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ABSTRACT OF THE DISSERTATION

Keeping the Noise Down: The Role of Cellular Compartmentalization In Maintaining Robust

Gene Expression

by
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Doctor of Philosophy in Mathematics
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Mathematical modeling has played a pivotal role in advancing the understanding of gene

expression regulation, operating at both the molecular and cellular levels. In this dissertation,

stochastic models and simulations will be employed to explore the impact of various forms of

cellular compartmentalization, such as the formation of functionally distinct RNA condensates

or the establishment of nuclear territories in syncytia, on the robust spatiotemporal control of

gene expression within cells. The highlighted model system, multinucleated filamentous fungi,

serves as a prime example of global coordination and compartmentalization within expansive

cytoplasmic environments. To complement these modeling efforts, image analysis on live cell

data will be employed to quantify and localize RNAs, providing a means by which key model

parameters can be inferred and the model’s validity can be assessed within physiologically

relevant contexts.
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CHAPTER 1

Introduction

Protein synthesis serves as a foundational pillar within cellular systems, conducting a myriad

of functions. It propels countless enzymatic pathways, facilitating appropriate responses to

external stimuli and supporting proliferation, while also playing a crucial role in shaping

cellular morphology. The conversion of genetic information into functional protein products

is termed gene expression. This complex and intrinsically stochastic process, coupled with its

spatiotemporal regulation, has been a fundamental driver in molding adaptation and specia-

tion throughout all domains of life [5]. In the span of just the last 25 years, groundbreaking

cellular imaging methods like single molecule fluorescence in situ hybridization (smFISH) [6]

and sequencing technologies such as RNA-Seq [7] have surfaced, providing biologists with

unprecedented capabilities to characterize and study gene expression and its regulation.

The compartmentalization of the cell into the nucleus and cytoplasm represents the

fundamental organizational framework governing gene expression in eukaryotes [8]. This

structural adaptation enables the efficient compaction of genetic information into distinct

chromosomal domains with varying condensation levels, thereby affecting accessibility to

cellular machinery. It also aids in RNA splicing before cytoplasmic translation, reducing

the probability of aberrant protein production [9]. Consequently, the segregation of genetic

material within the nucleus promotes a wider spectrum of protein synthesis, marked by an ele-

vated level of precision surpassing what can be achieved in an undivided cellular environment.

The further sub-compartmentalization of the cytosol into membrane-enclosed organelles in
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eukaryotes conferred the ability for the division of labor in metabolic processes, enhancing

operational efficiency [10]. Organelle-specific macro-molecules are frequently transported

to their intended locations through active mechanisms. For instance, this can be achieved

using molecular motors positioned along the cytoskeletal network [11], or through molecular

diffusion along a maintained concentration gradient [12]. Central to this translocation process

is a balance between the energy investment required for transportation and the efficiency

gains derived from the precise spatiotemporal control of gene products [13]. In addition to

specialized membraned-organelles, cells contain various types of sub-compartments that lack

conventional membranes and enable less restrictive exchange of components between adjacent

sub-compartments. In some instances, a clear boundary exists, separating sub-compartments,

as observed in the case of phase-separated biomolecular condensates [14]. In other cases,

the subcompartments may delineate specific regions of influence in the cytosol, such as

perinuclear spaces that are often enriched in signaling or intrinsically disordered proteins [15].

Syncytial (multinucleated) filamentous fungal cells present a captivating paradigm of sub-

compartmentalization and its profound impact on robust spatiotemporal protein synthesis.

Immersed within a shared cytoplasm, syncytial nuclei encounter the distinct situation of

orchestrating coordinated expression while retaining a certain level of individual autonomy.

In fungal, mammalian and drosophilla syncytia, nuclei have the ability to delineate individual

cytoplasmic territories through the emission of repulsive microtubules that hinder cluster-

ing [16–18]. The degree of intermingling among what we term as nuclear neighborhoods

is dictated by the diffusivity of the associated molecules within these specific zones. This

diffusivity can also be influenced by potential interactions with microtubular networks, which

could enable directed transport [19], or interactions with biomolecular condensates that might

restrict diffusion beyond perinuclear regions [20].

Mathematical models play a vital role in deciphering the dynamic features observed within

cells, such as circadian rhythms [21–23] or cell-cycle processes [24,25], at a molecular level.
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These models often elucidate both deterministic and stochastic features, providing a holistic

understanding of cellular behavior and the associated cell-to-cell variability inherent in these

processes. These models conventionally operate under the assumption of homogeneously

mixed interacting species across the relevant compartments — the nucleus and the cytoplasm,

often disregarding other spatial features [26–28]. Even in syncytial contexts, mathematical

models tend to overlook the potential exchange of gene products between nuclei, along with

their associated time scales and distributions [29,30]. Thus, our comprehension of cellular

sub-compartmentalization mechanisms and their linked spatiotemporal distributions remains

in its early stages.

In this dissertation, my goal is to address these questions through the development of

mathematical models of varying spatial complexities, complemented by live cell image analysis.

This research will be divided into three chapters, each considering increasingly broader levels

of sub-compartmentalization and their respective impact on the spatiotemporal control of

gene expression. A central theme in this research is the exploration of the balance between

efficiency and precision in gene expression. Our model findings illuminate that gene product

diffusion into distinct sub-compartments within cells bestows expression noise tolerance, a

factor unaccounted for in standard, well-mixed gene expression models.

Chapter 2 comprises a manuscript currently under review, co-authored with Grace

McLaughlin, Amy Gladfelter, and Marcus Roper. Within this chapter, we explore a well-mixed

model of gene expression within individual nuclear neighborhoods. In this phenomenological

model, RNA molecules may phase-separate into dilute and dense phases in a concentration-

dependent manner, forming distinct cytoplasmic sub-compartments with disparate kinetic

parameters. A combination of analytic techniques and stochastic simulations reveal that

fluctuations in the dilute abundances of RNA molecules and the proteins they encode can be

suppressed by rapid diffusion of these molecules into biomolecular condensates that favor

localization near nuclei in syncytia. The suppression of fluctuations permits both robust and
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localized expression, which may potentially play a role in preserving independent cell cycle

regulation in syncytia (Dundon et al., 2016).

