations

New stratigraphic and geochronologic data presented in this study indicate that mafic
to intermediate volcanic rocks in the study area are not related to the Lower Volcanic
Complex as proposed by previous workers (e.g., Ramirez Tello and Garcia Peralta, 2004;
Roy et al., 2008; Wood and Durgin, 2009; Gustin, 2011, 2012). The Témoris formation
instead represents a period of mafic to intermediate volcanism that occurred between two
ignimbrite pulses of the mid-Cenozoic ignimbrite flare-up in the northern Sierra Madre
Occidental and preceded local silicic ignimbrite flare-up magmatism in the study area.

The ca. 27.5 Ma Parajes formation is interpreted as medial welded to nonwelded
silicic outflow ignimbrite sheets erupted at the end of the Early Oligocene pulse of the mid-
Cenozoic ignimbrite flare-up in the Sierra Madre Occidental (ca. 36-27 Ma; Ferrari et al.,
2007; Cather et al., 2009; McDowell and Mclintosh, 2012), based on the similar eruption ages
and physical characteristics to ignimbrite sequences described elsewhere in the region (e.g.,
Swanson et al., 2006; McDowell, 2007 and references therein). Possible sources for the
outflow ignimbrites of the Parajes formation include: (1) vent to proximal volcanic facies of
similar ages previously identified ~100 km towards the north and northeast near Basaseachic
and Tomochic (e.g., McDowell, 2007 and references therein; McDowell and Mcintosh,
2012), and (2) several calderas identified <50 km to the north, south, and east of the
Guazapares Mining District region (e.g., Ferrari et al., 2007 and references therein) (Fig. 16).

Based on phenocryst assemblages and an eruption age older than 27.5 Ma, the oldest

flow unit of the Parajes formation, the Chepe ignimbrite (Tpc; Table 1), is tentatively
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Figure 16. Map of the northern Sierra Madre Occidental showing the timing of extensional deformation and
post-Lower Volcanic Complex locally derived volcanism (e.g., intracaldera facies, lavas) in the region relative
to Guazapares (this study, black box in figure). Known and inferred calderas in the region are indicated, as well
as main Tertiary faults and the direction of crustal extension (modified from Ferrari et al., 2007). Generally, the
age of the volcanism is increasingly younger towards the southwest, and although the timing of extension is less
constrained, there also appears to be an increasingly younger trend towards the southwest of the study area in the
Gulf Extensional Province of Sonora. Ages of extension and volcanism are from Bagby (1979), Cameron et al.
(1989), Wark et al. (1990), Swanson et al. (2006), Gonzalez Ledn et al. (2000), McDowell (2007), Ferrari et al.
(2007, and references therein), Wong et al. (2010), McDowell and Mclntosh (2012), Bryan et al. (2013), and
this study.
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correlated with the regionally extensive Divisadero tuff of Swanson et al. (2006). The
Divisadero tuff is distinctive for its crystal-rich nature (to ~40% phenocrysts) of mostly large
(to 4 mm) grains of plagioclase and deeply embayed quartz. It is highly variable in thickness
(~10-300 m) and has multiple cooling units with densely welded red-brown interiors that
grade upward to poorly welded white tops (Swanson et al., 2006). We sampled the upper
Divisadero tuff near Divisadero, southwest of Creel (sample DIV-2; Fig. 6; Table 1), to
compare it with the Chepe ignimbrite (Tpc) of this study. Both have a very similar crystal-
rich nature with large plagioclase, biotite, and embayed quartz phenocrysts, and the Chepe
ignimbrite, like the Divisadero tuff, is densely welded. However, further investigation is
needed to confirm this regional correlation, such as pumice and zircon geochemistry, and U-
Pb zircon geochronology on the Divisadero tuff, which was previously dated by Swanson et
al. (2006) using the K-Ar method as 29.9 + 0.7 and 29.8 + 0.5 Ma (+1c errors). The
Divisadero tuff extends from San Juanito to Divisadero for a length of ~60 km (Swanson et
al., 2006); our tentative correlation would expand the extent of the Divisadero tuff an
additional ~45 km southwest to a total length of ~105 km (Fig. 1).

In several localities in the northern Sierra Madre Occidental, mafic to intermediate
composition volcanism followed the large-volume eruptions of the Early Oligocene
ignimbrite pulse (the Southern Cordillera basaltic andesite province); the Témoris formation
in the Guazapares Mining District region may be related to this period of mafic to
intermediate composition volcanism. The mafic to intermediate composition volcanic rocks
in other parts of the Sierra Madre Occidental are roughly coeval with or slightly younger than
the ca. 27-24.5 Ma Témoris formation. In addition, the composition of Témoris formation

rocks is similar to those of the Southern Cordillera basaltic andesite province (Fig. 7).
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The age of the 24.5-23 Ma Sierra Guazapares formation generally coincides with the
onset of the regional Early Miocene (ca. 24—20 Ma) ignimbrite pulse of the mid-Cenozoic
ignimbrite flare-up (e.g., Ferrari et al., 2002; Ferrari et al., 2007; McDowell and Mclntosh,
2012; Bryan et al., 2013). Although the Early Miocene ignimbrite pulse is volumetrically
significant in the southern Sierra Madre Occidental (Ferrari et al., 2002; Ferrari et al., 2007),
in the northern and central Sierra Madre Occidental this ignimbrite pulse was previously
thought to be less abundant and restricted to the westernmost part of the silicic large igneous
province (Ferrari et al., 2007; McDowell and Mclintosh, 2012; Bryan et al., 2013). The Sierra
Guazapares formation thus represents a previously unrecognized part of the Early Miocene
ignimbrite pulse that may have been more widespread, east of the area where rocks erupted
during this pulse have been previously recognized in the northern Sierra Madre Occidental.
Regional Timing of Volcanism and Extension

Previous studies have interpreted that a transition from andesitic arc magmatism in a
compressional (Laramide) stress regime accompanying rapid plate convergence (Lower
Volcanic Complex), to silicic ignimbrite flare-up magmatism in an extensional stress regime
(Upper Volcanic Supergroup), was the result of decreased convergence between the Farallon
and North American plates beginning in the Late Eocene ca. 40 Ma (Wark et al., 1990;
Aguirre-Diaz and McDowell, 1991; Ward, 1991; Wark, 1991; Grijalva-Noriega and Roldan-
Quintana, 1998; Ferrari et al., 2007). After the end of the Laramide orogeny in Mexico (Late
Eocene), the Farallon plate was removed from the base of the North American plate by either
steepening (slab rollback) and possible detachment of the deeper part of the subducted slab
(e.g., Ferrari et al., 2007; Henry et al., 2010; Best et al., 2013; Bushy, 2013), or through the
development of a slab window (e.g., Wong et al., 2010). Based on the available age

distribution of volcanic rocks in the southwestern U.S. and the Sierra Madre Occidental, the
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locus of magmatism is inferred to have migrated eastward (inboard) from the trench in
Cretaceous to Eocene time, followed by a general southwestward migration of the arc-front
magmatism towards the trench commencing by ca. 40 Ma in response to these Farallon—
North American plate interactions (e.g., Coney and Reynolds, 1977; Damon et al., 1981,
Ferrari et al., 1999; Gans et al., 2003; Ferrari et al., 2007; Henry et al., 2010; Wong et al.,
2010; McDowell and Mclntosh, 2012; Bryan et al., 2013; Busby, 2013). This plate tectonic
interpretation is similar to space-time models of mid-Cenozoic volcanism proposed in the
western U.S. (e.g., Coney and Reynolds, 1977; Damon et al., 1981; Gans et al., 1989; Best
and Christiansen, 1991; Christiansen and Yates, 1992; Axen et al., 1993; Humphreys, 1995;
Dickinson, 2002, 2006; Henry et al., 2010; Best et al., 2013; Bushy, 2013). However, at a
more detailed level this age trend shows greater complexity, as the Early Oligocene pulse of
the ignimbrite flare-up occurred in a wide belt throughout the entire Sierra Madre Occidental
at essentially the same age without internal migration patterns, and volcanism reappears in
the rear-arc east of the arc front in the Middle to Late Miocene (Ferrari et al., 2007; Bryan et
al., 2013).

The timing of the onset of extension relative to southwestward-migrating volcanism
in the Sierra Madre Occidental has been poorly constrained, due at least in part to sparse map
data. At the regional scale, the onset of extension possibly migrated episodically from east to
west along the entire Sierra Madre Occidental, roughly corresponding to the southwestward
migration of the arc front toward the trench; however, in detail volcanism in a given area may
be pre extensional, synextensional, or postextensional (Ferrari et al., 2007). Although no
direct evidence has been found for Eocene extension in the eastern Sierra Madre Occidental
proper, there is evidence of an initial episode of extensional faulting during the Early Eocene

in the Mesa Central region to the east of the southern Sierra Madre Occidental (Aranda-
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Goémez and McDowell, 1998; Aguillon-Robles et al., 2009; Tristan-Gonzalez et al., 2009)
and at its easternmost boundary east of Durango during the Early Oligocene (32.3-30.6 Ma;
Luhr et al., 2001), east of the unextended core. The earliest initiation of upper-crustal
extension that developed regionally is inferred to have occurred ca. 30 Ma, marked by the
widespread eruption of the Southern Cordillera basaltic andesite province (Cameron et al.,
1989). The timing of this event immediately followed the peak of ignimbrite flare-up
volcanism of the Early Oligocene pulse and coincided with a decline in silicic explosive
volcanism (Bryan and Ferrari, 2013). Following this regional event, extensional deformation
generally became focused in the Gulf Extensional Province to the west of the unextended
core of the Sierra Madre Occidental and the timing of initial extensional deformation appears
to have migrated westward with time in this region (Fig. 16; Gans, 1997; Gans et al., 2003).
Our new geologic mapping and geochronological data from the Guazapares Mining
District region is broadly consistent with the interpretations that the inception of volcanism
and extension generally migrated southwestward with time across the Sierra Madre
Occidental. The Late Oligocene age (ca. 27 Ma) of initial local volcanism in the study area is
younger than Late Eocene to Early Eocene volcanism to the northeast, and older than to
coeval with Late Oligocene to Early Miocene volcanism to the west (Fig. 16). Our data
clearly show that extension in the study area not only preceded local mafic to intermediate
volcanism ca. 27 Ma and local silicic ignimbrite flare-up magmatism during the Early
Miocene pulse ca. 24.5 Ma, but also overlapped in time with the end of the Early Oligocene
pulse of the ignimbrite flare-up in the northern Sierra Madre Occidental, which occurred
about 50-150 km to the north and east at ca. 32-28 Ma (Fig. 16). The Late Oligocene age
(ca. 27.5 to after 23 Ma) of extension in the Guazapares Mining District region is slightly

older than to roughly coeval with the onset of extension further west in Sonora (Fig. 16),
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where sedimentation in fault-bound grabens and rapid footwall cooling of core complexes
also began at the end of the Oligocene to Early Miocene (Gans, 1997; McDowell et al., 1997,
Wong et al., 2010).
Extensional Effects on Volcanism

Although much more mapping and dating are needed, we suggest that widespread
crustal extension in northwestern Mexico may have played an important role in the later
stages of magmatic development of the Sierra Madre Occidental silicic large igneous
province. As magmatism migrated southwestward during the Late Oligocene to Miocene
toward the Gulf of California, previously extended or currently extending crust likely
influenced the composition of melts and promoted the localization of volcanic vents along
favorable structures. Extension has been inferred to favor the generation and storage of melt
(e.g., Hildreth, 1981; McKenzie and Bickle, 1988; White and McKenzie, 1989; Wark, 1991;
Hanson and Glazner, 1995), and crustal thinning and active normal faulting is inferred to
promote the ascent of basaltic magma, which results in crustal melting and the formation of
silicic magma compositions (e.g., Johnson and Grunder, 2000; Ferrari et al., 2010). Although
much of the pre-30 Ma volcanic and structural relationships are unclear, the inferred
relationship between lithospheric extension and magmatism is supported by the
synextensional nature of the of the Late Oligocene to Early Miocene mid-Cenozoic
ignimbrite flare-up in the Sierra Madre Occidental silicic large igneous province, as observed

in the Guazapares Mining District region.

CONCLUSIONS
New geologic mapping and zircon U-Pb LA-ICP-MS ages indicate that the Late

Oligocene to Early Miocene rocks of the Guazapares Mining District region record
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synextensional volcanism in the northern Sierra Madre Occidental. Three informal
formations are recognized: (1) the Parajes formation, consisting of silicic outflow ignimbrite
sheets erupted from distant sources by ca 27.5 Ma, during the end of the Early Oligocene
pulse of the mid-Cenozoic ignimbrite flare-up; (2) the ca. 27-24.5 Ma Témoris formation,
comprising locally erupted mafic to intermediate composition volcanic rocks, including an
andesitic volcanic center; and (3) the ca. 24.5-23 Ma Sierra Guazapares formation,
consisting of vent to proximal silicic ignimbrites, lavas, and plugs erupted by fissure
magmatism during the onset of the Early Miocene pulse of the mid-Cenozoic ignimbrite
flare-up.

The main geologic structures in the Guazapares Mining District region are NNW-
trending normal faults, several of which bound synvolcanic half-graben basins that began to
form by the time of deposition of the upper part of the Parajes formation, and continued to
develop during deposition of the Témoris and Sierra Guazapares formations. Much of the
crustal extension occurred prior to the eruption of the Sierra Guazapares formation, with the
earliest evidence of crustal extension by ca. 27.5 Ma. A minimum of 20% total horizontal
extension is estimated in the Guazapares Mining District region. Preexisting extensional
structures controlled the localization of andesitic and silicic volcanic vents and shallow level
intrusions of the Témoris and Sierra Guazapares formations. The age of volcanism and
extensional faulting in the Guazapares Mining District region generally corresponds to
regional models inferring a post-Eocene southwestward migration of volcanism and crustal
extension in the northern Sierra Madre Occidental.

In summary, this study presents direct evidence that crustal extension occurred in the
western part of the northern Sierra Madre Occidental during the end of the Early Oligocene

pulse of the ignimbrite flare-up. Extension in the Guazapares Mining District region
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preceded and continued during the onset of local magmatism, consisting first of mafic to
andesitic magmatism, followed by silicic magmatism related to the Early Miocene pulse of
the ignimbrite flare-up. Regional crustal extension in northwestern Mexico may have played
an important role in the magmatic development of the Sierra Madre Occidental silicic large
igneous province during the mid-Cenozoic ignimbrite flare-up, promoting the generation of
silicic and intermediate magmas and the localization of volcanic eruptions along favorable

preexisting geologic structures.
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CHAPTER 2
EPITHERMAL MINERALIZATION CONTROLLED BY SYNEXTENSIONAL
MAGMATISM IN THE GUAZAPARES MINING DISTRICT OF THE SIERRA

MADRE OCCIDENTAL SILICIC LARGE IGNEOUS PROVINCE, MEXICO

ABSTRACT

Epithermal mineralization in the Guazapares Mining District is closely related to
extensional deformation and magmatism during the mid-Cenozoic ignimbrite flare-up of the
Sierra Madre Occidental silicic large igneous province, Mexico. Three Late Oligocene—Early
Miocene synextensional formations are identified by detailed volcanic lithofacies mapping in
the study area: (1) ca. 27.5 Ma Parajes formation, composed of silicic outflow ignimbrite
sheets; (2) ca. 27-24.5 Ma Témoris formation, consisting primarily of locally erupted mafic-
intermediate composition lavas and interbedded fluvial and debris flow deposits; (3) ca.
24.5-23 Ma Sierra Guazapares formation, composed of silicic vent to proximal ignimbrites,
lavas, subvolcanic intrusions, and volcaniclastic deposits. Epithermal low- to intermediate-
sulfidation, gold-silver-lead-zinc vein and breccia mineralization appears to be associated
with emplacement of Sierra Guazapares formation rhyolite plugs and is favored where pre-to-
synvolcanic extensional structures are in close association with these hypabyssal intrusions.

Several resource areas in the Guazapares Mining District are located along the
easternmost strands of the Guazapares Fault Zone, a NW-trending normal fault system that
hosts most of the epithermal mineralization in the mining district. This study describes the
geology that underlies three of these areas, which are, from north to south: (1) The Monte
Cristo resource area, which is underlain primarily by Sierra Guazapares formation rhyolite

dome collapse breccia, lapilli-tuffs, and fluvially reworked tuffs that interfinger with
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lacustrine sedimentary rocks in a synvolcanic half-graben bounded by the Sangre de Cristo
Fault. Deposition in the hanging wall of this half-graben was concurrent with the
development of a rhyolite lava dome-hypabyssal intrusion complex in the footwall;
mineralization is concentrated in the high-silica rhyolite intrusions in the footwall and along
the syndepositional fault and adjacent hanging wall graben fill. (2) The San Antonio resource
area, underlain by interstratified mafic-intermediate lavas and fluvial sandstone of the
Témoris formation, faulted and tilted by two en echelon NW-trending normal faults with
opposing dip-directions. Mineralization occurs along subvertical structures in the
accommodation zone between these faults. There are no silicic intrusions at the surface
within the San Antonio resource area, but they outcrop ~0.5 km to the east, where they are
intruded along the La Palmera Fault, and are located ~120 m-depth in the subsurface. (3) The
La Unidn resource area, which is underlain by mineralized andesite lavas and lapilli-tuffs of
the Témoris Formation. Adjacent to the La Union resource area is Cerro Salitrera, one of the
largest silicic intrusions in the area. The plug that forms Cerro Salitrera was intruded along
the La Palmera Fault, and was not recognized as an intrusion prior to our work.

We show here that epithermal mineralization is Late Oligocene to Miocene-age and
hosted in extensional structures, younger than the ages of mineralization inferred from
unpublished mining reports for the region. We further infer that mineralization was directly
related to the emplacement of silicic intrusions of the Sierra Guazapares formation, when the
mid-Cenozoic ignimbrite flare-up of the Sierra Madre Occidental swept westward into the

study area at ca. 24.5-23 Ma.
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INTRODUCTION

The Sierra Madre Occidental of northwestern Mexico is the largest Cenozoic silicic
igneous province on Earth (300,000-400,000 km3; Aguirre-Diaz and Labarthe-Hernandez,
2003; Bryan, 2007; Ferrari et al., 2007; Bryan and Ferrari, 2013). The Sierra Madre
Occidental also hosts one of the largest (800,000 km?) and most productive (at least 80
million ounces gold, 4.5 billion ounces silver produced) epithermal precious mineral deposits
on Earth (Dreier, 1984; Staude and Barton, 2001). As important as these mineral deposits
are, there is a limited understanding of the relationships between the timing of epithermal
mineralization and the magmatic and tectonic history of the Sierra Madre Occidental,
particularly at the mining district level. Regional tectonic controls on the development of
epithermal veins in western North America have been proposed (e.g., Dreier, 1984; Price et
al., 1988), and Staude and Barton (2001) suggested that Jurassic to Late Cenozoic
mineralization is commonly associated with coeval magmatic and tectonic events. Camprubi
et al. (2003) supported this interpretation, suggesting that the age of the volcanic host rock is
close to the age of the epithermal mineral deposit. However, the details of the structural
setting of the precious mineral deposits, and their relationship to specific magmatic and
tectonic events, remain poorly known for most of the Sierra Madre Occidental.