Chapter 3 features a manuscript co-authored with Grace McLaughlin, Jiayu Li, Amy

Gladfelter, and Marcus Roper. Within this chapter, we delve into the compartmentalization of

syncytial cells into nuclear sub-compartments, which assume rapid protein exchange between

adjacent sub-compartments. Our model examines the gene expression variability within

nuclear sub-compartments across various nuclear distributions, unveiling a diffusive averaging

mechanism. This mechanism effectively dampens protein noise, distinguishing it from mono-

nucleated cells with equivalent expression kinetics. These results reveal a potential paradigm

shift towards less investment in precise transcription in favor of efficient yet more stochastic

transcription in syncytial cells. To probe this, transcription profiles derived from smFISH

images of homologous genes in the closely related mononucleated cell Saccharomyces cerevisiae

and the syncytial Ashbya gossypii are compared, which is broadly supportive of the hypothesis.

The final chapter incorporates the modeling sections I wrote from a collaborative review

on fungal syncytia, co-authored by Grace McLaughlin, N. Louise Glass, Alexander Mela, Amy

Gladfelter, and Marcus Roper. Within the mathematical models featured in this chapter, we

depart from the prior assumption of well-mixed cytoplasmic environments. Our focus shifts

towards understanding the influence of inherent time scale separations in protein synthesis

and diffusion on the spatiotemporal protein distributions within a syncytium. These findings

underscore the unique challenges that fungal syncytia face in balancing the need to coordinate

the responses of nuclei in a shared cytoplasm, while still preserving nuclear autonomy and

minimizing competition for shared resources.

4



CHAPTER 2

The Role of RNA Condensation in Reducing Gene

Expression Noise

2.1 Introduction

Gene expression is a noisy process, ensuring that even genetically identical cells receiving

common cues from their environment may exhibit a range of protein copy numbers. In

some cases, resulting cell to cell variability might be useful [31, 32]. However, in stable

environments, cells generally benefit from consistent expression of proteins, and high gene

expression noise may impair cellular function [33–35]. Low mRNA copy numbers are a

major contributor to protein copy noise since translation to proteins amplifies small absolute

variations in mRNA copy number [36]. Yet, mRNA copy numbers are often low - at 10

mRNAs or fewer per cell, across the majority of the genome in Saccharomyces cerevisiae [37],

and transcription rates (number of mRNAs per gene per unit time) are much smaller than

translation rates (number of proteins per mRNA copy per unit time) across the genomes of

yeast, mice, humans and E. coli in their fast growing phases [38]. Hausser et al [38] argue that

energetics constrain transcription rates; the total energetic cost of translation is invariant

if protein copy numbers are held fixed, but the energetic burden of transcription, although

relatively smaller, is reduced if mRNA copy numbers are kept small. Economical transcription

may also reduce transcriptional interference when two genes are simultaneously transcribed.

Negative interactions between different transcriptional activities can occur, such as elongating

RNA polymerases obstructing each other, repressors bound to one operon overlapping with
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a second operon [39], or genome conformational changes that expose one operon but mask

another [40].

In both bacteria and higher eukaryotes, the primary mode of transcription is through

bursting [41–43]. During bursty transcription, mRNAs are synthesized in pulses, fluctuating

in both intensity and frequency. Bursts are thought to arise as a result of the reversible

interactions of the pre-initiation complex (PIC) with a gene’s promoter. When the PIC is

bound, the RNA polymerase’s affinity for binding to the transcription start site is dramatically

increased, and multiple transcription events can occur while the gene is in this “on” state [44].

Since chromatin remodeling is required for gene activation, there is a fundamental cost to

fast switching between promoter states [45]. We assume efficiency is achieved by minimizing

the frequency of gene activity, and allowing intense bursts when in the “on” state to meet the

required mean mRNA abundance. However bursty transcription introduces additional noise

into expression. In the context of infrequent, intense bursts, mRNA variability will drastically

increase, which is especially pronounced in systems with small mean mRNA populations,

resulting in large steady state fluctuations in protein.

For many genes, protein abundance must be tightly regulated for proper function of the

cell [34, 46, 47], and there exist many regulatory mechanisms in gene expression that can

mitigate fluctuations in protein abundance [48], [27]. Negative feedback has been observed at

each level of gene expression, resulting in gene networks that can be analyzed for their ability

to control noise in expression [27]. These networks can theoretically drive expression noise

below Poisson levels, but can introduce substantial deficits in the cell’s energy economy [49].

For example, Lestas et al. [50] find that in systems with nonlinear real-time feedback control,

signal molecules must be synthesized at rates far exceeding those of the target molecule in

order to meaningfully suppress noise. In contrast, cellular compartmentalization may be

an energetically efficient method for filtering expression noise if the proteins that form the
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compartments are long-lived [49]. In particular, phase separation has been theorized to play

a role in post-translational regulation of genes. Klosin et. al [51] provide theoretical and

experimental evidence of this idea; showing that concentration-dependent phase separation

of proteins can drive protein fluctuations to the minimum Poisson noise limit of the network.

Deviri and Safran [52] extended this theory to multi-component phase separation, and derived

criteria on their phase diagrams under which concentration buffering may occur. They

hypothesized that in genes that are sensitive to noise, selective pressures may act to optimize

concentration buffering, though the extent to which noise is suppressed in these systems

remains less clear.

One such class of multi-component condensates are ribonucleoprotein (RNP) granules, which

form as a result of multivalent interactions between mRNAs and RNA binding proteins. RNA

binding proteins often contain intrinsically disordered domains, which promote RNP granule

assembly and contribute to their dynamic properties [53]. RNP granules can subcompart-

mentalize the cytosol for regulated colocalization or segregation of interacting proteins and

RNAs [54]. Notably, mRNAs that are sequestered into droplet phases may be inaccessible

to translation [55], reducing effective mRNA copy numbers within the cell. Although, at

first consideration, reducing mRNA copy numbers would appear to increase the noise in

protein numbers, here we analyze how, by reducing fluctuations in mRNA copy numbers,

phase separation may paradoxically reduce noise of gene expression.

In this chapter, we analyze several biophysical scenarios in which mRNAs are segregated into

distinct phases. The central and unifying assumption in all our models will be that mRNAs

in the droplet phase are translationally inert, so that only “free” mRNAs are accessible to

ribosomes. Our manuscript has four main parts. Throughout, we approximate transcription,

translation, and decay as Poisson processes, which we model via numerical simulations, or

via analyical moment calculations. In Part 1, we approximate the dynamics of the two

7



mRNA state system by a random-telegraph process, and quantify noise repression with exact

and asymptotic results, providing baseline results with which to compare systems in which

phase-separation is incorporated. In Part 2, we discuss several models that incorporate

nonlinear transition rates to phenomenologically emulate the physics of phase separation.

The models will chiefly be differentiated by the way in which phase separation affects mRNA

stability. Presence of RNPs may either decrease or increase mRNA lifetimes; even when

homologous RNA/protein pairs are expressed in closely related species. For example, in

the yeast Saccharomyces cerevisiae and in the genetically similar filamentous fungus Ashbya

gossypii, the mRNA CLN3 is known to form phase separated droplets with a protein partner

Whi3. When Whi3 is deleted in S. cerevisiae, CLN3 lifetimes increase [56], suggesting that

phase separated mRNAs turnover more quickly than dilute mRNAs in cytosol. Conversely, A.

gossypii, phase separation increases CLN3 lifetimes [57]. To address both of these functions

of RNP bodies, we separately consider cases where mRNA decay primarily occurs in the

cytoplasm and in the dense phase. In both models, we run stochastic simulations to deter-

mine how these mechanisms influence noise in gene expression, with particular focus on gene

networks with infrequent, bursty transcription. Similar to previous modeling approaches [51],

in Part 2, we consider a deterministic critical concentration of mRNA to trigger the onset

of phase separation. However, in Part 3, we introduce a phenomenological model of time

fluctuation phase separation thresholds and through simulations and analytical results, show

that robust suppression of protein noise remains possible, even when the threshold for mRNA

concentration is allowed extensive variation. Finally in Part 4, to support our theoretical

findings, we perform analysis on existing smFISH data on the distribution of CLN3 mRNA

transcripts within cells of the model filamentous fungus, Ashbya gossypii.
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2.2 Materials and methods

2.2.1 Analytical Methods for Quantifying Noise

For a well-mixed, chemically reacting system consisting of memory-less reactions, the chemical

master equation can be utilized to determine the evolution of the system in a probabilistic

sense [58]. Consider a system in which s different species react, and are present, at time

t, at abundances N = (N1, . . . , Ns). The reaction Ri(N), i = 1, 2, . . . , n, is defined by the

population update map N → N + ηi, is assumed to have rate ai(N ), which can be derived

from the law of mass action. The probability P (N , t) that the system is in state N at time

t satisfies the chemical master equation

∂P (N , t)

∂t
=

n∑
i=1

[
ai(N − ηi)P (N − ηi, t)− ai(N )P (N , t)

]
(2.1)

This infinite set of differential equations is not easily solved, but it is relatively simple to

extract the statistical moments of the probability distribution. It can be shown [59] that for

any continuously differentiable function ψ(N , t),

d⟨ψ(N , t)⟩
dt

=

〈 n∑
i=1

[
ψ(N + ηi, t)− ψ(N , t)

]
ai(N )

〉
(2.2)

In particular, consider µM (t) = ⟨Nm1
1 . . . Nm1

1 ⟩, which denotes the M th order moment of N .

If all reactions ai are linear in N , then

dµM (t)

dt
= FM (µ(t)), (2.3)

where FM is only a function of moments of order less than or equal to M . Thus for any

desired moment, we can solve a closed system of differential equations to determine its time

evolution.
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(2.1) Left panel: Schematic of gene expression without mRNA state changes. A random number
B of mRNAs are transcribed with rate km; mRNAs are tranlated into proteins at rate kp and decay
at rate γm. Protein decay rate is γp. Right panel: Reaction rates and population updates for
unregulated gene expression model.

2.2.2 Analysis of gene expression without mRNA state changes

Let kp, γm, and γp represent the rates of translation, mRNA decay, and protein decay,

respectively. Additionally, we assume that transcription occurs in instantaneous bursts at a

rate of km. During each transcription event, B mRNAs are transcribed, where B follows a

geometric distribution. This model of gene expression is derived from the widely used random

telegraph model [42,60], under the assumption of infrequent gene activity (see the analysis in

S1 Appendix). Roles of the kinetic constants in the update model (Eqn. 2.1) are summarized

in Fig 2.1 and Table 2.1. By Equation 2.2, the moment equations of this bursting system are,
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up to second order moments:

˙⟨m⟩ = km⟨B⟩ − γm ⟨m⟩

˙⟨p⟩ = kp ⟨m⟩ − γp ⟨p⟩

˙⟨m2⟩ = km
(
2⟨B⟩2 − ⟨B⟩

)
+ (γm + 2km⟨B⟩) ⟨m⟩ − 2γm

〈
m2
〉

˙⟨p2⟩ = kp ⟨m⟩+ γp ⟨p⟩+ 2kp ⟨mp⟩ − 2γp
〈
p2
〉

˙⟨mp⟩ = kp
〈
m2
〉
+ km⟨B⟩ ⟨p⟩ − (γm + γp) ⟨mp⟩

(2.4)

From the first two equations, we immediately find that

⟨m⟩ = km⟨B⟩
γm

⟨p⟩ = kp⟨m⟩
γp

,

(2.5)

where ⟨·⟩ denotes the steady-state ensemble average. The relative magnitude of fluctuations

at equilibrium can be characterized by the quantity

CV 2 =
⟨p2⟩ − ⟨p⟩2

⟨p⟩2
(2.6)

In this elementary gene expression model, we find that

CV 2 =
1

⟨p⟩
+

1(
1 + γm

γp

) γm
km

(2.7)

Observe that the first term in (2.7) represents Poisson noise; it is set only by the target

protein abundance and is unaffected by any of the chemical rates. By contrast, the second

term is affected by the ratios of γm
γp
, and km

γm
. Focusing on the first ratio; γm

γp
is the ratio of

the protein to the mRNA lifetime. Increasing this ratio decreases CV 2, since transcribing

short lived mRNAs into long-lived proteins smooths out the rapid fluctuations in mRNA

distribution. The second ratio km
γm

appears in equation (3.2). If ⟨B⟩ is held constant, then
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km
γm

is proportional to ⟨m⟩. Increasing this ratio decreases CV 2, since this would increase the

mean mRNA abundance and thus decreases relative fluctuations in mRNAs. If ⟨m⟩ is held

constant, then the ratio is inversely proportional to ⟨B⟩. Increasing this ratio then decreases

the mean burst size, decreasing the variance in burst distribution and therefore decreasing

CV 2.