The Guazapares Mining District of western Chihuahua, Mexico, is located ~250 km
southwest of Chihuahua City in the northern Sierra Madre Occidental (Fig. 1), within the
Sierra Madre Occidental Gold-Silver Belt of northwestern Mexico. Previous work in the
Guazapares Mining District has consisted entirely of unpublished mining company reports,
with the except for our recently published work (Murray et al., 2013). These unpublished
reports (e.g., Roy et al., 2008; Wood and Durgin, 2009; Gustin, 2011, 2012) indicate that

mineralization in the Guazapares Mining District is spatial associated with the north-
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Figure 1. Simplified geologic map of the Guazapares Mining District region, showing the extent of the three
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formations (Fig. 2) and the location of major faults (after Murray et al., 2013). The Guazapares Mining District
lies north of the town of Témoris, which is a stop on the famous Copper Canyon train. The red box indicates the
location of Figure 3, which focuses on the Guazapares Fault Zone; for detailed discussion of the entire map area,
see Murray et al. (2013). The green boxes indicate the locations of the San Antonio (Fig. 4) and Monte Cristo
(Fig. 6) resource areas. Inset map of western Mexico shows the extent of the Sierra Madre Occidental (SMO)
silicic large igneous province (light yellow) and the relatively unextended core (dark gray) of the SMO (after
Henry and Aranda-Gomez, 2000; Ferrari et al., 2002; Bryan et al., 2013). The star indicates the location of the
Guazapares Mining District (this study). B—San Martin de Bolafios Mining District, CO— Cuenca de Oro

basin, Ch—Ciudad Chihuahua, D—Durango, G—Guanajuato Mining District, H—Hermosillo, M—Mazatlan,
TMVB—Trans-Mexican Volcanic Belt.
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northwest trending, steeply dipping structures of the Guazapares Fault Zone and consists of
multi-phase, epithermal, low-to-intermediate-sulfidation, gold-silver-lead-zinc vein and
breccia deposits. These studies focus mainly on the alteration and mineralization zones
within the mining district, and less on the physical volcanology of the host rocks. Here, we
assess the mining district in the context of the broader geologic setting and regional
volcanotectonic evolution, by mapping volcanic and intrusive lithofacies and their
relationships with faults, with additional petrographic, geochemical, and geochronological
data on the igneous rocks. The approach described above has been previously employed to
reconstruct the volcanic and tectonic history of the Guazapares Mining District region
(Murray et al., 2013). In this study, we describe the broader magmatic and tectonic controls
on epithermal mineralization in the Guazapares Mining District and present new
interpretations based on detailed volcanic lithofacies mapping in the locations of active
mining prospects within the Guazapares Mining District, to interpret the magmatic and
structural setting of these mineral deposits. We propose that epithermal mineralization is
favored where pre-to-synvolcanic extensional structures are reactivated or become active
during emplacement of rhyolite hypabyssal intrusions of the silicic large igneous province,
and that the timing of mineralization is either synchronous or follows emplacement of these

intrusions.

GEOLOGIC BACKGROUND

The Sierra Madre Occidental silicic large igneous province is considered part of the
extensive mid-Cenozoic ignimbrite flare-up that affected much of the southwestern North
American Cordillera from the Middle Eocene to Late Miocene (e.g., Coney, 1978; Armstrong

and Ward, 1991; Ward, 1991; Ferrari et al., 2002; Lipman, 2007; Cather et al., 2009; Henry
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etal., 2010; Best et al., 2013). The Sierra Madre Occidental trends for ~1200 km southwest
from the U.S.-Mexico border to the Trans-Mexican Volcanic Belt (Fig. 1), consisting
primarily of Oligocene to Early Miocene ignimbrites that cover an area of ~400,000 km?
with an average thickness of 1 km (McDowell and Keizer, 1977; McDowell and Clabaugh,
1979; Aguirre-Diaz and Labarthe-Herndndez, 2003; Bryan and Ferrari, 2013). The core of
the Sierra Madre Occidental is relatively unextended in comparison to the surrounding Late
Oligocene- to Miocene-age extensional belts of the southern Basin and Range to the east and
the Gulf Extensional Province to the west (Fig. 1; Nieto-Samaniego et al., 1999; Henry and
Aranda-Gomez, 2000; Ferrari et al., 2013).
Regional Volcanic Stratigraphy

Previous regional studies have subdivided the Late Cretaceous to mid-Cenozoic rocks
of the Sierra Madre Occidental into: (1) the Late Cretaceous to Eocene Lower Volcanic
Complex, dominantly intermediate in composition; (2) the Eocene to Early Miocene Upper
Volcanic Supergroup, dominantly silicic in composition; and (3) the Early Oligocene to Early
Miocene Southern Cordillera basaltic andesite (SCORBA) (McDowell and Keizer, 1977,
Cameron et al., 1989; Ferrari et al., 2007). This transition from intermediate arc magmatism
(Lower Volcanic Complex) to silicic and mafic-intermediate magmatism (Upper Volcanic
Supergroup and SCORBA) is interpreted as the result of decreased convergence between the
Farallon and North American plates beginning in the Late Eocene ca. 40 Ma (Wark et al.,
1990; Aguirre-Diaz and McDowell, 1991; Ward, 1991; Wark, 1991; Grijalva-Noriega and
Roldan-Quintana, 1998; Ferrari et al., 2007). After the end of the Laramide orogeny in
Mexico (Late Eocene), the Farallon plate is interpreted to have been removed from the base
of the North American plate, likely by slab rollback (e.g., Ferrari et al., 2007; Henry et al.,

2010) or through the development of a slab window (e.g., Dickinson and Snyder, 1979;
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Wong et al., 2010). Removal of the slab resulted in a general southwestward migration of the
arc-front magmatism towards the trench, commencing by ca. 40 Ma, in response to these
Farallon—-North American plate interactions (e.g., Coney and Reynolds, 1977; Damon et al.,
1981; Ferrari et al., 1999; Gans et al., 2003; Ferrari et al., 2007; Henry et al., 2010;
McDowell and Mcintosh, 2012; Bryan et al., 2013).

The Lower Volcanic Complex of the Sierra Madre Occidental is interpreted as
continental subduction-related magmatism broadly contemporaneous with the Laramide
orogeny in western North America (McDowell and Keizer, 1977; McDowell et al., 2001;
Staude and Barton, 2001). This complex consists of mainly intermediate composition lavas
and lesser silicic tuffs, as well as granodioritic to granitic intrusions that represent magma
chambers beneath volcanoes. The Lower Volcanic Complex is inferred to underlie most of
the Upper Volcanic Supergroup (Aguirre-Diaz and McDowell, 1991; Ferrari et al., 2007) and
this simple scheme has been widely used to interpret the geology of many areas in the Sierra
Madre Occidental in the absence of geochronology or observed stratigraphic relations.

The Upper Volcanic Supergroup of the Sierra Madre Occidental is composed mainly
of Eocene to Early Miocene silicic ignimbrites, lavas, and intrusions (McDowell and Keizer,
1977; McDowell and Clabaugh, 1979; Aguirre-Diaz and McDowell, 1991, 1993; Ferrari et
al., 2002; Ferrari et al., 2007; McDowell, 2007). These rocks represent the products of large-
volume silicic large igneous province magmatism during the mid-Cenozoic ignimbrite flare-
up that affected much of the southwestern North American Cordillera from the Middle
Eocene to Late Miocene (e.g., McDowell and Keizer, 1977; Ferrari et al., 2007; Lipman,
2007; Cather et al., 2009; Henry et al., 2010; Best et al., 2013). The emplacement of the
Upper Volcanic Supergroup appears to have an episodic nature, with major pulses of large

volume ignimbrite volcanism during the Eocene (ca. 4642 Ma), Early Oligocene (ca. 32-28
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Ma), and Early Miocene (ca. 24-20 Ma) (Ferrari et al., 2002; Ferrari et al., 2007; Cather et
al., 2009; McDowell and Mclntosh, 2012).

During the final stages of, and after each silicic ignimbrite pulse of the Upper
Volcanic Supergroup, mafic to intermediate composition lavas were intermittently erupted in
the northern Sierra Madre Occidental (Ferrari et al., 2007); these rocks are referred to as
Southern Cordillera basaltic andesite (SCORBA) by Cameron et al. (1989). These rocks
have been interpreted as magmas recording the initiation of regional crustal extension
following the Early Oligocene pulse of the Upper Volcanic Supergroup (e.g., Cameron et al.,
1989; Cochemé and Demant, 1991; Gans, 1997; McDowell et al., 1997; Gonzéalez Leon et al.,
2000; Ferrari et al., 2007), although, as discussed below, we find evidence for extension
before and during silicic volcanism of the Upper Volcanic Supergroup.

Timing of Crustal Extension

The timing of crustal extension in the northern Sierra Madre Occidental in relation to
silicic ignimbrite flare-up volcanism is poorly constrained. Previous workers have suggested
that significant crustal extension in the Sierra Madre Occidental did not occur until after the
Early Oligocene peak of Upper Volcanic Supergroup volcanism (e.g., McDowell and
Clabaugh, 1979; Cameron et al., 1989; Wark et al., 1990; McDowell and Mauger, 1994;
Gans, 1997; McDowell et al., 1997; Grijalva-Noriega and Roldan-Quintana, 1998).
Alternatively, other studies have inferred that either the onset of large volume Early
Oligocene ignimbrite flare-up volcanism records initial regional extension (e.g., Aguirre-Diaz
and McDowell, 1993), or that extension may have began as early as the Eocene, based on the
orientation and age of epithermal vein deposits (Dreier, 1984) and a moderate angular
unconformity between the Lower VVolcanic Complex and Upper Volcanic Supergroup (e.g.,

Ferrari et al., 2007). In this paper, we summarize evidence, described in detail by Murray et
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al. (2013), that extension in the Guazapares Mining District began during the Early Oligocene
ignimbrite pulse (ca. 32—28 Ma), which occurred to the east of the study area, and continued
through the Early Miocene ignimbrite pulse (ca. 24—20 Ma), which occurred within the
Guazapares Mining District.
Timing of Epithermal Mineralization

As noted above, metallic mineralization is widespread in northwestern Mexico, and
has been inferred to be broadly coeval with regional Late Jurassic to Late Cenozoic magmatic
events (e.g., Staude and Barton, 2001; Camprubi et al., 2003). The majority of low-
sulfidation epithermal deposits in Mexico range from Eocene to Miocene age (Albinson et
al., 2001; Camprubi et al., 2003). Based on the assumption that the age of the volcanic host
rock is an approximation of the age of epithermal mineral deposits, and supported by limited
direct dating of adularia from mineral deposits, Camprubi et al. (2003) proposed that there
are three main phases of epithermal mineralization in the Sierra Madre Occidental: (1) a first
phase between ca. 48 and 40 Ma, related to Laramide magmatism; (2) a second phase
between ca. 40 and 27 Ma, related to the Early Oligocene pulse of the ignimbrite flare-up;
and (3) a third phase between ca. 23 and 18 Ma, related to the Early Miocene pulse of the
ignimbrite flare-up (Camprubi et al., 2003). Laramide-age mineralization is hosted by the
Lower Volcanic Complex, generally in E-W trending veins oriented perpendicular to the least
compressional stress direction (Dreier, 1984; Price et al., 1988; Camprubi et al., 2003).
Many of these epithermal deposits are likely buried beneath the ignimbrite sheets of the
Upper Volcanic Supergroup (Staude and Barton, 2001). It has been inferred that the majority
of epithermal deposits in Mexico formed during Upper Volcanic Supergroup magmatism,
which created a NW-trending mineralized belt from Guerrero to Chihuahua, at a distance of

up to ~250 km from the Pacific coast (Camprubi et al., 2003). Epithermal veins of this age
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are generally orientated NW-SE, interpreted to be normal to the direction of maximum
regional extension (e.g., Dreier, 1984; Price et al., 1988). Mineral deposits hosted in the
Upper Volcanic Supergroup have been widely assumed to be related to the Early Oligocene
ignimbrite pulse, because the Early Miocene pulse was not widely recognized (Camprubi et
al., 2003), except for recent studies in the southern Sierra Madre Occidental (Ferrari et al.,
2002; Ferrari et al., 2013). However, for the most part, the mineralization lacks precise age
control because the host rocks in most of the Sierra Madre Occidental are very poorly
mapped and dated.
Volcanic Terminology

The use of volcanic-volcaniclastic terminology in the literature is often ambiguous.
The terminology we use in this paper are those of Fisher and Schmincke (1984), Fisher &
Smith (1991), Sigurdsson et al. (2000), and Jerram and Petford (2011). Three main types of
volcanic rocks are found in the Guazapares Mining District: extrusive (e.g., lavas, domes),
hypabyssal (e.g., plugs), and volcaniclastic. Following Fisher and Schmincke (1984),
volcaniclastic refers to all fragmental rocks made dominantly of volcanic detritus: these
include (1) pyroclastic fragmental deposits, inferred to have been directly fed from an
eruption, e.g., pyroclastic fall, ignimbrites, pyroclastic surges, dome-collapse breccias, block-
and-ash flows, autoclastic flow breccias; (2) reworked fragmental deposits, inferred to result
from downslope reworking of unconsolidated eruption-fed fragmental deposits, e.g., block-
and-ash flow deposits commonly pass downslope into debris flow and fluvial deposits, and
delicate pyroclastic detritus (pumice, shards, or euhedral crystals) indicate limited
transportation of unconsolidated primary volcanic material; and (3) epiclastic deposits, made
of volcanic fragments inferred to have been derived from erosion of preexisting rock. When

the distinctions cannot be made, the general term volcaniclastic is applied.
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GEOLOGY OF THE GUAZAPARES MINING DISTRICT
Lithology and Depositional Setting

The rock types and depositional setting of the Guazapares Mining District region are
briefly summarized below to provide a stratigraphic and tectonic framework; further detailed
descriptions of these deposits and the history of volcanic and tectonic development are
provided by Murray et al. (2013).

Three informal formations are recognized in the Guazapares Mining District region
(Figs. 1 and 2), consisting of: (1) silicic outflow ignimbrites of the Parajes formation, (2)
mafic to andesitic volcanic rocks and intrusions of the Témoris formation; and (3) vent-
related silicic ignimbrites, lavas, and plugs of the Sierra Guazapares formation. These rocks
record Late Oligocene to Early Miocene (Upper Volcanic Supergroup) synextensional
deposition and magmatism during the mid-Cenozoic ignimbrite flare-up (Murray et al.,
2013). Older regional geologic maps (e.g., Minjarez Sosa et al., 2002; Ramirez Tello and
Garcia Peralta, 2004) and recent mining company reports (e.g., Roy et al., 2008; Wood and
Durgin, 2009; Gustin, 2011, 2012) in the Guazapares Mining District have widely referred to
the andesitic rocks that underlie ridge-capping silicic volcanic rocks as “Lower Volcanic
Complex”, but our new mapping and geochronology over a broader region (Figs. 2 and 3)
shows that those andesitic rocks (Témoris formation) are sandwiched between silicic
volcanic rocks below and above (Parajes and Sierra Guazapares formations, respectively).
Thus, the andesitic rocks in the Guazapares Mining District are not Eocene rocks; instead,
they record local development of a ca. 27-24.5 Ma andesitic center in the Upper Volcanic
Supergroup, under an extensional strain regime (Murray et al., 2013), as summarized in the

following.
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Figure 2. Generalized stratigraphic column of the Guazapares Mining District region, depicting the
characteristics and depositional relationships between the Parajes formation, Témoris formation, and the Sierra
Guazapares formation (after Murray et al., 2013). Age data are from zircon U-Pb laser ablation ICP-MS
geochronology by Murray et al. (2013).
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Figure 3: lithostratigraphic correlation chart and key to map symbols
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Figure 3 (this and next 2 pages). Geologic map of the Guazapares Fault Zone between Monte Cristo and ~2 km
north of Témoris, with lithostratigraphic correlation chart for the map units of the Guazapares Mining District
and key to map symbols (after Murray et al., 2013). See Table 1 of Chapter 1 for lithologic descriptions of the
map units. Red boxes indicate the locations of Figures 4 and 6. Resource areas discussed herein are (from north
to south): Monte Cristo, San Antonio, and La Union. Age data are from zircon U-Pb laser ablation ICP-MS

geochronology by Murray et al. (2013).
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The Parajes formation is composed of seven lithologically distinct welded to
nonwelded silicic outflow ignimbrite sheets, with lesser locally interbedded sandstone,
conglomerate, and reworked tuff derived from erosion of these ignimbrites. These rocks
mainly outcrop to the northeast of Témoris (Fig. 1), where they clearly underlie the Témoris
formation and lie within extensional basins (Murray et al., 2013). The silicic outflow
ignimbrite sheets were erupted ca. 27.5 Ma (Fig. 2), during the end of the Early Oligocene
pulse of the mid-Cenozoic ignimbrite flare-up. The source of these ignimbrites is likely
calderas of similar age that lie mainly 50-100 km to the east of the study area (Murray et al.,
2013).

The Témoris formation records local mafic to intermediate composition magmatism
and distal silicic ignimbrite volcanism, as well as sedimentation in graben-filling alluvial fan
systems, between ca. 27 and 24.5 Ma (Fig. 2). The Témoris formation is subdivided into
three sections with gradational contacts (Fig. 2), composed of: (1) a lower section of
amygdaloidal basalt, basaltic andesite, and andesite lavas and autoclastic flow breccias, with
locally interbedded silicic tuff in the lowermost deposits; (2) a middle section of flow-banded
andesite lavas; and (3) an upper section of distal thin nonwelded rhyolite ignimbrites and
tuffaceous volcaniclastic deposits (reworked and epiclastic) (Murray et al., 2013).
Volcaniclastic debris flow breccias and fluvial conglomerates and sandstones are interbedded
with all of the volcanic rocks listed above; these deposits contain detritus similar in
composition to the interstratified volcanic rocks, suggesting resedimentation of primary
eruptive products. The lavas and associated subvolcanic intrusions of the lower and middle
sections of the Témoris formation were derived primarily from an andesitic center sited in the
area around Témoris (Fig. 3), as well as from fault-controlled dikes that likely fed flows

outside this main center. The distal ignimbrites and sedimentary rocks of the upper section of
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the Témoris formation record a local eruptive hiatus between mafic-andesitic magmatism of
the Témoris Formation and silicic magmatism of the Sierra Guazapares formation.

The Sierra Guazapares formation records the local emplacement of silicic volcanic
and hypabyssal rocks from fault-controlled fissure vents across a region that includes the
Guazapares Mining District, between ca. 24.5 and 23 Ma (Fig. 2), at the onset of the Early
Miocene pulse of the mid-Cenozoic ignimbrite flare-up. Vent to proximal volcanic rocks of
this formation crop out in an 11-km long and 3 km-wide linear belt along the La Palmera
Fault—-Guazapares Fault Zone (Fig. 3). These include rhyolitic ignimbrites with lithic lag
breccias and very large-scale cross bedding that laterally transition away from this linear belt
into massive to stratified ignimbrites. Rhyolite plugs, some of which pass continuously
upward into rhyolite lavas that overlie the ignimbrites, also outcrop in this linear belt, as well
as along other faults within the study area (Figs. 1 and 3).