2.2.2.1 Numerical Simulation

Our chemical reaction model is a continuous time Markov chain. Numerical simulations were

performed using Gillespie’s Algorithm, which provide statistically accurate trajectories [61].

All processes, N (t), considered in this work are ergodic, meaning that the time average ⟨N⟩T

converges in squared mean to the ensemble average ⟨N⟩ as T → ∞ Long time averages of

multiple trajectories were computed to estimate statistical properties such as means and

variances of state variables.

Reaction constants and mean molecule abundances were chosen in accordance with

studies on gene expression kinetics in yeasts. In our simulations, we set ⟨m⟩ = 20 and

⟨p⟩ = 2000. These values were chosen to be consistent with the results of Gygi et al. [62] who

found across a large number of genes in Saccharomyces Cerevisiae that mRNAs abundance

ranged approximately from 1-500 copies/cell, while protein abundance varied from 103-105

copies/cell. The simulated mean abundances were specifically chosen to be small, so that

relative fluctuations are large in the absence of noise suppression mechanisms. Pelechano

et al. [63] found that for most genes in yeast, between 2-30 mRNAs are transcribed per

minute, which, in our model, represents the net transcription rate, km⟨B⟩, the mean number

of bursts per minute times the average burst size. Unless explicitly varied, we set km = .05

mRNAs/min and ⟨B⟩ = 20, so that the net transcription rate of 1 mRNA/min falls on the

lower end of the spectrum measured by Pelechano et al. The cytoplasmic decay rate was set
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Parameter Base Value(s)

km (Burst frequency) .05 min−1

kp (Translation rate) 2 Proteins(min ·mRNA)−1

γm (Cytoplasmic mRNA decay rate) .05 min−1

γp (Protein decay rate) .02 min−1

⟨B⟩ (Mean burst size) 20

⟨m⟩ (Mean mRNA abundance) 20

⟨p⟩ (Mean protein abundance) 2000

(2.1) Base reaction rates and molecular species abundances
used in numerical simulations.

to γm = .05 mRNAs/min, so that we achieve a mean mRNA abundance ⟨m⟩ = 20 while still

in agreement with physiologically relevant mRNA decay rates quantitated by Chia et al. [64].

For all simulations, the protein decay rate was set to γp = .02 proteins/min, so that t1/2 ≈ 35

minutes, consistent with the findings of Belle et al. [65] on protein half-life, across 3,751 genes

in Saccharomyces cerevisiae. Finally we chose the translation rate kp = 2 proteins/min, which

ensures that ⟨p⟩ ≈ 2000 in all of our simulations. These rates are summarized in Table (2.1).

2.2.3 FISH Methods

Wildtype A. gossypii were grown in 20 ml Ashbya full media (AFM) with ampicillin (100

µg/ml) in a 125 ml baffled glass flask, shaking at 30°C for ≈ 16 hr. The cells were then fixed

with 3.7% (v/v) formaldehyde for 1 hr at 37°C. After fixation, the cells were collected by

centrifugation at 300 rpm for 5 min and washed twice with DEPC treated ice cold Buffer B

(1.2 M sorbitol, 0.1 M potassium phosphate, pH 7.5). The cells were next suspended in 1 ml

spheroplasting buffer (10 ml buffer B, 2 mM vanadyl ribonucleoside complex) and transferred

to a new RNase-free microcentrifuge tube. The cell wall was digested by incubating the cells

with 1.5 mg Zymolase (Sunrise Science) at 37°C for ≈ 40 min until cells were phase dark.
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Cells were collected by centrifuging at 2000 rpm for 2 min and washed twice with Buffer

B. The cells were then incubated in 1 ml RNase free 70% EtOH at 4°C for 4 hr. Stellaris

CLN3 TAMRA RNA FISH probes were prepared by resuspending the oligonucleotide blend

in 20 ul of TE buffer (10 mM TrisCl, 1 mM EDTA pH 8) to make a 250 µM solution. A

1:10 dilution was made of the probe suspension as the working concentration to add to cells.

After incubation at 4°C, the cells were resuspended in 1 ml wash solution (20× SSC, 10%

v/v deionized formamide) and allowed to reach room temperature. The cells were then

resuspended in 100 µl hybridization buffer (1 g Dextran sulfate, 10 mg E. coli tRNA, 2 mM

vanadyl ribonucleoside complex, 2 mg BSA, 20× SSC, 10% v/v deionized formamide) with 1

µl of 25 µM probe added. The cells were left to incubate in the dark at 37°C overnight. The

next day, cells were washed with 1 ml wash buffer and then resuspended in 1 ml wash buffer

and incubated at 37°C for 30 min in the dark. The cells were then resuspended in 500 µl

wash buffer with 1 µl Hoechst at 1mg/ml (Thermo Fisher) and incubated in the dark for

15 min at room temperature. The cells were washed with 500 µl wash buffer with as much

buffer removed as possible. The cells were mounted on a RNase free microscope slide with 20

µl mounting media (ProLong Gold antifade reagent, Invitrogen) and RNase free coverslip.

The slide was sealed with nail polish and imaged using a Nikon Eclipse widefield microscope

and a Plan Apo λ 100×/1.45 oil Ph3 DM objective. Images were taken using phase, 405 nm,

and 561 nm laser sequentially through a z-stack with an Andor Zyla VSC-06258 camera.

A multi-step image analysis algorithm extracted cell boundaries and mRNAs contained

within cells. Steerable filters were applied to the phase contrast image stacks, to find the

edges of cells in their mid-point planes, and projected to form 2D images. The outlines of

cells were traced in the projected images using Adobe Illustrator software running on an

Apple iPad. From the 2D-segmentation of cells, an accurate 3D segmentation was generated

by locating the optimal depth to embed the 2D mask, based on maximizing the fluorescent

intensity of the 2D mask. The embedding depth of the 2D mask was allowed to vary from

place to place within the mask. The mask was then swept to 3D, by skeletonizing the mask,
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measuring the diameter of the 2D mask at each skeleton point, and including each 3D voxel

within half a diameter from each skeleton point. We detected each mRNA within the 3D

segmented hyphal volume by applying a median filter and considering each local maximum

as a candidate mRNA. Signal to noise ratios were calculated by applying a minimum filter

with radius 0.55µm, to calculate the background intensity for each peak, and by dividing

peak by background intensities. Spots with signal to noise ratios of less than 1.4 were

discarded. Background intensities were subtracted from the image, and integrated intensities

were calculated for each detected spot, as the sum of the positive background subtracted

voxel intensities within 0.22µm of each detected peak. A single transcript integrated intensity

was calculated for each 3D segmented hyphal volume, as the 25 percentile integrated intensity.

All spots were then assigned a weight (estimated number of transcripts), by dividing them

by this single transcript intensity, and rounding to the nearest integer. Simultaneously, we

segmented all nuclei within the each hypha, by a two-level Otsu threshold, in which we

discarded all detected objects with volumes less than 5.4µm3. Our analysis included a total

of 81 3D-segmented hyphae, and 1244 nuclei, of which 263 were identified as being in active

CLN3 transcription.

2.3 Results

2.3.1 Linear Stochastic Phase Separation Model

Common to all phase separation models considered, we assume that mRNA may exist in

two states outside the nucleus. In the active state, mRNAs may be translated and have a

decay rate of γm. In the inactive state, mRNAs no longer participate in translation and may

either be completely stable or decay at rate γa. To gain understanding of how mRNA state

changes may affect protein copy number noise, and develop results that may be compared

against nonlinear phase separation models, we first investigate a basic state switching model.

The model is diagrammed and the reactions are summarized in in Figure 2.2. In this model,
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(2.2) Left panel: Schematic of Stochastic State Switching Model. In addition to the gene
expression processes shown in Fig 2.1, mRNAs transition from active to inactive states, and back,
with respective rates Ca, Da. Right panel: Reactions and rates for state switching model.

mRNAs spontaneously become inactive and the probabilities per unit time of switching

between the two states are constant. While the linear kinetics of this system differ from those

of phase separation, which is inherently nonlinear, its simplicity permits the computation of

exact values for steady state coefficients of variation, which can be compared with the phase

separation model. Before calculating these exact formulas, we first performed stochastic

simulations on this reaction network for different values of the active-to-inactive transition

rate Ca (Fig. 2.3). Qualitatively, we see that by increasing the value of Ca, we effectively

shift mRNA copy number noise from the active mRNAs to the inactive mRNAs, resulting in

smaller absolute variations in protein copy number, which is only sensitive to active mRNA

fluctuations. We next performed exact calculations on this system to determine the extent to

which state transitions reduce protein fluctuations.

Similar to the single state mRNA case, the state-switching system again defines a

continuous-time Markov process, so equation (2.2) can be used to write down the moment
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equations for the first and second moments:

˙⟨m⟩ = km⟨B⟩ − (γm + Ca) ⟨m⟩+Da⟨a⟩

˙⟨p⟩ = kp⟨m⟩ − γp⟨p⟩

˙⟨a⟩ = Ca⟨m⟩ −Da⟨a⟩

˙⟨m2⟩ = km
(
2⟨B⟩2 − ⟨B⟩

)
+ (2km⟨B⟩+ γm + Ca) ⟨m⟩+Da⟨a⟩ − (2γm + 2Ca) ⟨m2⟩+ 2Da⟨ma⟩

˙⟨p2⟩ = kp⟨m⟩+ γp⟨p⟩ − 2γp⟨p2⟩+ 2kp⟨mp⟩

˙⟨a2⟩ = Ca⟨m⟩+Da⟨a⟩ − 2Da⟨a2⟩+ 2Ca⟨ma⟩

˙⟨mp⟩ = km⟨B⟩⟨p⟩+ kp⟨m2⟩ − (γm + γp + Ca) ⟨mp⟩+Da⟨pa⟩

˙⟨ma⟩ = −Ca⟨m⟩+ (km⟨B⟩ −Da) ⟨a⟩+ Ca⟨m2⟩+Da⟨a2⟩ − (γm + Ca +Da) ⟨ma⟩

˙⟨pa⟩ = Camp+ kp⟨ma⟩ − (γp +Da) ⟨pa⟩

(2.8)

where dotted quantities represent time derivatives. At equilibrium, these linear equations can

be solved exactly for steady-state moments. First we find that ⟨m⟩ = km⟨B⟩
γm

so, surprisingly,

inactivation of mRNAs does not affect their equilibrium copy number. In particular from

Equation 2.6 we find that for fixed ⟨m⟩, ⟨a⟩ and ⟨p⟩

CV 2 =
1

⟨p⟩

+
γp

(
Da (Da⟨B⟩+ γp) ⟨a⟩+ (Da + γm) (Da + γp) ⟨B⟩⟨m⟩

)
(
Da⟨a⟩+ (Da + γm) ⟨m⟩

)(
Daγp⟨a⟩+ (Da + γp) (γm + γp) ⟨m⟩

) . (2.9)

If state-switching is a slow process (i.e Da ≪ γp, γm), then equation (2.9) reduces to

equation (2.7). However, in the limit that mRNA state switching is much faster than mRNA

or protein decay, (i.e Da ≫ γp, γm), we have

CV 2 ≈ 1

⟨p⟩
+

γm
km

⟨a⟩
⟨m⟩

+
(
1 + γm

γp

) . (2.10)

Again, the first term is just the Poissonian noise of the one dimensional protein birth-death
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(2.3) Two sample trajectories for model in which mRNAs can stochastically switch between active
and inactive states. By increasing the reaction rate for deactivation, we can decrease the magnitude
of fluctuations about the common mean protein abundance of ⟨p⟩ = 2000. For both time series, we
have km = 0.05, kp = 2, γm = 0.05, γp = 0.05, Da = 1, ⟨B⟩ = 20.

process, while the second term encodes the noise due to transcription and state switching.