The main geologic structures in the Guazapares Mining District region are NNW-
trending normal faults, including the Guazapares Fault Zone and faults to the northeast of
Témoris (Figs. 1 and 3). Several normal faults located northeast of Témoris (Fig. 1) bound
half-graben basins and have significant displacement, with ~100 to >450 m vertical offset
and at least 20% total horizontal extension (Murray et al., 2013). Evidence of
syndepositional extension, including growth strata and angular unconformities between each
formation, indicates that these half-graben basins began to form by the time the upper part of
the Parajes formation was erupted (ca. 27.5 Ma) and continued to develop during deposition
of the Témoris and Sierra Guazapares formations. Several of these preexisting extensional
structures controlled the localization of andesitic and silicic volcanic vents and shallow level

intrusions of the Témoris and Sierra Guazapares formations (Murray et al., 2013).
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Mineralization in the Guazapares Mining District

Rocks of the Témoris formation host the majority of mineralization in the Guazapares
Mining District and have experienced minor to intense alteration, including propylitic,
argillic, hematitic, and silicic. The highest degrees of alteration in the Guazapares Mining
District are concentrated in Témoris formation rocks along NW-trending structures
associated with the Guazapares Fault Zone (described below). In general, these rocks have
experienced multi-phase, low- to intermediate-sulfidation, epithermal mineralization
characterized by silver-gold with variably low amounts of lead and zinc (<0.4%, Roy et al.,
2008) occurring within quartz veins, quartz-vein breccias, silicified hydrothermal breccias,
and quartz-carbonate-pyrite veinlet stockworks, similar to alteration found in other districts
within the Sierra Madre Occidental gold-silver belt (Gustin, 2012). The Parajes formation
that underlies the Témoris formation is also mineralized, although alteration is restricted to
fine fractures as opposed to fissure veins (Gustin, 2012). The Sierra Guazapares formation is
generally unaltered in comparison to the underlying formations (Gustin, 2012; Murray et al.,
2013); however, altered rocks in the Monte Cristo resource area, described in detail below,
belong to the linear belt of Sierra Guazapares formation silicic vent facies rocks and
intrusions along the La Palmera Fault—-Guazapares Fault Zone.

The epithermal mineral deposits in the Guazapares Mining District have been
extracted since the 17th century, with major mining operations active from 1860-1900 and
1959-1968 (Roy et al., 2008). These early operations produced silver (up to 300 g/ton) and
minor gold from the highest grade, near-surface oxidized portions of the mineralized
structures of the Guazapares Fault Zone, while later operations used shafts to access
subsurface deposits (up to 156 g/ton silver, 144 g/ton gold) (Roy et al., 2008). Within the last

15 years, the rising price of gold and silver has renewed interest in exploiting the resources of
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the Guazapares Mining District, and new exploration of the area has been conducted via
drilling, trenching, and geologic mapping (Roy et al., 2008; Wood and Durgin, 2009; Gustin,
2011, 2012).

Guazapares Fault Zone

The Guazapares Fault Zone extends from Témoris northward to the Monte Cristo
resource area immediately west of a prominent ridge composed of Sierra Guazapares
formation rocks (Figs. 1 and 3); the northern and southern termini of the fault zone are not
known but it appears to continue beyond the map area, as do the silicic intrusions associated
with the mineralized zones along it, which is important for future prospecting. The
Guazapares Fault Zone is a ~3 to 5 km-wide system of NNW-striking normal faults with
numerous splays that dip both east and west, with several changes of fault dip polarity along
strike. The strikes of the faults in the Guazapares Fault Zone appear to bend slightly west
near their northern mapped extent close to the Monte Cristo resource area, where the width of
the fault zone increases (Fig. 3). The faults in the Guazapares Fault Zone host the majority of
mineralization within the mining district, and several resource areas, including the San
Antonio, Monte Cristo, and La Union areas (all three discussed below), are located along a
series of faults on the eastern side of the fault zone (Fig. 3) referred to as the "main
Guazapares structure” by Roy et al. (2008).

Several zones of mineralization are located west of the main Guazapares structure of
the Guazapares Fault Zone (Fig. 3). The San Miguel resource area is located along the NW-
striking, SW-dipping Batosegachi Fault, which has been interpreted as a right-lateral strike-
slip fault with a normal-slip component (D. Sims, pers. commun.). We identified the NW-
striking Tahonitas Fault, located between the Batosegachi Fault and main Guazapares

structure (Fig. 3). A few resource areas are located along the Tahonitas Fault (although none
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yet developed enough to be labeled on Fig. 3); however, it appears to be a major structure
within the mining district, with a ~50 m-wide zone of argillic and propylitic alteration and
quartz veining that is located on the western edge of a fault-bounded outcrop of Parajes
formation ignimbrite (Tp; Fig. 3). The Tahonitas Fault forms a lithologic boundary within
the mining district, with the rhyolite ignimbrite-dominated upper section of the Témoris
formation located to the southwest of the southern section of the fault and the mafic-to-
andesitic-dominated lower and middle sections of the Témoris formation located to the

northeast of the structure (Fig. 3).

RESOURCE AREAS OF THE GUAZAPARES FAULT ZONE

This study presents and interprets new detailed geologic maps and cross-sections of
the San Antonio and Monte Cristo resource areas (Figs. 4, 5, 6, 7, and 8) located along main
mineralized structure of the Guazapares Fault Zone (Fig. 3); it also briefly describes the
discusses the La Union resource area, located along the same structure. These interpretations
are based on detailed geologic mapping, used to describe the stratigraphy and structural
geology of each resource area.
San Antonio Resource Area

The San Antonio resource area (Fig. 4) lies along the Guazapares Fault Zone
approximately 2 km NNE of the pueblo of Guazapares (Fig. 3). Previous mining company
reports have identified an approximately 350 m-wide by 1 km-long mineralized zone within
the center of the San Antonio resource area, with subvertical NW-trending mineralized
structures that are steeply west-dipping in the north and steeply east-dipping in the south

(Roy et al., 2008; Gustin, 2012). Based on our study, we interpret this resource area to be the
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Figure 4 (next page). Geologic map and cross-sections of the San Antonio resource area of the Guazapares
Fault Zone (Fig. 3). The red striped area indicates the region of intense epithermal mineralization with
subvertical NW-trending vuggy and banded quartz/chalcedony-amethyst veinlet stockworks and rare discrete
quartz veins in the accommodation zone between two normal faults with opposing dip directions. Cross-
sections A—A'" and B—B' of the San Antonio resource area based on surficial geologic mapping, showing the
change in normal fault and bedding dip orientations between the northern and southern portions of the resource
area. Base map from (Roy et al., 2008). Descriptions of the lithologic units are given in Table 1.
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location of an accommodation zone between two opposite dipping normal faults that hosts
mineralization (Fig. 5).

The rocks exposed at the San Antonio resource area are part of the lower section of
the Témoris formation, consisting of mafic to intermediate composition lavas and autoclastic
flow breccias (Ttba) interstratified with lithic-rich sandstone with mafic to intermediate
volcanic rock fragments (Ttsa) and lesser silicic lapilli-tuff (Ttt) (Table 1). The lavas
laterally interfinger with the sandstones and infill channels, and sandstones occur as lenses
within the lava and locally have trough cross-bedding and gravel lenses. The presence of
these sedimentary structures and the channelization of deposits suggest deposition in a fluvial
environment (Fig. 5A).

The main geologic structures in the San Antonio resource area are two NW-trending
normal faults with opposing dip directions: a W-dipping fault in the northern section of the
area and an E-dipping fault in the southern section, separated laterally by ~400 m (Fig. 4).
The volcanic and sandstone deposits of the Témoris formation are tilted toward each of these
normal faults, resulting in opposite bedding dip directions in the northern and southern
sections of the resource area (Fig. 4). We interpret the area between these two normal faults,
where the dip orientation of the faults and bedding changes, as an antithetic accommodation
zone dominated by extensional deformation with negligible right-lateral strike-slip motion
(e.g., Faulds and Varga, 1998).

The majority of mineralization in the San Antonio resource area is concentrated in the
antithetic accommodation zone in the center of the area, between the two main normal faults
(Figs. 4 and 5). The volcanic rocks are weakly altered to unaltered in the northern and
southern sections of the area and are strongly silicified towards the center of the area (Fig. 4),

with mineralization dominated by silver (~10% gold) and occurring as subvertical NW-
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Development of the San Antonio resource area

A

W -
Y 2

Figure 5. Schematic block diagrams illustrating the evolution of the San Antonio resource area. Colors
correspond to the geologic map units in Figure 4. (A) Lava, sandstone, and lesser silicic tuff of the Témoris
formation were deposited in a fluvial environment and offset across two normal faults (a W-dipping fault in the
north and E-dipping fault in the south). (B) Continued NE-SW-directed extension resulted in the formation of
subvertical NW-trending dilational structures (red lines, hash marks indicated dip direction) in the antithetic
accommodation zone between the two normal faults. This accommodation zone corresponds with a zone of
intense silicic alteration (red triangles) within the resource area.

108



Table 1: Lithologic units of the San Antonio & Monte Cristo resource areas (next 2 pages)

Map Unit*

Lithology

Description

Tai

andesitic intrusions

Hypabyssal intrusion. Dark gray with local red hematitic & green
propylitic alteration; aphanitic groundmass with 5-10% phenocrysts:
plagioclase, clinopyroxene.

Tsvb

bedded silicic
lapilli-tuff

Silicic lapilli-tuff. Light red to gray; nonwelded; <5% phenocrysts:
plagioclase, biotite; up to 20% lithic fragments (intermediate volcanic).
Fluvial reworking with bedding structures (planar lamination, cut-and-
fill structures), bedding up to 2 m thick. Local white reworked tuff
layers.

Tsl

rhyolite
lava/intrusion

Lava flow & hypabyssal intrusion. White to light gray, with light pink
flow banding; 5% phenocrysts: plagioclase, biotite, trace hornblende.
Irregular top surface of flow.

Tsvf

fluvial sandstone:
silicic volcanic
fragments

Feldspathic litharenite. White to light gray; moderately to poorly
sorted, subangular, medium-to-coarse-grained. Clast consist of silicic
lithic fragments and feldspar. Massive with faint laminations, also
contains cut-and-fill and trough cross-bedding structures. Minor clast-
supported breccia with subangular cobble-boulder silicic lapilli-tuff
fragments. Interpreted as hyperconcentrated debris flows of reworked
silicic volcanic material.

Tsvm

massive silicic
lapilli-tuff

Silicic lapilli-tuff. Light red to gray; nonwelded; <5% phenocrysts:
plagioclase, biotite; trace lithic fragments (intermediate volcanic).
Slight fluvial reworking with crude bedding up to 5 m thick. Local red
very fine-grained, thinly bedded sandstone.

Tsvfb;
Tsvfl

rhyolitic fault talus
breccia

Fault talus breccia. White to light orange; primarily monolithic rhyolite
breccia, block-supported, angular blocks (>2 m), lesser flow-banded
blocks. Blocks are aphyric, with trace quartz and plagioclase
phenocrysts, in an ash-lapilli groundmass of same composition.
Contains local zones of up to 20% intermediate blocks. Block breccia
(Tsvfb) transitions laterally into lapilli breccia (Tsvfl) of same
composition. The block fragment size decreases northeastward away
from the Sangre de Cristo Fault, from >2 m blocks to lapilli-sized
fragments supported in an ash matrix. Fragments are similar in
appearance to high-silica rhyolite intrusion (Tsiw).

Tsiw

high-silica rhyolite
intrusion

Hypabyssal intrusion (dome/plug). White to light pink; aphyric to 10%
phenocrysts (up to 1 mm): plagioclase, biotite, trace quartz.
Subvertical flow banding. Intruded into gray andesitic feldspar
porphyry (likely part of Témoris formation). Similar in appearance to
rhyolitic fault talus breccia (Tsvd).

Tsvl

lacustrine
sandstone &
mudstone

Mudstone and sandstone. Tan to white. Sandstone: Feldspathic
litharenite; fine-to-medium-grained sandstone with graded bedding
(Bouma Sequence A, B) and small scale basal scouring. Mudstone:
planar laminated to very thinly bedded, contains thin tuff layers. Soft
sediment slumping and folding.
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Ttba

basalt to andesite
lava

Predominantly amygdaloidal lava flows. Gray to dark gray with local
red hematitic & green propylitic alteration; 5-25% phenocrysts:
plagioclase (some flow-alignment of laths), clinopyroxene; zeolite
amygdules. Average lava flow thickness ~5 m, lavas are typically
brecciated and vesicular with secondary zeolite infilling vesicles and
autoclastic flow breccia interstices fragments, with lesser flow-banded
and nonvesicular lavas with flow-top and bottom autoclastic breccias.

Ttsa

fluvial sandstone:
intermediate
volcanic fragments

Feldspathic litharenite. Dark tan to reddish purple; moderately to
poorly sorted, subrounded to subangular, medium-to-coarse-grained
with trace granules. Clasts consist of feldspar and intermediate volcanic
lithic fragments. Contains lenses of clast-supported pebble
conglomerates and matrix-supported pebble to cobble breccia with
intermediate volcanic fragments. Thinly to thickly bedded.

Tit

silicic tuff

Nonwelded to partially welded tuff. White to light tan groundmass;
trace-10% phenocrysts (<1 mm): plagioclase, biotite, + hornblende, +
quartz; trace to 25% lapilli-sized lithic fragments (red intermediate
volcanic).

* Figures 4 and 6
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trending vuggy and banded quartz/chalcedony-amethyst veinlet stockworks and rare discrete
quartz veins (Gustin, 2012). The location of the antithetic accommodation zone corresponds
with this zone of silicification, suggesting that subvertical dilational structures formed in the
area between the two normal faults during continued extension (Fig. 5B); these influenced
the localization of mineralization by opening up NW-trending cracks that provided conduits
for mineralizing fluids. As discussed below, mineralization probably occurred during or
following the emplacement of silicic intrusions of the Sierra Guazapares formation.

Monte Cristo Resource Area

The Monte Cristo resource area (Fig. 6) lies along the northern mapped portion of the
Guazapares Fault Zone, approximately 5.5 km NNW of Guazapares (Fig. 3). The main
geologic structure in the resource area is the Sangre de Cristo Fault, a NNW-striking, E-
dipping normal fault that juxtaposes highly-altered hypabyssal intrusions in the footwall with
much less altered volcaniclastic fill on the hanging wall (Figs. 6 and 7A). Zircon U-Pb laser
ablation ICP-MS geochronology by Murray et al. (2013) and our new geologic mapping here
shows that the rocks in the Monte Cristo resource area record deposition of the Sierra
Guazapares formation (ca. 23 Ma) in a synvolcanic half-graben that formed within an
actively growing rhyolite dome-hypabyssal intrusive complex (Figs. 7 and 8).

The footwall of the Sangre de Cristo Fault consists of subvolcanic intrusions of white
high-silica rhyolite (Murray et al., 2013), which are aphyric and subvertically flow-banded
(Tsiw; Fig. 7B; Table 1). These hypabyssal rocks intrude gray andesitic feldspar porphyry of
the Témoris formation and are offset by the Sangre de Cristo Fault, indicating emplacement
prior to the most recent motion along this fault. The white high-silica rhyolite intrusions in
the footwall of the Sangre de Cristo Fault hosts most of the multi-phase gold-silver-bearing

mineralization in the Monte Cristo resource area (Gustin, 2012), with subvertical quartz veins
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Figure 6 (next page). Geologic map and cross-section of the Monte Cristo resource area, with volcanic and
volcaniclastic sedimentary rocks located on the hanging wall of the east-dipping Sangre de Cristo Fault and a
rhyolite intrusion in the footwall. Cross-section A—A' of the Monte Cristo resource area based on surficial
geologic mapping, showing the distribution and depositional relationships of the synvolcanic half-graben
deposits. Reddish-pink triangles denote the region of heavy quartz mineralization of the footwall and within ~10
m of the Sangre de Cristo Fault. Descriptions of the lithologic units are given in Table 1.
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Figure 7 (next page). Photographs from the Monte Cristo resource area; locations of photos given (NAD27
UTM zone 12). All map units referred to here are shown on Figure 6. (A) The Sangre de Cristo Fault in the
northwestern section of the resource area, with white aphyric high-silica rhyolite intrusion (Tsiw) in the footwall
(right) and tan hematized fault talus breccia composed of rhyolitic blocks (Tsvtb) in the hanging wall (left).
Photograph taken at 767366E 3035552N. (B) White aphyric high-silica rhyolite intrusion (Tsiw) from the roots
of the rhyolite dome-hypabyssal intrusion complex in the footwall of the Sangre de Cristo Fault. Subvertical
flow-banding visible on left side of photograph. Hammer (33 cm-tall) for scale. Photograph taken at 767764E
3035213N. (C) White rhyolitic fault talus breccia (Tsvtl) on the hanging wall of the Sangre de Cristo Fault,
showing primarily monomictic composition similar in appearance to the footwall rhyolite intrusions, with a
small percentage of dark-colored andesitic blocks. Groundmass is composed of the same material as the
rhyolitic blocks. Head of hammer is ~12.5 cm. Photograph taken at 767632E 3035526N. (D) Turbiditic fine-
to-medium-grained sandstone exhibiting graded bedding with Bouma sequence A and B (arrow) in lacustrine
sedimentary unit (Tsvl) in the basal half-graben fill on the hanging wall of the Sangre de Cristo Fault.
Laminated mudstone and water-laid tuff layers underlie the turbiditic sandstone. Hammer head (~17.5 cm-
length) for scale. Photo taken at 767640E 3035559N. (E) Soft sediment folding (arrow, above ~30 cm-length
notebook) in mudstone in the basal lacustrine half-graben fill (Tsvl), on the hanging wall of the Sangre de Cristo
Fault. Photo taken at 767641E 3035551N. (F) Bedded lapilli-tuff unit (Tsvb) in the half-graben fill on the
hanging wall of the Sangre de Cristo Fault. A cut-and-fill structure (yellow dashed line) truncates white
tuffaceous sandstone (wss) below, and is filled with coarse sandstone (tss). Photograph taken at 767486E
3035634N.
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striking both northwest and northeast. The northeast vein orientation appears to be unique to
the Monte Cristo resource area, since mostly NW-striking veins are found in the other
resource areas within the Guazapares Mining District. Three major quartz veins that cut the
white rhyolite intrusions in the footwall block are sited along small-offset NE-striking faults
that terminate at the Sangre de Cristo Fault (Fig. 6), suggesting that the age of quartz
mineralization of these veins predates the most recent motion on the Sangre de Cristo Fault.
Siliceous sinter mineralization in the hanging wall is limited to rocks within ~10 m of the
Sangre de Cristo Fault, which may have served as a conduit for to silica-rich mineralizing
fluids migrating up the basin margin (Gustin, 2012).

We infer that the white high-silica rhyolite hypabyssal intrusions represent high-level
subvolcanic magma chambers that had several feeder plugs above them that were the source
of an overlying small lava dome field (Fig. 8). Continued extensional deformation on the
Sangre de Cristo Fault led to uplift and erosion of the dome field and feeder plugs, resulting
in unroofing the high-level subvolcanic magma chambers and deposition of the erosional
material into the adjacent half-graben basin.

Sangre de Cristo Fault Half-Graben Basin Development

The dominant unit in the hanging wall of the Sangre de Cristo Fault is a massive
rhyolitic breccia (Tsvtb, Tsvtl; Table 1) located adjacent to the fault (Fig. 6). Although
mining company reports have described this as a hydrothermal breccia, we interpret the
massive rhyolitic breccia as a fault talus breccia of rocks derived directly from a concurrently
growing rhyolite dome-hypabyssal intrusion complex that was located on the footwall of the
Sangre de Cristo Fault (Fig. 8B) because it lacks quartz veining and secondary silicification
in the groundmass (except within 10 m of the Sangre de Cristo Fault) that is typical of

hydrothermal breccias. The massive rhyolitic breccia is very similar in appearance to the
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Figure 8 (next page). Interpretive cross-section diagrams (not to scale) showing the phases of basin
development and inferred timing of magmatism and mineralization within the Monte Cristo resource area.
Active faulting is denoted with arrows. (A) Initial motion along the Sangre de Cristo Fault created a small half-
graben basin, in which lacustrine sediments (Tsvl) were deposited. (B) Continued basin subsidence led to
growth of fault talus deposits adjacent to Sangre de Cristo Fault (Tsvtb, Tsvtl) that interfingering with and
prograded over the lacustrine deposits. Emplacement of the white rhyolite intrusion (Tsiw) located on the
footwall of the Sangre de Cristo Fault is likely related to the eruption of a rhyolite dome complex, which was the
source of the fault talus breccia shed into the adjacent half-graben basin. (C) Growth of the rhyolite dome-
hypabyssal intrusion complex on the footwall led to continued deposition of fault talus breccias in the Sangre de
Cristo half-graben (Tsvtb, Tsvtl), which transition northeastward into block-and-ash flow deposits and lesser
reworked tuff of the massive silicic lapilli-tuff unit (Tsvm). Younger rhyolite intrusions mineralized the older
intrusions in the footwall and the half-graben fill adjacent to the bounding fault. (D) Syndepositional normal
faulting within the hanging wall block developed concurrently with deposition of the massive lapilli-tuff unit.
(E) Emplacement of a silicic plug and coulée (Tsl) along the normal fault within the hanging wall block during
deposition of the massive lapilli-tuff unit. (F) Deposition of the bedded lapilli-tuff unit (Tsvb) records fluvial
deposition of detritus shed from the lava dome complex during waning volcanism, or during migration of lava
dome volcanism away from the basin. (G) Postdepositional normal faulting on the Sangre de Cristo Fault, and
smaller faults within the hanging wall, tilted the strata, offset the white rhyolite intrusion and silicic plug/coulée,
and down-dropped the bedded lapilli-tuff unit to the east.
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Development of the Sangre de Cristo half-graben basin
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white high-silica rhyolite intrusions in the footwall of the Sangre de Cristo Fault; it is white,
angular, predominantly block-supported, and monomictic, composed of aphyric to weakly
porphyritic rhyolite, with minor flow-banded blocks, and an ash matrix of the same
composition (Fig. 7C). Locally, the breccia contains up to 20% andesitic blocks. The block
fragment size decreases rapidly away from the Sangre de Cristo Fault, from >2 m blocks
adjacent to the fault to lapilli-sized fragments ~200 m from the fault towards the northeast.
These observations are consistent with the interpretation that this unit represents fault talus
deposits, with rhyolitic and lesser andesitic material avalanched off of a rhyolite dome
complex located on the footwall of the Sangre de Cristo Fault into the adjacent half-graben
basin to the east (Fig. 8B). The age of a rhyolite block within this fault talus breccia has been
dated at 24.2 + 0.2 Ma by U-Pb zircon LA-ICP-MS (Murray et al., 2013), showing it was
derived from part of the Sierra Guazapares Formation, which is dominated by vent facies
silicic volcanic rocks.

The rhyolitic fault talus breccias overlie, and the basal deposits interfinger with,
sedimentary rocks that we infer are lacustrine (Figs. 8A-B). The lacustrine sedimentary rocks
outcrop on the eastern side of the Monte Cristo resource area (Fig. 6), and consist of
mudstone, normal-graded sandstones, and well-laminated subaqueous fallout tuff (Tsvl;
Table 1; Fig. 7D). The light gray turbiditic fine-to-medium-grained sandstones exhibit
Bouma sequence A and B (Fig. 7D), and grade upward into planar finely laminated to very
thinly bedded mudstone and tuffs. The presence of lacustrine sedimentary rocks at the base
of the section suggests that extension and half-graben formation likely preceded or was
coeval with the onset of silicic magmatism at this locality. Soft-sediment deformation
structures are present (Fig. 7E), suggesting that these lacustrine deposits were deformed by

subsequent fault motion and/or volcanic activity.
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The rhyolitic fault talus breccias pass gradationally upward and outward (Figs. 6 and
8C) into a predominantly massive monomict silicic lapilli-tuff unit (Tsvm; Table 1). This
lithologic unit is primarily gray to very light red lapilli-tuff with angular rhyolite clasts
similar to those in the breccia. We interpret the massive lapilli-tuff unit to represent block-
and-ash-flow deposits, perhaps shed from a lava dome that was slightly more distal from the
basin. Locally interbedded with the massive silicic lapilli-tuff unit are light gray, massive,
moderately to poorly sorted, medium-to-coarse-grained sandstones and conglomerates (Tsvf;
Table 1), which are also dominated by crystal-poor rhyolite, but have a higher degree of
sorting and more rounding of grains. These sandstones and conglomerates also have cut-and-
fill structures and trough cross-bedding indicating fluvial deposition. The sandstones could
represent material reworked from unconsolidated primary volcanic deposits, or they could
record erosion of the lava domes, but their monomict character indicates a very restricted
source area (i.e., the rhyolite dome field).

Interstratified with the massive silicic lapilli-tuff unit (Tsvm) in the northern part of
the Monte Cristo resource area is a white to gray silicic lava (Tsl; Table 1) that maps
continuously into a feeder dike (Figs. 6 and 8E). This silicic lava differs in appearance from
the aphyric rhyolitic hypabyssal intrusions in footwall block and the blocks of the fault talus
breccia and lapilli tuffs; in comparison, this unit is crystal-poor, with ~5% plagioclase and
biotite and trace hornblende. The extrusive lava part of this unit is thick and stubby, which is
interpreted as a coulée (e.g., Fink and Anderson, 2000). The top surface of the coulée is
slightly irregular with planar thinly bedded very fine-to-fine-grained sandstone and tuff layers
filling in the depressions between it and the overlying massive lapilli-tuff unit. This age of
this lava flow is 22.9 £ 0.3 Ma by U-Pb zircon LA-ICP-MS (Murray et al., 2013). The feeder

dike of this coulée follows a normal fault that offsets the massive silicic lapilli-tuff unit
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(Figs. 6 and 8D-E); this supports our interpretation that extension and rhyolite intrusive
activity were coeval since this dike follows a pre-existing normal fault (Fig. 8E) and is cut by
an additional fault (Fig. 8G).

The massive silicic lapilli-tuff unit (Tsvm) passes gradationally upward into a bedded
silicic lapilli-tuff unit (Fig. 8F), composed of well-stratified silicic lapilli-tuff, tuff and
sandstone (Tsvb: Table 1). The clasts are dominantly composed of the same crystal-poor
rhyolite present in the massive silicic lapilli-tuff (Tsvm) and the fault talus breccia (Tsvtb,
Tsvtl) units, but is finer grained, better sorted, subangular to subrounded, and has abundant
sedimentary structures typical of fluvial deposition, such as cut-and-fill structures and planar-
lamination (Fig. 7F). We interpret this unit to record fluvial deposition of detritus eroded
from the lava dome complex during waning volcanism, or during migration of lava dome
volcanism away from this part of the basin (Fig. 8F). The bedded lapilli tuff is offset by a
second intrabasinal normal fault (Fig. 8G). Some footwall uplift must have occurred after
emplacement of the bedded lapilli tuff unit, as the youngest exposed units are tilted; however,
we infer that most of the displacement on the Sangre de Cristo Fault occurred during
formation of the half-graben, emplacement of the dome-hypabyssal intrusion complex, and
mineralization (Fig. 8).

La Union Resource Area

Like the San Antonio and Sangre de Cristo resource areas, the La Union resource area
is located on the eastern edge of the Guazapares Fault Zone, close (<1 km) to the Sierra
Guazapares formation plugs exposed along the La Palmera Fault to the east (Fig. 3). We did
not map this area in detail, as there were no detailed topographic maps constructed for it like

there were at the other two resource areas, nor does it contain numerous road cuts to expose

121



its rocks to view (rocks within the Guazapares Fault Zone generally have less exposure and
are more vegetated than the surrounding ridges).

The rocks exposed at the La Union resource area are similar to those of the San
Antonio resource area to the north, consisting of Témoris formation mafic to intermediate
composition lava and flow breccia (Ttba), andesitic volcanic lithic-rich sandstone (Ttsa),
andesitic lapilli-tuff (Ttat), and lesser silicic tuffs (Fig. 3). Mineralization in the La Union
resource area consists of locally intense multi-phase brecciation and silicification grading
laterally into quartz-veinlet stockwork zones (Gustin, 2012). The main structures that host
the mineralization are two NNW-trending, E-dipping normal faults, offset laterally by ~100
m (Fig. 3); smaller mineralized structures are located at this offset, which is likely a synthetic
accommodation zone (e.g., Faulds and Varga, 1998) between these two faults.

Located less than 1 km to the east of the La Union resource area is Cerro Salitrera,
one of the largest silicic intrusions (~0.6 km?) of the Sierra Guazapares formation intruded
along the La Palmera Fault (Fig. 3). We suggest that mineralization in the La Union resource
area is likely related to the close proximity of the Cerro Salitrera plug. As reported in an
unpublished mining company report (Gustin, 2012), the inferred gold concentration in the La
Union resource area is one of the highest in the Guazapares Mining District (~35 g Au/ton),
with much lower gold concentrations reported at the resource areas that are further away from
this intrusion (i.e., ~10 g Au/ton at the San Antonio resource area); however, this report does
not recognize the Cerro Salitrera plug, nor does it relate the mineralization to proximity to the

intrusion.
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DISCUSSION

This study hypothesizes that mineralization in the Guazapares Mining District was
possibly related to Late Oligocene to Miocene silicic magmatism in the Sierra Madre
Occidental at ca. 24.5-23 Ma (Sierra Guazapares formation). The epithermal deposits in the
study area are likely related to the emplacement of Sierra Guazapares formation rhyolite
hypabyssal intrusions less than 2 Myr after deposition of the Témoris formation, with normal
faults and accommodation zones providing conduits for intrusion-related hydrothermal fluids
and a location for precious metal mineralization. The geology of three resource areas along
the Guazapares Fault Zone presented in this study supports the interpretation that rhyolite
hypabyssal intrusions are related to mineralization along preexisting extensional structures.
In the Monte Cristo resource area, deposition in the hanging wall of a synvolcanic half-
graben was concurrent with the development of a rhyolite lava dome-hypabyssal intrusion
complex in the footwall. Postvolcanic extensional deformation unroofed the top of a
subvolcanic rhyolite magma chamber that is now exposed at the surface in the footwall of the
Sangre de Cristo Fault. Mineralization emanates upward from the high-silica rhyolite
intrusions and is concentrated in the footwall and along the Sangre de Cristo Fault and
adjacent hanging wall graben fill. There are no silicic intrusions at the surface within the San
Antonio and La Union resource areas, however, they crop out ~0.5-1 km to the east, where
they intruded along the La Palmera Fault. In comparison to the Monte Cristo resource area,
these hypabyssal intrusions are exposed at the shallower feeder plug level, suggesting that at
least some of the plugs probably unite downward into a larger magma body and that the San
Antonio and La Union resource areas are likely closer to silicic intrusions than surface
mapping indicates. Drill core data from Paramount Gold & Silver supports this

interpretation, indicating that subsurface silicic intrusions are located at ~120 m-depth
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beneath the San Antonio resource area and at ~40-90 m-depth beneath the La Union resource
area (Roy et al., 2008).

Similar associations between silicic magmatism, mineralization, and extensional
structures has been recognized in other mining districts within the Sierra Madre Occidental,
notably in the districts of the Cuenca de Oro basin located ~60 km southeast of the
Guazapares Mining District, and the San Martin de Bolafios and Guanajuato districts in the
southern region of the Sierra Madre Occidental (Fig. 1). The Cuenca de Oro basin is includes
the El Sauzal, Batopilas, and Piedras Verdes mining districts (Sellepack, 1997; Feinstein,
2007). Epithermal mineralization within these mining districts is generally hosted along
north-to-northeast-trending fractures and faults in intermediate igneous rocks that are related
to extension in the region (Wilkerson et al., 1988; Goodell, 1995; Sellepack, 1997; Galvan-
Gutierrez, 2005; Feinstein, 2007). The highest degree of epithermal mineralization in the
Batopilas Mining District is concentrated around the Laramide-age Tahonas granodiorite,
which is interpreted as the hydrothermal heat source in the district during and slightly
following emplacement of the intrusion (Wilkerson et al., 1988). Further south in the Sierra
Madre Occidental in the San Martin de Bolafios Mining District, epithermal mineralization
that is hosted primarily in Early Miocene andesitic volcanic rocks occurred between 23.7 to
21.3 Ma; the source of mineralizing fluids is interpreted to be related to a rhyolitic intrusion
emplaced in the western escarpment of the Bolafios graben (Scheubel et al., 1988). The
timing of mineralization and emplacement of the rhyolitic intrusion in the San Martin de
Bolafios Mining District generally corresponds to the Early Miocene pulse of ignimbrite
flare-up volcanism that occurred throughout the Sierra Madre Occidental (e.g., Ferrari et al.,
2007). However, unlike in the Guazapares Mining District, the mineralized structures this

district appear to be unrelated to major extension of the Bolafios graben, which occurred later
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between 22-18 Ma (Scheubel et al., 1988; Ferrari et al., 2007). The Guanajuato Mining
District in the southeastern region of the Sierra Madre Occidental has a mineralization history
more similar to the Guazapares Mining District. Epithermal mineralization in this district is
hosted in NW to NE-trending regional extensional fault systems; the timing of this
mineralization is closely associated to magmatic and hydrothermal activity related to the mid-
Oligocene emplacement of rhyolite domes near the intersection of these pre-existing regional
fault systems (Randall R. et al., 1994).

Our study suggests a direct relationship between silicic intrusion emplacement,
epithermal mineralization, and crustal extension in the Guazapares Mining District of the
Sierra Madre Occidental. Although further research is needed, based on this study and
previous studies within the Sierra Madre Occidental, there appears to be at least limited
validity to the inferred relationship between epithermal mineralization and major magmatic
events in the Sierra Madre Occidental (e.g., Camprubi et al., 2003). Although pre-existing
extensional structures are not necessary for the formation of epithermal veins, their presence
appears to favor the emplacement of silicic intrusions and provides additional conduits for
the circulation and precipitation of mineralized hydrothermal fluids related to these

intrusions.
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CHAPTER 3
EXTENSION AND MAGMATISM IN THE CEROCAHUI BASIN, NORTHERN

SIERRA MADRE OCCIDENTAL, WESTERN CHIHUAHUA, MEXICO

ABSTRACT

The Sierra Madre Occidental of northwestern Mexico is the biggest silicic large
igneous province of the Cenozoic, yet very little is known about its geology due to difficulties
of access to much of this region. This study presents geologic maps and two new U-Pb
zircon laser ablation—inductively coupled plasma—mass spectrometry ages from the
Cerocahui basin, a previously unmapped and undated ~25 km-long by ~12 km-wide half-
graben along the western edge of the relatively unextended core of the northern Sierra Madre
Occidental silicic large igneous province. Five stratigraphic units are defined in the study
area: (1) undated welded to nonwelded silicic ignimbrites that underlie the rocks of the
Cerocahui basin, likely correlative to Oligocene-age ignimbrites to the east and west; (2) the
ca. 27.5-26 Ma Bahuichivo Volcanics, comprising mafic-intermediate lavas and subvolcanic
intrusions in the Cerocahui basin; (3) alluvial fan deposits and interbedded distal nonwelded
silicic ignimbrites of the Cerocahui clastic unit, (4) basalt lavas erupted into the Cerocahui
basin following alluvial deposition; and (5) silicic hypabyssal intrusions emplaced along the
eastern margin of the basin and to a lesser degree within the basin deposits. Evidence of
syndepositional extension in the half-graben (e.g., growth strata) indicates that normal
faulting was active during deposition in the Cerocahui basin (Bahuichivo Volcanics,
Cerocahui clastic unit, and basalt lavas), and may have been active earlier based on regional

correlations.
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The rocks in the Cerocahui basin and adjacent areas record: (1) the eruption of a
silicic outflow ignimbrite sheets, likely from caldera sources to the east during the Early
Oligocene pulse of the mid-Cenozoic ignimbrite flare-up, mostly prior to synextensional
deposition in the Cerocahui basin (pre-27.5 Ma); (2) synextensional Late Oligocene mafic-
intermediate composition magmatism and alluvial fan sedimentation (ca. 27.5-24.5 Ma),
which occurred during the lull between the Early Oligocene and Early Miocene pulses of the
ignimbrite flare-up; and (3) postextensional emplacement of silicic hypabyssal intrusions
along preexisting normal faults, likely during the Early Miocene pulse of the ignimbrite flare-
up (younger than ca. 24.5 Ma). The timing of extensional faulting and magmatism in the
Cerocahui basin and surrounding area generally coincides with previous models of regional-
scale Middle Eocene to Early Miocene southwestward migration of active volcanism and
crustal extension in the northern Sierra Madre Occidental controlled by post-Late Eocene (ca.

40 Ma) rollback/fallback of the subducted Farallon slab.

INTRODUCTION

Silicic large igneous provinces are significant in the geologic record, due to their
unusually extensive areal coverage (>100,000 km?) and large volumes (>250,000 km?)
(Bryan, 2007; Bryan and Ernst, 2008; Bryan and Ferrari, 2013). Compositions within silicic
large igneous provinces range from basalt to high-silica rhyolite, but are volumetrically
dominated (>80%) by dacite-rhyolite compositions, with >75% of the total magmatic volume
emplaced during short duration (~1-5 Myr) pulses over a maximum province lifespan of ~50
Myr (Bryan, 2007; Bryan and Ernst, 2008). The Sierra Madre Occidental of western Mexico
is the third biggest (up to 400,000 km®) and best preserved silicic large igneous province in

Earth's history and is the largest of the Cenozoic (Fig. 1; Bryan, 2007; Ferrari et al., 2007,
131



Bryan and Ernst, 2008; Bryan and Ferrari, 2013). Despite its size and preservation, very little
is known about the geology of the Sierra Madre Occidental due to difficulties of access to
much of this region. A large part of the Sierra Madre Occidental remains unmapped and
undated (>90%; Swanson et al., 2006), with previous work primarily restricted to the
southern region of the igneous province and to the major highways that transverse the
northern and central regions (e.g., McDowell and Keizer, 1977; Swanson and McDowell,
1984, 1985; Wark et al., 1990; Aguirre-Diaz and McDowell, 1991, 1993; McDowell and
Mauger, 1994; Ferrari et al., 2002; McDowell, 2007; McDowell and Mclintosh, 2012). Due
to increased accessibility to the region, recent studies in the northern Sierra Madre Occidental
have focused on the Creel-Divisadero area (Fig. 1; Swanson et al., 2006) and the Guazapares
Mining District region (Fig. 2; Murray et al., 2013) in southwestern Chihuahua.