This term shows the same dependence upon rates km/γm and γm/γp as for unregulated

translation, but also decreases monotonically with the ratio ⟨a⟩/⟨m⟩; meaning that the

inactivated mRNAs decrease protein noise, for identical transcriptional burden. We see more

clearly the role of mRNA modifications when we write the transcription dependent part of

CV 2 as

CV 2
Transcription =

⟨B⟩

⟨a⟩+ ⟨m⟩
(
1 + γm

γp

) (2.11)

and note that the term in the denominator is close to the total (active and inactive) mRNA
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copy number; inactivation of mRNAs buffers the system and creates an effectively larger pool

of mRNAs, with effectively smaller Poissonian noise. Note however that only the factor ⟨m⟩

in the denominator is multiplied by γm/γp, meaning that only fluctuations in transcribable

mRNAs are smoothed out if the protein product is much longer lived that the mRNA.

Nevertheless we observe algebraic reduction in CV 2 due to mRNA activation; for example,

using our default parameters so ⟨m⟩ and setting ⟨a⟩ = 40, we reduce CV 2 from 0.29 to 0.19

(Fig. 2.4a). At the same time, the noise continues to increase if ⟨m⟩ is held constant but ⟨B⟩

is increased - meaning that the nucleus produces mRNAs in larger but more intermittent

bursts.

(a) km = 0.05, kp = 2, γm = 0.05, γp = 0.02, ⟨m⟩ = 20,

⟨p⟩ = 2000

(b) kp = 2, γm = 0.05, γp = 0.02, ⟨m⟩ = 20, ⟨a⟩ = 200,

⟨p⟩ = 2000

(2.4) In a model in which mRNAs transition between active and inactive states, inactive mRNAs
reduce protein copy number fluctuations. (a) Increasing mean inactive mRNA abundance decreases
protein CV 2. (b) Fixing mean mRNA and protein abundance and increasing mean burst size
increases protein CV 2.

2.3.2 Stochastic Nonlinear Phase Separation Model

We now consider a nonlinear, stochastic model for mRNA phase separation into ribonu-

cleoprotein (RNP) droplets. RNP droplets form as the result of multivalent RNA-RNA,

RNA-protein and protein-protein interactions. These interacting systems have been shown
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to exhibit concentration dependent phase transitions, conditional on both RNA and RNA-

binding protein levels [66]. While RNP droplets are typically enriched with potentially many

distinct RNA species [53], our model focuses on a ternary system comprising a single species

of RNA and an RNA binding protein phase separating out of the cytosol. In vitro studies of

similar systems have shown that at physiologically relevant concentrations of RNA-binding

proteins, the presence of RNA is required to induce phase separation [66].This behavior can

be analytically captured using Flory-Huggins (FH) theory, a widely employed framework for

describing polymer mixing [1, 52]. The topology of the phase boundary and the equilibrium

concentrations of the two species in both the dilute and dense phases are intimately linked to

the relative strengths of heterotypic and homotypic interactions among the solute species.

In instances where relative heterotypic interactions are sufficiently strong, FH predicts a

closed loop phase boundary [1]. These loops divide the phase boundary curve into two

distinct arms, representing the equilibrium concentrations of the dilute and dense phases

for the respective components, connected by tie-lines. In such systems, a for a portion of

RNA-binding and protein concentrations. the dilute arm of the phase boundary is almost

horizontal, characterized by a nearly constant concentration of one component across a wide

range of the other component’s concentrations (Fig. 2.5a). Furthermore, the dilute arm of the

boundary serves as the lower limit of bulk concentration of the minimally varying component

for phase separation to occur [1, 52]. Building upon this free energy landscape, our model

begins by assuming that the concentrations of mRNA and RNA binding proteins are confined

within a specific region of phase space, encompassing the tie-lines that intersect the lower

portion of the phase boundary (shaded region, Fig 2.5a). This enables us to precisely establish

a threshold concentration, labeled as mpt, where the dilute RNA shows minimal deviations in

equilibrium concentration. In this regime, the primary factor influencing phase separation is

the concentration of bulk RNA. Now, the real partitioning of mRNAs and proteins between

phases can significantly diverge from what is predicted by equilibrium theory at any given

moment. We additionally assume a separation of time scales between droplet dynamics
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and gene expression variations [52, 67]. Under this assumption, phase separation operates

in a quasi-steady state, robustly responding to gene expression variability. In this limit,

we develop a stochastic model that aims to captures the temporal distribution of mRNA

between phases. Our focus is primarily on the low molecule number limit, where conventional

linear noise approximation methods break down [68]. Instead of explicitly modeling droplet

formation and dissolution, we assume that mRNAs in both phases are well-mixed within a

confined “nuclear neighborhood” surrounding the nucleus at any given time, since in numerous

phase-separating systems in multinucleated cells, RNPs associated with cell-cycle or circadian

rhythm mRNAs cluster near nuclei. This clustering is believed to serve as a mechanism for

preserving nuclear autonomy [4,20]. By identifying this control volume, we can regard phase

separation thresholds as absolute numbers rather than concentrations, which allows us to

compare our model predictions with real data.

As we did for the Linear model, we assume that only dilute mRNA m may be translated,

and that the translation rate may be tuned about mpt ≈ ⟨m⟩ to reach an optimal mean

protein abundance ⟨p⟩. We additionally assume that bulk RNA-binding protein fluctuations

are small enough to not perturb the system from the equilibrium dilute RNA level of mpt, and

its influence will instead be absorbed into the stochastic transition rates of mRNA between

phases. In addition to the dilute phase m, we define a to be the total number of RNA in all

droplets. For the stochastic simulations we introduce the transition rates

Cin = C

(√
(m−mpt)2 + ϵ+ (m−mpt)

)
+

Dout = Da.

(2.12)

representing the spontaneous diffusion into and out of membraneless condensates respectively.

The phase transition of the system is characterized by the parameters mpt and ϵ (see

Fig. 2.6). For ϵ = 0, the transition rate for mRNAs in the dilute phase to the droplet phase
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reduces to

Cin = C (m−mpt)+ , (2.13)

so that transition into the droplet phase only occurs for m > mpt. Rather than explicitly

modeling the RNA binding protein, we use the parameter ϵ to influence how sharply the rate

of condensate forming increases around m ≈ mpt. We test the sensitivity of our results to

ϵ. We take C to be larger than the rate constants for translation and mRNA decay, so that

state transitions dominate the dynamics of the system, occurring on the time scale of seconds

in contrast to the minutes between typical transcription and decay events. In essence, the

rapid phase separation dynamics will lead to a nearly constant population of translatable

RNA, effectively suppressing stochastic effects arising from bursty transcription and decay.