Previous studies of silicic large igneous provinces suggest that they typically initiate
as magmatic events in continental regions undergoing broad lithospheric extension, prior to
rupture of continental lithosphere (Bryan et al., 2002; Bryan, 2007; Best et al., 2013; Bryan
and Ferrari, 2013). In addition, crustal extension has been suggested to favor the generation
of large silicic magma volumes (e.g., Hildreth, 1981) and very large magnitude explosive
silicic eruptions (Aguirre-Diaz and Labarthe-Hernandez, 2003; Costa et al., 2011).
Therefore, studying the relationships between the timing of extensional deformation and
magmatism is an important consideration toward understanding the development of the
Sierra Madre Occidental.

Here we present new geologic mapping, stratigraphy, and geochronology in an
extensional basin located between the Creel-Divisadero area and the Guazpares Mining
District that has not been previously recognized in the Sierra Madre Occidental (Fig. 1). We

refer to this basin as the "Cerocahui basin” (Figs. 2, 3, and 4), and show that it is an extensive
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Figure 1. Map of western Mexico showing the extent of the Sierra Madre Occidental (SMO) silicic large
igneous province and the unextended core (gray) of the SMO (after Henry and Aranda-Gémez, 2000; Ferrari et
al., 2002; Bryan et al., 2013). The location of the study area and the adjacent Guazapares Mining District
region, described by Murray et al. (2013), is indicated by black box (Fig. 2) on the western edge of the
unextended core. TMVB—Trans-Mexican Volcanic Belt.
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Figure 2 (next page). Simplified geologic map of the Cerocahui basin and the adjacent Guazapares Mining
District region to the west (green box). The extent of the main lithologic units discussed herein (see Fig. 5) and
the locations of major faults are shown. The red box indicates the area of the geologic map in Figure 3; detailed
maps of the Guazapares Mining District region (green box) are presented in Murray et al. (2013). The location
of the main roads and the "Chepe" Copper Canyon railroad that transect the study area are also shown. Map
coordinates in black are Universal Transverse Mercator (UTM) zone 12, North American Datum 1927
(NAD27).
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and thick section of red beds and mafic-intermediate composition volcanic rocks that
accumulated between two major pulses of silicic magmatism during the mid-Cenozoic
ignimbrite flare-up in the northern Sierra Madre Occidental. The rock exposure and
topographic relief in this region make it an excellent locality for examining the relationships
between extensional basin development and silicic large igneous province magmatism in the
Sierra Madre Occidental. With these data, we are able to correlate magmatic and extensional
events over a broader region than initially described by Murray et al. (2013) in the adjacent
Guazapares Mining District to the west (Fig. 2), and show that the timing of magmatism and
synextensional deposition in this region of the northern Sierra Madre Occidental that includes
both the Cerocahui basin and Guazapares Mining District supports the interpretation that
crustal extension and silicic flare-up magmatism migrated southwestward with time across

western Mexico.

GEOLOGIC SETTING
Regional Geology

The Sierra Madre Occidental silicic large igneous province forms a major component
of the extensive mid-Cenozoic ignimbrite flare-up that affected much of the southwestern
North American Cordillera from the Middle Eocene to Late Miocene (e.g., Coney, 1978;
Armstrong and Ward, 1991; Ward, 1991; Ferrari et al., 2002; Lipman, 2007; Cather et al.,
2009; Henry et al., 2010; Henry et al., 2012; Best et al., 2013). The mid-Cenozoic ignimbrite
flare-up occurred above a subducting slab that progressively fell back and steepened towards
the trench, following Early Cenozoic low-angle subduction, as shown by the southwestward
sweep of volcanism with time (e.g., Best and Christiansen, 1991; Dickinson, 2006; Ferrari et

al., 2007; Henry et al., 2010; McQuarrie and Oskin, 2010; Dickinson, 2013). In western
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Mexico, Eocene to Miocene slab fallback and arc extension associated with it led ultimately
to Miocene rifting in the Gulf of Mexico (Ferrari et al., 2007; Ferrari et al., 2013).

The Sierra Madre Occidental (Fig. 1) consists primarily of Late Eocene to Early
Miocene ignimbrites that cover an area of ~400,000 km? with an average thickness of 1 km
(McDowell and Keizer, 1977; McDowell and Clabaugh, 1979; Aguirre-Diaz and Labarthe-
Hernandez, 2003; Bryan and Ferrari, 2013). There were at least two main pulses of silicic
ignimbrite volcanism during the mid-Cenozoic ignimbrite flare-up in the Sierra Madre
Occidental, one during the Late Eocene—Early Oligocene (ca. 36-28 Ma) and another during
the Early Miocene (ca. 24-20 Ma) (Ferrari et al., 2002; Ferrari et al., 2007; McDowell and
Mclntosh, 2012). During the final stages of and after each silicic ignimbrite pulse, basaltic
andesite lavas, commonly referred to as the Southern Cordillera basaltic andesite province
(SCORBA) were intermittently erupted across all of the northern Sierra Madre Occidental
(Cameron et al., 1989; Ferrari et al., 2007).

Following the Laramide orogeny (Late Eocene, ca. 40 Ma) in western North America,
the age distribution of volcanic rocks in the southwestern U.S. and the Sierra Madre
Occidental suggests that ignimbrite flare-up magmatism generally migrated southwestward
over time (e.g., Coney and Reynolds, 1977; Damon et al., 1981; Best and Christiansen, 1991;
Christiansen and Yates, 1992; Dickinson, 2002, 2006; Ferrari et al., 2007; Henry et al., 2010;
McQuarrie and Oskin, 2010; McDowell, 2012; Bryan et al., 2013; Busby, 2013; Dickinson,
2013). This post-Laramide age trend is likely related to removal of the flat to low-angle
subducted Farallon plate from the base of the North American plate by either steepening (slab
rollback) and/or possible detachment of the deeper part of the subducted slab (e.g., Dickinson

and Snyder, 1978; Best and Christiansen, 1991; Ferrari et al., 2007; Henry et al., 2010;

136



McQuarrie and Oskin, 2010; Best et al., 2013; Bushy, 2013; Dickinson, 2013); as a result,
commencing by ca. 40 Ma, magmatism migrated southwestward towards the paleotrench.

The timing of extension in the Sierra Madre Occidental has variously been interpreted
to have preceded (e.g., Dreier, 1984; Ferrari et al., 2007), postdated (e.g., McDowell and
Clabaugh, 1979; Wark et al., 1990; McDowell and Mauger, 1994; Gans, 1997; McDowell et
al., 1997; Grijalva-Noriega and Rold&n-Quintana, 1998; Gans et al., 2003), or begun during
(e.g., Aguirre-Diaz and McDowell, 1993; Luhr et al., 2001; Murray et al., 2013) the Late
Eocene—Early Oligocene pulse of the mid-Cenozoic ignimbrite flare-up. The eruptions of the
Southern Cordillera basaltic andesite (SCORBA) following the Early Oligocene ignimbrite
pulse has been interpreted as magmatism recording the initiation of regional-scale crustal
extension in the northern Sierra Madre Occidental (e.g., Cameron et al., 1989; Cochemé and
Demant, 1991; Gans, 1997; McDowell et al., 1997; Gonzalez Leon et al., 2000; Ferrari et al.,
2007). The central core of the Sierra Madre Occidental is relatively unextended in
comparison to the surrounding Late Oligocene- to Miocene-age extensional belts of the
southern Basin and Range to the east and the Gulf Extensional Province to the west (Fig. 1;
Nieto-Samaniego et al., 1999; Henry and Aranda-Gomez, 2000).
Guazapares Mining District

The recent study of the Guazapares Mining District region near Témoris (Fig. 2) to

the west of the Cerocahui basin (Murray et al., 2013) provides a stratigraphic and structural
context for the Cerocahui basin. Three informal formations are recognized in the Guazapares
Mining District region (Fig. 2). The oldest, the Parajes formation, consists primarily of
welded silicic outflow ignimbrite sheets erupted ca. 27.5 Ma (and possibly older). These
ignimbrites were erupted near the end of the Early Oligocene pulse of the ignimbrite flare-up,

presumably from calderas of similar age that lie largely to the east of both the Guazapares
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Mining District (Murray et al., 2013) and the Cerocahui basin, described herein. The ca. 27—
24.5 Ma Témoris formation (Fig. 2), which unconformably overlies the Parajes formation,
records local, fault-controlled mafic to intermediate composition magmatism and subsequent
distal silicic ignimbrite volcanism, synchronous with extension. Given the similar age and
composition, the Témoris formation may be related to the Southern Cordillera basaltic
andesite (SCORBA\) province erupted in other parts of northern Sierra Madre Occidental
following the Early Oligocene ignimbrite pulse (Murray et al., 2013). The ca. 24.5-23 Ma
Sierra Guazapares formation (Fig. 2), which overlies the Témoris formation in angular
unconformity, records local silicic magmatism, including vent-to-proximal-facies ignimbrite
deposits, lavas, and hypabyssal rocks; these were erupted from and intruded into fault-
controlled fissure vents within the Guazapares Mining District region. The Sierra
Guazapares formation records the onset of the Early Miocene pulse of the mid-Cenozoic
ignimbrite flare-up (Murray et al., 2013).

The main geologic structures in the Guazapares Mining District region are NNW-
trending normal faults that bound a series of closely spaced half-graben basins (Fig. 2).
Growth strata and angular unconformities between each formation indicate that these half-
graben basins began to form by the time the upper part of the Parajes formation was erupted
(ca. 27.5 Ma) and continued to develop during deposition of the Témoris and Sierra
Guazapares formations. In addition, several of these extensional structures controlled the
localization of andesitic and silicic volcanic vents and shallow level intrusions of the Témoris

and Sierra Guazapares formations (Murray et al., 2013).
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THE CEROCAHUI BASIN

We coin the term "Cerocahui basin™ for the approximately 12 km-wide basin with a
mapped length of approximately 25 km (Figs. 2 and 3; Supplemental File 2)?, although it
could extend further north and south. It is named for the village of Cerocahui in the
southeastern part of the basin, located ~12 km south of the town of Bahuichivo, a stop on the
famous “Chepe” Copper Canyon train (Figs. 2 and 3; Supplemental File 2 [see footnote 2]).
The Cerocahui basin lies on in the western edge of the largely unextended core of the
northern Sierra Madre Occidental (Fig. 1). Previous work in the Cerocahui basin region has
been restricted to regional 1:50,000 and 1:250,000 geologic mapping (Minjarez Sosa et al.,
2002; Ramirez Tello and Garcia Peralta, 2004) and unpublished mining company reports,
none of which recognized that the region is dominated by a half-graben basin. The geologic
mapping for this study was primarily centered on the village of Cerocahui and around
Bahuichivo, and on the two main roads that transect the basin on the north and east (Figs. 2
and 3; Supplemental File 2 [see footnote 2]). Much of the central and southwestern sections
of the basin are inaccessible due to lack of roads or hazards related to drug cultivation
activities in the region; however, the geology located in these areas (noted on Fig. 3) is
interpreted from aerial imagery (Supplemental File 3) and may not be accurate in detail, but
is based on known geologic relationships from the more accessible areas along the major
roads and around population centers (Fig. 2).

North-northwest-trending normal faults are the primary geologic structures in the
Cerocahui basin and adjacent region (Figs. 2, 3, and 4; Supplemental File 2 [see footnote 2]).

The W-dipping Bahuichivo—Bachamichi fault forms the eastern boundary of the Cerocahui

2 Supplemental File 2: Geologic map of the Cerocahui basin (1:24,000 scale) and Supplemental File 3: Aerial
imagery of the Cerocahui basin; submitted as additional files with dissertation
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Figure 3: map symbol key & lithostratigraphic correlation chart

Quaternary alluvium

Tri | silicic hypabyssal intrusions

—————————————— unconformity =— =— =— = = = = = = = = — —
basalt Jeih - Cerocahui ignimbrite
lavas
Cerocahui = = E| Volcan ignimbrite
|
clastic unit i ignimbri Teu
Tes ) Tec Cerro Colorado ignimbrite el
| Teir |El Rodeo ignimbrite
Thl Irigoyen ignimbrite
alluvial deposits: ~ Bahuichivo undifferentiated '
interfingering Volcanics: silicic Ceégg?nhm
sandstone (Tcs} mafic-intermediate Ignlmb”te deposits
& conglomerate- _lavas (Tb) & (undifferentiated)
breccia (Tcc) lavas/subvolcanic
intrusions (Thv)
—————————————— unconformity =— =— =— =— = — — — — — — - -
Parajes formation: silicic welded-nonwelded o . o
ignimbrites west of the Cerocahui basin, Toi | undivided silicic outflow ignimbrites
divided into seven distinct ignimbrites by east of the Cerocahui basin

Murray et al. (2013)

Figure 3 (this and next 2 pages). Geologic map of the Cerocahui basin, with lithostratigraphic correlation chart
and key for the map units and symbols. The location of cross-sections A and B (Fig. 4) and the measured
stratigraphic section (Fig. 7) are indicated. Much of the basin is inaccessible, with interpretations of the geology
in these areas (noted by gray hatch pattern) based on aerial imagery and known geologic relationships from
accessible areas. A more detailed (1:24,000) geologic map for the study area is presented in Supplemental File
2 (see footnote 2). Topographic base map from Instituto Nacional de Estadistica, Geografia e Informatica
(INEGI), original 1:50,000 scale ITRF92 datum projected to NAD27 UTM zone 12 (black coordinates).
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basin. Immediately east (<1 km) and trending parallel to the Bahuichivo—Bachamichi fault is
the W-dipping Pafiales fault, which has a much thinner section of volcanic and sedimentary
rocks on its hanging wall and lacks these rocks on its footwall; this fault thus represents a
minor strand of the main basin-bounding fault (Figs. 3 and 4A; Supplemental File 2 [see
footnote 2]). Several W-dipping normal faults offset the deposits within the Cerocahui basin,
including the Cerocahui, ElI Rodeo, and Irigoyen faults, but these have less offset than the
eastern basin-bounding fault (Figs. 3 and 4; Supplemental File 2 [see footnote 2]). Extension
on these faults has gently to moderately tilted the strata of the Cerocahui basin to the north-
to-northeast (~5-30°). The western boundary of the Cerocahui basin is inferred to be roughly
in the location of the NW-trending, E-dipping Piedra Bola fault (Figs. 2 and 3; Supplemental
File 2 [see footnote 2]). This fault offsets the lowermost deposits of the Cerocahui basin,
which extend westward onto the footwall block (Figs. 3 and 4A; Supplemental File 2 [see
footnote 2]). Additionally, the basin fill on the hanging wall (east side) of the Piedra Bola
fault dips away from the fault rather than towards it; therefore, the Piedra Bola fault is not
considered a basin-bounding normal fault.
Basin Stratigraphy and Relation to Extensional Structures

The rocks exposed in the Cerocahui basin and surrounding area are subdivided into
five lithologic units described in the following (from oldest to youngest): (1) pre-basinal
silicic outflow ignimbrites, (2) the Bahuichivo Volcanics, consisting mainly of mafic-
intermediate composition lavas and subvolcanic intrusions, (3) the Cerocahui clastic unit,
composed of alluvial fan sandstones, conglomerates, and breccias and interbedded silicic

ignimbrites, (4) basalt lavas, and (5) silicic hypabyssal intrusions (Figs. 3 and 5).
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Basalt lavas (Tm):
flow-banded and/or vesicular, gray microlitic to |

glassy groundmass, trace phenocrysts
(plagioclase, olivine, clinopyroxene)

rocahui ¢l nit (Tee, Tes):
alluvial fan deposits: conglomeratic sandstone,
sandstone, conglomerate, & breccia; interbed-
ded nonwelded silicic ignimbrite & reworked tuff |
(Tci, Tcir, Tcic, Tciv, Tcih). Decreased bedding
dip upsection

Tcic: 26.0+£ 0.3 Ma

Bahuichivo Volcanics (Tbl, Tbv):
amygdaloidal mafic-intermediate composition
lavas and autoclastic flow breccias; mafic-
intermediate subvolcanic intrusions. 5-25%
phenocrysts (pyroxene, plagioclase, tolivine). -
Locally interstratified with alluvial sandstone
(Tes) and nonwelded silicic ignimbrite (Tci, Tciy)

Tciy: 28.1 £ 0.8 Ma
Pre-basinal silicic outflow ignimbrites (Toi, Tp):
welded silicic outflow ignimbrite sheets -
ca. 27.5 Ma

top eroded

base not exposed

Silicic hypabyssal
intrusions (Tri):

white flow-banded plugs &
hypabyssal intrusions,
5-25% phenocrysts
(plagioclase, biotite)

ca. 24.5to 23 Ma

Cerocahui basin ignimbrites
Tcih - Cerocahui ign.

Teiv - El Volcan ign.

Tcic - Cerro Colorado ign.
Tcir - El Rodeo ign.

Tciy - Irigoyen ign.

Tci - undifferentiated ign.

Figure 5. Rock units of the Cerocahui basin and substrate, depicting the characteristics and depositional
relationships between the pre-basinal silicic outflow ignimbrites, Bahuichivo Volcanics, Cerocahui clastic unit,
basalt lavas, and silicic hypabyssal intrusions. Unit symbols are the same as Figure 3. The ages in bold are from
this study (Fig. 10; Table 2), and the approximate ages in italics are from Murray et al. (2013) and are based on
inferred stratigraphic correlations in the Guazapares Mining District to the west (see text for discussion).
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Silicic outflow ignimbrites of pre-basinal origin (Toi & Tp)

A section of tabular, largely welded silicic outflow ignimbrites is exposed in the
footwall of the W-dipping Bahuichivo—Bachamichi and Pafales faults on the east side of the
Cerocahui basin (map unit Toi) and in the footwall of the E-dipping Piedra Bola fault on the
west side of the basin (Tp) (Figs. 2 and 3). These two map units are tentatively correlated,
although the ignimbrites east of the basin have not been studied in the same detail as those
located west of the basin (Parajes Formation [Tp]) by Murray et al. (2013). At least seven
distinct ignimbrites have been identified in the Parajes formation (Tp) on the west side of the
Cerocahui basin; each ignimbrite ranges from ~20 to ~210 m-thick, has a densely welded to
partially welded lower section that passes upward into a less welded to nonwelded top, and
has normal coarse-tail grading of lithic fragments and inverse coarse-tail grading of pumice
(Murray et al., 2013).

Because the silicic outflow ignimbrite section bounds the Cerocahui basin on both
sides, and forms a widespread sheet where it has been mapped to the west and east (Figs. 3
and 4), it is inferred to underlie the deposits of the Cerocahui basin. This interpretation is
supported by an angular unconformity between gently dipping (~10° E) mafic-intermediate
lavas (Thl), fluvial sandstone, and an undifferentiated silicic ignimbrite (Tci) interpreted as
part of the lowermost deposits of the Cerocahui basin (Bahuichivo Volcanics, described
below) and the underlying moderately dipping (~25° E) Parajes formation (Tp) on the
western side (footwall) of the Piedra Bola fault near Irigoyen (Figs. 3 and 4A; Supplemental
File 2 [see footnote 2]). In the Guazapares Mining District region immediately west of the
Cerocahui basin, normal faulting began during deposition of the youngest units in the Parajes

formation (Tp) silicic outflow ignimbrite section after 27.6 + 0.3 Ma (Murray et al., 2013).
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Map data in the silicic outflow ignimbrite section east of the Cerocahui basin are insufficient
to determine whether any of the units are synextensional.

The silicic outflow ignimbrites on the east side of the Cerocahui basin are interpreted
as the medial facies of outflow ignimbrite sheets, based on their sheet-like geometry and the
presence of cliff-forming welded sections, similar to the ca. 27.5 Ma Parajes formation (Tp)
to the west of the basin (Murray et al., 2013). Their sheet-like geometry is also similar to that
of ignimbrites in the unextended core of the Sierra Madre Occidental, although that region
also contains caldera-filling ignimbrites (e.g., Swanson et al., 2006). The silicic outflow
ignimbrites on the east side of the Cerocahui basin (Toi) have not been dated directly, but
they are clearly older than the basal basin-filling sedimentary deposits, and an intrusion of the
Bahuichivo Volcanics (Tbv) crosscuts one of the ignimbrites (Fig. 6A). The silicic outflow
ignimbrite section includes seven distinct ignimbrites in the Guazapares Mining District
region (Murray et al., 2013), but the ignimbrite section east of the Cerocahui basin has not
been studied in detail. The ignimbrites generally have <15% phenocrysts, and like many of
the ignimbrites of the Sierra Madre Occidental, they lack potassium feldspar (e.g., Swanson
et al., 2006; Murray et al., 2013). Crystal-rich ignimbrites are rare and may prove correlatable
by future workers; one such ignimbrite is located ~3.5 km southeast of Bahuichivo (Fig. 3),
with 30-35% phenocrysts of plagioclase, biotite (to 3 mm), quartz, hornblende, and 10%
andesitic volcanic lithic lapilli.

Bahuichivo Volcanics (Thl & Thv): lowermost Cerocahui basin fill

The stratigraphically lowest rocks considered part of the Cerocahui basin fill are the
Bahuichivo Volcanics, an informally named unit consisting of dark-colored pyroxene-
plagioclase-zolivine-bearing amygdaloidal lavas and autoclastic flow breccias (Tbl), and

associated dikes and subvolcanic intrusions (Tbv) (Figs. 3, 4, 5, and 6). Based on the
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Figure 6 (next page). Representative photographs of the Bahuichivo Volcanics; locations of the photos are
given (NAD27). (A) East-dipping mafic-intermediate lava (Tbl) deposited on massive red bed sandstone (Tcs)
along the Bahuichivo—Irigoyen road (27.36320 ° N, 108.15692 ° W). Wet sediment—lava intermixing (peperitic
texture) is found between the orange-tan sandstone (Tcs) and a lower reddish-gray mafic-intermediate lava
(arrows). (B) Mafic-intermediate hypabyssal intrusion (Tbv) emplaced into lithic-rich pre-basinal nonwelded
silicic outflow ignimbrite (Toi) along the Bahuichivo—Cerocahui road (27.36228° N, 108.03371° W). (C)
Mafic-intermediate hypabyssal intrusion (Tbv) emplaced into conglomerates and sandstones (Tcc) north of
Bahuichivo (looking northwest from 27.42259° N, 108.07175° W). Intrusion and sedimentary rocks are offset
by the Bahuichivo—Bachamichi fault (yellow dashed line, tick mark on the hanging wall). CIiff of silicic
ignimbrite (Tci) deposited over Tcc is ~50 m-tall. (D) West-dipping mafic-intermediate composition dike
exhibiting columnar jointing emplaced along a small-scale structure that trends subparallel to the Irigoyen fault,
along the Bahuichivo—Irigoyen road (27.36493° N, 108.14926° W). Small-offset faults related to the Irigoyen
fault (arrows) cut lavas of the Bahuichivo Volcanics to the right of the dike.
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phenocryst assemblage (olivine, pyroxene, and plagioclase), these rocks suggest a mafic to
intermediate composition.

Within the Cerocahui basin, the Bahuichivo Volcanics are dominantly lavas, with
individual flows up to ~20 m-thick that dip moderately eastward (to ~20° E) toward the
eastern basin bounding faults (Figs. 3 and 4). The base of the Bahuichivo Volcanics is not
exposed in the Cerocahui basin; the unit is thickest (>500 m-thick) in the southwestern
mapped part of the basin and likely extends westward to the Piedra Bola fault based on aerial
imagery. In the northwestern mapped part of the basin near Irigoyen (Fig, 3), lavas of the
Bahuichivo Volcanics (Tbl) are interstratified with alluvial red bed sandstones (Tcs) identical
to those throughout the basin described below (Figs. 3 and 4A), and locally wet sediment—
lava intermixing (peperite) is present (Fig. 6B). Also interbedded with the Bahuichivo
Volcanics in this area is the Irigoyen ignimbrite (Tciy), a light gray, crystal-poor, nonwelded
silicic ignimbrite with faint compaction foliation of slightly flattened white to tan pumice
fragments. Based on this evidence, the lavas of the Bahuichivo Volcanics are considered part
of the Cerocahui basin fill.

The Bahuichivo Volcanics are inferred to have been erupted from fault-controlled
volcanic centers along the eastern half-graben basin margin. Subvolcanic intrusions occur in
the Bahuichivo area, where dikes and intrusions emplaced along small-offset NW-trending
structures in the fault-block between the Pafiales and Bahuichivo—Bachamichi faults
complexly crosscut related lava flows (Tbv), as well as sandstones and conglomerates
inferred to be related to the basin fill (Tcc and Tcs, described below) and pre-basinal silicic
outflow ignimbrites (Toi) described above (Figs. 3, 6A, and 6C; Supplemental File 2 [see
footnote 2]). A mafic-intermediate dike that parallels the Irigoyen fault on the western side

of the basin (Figs. 3 and 6D) may have been an additional vent for the volcanic rocks (Tbl)
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located in this area. The localization of these shallow intrusions on NW-trending structures
that trend parallel to the basin-bounding normal faults suggest that these structures provided a
conduit for mafic to intermediate magmatism, and that extensional deformation occurred
prior to and during emplacement of the Bahuichivo Volcanics.
Cerocahui clastic unit (Tcc & Tcs): Cerocahui basin fill

The majority of the rocks in the Cerocahui basin are part of the over 700 m-thick
Cerocahui clastic unit (Tcc and Tcs; Figs. 3, 4, 5, 7, and 8). The rocks of the Cerocahui
clastic unit are subdivided into eight sedimentary lithofacies (after Miall, 1985; Uba et al.,
2005; Murray et al., 2010) that allow for interpretations of depositional processes (Table 1).
This unit consists of volcaniclastic sandstones, conglomerates, and breccias, with interbedded
nonwelded silicic ignimbrites and fluvially reworked tuffs (Figs. 5, 7, and 8), deposited in
angular unconformity over the mafic-intermediate lavas of the Bahuichivo Volcanics (Figs. 3
and 4). All of the deposits of this stratigraphic unit thicken and coarsen eastward towards the
basin-bounding normal faults, with conglomerates and breccias (lithofacies Gm and Gg;
Table 1) restricted to the area adjacent to the Bahuichivo—Bachamichi fault (Figs. 3, 4, and
8A-8D). The bulk of the deposits in the Cerocahui clastic unit consist of medium to very
thickly bedded (~10 cm- to greater than 1 m-thick), moderately to very poorly sorted,
medium-to-very coarse-grained volcaniclastic sandstones and conglomeratic sandstones
(lithofacies Sm; Table 1; Figs. 5, 7, and 8B). The conglomeratic sandstones are composed of
<30% gravel-sized (>2 mm, to 0.5 m-diameter) subrounded to subangular clasts derived from
amygdaloidal mafic-intermediate lavas, silicic flow-banded lavas, and silicic welded to
nonwelded ignimbrites. Intercalated with the conglomeratic sandstones on the eastern margin
of the basin are medium to very thickly bedded (~10 cm- to greater than 1 m-thick) matrix-

supported granule to boulder (to 1 m-diameter) angular-to-subrounded conglomerates and
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Figure 7 (next 2 pages). Measured stratigraphic section of the Cerocahui clastic unit (map unit Tcc) through
basalt lavas (Tm) in the Cerocahui village area (see Fig. 3 for location), depicting facies types of sedimentary
units (Table 1) and paleocurrent data from trough limbs (method | of DeCelles et al., 1983). The dominant clast
type (>50%) observed in conglomerates and conglomeratic sandstones are listed where recorded in the section;
polymictic rocks without a single dominant clast type (<50%) are listed in order of relative abundance. The
three informally named nonwelded silicic ignimbrites interbedded within the Cerocahui clastic unit and the
stratigraphic position of U-Pb sample BM080718-1 (Fig. 10; Table 2) are also indicated. Lithofacies
associations suggest that this stratigraphic section represents medial-proximal alluvial fan deposits in the
Cerocahui basin.
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Figure 8 (next 2 pages). Representative photographs of the Cerocahui clastic unit and interbedded silicic
ignimbrites; locations of photos are given (NAD27). (A) Overview photograph and geologic interpretation of
the Cerocahui basin (looking west from 27.29390° N, 108.03736° W), showing moderately east-dipping (to
~20° E) Cerocahui clastic unit (Tcc) and Cerro Colorado ignimbrite (Tcic) below gently east-dipping to
subhorizontal Cerocahui clastic unit, El VVolcan ignimbrite (Tciv), Cerocahui ignimbrite (Tcih), and
undifferentiated silicic ignimbrite (Tci). The bedding dip decreases and dips slightly more northerly upsection
(possibly reflecting the slightly tilted original orientation of the alluvial fan deposits), with basalt lavas (Tm)
conformably deposited over the Cerocahui clastic unit. The N-trending Cerocahui fault (tick marks on hanging
wall) downdrops the Cerocahui clastic unit to the west, with a silicic hypabyssal intrusion (Tri) emplaced along
the fault and crosscutting it. (B) Massive (~4 m-thick) matrix-supported conglomerate (lithofacies Gm; Table 1)
with weak inverse grading (left of person) interbedded within conglomeratic sandstone at 225 m on measured
stratigraphic section (Fig. 7). Clasts consist of subangular reddish-gray mafic-intermediate volcanic and white
nonwelded silicic ignimbrite fragments (27.30315° N, 108.06420° W). (C) Clast-supported conglomerate-
breccia (lithofacies Gc; Table 1) with mafic-intermediate volcanic boulders to ~1 m in a medium-to-very coarse-
grained sand matrix, interpreted as proximal alluvial fan debris flow deposits adjacent to the Bahuichivo—
Bachamichi fault along the Bahuichivo—Cerocahui road (27.34576° N, 108.03776° W). (D) East-dipping
matrix-supported conglomerate (lithofacies Gm; Table 1) cutting and filling a channel (arrow) in underlying
conglomeratic sandstone (lithofacies Sm; Table 1) adjacent to the Bahuichivo—Bachamichi fault northeast of
Cerocahui (27.30809° N, 108.04059° W). (E) Horizontally-stratified fine-to-medium-grained sandstone
(lithofacies Sh, Ss; Table 1), with small-scale cut-and-fill structures (arrows) (27.30210° N, 108.06152° W). (F)
Reworked pumice lapilli-tuff at the base of the Cerro Colorado ignimbrite (Tcic), infilling a ~4 m-deep channel
cut into underlying conglomeratic sandstone (Tcc); close-up of this pumice lapilli-tuff shown in Figure 8G
(27.29829° N, 108.06447° W). (G) Close-up of basal reworked pumice lapilli-tuff (lithofacies Vr; Table 1) of
the Cerro Colorado ignimbrite (Fig. 8F), with well-sorted lenses of granule to pebble subangular pumice (tan)
interbedded within gray tuff (27.29829° N, 108.06447° W). (H) View looking southeast from near base of
measured stratigraphic section (Fig. 3; 27.29358° N, 108.06592° W) at Cerro Colorado, with N-dipping white
Cerro Colorado ignimbrite (Tcic) capping hill, above red Cerocahui clastic unit (Tcc). (1) Overview photograph
and geologic interpretation of growth strata east of the EI Rodeo fault in the south-central section of the
Cerocahui basin (Fig. 3), looking north from Cerro El Volcan (27.31205 ° N, 108.09606° W). The dip of the
units change from ~20° E in the lowermost mafic-intermediate lavas (Tbl), through 10° to 5° within the
Cerocahui clastic-unit (Tcs), to ~0° in the capping basalt lavas (Tm), and the unit thicknesses of the Cerocahui
clastic unit (Tcs) and El Volcan ignimbrite (Tciv) also increase eastward, indicating syndepositional extension
of the eastern fault-bounded margin of the Cerocahui basin. Similar depositional relationships are found on the
hanging wall of the EI Rodeo fault (Fig. 4B), suggesting syndepositional extension of this fault, with continued
postdepositional extension that downdropped the basalt lavas (Tm) to the west.
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TABLE 1. SEDIMENTARY LITHOFACIES OF THE CEROCAHUI CLASTIC UNIT*

Facies code Description Interpretation

Gc Clast-supported, massive conglomerate and breccia. Dark Clast-rich debris flow
red to gray. Very poorly sorted, angular to subrounded. deposits, rapid deposition
Pebbles to boulders with fine-to-very coarse-grained sand by stream-floods with
matrix. Thickly to very thickly bedded, lobate to tabular concentrated clasts
bedding extending laterally for several meters to a few
hundred meters. No to very poorly developed normal to
inverse grading.

Gm Matrix-supported, massive conglomerate. Dark red to gray. Plastic debris flow
Very poorly sorted, subangular to subrounded. Granulesto | deposits, deposited from
boulders in medium-to-very coarse-grained sand matrix. hyperconcentrated or
Medium to very thickly bedded, lenticular to tabular bedding | turbulent flow
extending laterally for several meters to several hundred
meters. No to very poorly developed normal to inverse
grading.

Sm Massive sandstone. Tan to red. Medium-to-very coarse- Hyperconcentrated
grained, locally conglomeratic with <30% subrounded to sediment-gravity flows,
subangular pebbles to boulders. Moderately to very poorly rapid deposition
sorted. Medium to very thickly bedded, lenticular to tabular
bedding extending laterally for tens of meters to a several
hundred meters. No to very poorly developed normal to
inverse grading.

Sx Cross-stratified sandstone. Tan to red. Trough and low- Channel fills, crevasse
angle (<10°) cross-stratification. Fine-to-very coarse-grained. | splays, dune migration
Thinly to thickly bedded, lenticular bedding extending
laterally for tens of meters, trace lenses of granule to pebbles.

Moderately to well sorted.

Sh Horizontally stratifed sandstone. Tan to red. Very fine-to- Planar bed flow, upper
coarse-grained, trace lenses of cobbles and pebbles. Well to | flow regime
moderately sorted. Very thinly to thickly bedded, tabular
bedding extending laterally for several tens of meters to a
few hundred meters.

Ss Sandstone with basal scour surface. Red to tan. Very Erosive channel fills
coarse-to-medium-grained, locally conglomeratic with <30%
granules to pebbles. Normal grading. Lenticular, extending
laterally for several meters.

FIm Massive or laminated siltstone. Red. Lenticular to tabular Overbank, abandoned
bedding, extending laterally for tens of meters. channel or suspension

deposits

Vr Tuffaceous sandstone or conglomerate. White to light tan. Reworked primary silicic

Medium-to-very coarse grained sand, granules to boulders.
Subangular to subrounded pumice fragments. Laminated to
thickly bedded, lenticular to tabular bedding extending
laterally for less than one meter to tens of meters. Moderately
to poorly sorted.

tuff

* after Miall, 1985; Uba et al., 2005, Murray et al., 2010
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breccias (lithofacies Gc and Gm; Table 1), which have similar clast compositions as the
conglomeratic sandstones (Figs. 7 and 8B—8D). The rocks of this unit contain sedimentary
structures indicative of fluvial deposition, including channels that indicating southwestward-
directed paleoflow, cut-and-fill structures, trough and low-angle cross-stratification
(lithofacies Sx; Table 1), and normal to inverse graded bedding (Figs. 7, 8B, and 8D-8G).
Silicic nonwelded ignimbrites and fluvially reworked tuff (tuffaceous sandstones and
conglomerates, lithofacies Vr; Table 1) are interbedded within the Cerocahui clastic unit,
with four distinct and informally named ignimbrites recognized: the El Rodeo, Cerro
Colorado, El Volcéan, and Cerocahui ignimbrites (Figs. 3, 4, 7, 8A, 8F-8l; Supplemental File
2 [see footnote 2]). Of these four ignimbrites, the EI Rodeo ignimbrite (Tcir) is the
stratigraphically lowest. Exposures of this ignimbrite are restricted to the west side (hanging
wall) of the El Rodeo fault (described below), where it is deposited directly on the underlying
mafic-intermediate lavas of the Bahuichivo Volcanics (Figs. 3 and 4B). The El Rodeo
ignimbrite is nonwelded with a tan to light pink groundmass, 20% phenocrysts of plagioclase,
biotite, and hornblende, trace lithic fragments, and 25% yellow and salmon colored pumice
fragments. The Cerro Colorado ignimbrite (Tcic) crops out in the low-lying areas near
Cerocahui and caps Cerro Colorado to the south of the village (Figs. 3, 8A, and 8H). The
Cerro Colorado ignimbrite is at least 70 m-thick (Fig. 7), has a light tan groundmass near the
base that transitions to light gray at the top, ~5% phenocrysts of plagioclase (to 1.5 mm) and
biotite (<1 mm), trace white long-tube pumice fragments (to 2 cm), and trace mafic-
intermediate volcanic lithic fragments (to 5 mm). The base of the Cerro Colorado ignimbrite
locally consists of a reworked pumice lapilli-tuff deposit (lithofacies Vr; Table 1) that infills
a ~4 m-deep channel cut into underlying sandstone (Figs. 8F-8G). The EIl Volcan ignimbrite

(Tciv) forms a prominent ~80 m cliff in the middle part of the ridge north of Cerocahui and
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extends westward for ~6.5 km, pinching out north of El Rodeo (Figs. 3, 7, 8A, and 8l
Supplemental File 2 [see footnote 2]). This ignimbrite consist of several thin (<5 m-thick)
nonwelded primary outflow sheets with a tan to white groundmass, 10-20% phenocrysts (<1
mm) of plagioclase, biotite, and trace clinopyroxene, hornblende, and quartz, <5% lithic
fragments (<1 mm), and 15-30% white to yellow long-tube pumice fragments (to 10 mm).
The EI Volcan ignimbrite is predominantly fluvially reworked and interbedded with
conglomerates and sandstones at the location of the measured stratigraphic section northwest
of Cerocahui (Fig. 7). The deposits of this ignimbrite located further west at Cerro El
Volcéan, however, have limited reworking and no interbedded sedimentary deposits. The
Cerocahui ignimbrite (Tcih) is a ~27 m-thick unit that crops out on the ridge north of
Cerocahui (Fig. 3, 7, and 8A). This ignimbrite is nonwelded with a white groundmass, 10—
15% phenocrysts of plagioclase, biotite, quartz, and hornblende, 5-10% lithic fragments (~1
mm), and 15% yellow pumice fragments. The base and top of the Cerocahui ignimbrite
consist of tuffaceous sandstone and conglomerate (reworked tuff) that is more stratified and
better sorted than the rest of the ignimbrite deposit (Fig. 7).