Using this model, we will next investigate two potential scenarios of mRNA phase separation,

in the context of mRNA stability. The scenarios are shown in Fig 2.7. In the first scenario

Fig 2.7a, mRNAs in the droplet phase are very long lived. We refer to this scenario as the

buffer model, since mRNAs in the droplet phase act as a reservoir that buffers dilute phase

concentration of mRNAs. In a second scenario Fig 2.7b, mRNAs in the droplet phase decay

more rapidly than dilute mRNAs. We call this scenario the filter model, since droplets filter

out excess dilute phase mRNAs.

2.3.2.1 Phase Separation - Buffering Model

For unstable dilute mRNAs, we hypothesize that phase separation maintains a population of

translationally inert condensate-mRNAs that become available for translation only when di-

lute mRNAs have been depleted. To test this hypothesis, we performed simulations assuming

that the cytosolic mRNA decay rate γm is the same order of magnitude as the protein decay

rate γp, and that decay does not occur for mRNAs in the droplet phase, as diagrammed in

Fig. 2.7a. We simulated protein copy number variability for different mean burst sizes (Fig.

2.8a). The CV 2 of protein copy number decrease with mean burst size, plateauing when
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B ≈ mpt. The curve asymptotes at approximately CV 2 = 0.006, far below the CV 2 value for

a system with no mRNA state changes but above the Poisson limit for protein, 1

⟨p⟩
= 0.0005,

which solely measures the fluctuations due to protein birth and death. Qualitatively, we see

on examining simulated time traces (Fig. 2.8b) that when ⟨B⟩ exceeds mpt excess mRNAs

are quickly absorbed into the droplet phase, causing the dilute mRNA population to rapidly

decrease to mpt. Thereafter, the mRNAs in droplet phase are slowly depleted over time,

reentering the dilute phase; maintaining the copy number of the dilute mRNAs close to mpt.

To test the sensitivity of the model to ϵ in equation (2.12), we reproduced Fig. 2.8a with

values of ϵ ranging from 0.01 to 1 and found no significant qualitative differences between

the CV 2 curves (Fig. 2.9).

2.3.2.2 Phase Separation: Filter Model

In a second scenario, mRNA stability is decreased by interactions with RNPs [56]. Accordingly,

we investigate whether decay of mRNA within protein aggregates filters cytosolic mRNA

abundance and reduces fluctuations. For example, in yeasts the presence of the RNA-binding

protein Whi3 reduces the half life of its target, the cyclin CLN3, presumably by interacting

with deadenylation complexes that promote turnover [56]. Thus phase separation can serve to

facilitate mRNA decay. We hypothesize that RNP droplets may then act as a filter, causing

excess mRNAs within the cytosol to be quickly degraded and recycled. This process ensures

that mRNA decay primarily occurs when bulk concentrations exceed the threshold for phase

separation, allowing for precise regulation of dilute RNA abundance. To model this situation,

depicted in Fig. 2.7b, we will introduce a new reaction a → a − 1 with rate γaa to our

stochastic simulation, and assume that the cytoplasmic decay rate is much smaller than other

decay rates, i.e γm ≪ γa, γp, so that phase separation is the dominant decay mechanism of

RNAs. While the decay process mediated by droplets may involve multiple steps and might

not explicitly occur within the droplets, we assume that it proceeds rapidly enough to be
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approximated as a single reaction taking place within the droplet.

We perform stochastic simulations of the filter model, varying γa and holding all other

parameters fixed, and measure CV 2 as a function of γa
γm

(Fig. 2.10a). We observe that CV 2

values are far smaller than in the system with no RNA state changes over all assayed values

of γa/γm. Since cytoplasmic turnover of mRNAs occurs at a much slower timescale than the

other processes in the system, dilute mRNAs remain essentially fixed at the phase separation

threshold, only rising when a burst occurs (Fig 2.10b, all left panels). In our model excess

mRNAs rapidly transition between condensate and dilute phases, and filtering allows the

cytosol to quickly reach an equilibrium in which mRNAs in the dilute phase approach the

phase transition concentration. This again produces CV 2 values that approach the Poisson

limit of protein synthesis, differing only due to the small noise contributions of diffusion

between states and rare burst and decay events. It is interesting to note that the CV 2 curve

depicted in Fig. 2.10a has a well defined minimum γ∗a ≈ 0.01, meaning that there is an

optimal strength filter for reducing noise in this parameter regime. This can be explained

by the trade-off between buffering and filtering. If the filter is too weak, the mean droplet

mRNA population can become much larger than the phase separation threshold, so mRNAs

in droplets slowly bleed back into the cytoplasmic phase and enhance noise (Fig. 2.10b, top

row). In contrast, if the filter is too strong, the droplet population can be depleted on time

scales faster than bursts, allowing cytoplasmic degradation to drive the dilute mRNAs copy

number below the phase separation threshold (Fig. 2.10b, bottom row). By maintaining a

non-zero yet small droplet mRNA population, the system can benefit from both buffering

and filtering effects and minimize fluctuations of dilute mRNAs about the phase separation

threshold.

We next investigated how the transition rate out of the droplet phase, D, which charac-

terizes the system’s ability to buffer dilute mRNAs, influences noise profiles. We initially

assumed that mRNA had a high affinity for aggregation once m > mpt, meaning that C ≫ D.

Increasing D weakens the buffering effect, and we see that the trade-off between buffering

24



and filtering breaks down - filter strength solely determines the noise suppression ability of

phase separation (Fig. 2.10c). We replicated our simulations of protein-CV 2 as a function of

γa, using different values of ϵ, the smoothing parameter. We also observe that in contrast to

the buffer model (Fig. 2.9), the filter model is sensitive to ϵ, with noise increasing with ϵ.

However we are still able to achieve substantial reduction in protein fluctuations compared

to single mRNA state system (Fig. 2.10d). Finally, in Figure 2.10e, we observe that for

γa = 0.05 ≫ γm and different values of the droplet-to-dilute phase transition rate D, there

exists optimal mean burst sizes B∗ where noise is minimized, balancing with the other rate

parameters so that the mRNA copy number is maintained most steadily at mpt. Increasing

the diffusion rate out of the droplet phase leads to a sharper minimum that’s achieved for

smaller burst sizes.