Based on stratigraphic relations and sedimentary lithofacies (Table 1), the Cerocahui
clastic unit likely represents deposition in alluvial fan systems (e.g., Miall, 1985; Kelly and
Olsen, 1993; Blair and McPherson, 1994; Collinson, 1996; Murray et al., 2010). The
interpretation of these sedimentary rocks as alluvial deposits is supported by the presence of
clast-to-matrix-supported conglomerates, breccias (lithofacies Gc and Gm; Table 1), and
conglomeratic sandstones (lithofacies Sm; Table 1) interpreted as sediment-gravity flow
deposits, stratified to cross-stratified sandstones (lithofacies Sh and Sx; Table 1) interpreted
as fluvial deposits, and deposits that infill channels cut into underlying strata (Figs. 7 and 8B—

8G). The silicic ignimbrites interstratified with the volcaniclastic rocks were likely erupted
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from distal sources and deposited in the basin, based on their nonwelded nature and high
proportion of interstratified fluvially reworked tuff (Fig. 7).

Deposition of the Cerocahui clastic unit likely occurred during extensional
deformation of the eastern basin-bounding normal faults. Evidence of synextensional
deposition includes the increased thickness and coarseness of the Cerocahui clastic unit
towards the basin-bounding fault, with these deposits either ending at the Bahuichivo—
Bachamichi fault or thinning onto the fault-block between the Bahuichivo—Bachamichi and
Pafiales faults (Figs. 3 and 4; Supplemental File 2 [see footnote 2]). Evidence of possible
growth strata is indicated by an upsection decrease in bedding dip from ~18° E to 6° E is
observed within the Cerocahui clastic unit along the Irigoyen—Bahuichivo road, as well as an
upsection dip decrease from 13° E to 5° N in the vicinity of the measured stratigraphic
section near Cerocahui (Figs. 3 and 4; Supplemental File 2 [see footnote 2]). In addition,
angular unconformities between and within the Bahuichivo Volcanics, Cerocahui clastic unit,
and basalt lavas (described below) are observed within the basin (Figs. 3, 4, 8A, and 8l,
Supplemental File 2 [see footnote 2]). These unconformities and upsection changes in
bedding dip angle can be explained by either crustal flexural subsidence related to sediment
loading, or by syndepositional tilting related to normal fault motion on the eastern half-
graben margin (i.e., growth strata). The latter explanation of synextensional deposition is
preferred, given the limited, thinner exposures of Cerocahui basin deposits east of the
Bahuichivo—Bachamichi fault and the subparallel NW-alignment of Bahuichivo Volcanic
intrusions to the half-graben bound fault system. Syndepositional extension of the EI Rodeo
fault within the basin is suggested by the restriction of the El Rodeo ignimbrite to the hanging
wall of this fault, as well as gently dipping (<5° E) Cerocahui clastic unit rocks deposited in

angular unconformity above moderately tilted (15° E) Cerocahui clastic unit sandstone on the
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hanging wall of the fault (Figs. 4B and 81). Additional syndepositional to postdepositional
offset of the Bahuichivo—Bachamichi and El Rodeo faults resulted in the development of drag
synclines on the hanging wall adjacent to these faults (Figs. 3 and 4B; Supplemental File 2
[see footnote 2]).
Basalt lavas: uppermost Cerocahui basin fill

Conformably overlying the Cerocahui clastic unit is a flat lying to gently dipping
(<10°) basalt lava unit (Tm; Figs. 3, 4, 7, and 8A; Supplemental File 2 [see footnote 2]). The
basalt lavas are widespread and appear to cap all of the ridges within the study area (Fig. 3;
Supplemental File 2 [see footnote 2]). This unit is composed of several lavas that have flow-
banded interiors and vesicular flow tops, with individual flows to ~10 m-thick (Fig. 7).
These basalt lavas are gray with a microlitic to glassy groundmass, and contain trace
phenocrysts of plagioclase, olivine, and clinopyroxene. The entire stratigraphic unit has an
estimated thickness of over 300 m, with the greatest thickness in the northwestern part of the
basin (Fig. 3; Supplemental File 2 [see footnote 2]). The vents for the basalt lava flows have
not been identified within the study area. The basalts appear to have been erupted prior to the
end of extensional deformation in the basin, because the stratigraphic unit appears to be
vertically offset across the El Rodeo fault and the Bahuichivo—Bachamichi fault north of
Bahuichivo, and is not present on the footwall of the Pafiales fault (Fig. 4A).
Silicic hypabyssal intrusions: post-basinal magmatism

The youngest lithologic unit in the study area is composed of silicic hypabyssal
intrusions/plugs (Tri) that were emplaced following volcaniclastic and volcanic deposition in
the Cerocahui basin (Figs. 3, 5, 8A, and 9). These subvertically flow-banded intrusions are
located along the southern mapped section of the basin-bounding Bahuichivo—Bachamichi

fault (Fig. 9A) and within the Cerocahui clastic unit along the Cerocahui fault where this
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Figure 9. Representative photographs of the silicic hypabyssal intrusions (Tri); locations of photos are given
(NAD27). (A) Subvertically flow-banded intrusions (Tri) emplaced into Cerocahui basin deposits (Tc) and
forming a prominent ridge southeast of Cerocahui (foreground) along the southern projection Bahuichivo—
Bachamichi fault (Fig. 3; looking southeast from 27.30569° N, 108.06423° W). Approximate location of
intrusive contact indicated. (B) Flow-banded blocks in the brecciated perimeter of the silicic hypabyssal
intrusion intruded along the Cerocahui fault (27.30202 ° N, 108.05304° W).
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fault that cuts the Cerocahui clastic unit diverges into two branches in the village of
Cerocahui (Figs. 3 and 8A). Increased tilting of the Cerocahui clastic unit occurred adjacent
to the margins of the intrusions during emplacement (Supplemental File 2 [see footnote 2]).
The silicic hypabyssal intrusion near Cerocahui has a perimeter of flow-banded blocks (Fig.
9B), suggesting brecciation during emplacement. The rocks of this intrusion are white, flow-

banded, with 5-25% euhedral phenocrysts of plagioclase and biotite.

DEPOSITIONAL AGE CONSTRAINTS
Methodology & Age Interpretations

U-Pb zircon ages were obtained from two silicic ignimbrites within the Cerocahui
basin, providing constraints on the age of these previously undated deposits. Laser ablation—
inductively coupled plasma—mass spectrometry (LA—ICP-MS) U-Pb analyses were performed
at the Laboratorio de Estudios Isotopicos, Centro de Geociencias, Universidad Nacional
Auténoma de México (UNAM) on zircons separated from the two silicic ignimbrite samples
(Fig. 10; Table 2; Appendix 4), using the analytical methods and age calculations detailed in
Murray et al. (2013).

It is common to observe mixed age populations due to zircon inheritance in Tertiary
samples previously dated in the Sierra Madre Occidental (e.g., Bryan et al., 2008; Ferrari et
al., 2013; Murray et al., 2013). The inherited zircons in our analyzed samples are inferred to
include both xenocrysts and antecrysts, with the latter formed during earlier phases of related
magmatism within the igneous province (e.g., Charlier et al., 2004; Bryan et al., 2008). In the
Sierra Madre Occidental, which has a long-lived 15-20 Myr history of continuous
magmatism, inheritance signatures are a common problem for zircons dated from the younger

(Early Miocene) rocks (e.g., Bryan et al., 2008; Ferrari et al., 2013; Murray et al., 2013) and
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Figure 10. Summary of zircon U-Pb LA—-ICP—MS analyses for samples listed in Table 2, with mean 2°°Ph/*®U

ages of the youngest zircon population (interpreted phenocryst crystallization age) for each sample is listed. For
each sample, probability density distribution plots with age calculations (left) using the deconvolution method in
Isoplot 3.70 (Ludwig, 2008) and Tera-Wasserburg concordia plots (right) are shown. MSWD—mean square of

weighted deviates. Details on the experiments are given in Appendix 4.
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TABLE 2. SUMMARY OF ZIRCON U-Pb LA-ICP-MS RESULTS

Sample Map unit Lithology Age (Ma)* +20 (Ma) n Latitude (°N) Longitude (°W)

BM080718-1 Tcic  Cerro Colorado ignimbrite 26.0 0.3 12 27.29832 108.06507
28.2 0.4 10

BM080719-7  Tciy Irigoyen ignimbrite 28.1 0.8 3 27.36548 108.15269
31.3 2 2

Notes : LA-ICP-MS—Iaser ablation—inductively coupled plasma—mass spectrometry. Ages in italics represent
the zircon antecryst (proposed by Charlier et al., 2004; crystals that predate crystallization and eruption of a host
magma, but formed during an earlier phase of related magmatism) age population in a given sample. The
youngest age population of each sample is interpreted as the preferred eruption or emplacement age. Details of
each analysis are given in Appendix 4. North American Datum 1927 (NAD27) datum is used for latitude and
longitude. Map unit labels correspond to Figure 3. The relative stratigraphic position of ages are shown in Figure
5. Locations of the samples are shown in Figures 3 and 7 and on Supplemental File 2 (see footnote 2).
n—number of zircons used for age calculation

* Mean 2°®Pb/?*8U age calculated using the deconvolution method in Isoplot 3.70 (Ludwig, 2008)
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distinguishing antecrysts from xenocrysts that are unrelated to earlier phases of magmatism is
difficult, as antecryst ages may be older than the host magma phenocryst ages by more than
10 Myr (Bryan et al., 2008). In addition, given the higher uncertainty of LA-ICP-MS dating
compared to other U-Pb geochronology methods (e.g., SIMS, TIMS, SHRIMP), it is difficult
to differentiate zircons into antecrysts and xenocrysts at time scales <1 Myr; generally within
the Sierra Madre Occidental, any zircon younger than 38 Ma was likely produced by
magmatism associated with the silicic large igneous province, i.e. antecrysts, while older
zircons (older than 38 Ma) were likely incorporated into the host magma from mid-lower
crustal rocks unrelated to the Sierra Madre Occidental magmatism, i.e. xenocrysts (Ferrari et
al., 2013).

In our analyses, we interpret the oldest zircon age population that is less than ca. 38
Ma in a sample to represent the crystallization age of antecrysts incorporated into the host
magma and that the youngest zircon age population indicates the age of phenocryst
crystallization, which we interpret as an approximation of the eruption age of the rock. Age
results are presented in the following and summarized in Figure 10 and Table 2, with the
locations of the samples shown in Figure 3 and Supplemental File 2 (see footnote 2); detailed
analytical data are given in Appendix 4.
Results

Sample BM080719-7 is from the Irigoyen ignimbrite (Tciy) at the northwestern basin
margin near Irigoyen (Figs. 3, 4A, and 5). This ignimbrite (described above) is interstratified
with lavas of the Bahuichivo Volcanics (Tbl) and the lowermost sandstones (Tcc) of the
Cerocahui basin (Figs. 3 & 4A; Supplemental File 2 [see footnote 2]). U-Pb data for this
sample reveal the presence of several xenocrysts with Proterozoic (ca. 1.7 Ga; n=1),

Paleozoic (ca. 481 and 318 Ma; n=2), Late Cretaceous (ca. 104—75 Ma; n=4), and Early
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Eocene (ca. 48 Ma; n=2) ages (Appendix 4). From the analysis of five non-xenocrystic
zircons (Table 2; Appendix 4), two age populations are recognized in sample BM080719-7
consisting of an older grouping having a mean age of 31.3 + 2 Ma and a younger grouping
with a mean age of 28.1 + 0.8 Ma (Fig. 10; Table 2). The zircons of the older age population
are likely antecrysts, while the zircons from the younger age population are interpreted as
phenocrysts. The phenocryst age overlaps within uncertainty with ages of the pre-basinal
silicic outflow ignimbrites to the west (e.g., 27.6 + 0.3 Ma Puerto Blanco ignimbrite of the
Parajes formation; Murray et al., 2013). Given the stratigraphic constraints and the large age
uncertainties with sample BM080719-7 due to limited number of analyzed non-xenocrystic
zircons, the Irigoyen ignimbrite (Tciy) is likely equivalent-age or slightly younger than the
underlying Puerto Blanco ignimbrite, with an eruption age (based on uncertainties) between
ca. 27.9-27.3 Ma. This age suggests that initial eruption of the Bahuichivo Volcanics within
the Cerocahui basin occurred ca. 27.5 Ma.

Sample BM080718-1 is from the base of the Cerro Colorado ignimbrite (Tcic;
described above) near Cerocahui, which is interbedded in the lower section of the Cerocahui
clastic unit stratigraphically above the Bahuichivo Volcanics (Figs. 3, 4B, 5, and 7). Unlike
the previous sample, xenocrysts were not found in this sample. From the analysis of 22
zircons (Table 2; Appendix 4), two age populations are recognized in sample BM080718-1,
consisting of an older group with a mean age of 28.2 £ 0.4 Ma and a younger group that has a
mean age of 26.0 + 0.3 Ma (Fig. 10; Table 2). Similar to the sample above, the older zircon
age population is likely antecrystic, and the population of younger zircons is interpreted as
phenocrysts. This phenocryst age overlaps within uncertainty with the age of the Témoris
Formation in the Guazapares Mining District region, which is bracketed at ca. 27-24.5 Ma by

U-Pb zircon ages of the underlying and overlying formations (Parajes and Sierra Guazapares
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formations, respectively) and interbedded silicic ignimbrites (Murray et al., 2013). In
addition, this data provides a minimum age for the eruption of the underlying Bahuichivo

Volcanics at ca. 26 Ma.

DISCUSSION
Cerocahui Basin Evolution

The new geologic mapping, stratigraphy, and geochronology presented in this study
show that the rocks of the Cerocahui basin region record Late Oligocene (ca. 27.5 Ma to
likely older than 24.5 Ma) synextensional volcanism and volcaniclastic alluvial deposition
during the mid-Cenozoic ignimbrite flare-up in the northern Sierra Madre Occidental. The
developmental history of the Cerocahui basin includes (Fig. 11): (1) deposition of welded
silicic outflow ignimbrite sheets; (2) synextensional magmatism and deposition of the
Bahuichivo Volcanics, Cerocahui clastic unit, and basalt lavas in the Cerocahui basin during
a lull in silicic ignimbrite flare-up volcanism; and (3) emplacement of silicic hypabyssal
intrusions along preexisting extensional faults in the Cerocahui basin.

The silicic outflow ignimbrite sheets that underlie the Cerocahui basin are similar to
Late Oligocene outflow ignimbrite sheets in adjacent regions of the northern Sierra Madre
Occidental, erupted during the end of the Early Oligocene pulse of the ignimbrite flare-up
(Swanson et al., 2006; Murray et al., 2013). Similar to the ignimbrites of the Parajes
formation in the Guazapares Mining District region (Murray et al., 2013), the degree of
welding and flow thicknesses of the pre-basinal ignimbrites suggest that these rocks were
also possibly erupted from calderas within 50-100 km of the Cerocahui basin region that
temporally overlap with the end of Late Oligocene ignimbrite flare-up volcanism to the east,

although more geochronologic data are needed to confirm this interpretation. There is no
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Figure 11 (next page). Schematic block diagrams illustrating the developmental history of the Cerocahui basin.
The colors correspond to the map units in Figure 3. (A) Pre-basinal eruption of plateau-forming welded silicic
outflow ignimbrites from distant (>50 km) sources, with sheets extending eastward from the Cerocahui basin
and westward to the Guazapares Mining District region. (B) Initiation of crustal extension resulted in eruption
of the Bahuichivo Volcanics from fault-controlled vents, primarily along the eastern basin margin, into the
Cerocahui basin and onto the basin-bounding footwall. The lavas of the Bahuichivo Volcanics are interstratified
with alluvial sandstone and the Irigoyen ignimbrite in the basin. (C) Extensional uplift related to continued
motion of the basin-bounding normal faults triggers erosion of the Bahuichivo Volcanics, with resulting mafic-
intermediate volcanic-rich material (green clasts) deposited in the lower part of the Cerocahui clastic unit. (D)
Further extensional deformation of the basin-bounding normal faults unroofs the older silicic outflow
ignimbrites, resulting in mixed nonwelded to welded silicic ignimbrite (pink clasts) and mafic-intermediate
volcanic detritus (green clasts) deposited in the upper section of the Cerocahui clastic unit. (E) Eruption of the
basalt lavas into the Cerocahui basin, followed by offset of the basalt lava unit across the Bahuichivo—
Bachamichi fault. Silicic hypabyssal intrusions were emplaced along the basin-bounding Bahuichivo—
Bachamichi fault and normal faults within the basin that offset older deposits.
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direct evidence of extensional deformation in the region of the Cerocahui basin during
deposition of the silicic outflow ignimbrite sheets (Fig. 11A), such as occurred during
deposition of the upper (post-ca. 27.5 Ma) part of the ignimbrite section in the Guazapares
Mining District region (Murray et al., 2013). However, given that the oldest age within the
Cerocahui basin is from a thin nonwelded ignimbrite interbedded with the Bahuichivo
Volcanics that overlie the Parajes formation near the Piedra Bola fault (28.1 £ 0.8 Ma), and
this is the same age (within uncertainty) of the timing of the onset of extension to the west,
extension in the Cerocahui basin region may have also begun during deposition of the
youngest silicic outflow ignimbrites.

Depositional relationships, growth strata, and subvolcanic intrusions that are likely
fault-localized suggest that the Bahuichivo Volcanics, Cerocahui clastic unit, and basalt lavas
represent the synextensional growth of mafic-intermediate volcanic centers and volcaniclastic
alluvial deposition in the Cerocahui basin during the Late Oligocene (Figs. 11B-11E). The
alluvial fan deposits of the Cerocahui clastic unit likely formed a bajada along the eastern
margin of the Cerocahui basin adjacent to the basin-bounding fault and prograded into the
subsiding half-graben from the east and accumulated over the Bahuichivo Volcanics (Figs.
11C-11D).

The stratigraphic trend in conglomerate-breccia clast compositions in the Cerocahui
clastic unit shows an upsection decrease in mafic-intermediate volcanic fragments and an
upsection increase in welded and nonwelded ignimbrite clasts, with fragments of silicic lava
restricted to the lowest rocks of the section (Fig. 7). The flow-banded silicic lava clasts
suggest erosion of silicic volcanoes or plugs in the vicinity of the Cerocahui basin, as mafic-
intermediate volcanic fragments are intermingled with the silicic lava clasts in the alluvial

deposits; further study is needed to determine the source of these silicic lava clasts and its

172



relative timing to the eruption of the Bahuichivo Volcanics. The upsection trends in clast
composition appear to record inverse stratigraphy related to unroofing of the active half-
graben footwall block (Figs. 7 and 11C-11D), with erosion of the Bahuichivo Volcanics (Fig.
11C) followed by erosion of the silicic outflow ignimbrite sheets (Fig. 11D). The rocks on
the footwall of the Bahuichivo—Bachamichi fault consist of silicic outflow ignimbrites, the
Bahuichivo Volcanics, and limited conglomerate and ignimbrite deposits of the Cerocahui
clastic unit, whereas rocks on the footwall of the Pafiales fault to the east are restricted to pre-
basinal silicic outflow ignimbrites; sedimentary and volcanic deposits related to the
Cerocahui basin strata described above are not identified immediately east of this fault (Fig.
3; Supplemental File 2 [see footnote 2]). This absence of Cerocahui basin fill supports the
interpretation that extensional footwall uplift led to erosion of the Bahuichivo Volcanics first,
and then the underlying silicic outflow ignimbrites, with their erosional products deposited in
the adjacent half-graben basin to the west (Figs. 11C-11D).

Following deposition of the Cerocahui clastic unit, basalt lavas were erupted and
ponded within the Cerocahui basin (Fig. 11E). As noted above, these lavas are offset by the
basin-bounding fault system and normal faults within the basin (Figs. 3 and 4; Supplemental
File 2 [see footnote 2]), suggesting synvolcanic extension. Although there are no direct
crosscutting relationships, the silicic hypabyssal intrusions are inferred to be younger than the
basalt lavas. This relative age relationship is based on the undeformed nature of the silicic
intrusions, and that they are emplaced along the southern projection of the basin-bounding
fault near Cerocahui, a fault that offsets the basalt lavas to the north near Bahuichivo (Fig. 3;
Supplemental File 2 [see footnote 2]), as well as along faults within the basin that offset older

deposits of the Cerocahui clastic unit. The somewhat close association of the silicic
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hypabyssal intrusions with normal faults suggests that these preexisting structures were
utilized as pathways for magma accent and emplacement (Fig. 11E).
Regional Correlations

Based on similar lithology, timing of synextensional deposition, and proximity, the
three stratigraphic subdivisions within the Cerocahui basin (Bahuichivo Volcanics, Cerocahui
clastic unit, and basalt lavas) are broadly correlative with the ca. 27-24.5 Ma Témoris
formation in the Guazapares Mining District region (e.g., Murray et al., 2013). Like the
stratigraphy of the Cerocahui basin, the Témoris formation is dominated by synextensional
mafic-intermediate volcanic rocks and fault-localized intrusive equivalents, volcaniclastic
alluvial fan deposits, and an upper section of interbedded alluvial deposits and distal silicic
ignimbrites deposited above the mafic-intermediate lavas. However, there are much greater
proportions of sandstones, conglomerates, and breccias in the Cerocahui basin than there are
in the Témoris Formation. In addition, the basalt lavas that cap the Cerocahui basin deposits
are not present in the Témoris formation to the west.

The sizes of half-graben basins in the Cerocahui and Guazapares Mining District
regions also differ. In the Guazapares Mining District region, several closely spaced half-
graben basins are generally smaller (~1 to 4 km-wide, 100 to >600 m-deep) than the ~12 km-
wide, >1,200 m-deep Cerocahui basin (Fig. 2). Perhaps this size difference is related to the
position of the Cerocahui basin immediately adjacent to the unextended core of the Sierra
Madre Occidental to the east, and the more diffusely faulted Guazapares Mining District
region to the west represents a transition into the Gulf Extensional Province.

The silicic hypabyssal intrusions in the Cerocahui basin are not dated directly, but
they are tentatively correlated with the ca. 24.5-23 Ma Sierra Guazapares formation of the

Guazapares Mining District region (e.g., Murray et al., 2013), which records the onset of
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local silicic flare-up-related magmatism ~20 km to the west during the onset of the Early
Miocene pulse of the ignimbrite flare-up. The Sierra Guazapares formation includes fault-
localized fissure magmatism with silicic hypabyssal intrusions emplaced along preexisting
faults (Murray et al., 2013), similar to the fault-controlled silicic intrusions in the Cerocahui
basin (Fig. 11E). However, as noted above, in the Cerocahui basin, these intrusions do not
pass upward into ignimbrites or lavas as they do in the Sierra Guazapares formation; it is not
known whether this is an artifact of preservation (i.e., the top of the section is eroded), or if
silicic volcanism was minimal in the Cerocahui region.

The Late Oligocene timing of volcanism and synextensional deposition in the
Cerocahui basin is generally consistent with regional data patterns suggesting a post- ca. 40
Ma southwestward migration of extension and arc-front magmatism across Sierra Madre
Occidental (e.g., Damon et al., 1981; Gans, 1997; Gans et al., 2003; Ferrari et al., 2007,
Henry et al., 2010). The ca. 27.5-26 Ma Bahuichivo Volcanics postdate Late Eocene to Early
Oligocene volcanism to the northeast of the study area, and are older than to coeval with Late
Oligocene to Early Miocene volcanism to the west in Sonora (Ferrari et al., 2007; Murray et
al., 2013 and references therein). Likewise, the Late Oligocene age of extension of the
Cerocahui basin is roughly coeval with the onset of extension in the Guazapares Mining
District immediately to the west and is slightly older (~1-6 Myr) than the onset of extension
in the end Oligocene—Early Miocene fault-bound grabens and core complexes farther west in

Sonora (Gans, 1997; McDowell et al., 1997; Wong et al., 2010).

CONCLUSIONS
The rocks in the Cerocahui basin and adjacent Guazapares Mining District region

record Late Oligocene to Early Miocene magmatism and synextensional deposition in the
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northern Sierra Madre Occidental during the mid-Cenozoic ignimbrite flare-up. The oldest
rocks in this region are silicic outflow ignimbrite sheets erupted during the end of the Early
Oligocene pulse of the ignimbrite flare-up from sources likely to the east, representing medial
outflow facies that were mostly deposited prior to development of the Cerocahui half-graben
basin. These ignimbrites are likely correlative with the ca. 27.5 Ma Parajes formation
immediately to the west in the Guazapares Mining District region, which suggests
synextensional deposition of the youngest ignimbrites of the formation, and to ignimbrite
sections described to the east by Swanson et al. (2006). The overlying synextensional
deposits of the Cerocahui basin include: (1) the basal basin fill, consisting of the ca. 27.5-26
Ma Bahuichivo Volcanics, mafic-intermediate lavas erupted from fault-localized
synextensional volcanic centers primarily on the eastern half-graben margin; (2) the
Cerocahui clastic unit, consisting largely of a bajada of alluvial fan-fluvial systems with
minor interbedded distal ignimbrites that prograded into the half-graben basin from the active
eastern fault margin; and (3) a >300 m-thick section of basalt lavas ponded within, and
restricted to, the Cerocahui basin. The mafic-intermediate volcanic and alluvial deposits of
the Cerocahui basin are likely equivalent to the ca. 27.5-24.5 Ma Témoris formation in the
Guazapares Mining District and represent a period of the Southern Cordillera basaltic
andesite (SCORBA) magmatism erupted after the Early Oligocene ignimbrite pulse.
Following deposition in the Cerocahui basin, silicic hypabyssal intrusions were emplaced
along normal faults in the Cerocahui basin. These silicic intrusions are likely related to the
24.5-23 Ma Sierra Guazapares formation in the Guazapares Mining District, which were
emplaced during the Early Miocene pulse of the ignimbrite flare-up. The Late Oligocene to

Early Miocene timing of magmatism and synextensional deposition in the Cerocahui basin
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and Guazapares Mining District regions generally supports the regional interpretation that

ignimbrite flare-up magmatism and crustal extension migrated southwestward with time.
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APPENDIX 3:

CATHODOLUMINESCENCE IMAGES OF ZIRCONS FROM U-Pb LASER

ABLATION ICP-MS ANALYSES
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APPENDIX 4:

CEROCAHUI BASIN REGION ZIRCON U-Pb LASER ABLATION ICP-MS

ANALYTICAL RESULTS

214



{ey) aby
0992 0154 2994 095
._ uone|nojes abe woiy papnjoxa (e 8¢ <) suoanz a1)sAIo0uax = ,
B LE se £e e 62 i 14
© o
.
£ Z5Z'0 0" 8Y1°0 13 '
2 o G0Z°0 8¥T°0 86E°0 TIF
4 z3 13 13
2 a XTI3e ouy-eubts :
3
o €G9°0 = ITISTW SATIETSI e
=== 0€°0 4 £ 1€
@ 08°0 0L" 0 g0 zT°8Z
ozF UOT30®RIT ozF aby &
L
9 vOLL 8L ISSL €L pEpL GF0 G0E000  2ES60°0 152000  10ISZTO  S9080°0  9909°€ 602000  ZFFOLO 850 G9t 192 210 G uoduiz
zl 18¥ Sl Ly zl 18¥ $9'0 €800000 65200 202000 GSZL00 82¥E00 90 121000 869500 £8°0 vzl a4 920 91 uodz
€ 8l 6 06€ € 8l gh0 20K000 26200 950000 £S0S00 GEZTLOO  29/9K0 91000 289900 020 [oie] 98!t ¥¥0 LE U0z
I voL e LLL 1 vOL 9€'0 810000  ¥2S00°0 810000 8291070 99E00°0 29IZH0  25L000  G2KS00 170 116 085 710 9 uodilz
€ 201 6 Lt € 201 820 8¥0000 129000 #0000 26SL00 E€E0LOO  LESLLO  Z¥000 9%50°0 550 54 v. €20 v} uoanz
80 §'28 9 16 80 9.8 G0 6100000 9S¥000  2HO00'0 996100 809000 +IOOLO  L2E000  Z¥ESOO ¥5°0 L01 €L1 GEO g uodz
z <72 S 06 4 SL ZE0 €€00000 962000 20000 ZZLLOO 625000 £6260°0 626000  8S50°0 650 8elL 161 600 g ooz
L 8¥ € s 1 8y 1§50 200000 122000 220000 GrZ000 80E000 G0ZS00 292000  9€1S0°0 JAN! 8YG 069 10 ¥g uoonz
L 8 0z 15 1 8y 900 S0000 985000  Z1O00'0  2SZ00°0 €L020°0 vALGO0 ZEEL00  LEESO0 290 09 26 0v0 82 uodliz
L ze L ey 1 ze ZE0 9000000 25L000 220000 96v00°0 €2.000 ZEYO'0 126000  22E90°0 040 €5 €6 8E0 92 uodz
L o¢ L L€ 1 o€ 620 600000 9¥L000  Z10000  ZPOO'O  Z1Z000 GLZEOD 266000 92500 190 v61 182 620 6} uodz
90 ¥'82 4 ¥E 90 ¥'82 91'0 800000 80000 600000 2¥¥O0'0 6¥PO00  LPEOD'0  B82L00°0 950'0 1270 19 [olo] 6E0 £Z uodliz
90 8.2 G 9 90 8.2 GL'0 8000000 2L000 600000 2ev000 €LG000 +29e00 GZ800°0 2529070 860 vl 6ee 250 6€ uoanz
80 9.2 L a4 80 9.2 £2°0__$00000 621000 €10000 _ 82r00°0  €62000 86EY00 291100 9¥p200 050 L9 £0} LL0 ¢ _uodiiz
o|F (eW)obeiseg DIF Ngg/ld,;z O1F Nger/Adgy; oyd  OMF  Ulyeo/Odgy; O F  Megr/Odgge  ¢OMF  Nger/Od,pz OWF  Odgpr/Ad g nur  (wdd) yr (wdd) N
(BIN) S3OV 3103HHOD .SOILVYH Q3103HHOD
e 80 F 182 (0Z7) 3Pe N-/Ad,, UeaN (A191) ayuquiiuby uakobu 2-612080Ng

215



'81-G ‘(1)¥€ ‘yoseasay [eollf[eueosr) pue SPIepUB}SOaK) "AoBINooe
pue uoIsioald Ul SJUSWaASIYOR UOHEISHIOM [EONA[BUB0IDIW SN DI-Y 1 pPalelbaiul ue Ag ABojouciyooab uoaiiz gd-n "01L0g “W ‘JeUuB] “Q ‘NZIAly-zZalad “d'[ ‘[euleg “y ‘Busn|-zawon “y ] ‘Uej0S

‘Ge-1 ‘6vg ‘ABOojoaD) [o1WeyD) “sIsAleurosoiw 21do0S! JH PUB Gd-M 104 [ELIJRW S0ULISSRI [RINJBU MBU Y - UODIIZ SIIA0S3Id "800 “ "IN
‘@sNoysiYM “N'IN ‘Heigny g ‘eusoyas “n ‘1ebBeleyss “N ‘BICION T ‘BBPSEN “V'D) ‘SUIOW “W'S'IN ‘POOMISIOH “IN'[ ‘JBYIUBH Y ‘S8pJen) 1 ‘ABIMOID “[ ‘UOPUOD “ 18|30 I ‘BWEIS
'6£-6G ‘261 ‘ABOJ0SY) [82I1WSYD 10d, ., HOUS) JOU Op Jey) SOSAIBUE Gd—() Ul PES| UOWWIOD 4O UOIISLI0D ‘ZOOZ L USSIOPUY

‘ewBis | ¥ Je passaldxe ate sious abe usseddy
suoneue|dxe Jayuny 1oy (0102) ‘e 10 Uej0g 8ag "|ans| Bwhis-| Je passaidxe pue anjosge aJe Si0.119 oljes 21dojos| ¢
‘parjdde Jayuny SI poylew uonoaliod gd uowwoo (200g) Uasiepuy ayl
“(uonebedoid Joue uo suoleu.|dxs JeylIN, 40} 1X8) 88S) LOEUONIE.I) 8]0Y-UMOP PUE SBIG SSEW 10} (800Z “[& 19 BWERIS) UOJAIZ PIEPUELS 81A0SS|d B} JO SISA[BuE 0} 8Ale[8) PSJ08.1I00 aik sones 21dojos)
'sse|B piepue)s Juswele 9984} 219 ISIN JO SISA[eUR 8y} 0) SAIE[S PIBIGIED 8J& SUOHENSIUOD U] PUE N

£€ [ e oe 62 82 fx4 9z se ve
0
'
z
£€6T°0 ENI EIT°0 13
Zv1°0 EIT 0 ¥91°0 13 — €
z3 12 3 vd
XTIJe OYg-rwbIS [ ©
s
ZEVP°0 = 3ITISTUW SATIRTDX
e 9%°0 €7°0 £2°8¢C ¢
€€ 0 ¥G°0 9¢°0 T0°9¢ 2
ozF uotisceIy ozF oby
L0 562 14 8e L0 §'62 GZ'0 800000 L¢LOO'0O L0000 6S¥YO00  €6€£000 S¥P8EO'0 L9000  GEZY0°0 6¥°0 v 8z 620 61 uodnz
S0 8'82 € 24 S0 8'8c /20 900000 2¥HO0'0 800000 /Z¥YOO'O G6200'0 9E¥PPO'0  S9¥000  6S2L0°0 /50 2L SHE GL0 /L uoouz
0 6’82 € Se 0 S8 82°0 200000 /£100°0 /00000 €ev¥00'0 S8200°0 PESE00  Ler000 £€8/50°0 280 891 981 /10 6 uooiz
80 582 9 44 80 G'8e 20 ¥0000°0  +¥ELO0'0  2L000'0  E€¥POO'0  LL900'0  €0¥PPO'0  €¥BO00  €12.0°0 €50 9 Okt GEO g uodnz
L0 c'8e 14 i L0 28e €e°0 €0000°0 c€1L00°0 110000 6E¥000 6¥¥000 6E9¥0°0 629000 999200 S0 09 6 6E0 g uoonz
60 8z 9 84 60 82 9’0 00000 €€L000 #0000 9E¥O0'0 965000 980¥0°0 S88000 208900 0.0 06 9kt 960 Gg uoanz
S0 8z € 4] S0 8z €60 120000 29+00°'0 80000°0 9€¥00'0 862000 202500 99¥000  8€980°0 S0 69 £8 810 0} uodnz
S0 6.2 € o S0 6.2 ¥2’0 £0000°0 /€100°0 800000 €e¥000 ¥IE00'0  £90¥0°0 L1SO00 +#6890°0 690 +9 €8 0€0 0g uodnz
80 6'/2 8 GG 80 6.2 /¥'0 ¥0000°0 82L00'0  €1000°0 PEYOO'0  ¥800°0 8GG0°0  ¥/2LO0  ¥EEB00 650 €L 418 600 g uoonz
90 ¥'.le € 54 90 vie 620 900000 6€£L000 600000 92v00'0 L0000 6LEPO0  €1G000  LESLOO ¥9°0 LL 80} 910 8 uoonz
S0 .2 4 €e S0 12 €0 ¥00000 8LLOO'0 800000 61¥000 26L000  2EE0'0 2€00°0 918500 €90 681 L2 110 ¢ uoduz
90 /2 € 6€ 90 Vi 2e'0 €00000 82000 10000 2h00'0  2EE00°0 <2E6E0'0  S0S00'0  £€6/90°0 S0 8L 6 920 9} uoonz
0 £92 € se 0 £9c ¥€'0 200000 921000 Z00000 60¥000 LIEO0'0 29¥E0°0 /8¥000 +€190°0 G660 lee Sle 120 2| uoanz
90 292 € 0g 90 292 620 €00000 82L000 600000 80YOO'0 €2€000 296200 L0SO00 /92500 86'0 feterd jetord 710 9 uoonz
¥0 292 4 ve ¥0 29e €20 00000 92+000 900000 80¥YO0'0 €L2000 +6EE00  #.E000  €2190°0 €20 124 €1e 010 € uoouz
G0 292 € 9e G0 292 82°0 200000 G2L000 800000 Z0O¥O0'0 £0€00°0 €8S€0°0 +6¥00°0 G8E90°0 080 101 ek €60 gg uodZ
S0 19z S ze S0 Loz 22’0 €00000 92+00°0  Z0000'0 GOYOO'O  9¥00'0  602€0°0 992000  €¥.50°0 96'0 991 eieq® 220 €} uodnz
€0 9z 4 0e €0 92 €2°0 200000 €100°0 $00000 +vO¥O0'0 191000 220€00 282000  2E¥S00 pANE 082 209 gI0 G uoonz
0 6'5e 4 €e 0 6'Ge 120 ¥00000  +2L00'0 9000000 20Y00'0 Gb200'0  L82E0°0  LEYOO'O 886500 9,0 2ch i4t 0r0 82 uodnz
€0 A4 4 62 €0 L'Se €2°0 €00000 +2+00'0  S0000°0 ¥00°0 8/100'0  +¥620'0  91€00°0  8GES0°0 280 61 Sie Zy0 0g uoonz
0 1'S2 4 9e 0 L'Se 92°0 €0000°0 821000 900000 000 261000 9G€0°0 £€€00°0 /900 €80 102 9ce L¥0 62 uodnz
¥'0 £'62 4 13 ¥'0 £'62 92'0 €0000°0  }2L00'0 900000 ¥6E00'0  /6L00°0  LBEE0'0  €GE000  LOESD'0 280 361 %4 £20 v| uodnz
o —H A.N—ZV W@N wwwm o FH Dmmm\ﬂ n_mcm o —H Dmm,m\ﬂﬁ_mom OEE mD I r—n_lmmm\ﬂﬁ_mow mb I Dmmw\ﬂﬂ_mom mO I Dmmm\ﬂn_mcm m.D —,H Qn_mom\ﬂﬁ_how _J\r_n_l AEQQV Vﬂn_l AEQQV rD

(ey) S3OV 43103HHOD

2SOILYH d31034400

BN €0 F 092 :(0gF) 9be Ng../Ad,,, UESN

(0191) ayaquirubi opeiojo) oua)

1-81L080N g

216