2.3.3 Stochastic Phase Separation Threshold

We have assumed that the protein component of the RNP droplets remains in a region of phase

space that keeps the mRNA phase boundary flat, and that aggregation and disaggregation

kinetics are fast enough to make mRNA partitioning quasi-steady and the phase separation

threshold constant. In live cells however, the phase separation threshold may depend on

other stochastic variables, such as out of equilibrium effects, dynamic post-translational

modifications, the concentration of other crowding RNAs or proteins and the temperature of

the environment [69]. It is important to probe whether protein copy number noise is still

reduced when we incorporate variabilities in the threshold for the onset of phase separation,

mpt. We model the effects of these external variables by making mpt subject to stochastic

fluctuations. We model the fluctuations in the phase separation threshold phenomenologically

as an Ornstein-Uhlenbeck process with mean µ. The Ornstein-Uhlenbeck process satisifies

the stochastic differential equation

dmpt = θ(µ−mpt) + σdWt. (2.14)
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The parameters θ and σ characterize the strength of mean reversion and diffusivity of the

process respectively. As we noted in the previous section, the dilute mRNA abundance is

highly correlated with the instantaneous phase separation threshold, so we expect ⟨m⟩ ≈ µ.

This allows us to set kp =
γp⟨p⟩
µ

in our simulations to approximate the desired mean abundance

of ⟨p⟩ = 2000. When applied to the noise filter model, the fluctuations in the phase separation

threshold will roughly determine the fluctuations in mRNA abundance due to the rapid phase

separation dynamics. In order to demonstrate the connections between the two fluctuating

variables, we performed stochastic simulations on the filter model, with mpt allowed to

evolve according to equation (2.14), and computed CV 2(p) for increasing values of the

Ornstein-Uhlenbeck noise parameter σ. To determine the extent to which these fluctuations

determine noise in expression, we also compare our simulations with an exactly analyzable

deterministic-stochastic system in which mRNA abundance exactly matches the varying phase

separation threshold, and we assume that translation and protein decay are deterministic. In

this idealized system, the random variables m and p satisfy the stochastic system of ODEs

dm = θ(µ−m)dt+ σdWt

dp = (kpm− γpp)dt.
(2.15)

This system can be solved in terms of CV 2s of the stochastic variables, i.e

CV 2(m) =
σ2

2θµ2

CV 2(p) =
γp

(γp + θ)
CV 2(m).

(2.16)

We see in Fig. 2.11 that both models for fluctuating phase separation thresholds introduce

a similar amount of noise in expression, suggesting that stochasticity in phase separation

thresholds can not be neglected in these gene expression models. However, we see that for
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sufficiently small fluctuations in mpt, we can still achieve significantly reduced variation in

protein abundance compared to an single mRNA state system with identical transcriptional

rate and mean species abundances. Importantly, both the exact model and analyzable

approximation agree in the limit where fluctuations in mpt are small. The asymptotic

expression (2.16) confirms that CV 2(p) is proportional to CV 2(m) - that is fluctuations

in the phase separation threshold drive fluctuations in protein abundance. The prefactor

in this expression, 1
1+θ/γp

, decreases monotonically with the ratio of the protein lifetime to

the timescale of fluctuations in mpt, and represents the tendency of mpt fluctuations to be

smoothed out if mRNAs are translated into long-lived proteins, since protein abundance then

averages over a long history of mpt fluctuations. This smoothing is seen in Figure 2.12, in

which we perform simulations where we hold CV 2(m) = σ2

2θµ2 constant, and vary σ2 and θ in

proportion. We see that faster fluctuations of mpt are associated with smaller fluctuations in

p, though for our simulation parameters the effects are modest; with a 10-fold increase in σ

associated with a factor ≈ 1.2 decrease in protein CV 2.

2.3.4 Analysis of transcript abundances for a real RNP forming system

We tested whether our modeling could be consistent with existing data on RNP-forming

systems. Specifically, our simulations demonstrated that when concentration buffering occurs

and bursting and mRNA decay rates are comparable, the burst only needs to reach the

local threshold for phase separation in order to decrease protein copy number variation.

Distributions of CLN3 mRNA transcripts – which are translated into the cyclin Cln3 – were

mapped in the filamentous fungus Ashbya gossypii (see Fig 2.13.) using single-molecule

Fluorescence In-Situ Hybridization [57]. CLN3 was chosen because it is known to form RNP

droplets with Whi3 protein, and the specificity of CLN3 -Whi3 RNP phase separation has

been related to the presence of Whi3 binding sequences within the mRNA, and to polyQ-tract

driven aggregation of Whi3 macromolecules [66].

Based on prior results about spheres of mRNA enrichment surrounding nuclei [20], we
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partitioned the cytoplasm (i.e. 3D segmented hyphae, subtracting their nuclei) into spheres of

radius 2.5 µm centered at nuclei centroids (nuclei and parts of the sphere that extended outside

of the 3D mask were excluded, so spheres did not need to be truly spherical). Within each

sphere, we measured the mRNA concentration (total number of mRNA transcripts divided

by neighborhood volume), as well as the mean number of mRNAs per diffraction-limited spot

(see Fig 2.14a). Spots with weight > 1 were considered to be in a condensate.To rule out

spurious detection of condensates due to chance colocalization, we ran 10, 000 Monte Carlo

simulations in which we distributed the measured number of RNAs uniformly within the

nuclear neighborhood. Next, the mRNA molecules were clustered into distinct spots using

a pairwise distance threshold of 250nm. The mean spot intensity was then computed for

each simulation and subsequently averaged across all simulations. We also detected mRNA

transcripts within nuclei. A nucleus was assumed to be actively transcribing mRNAs if it

contained mRNA transcripts.

In Fig. 2.14b, the binning of nuclear neighborhood data indicates a phase transition

occurring at a concentration of approximately 0.092 mRNA/µm3, as evidenced by a sharp

increase in clustered RNA in contrast to the uniformly distributed scenario. The volume

of a typical cytoplasmic neighborhood is ≈ 37µm3, placing the phase transition at ≈ 3.4

total mRNA transcripts. This number matches quite closely to the mean number of mRNA

transcripts that were detected in actively transcribing nuclei, which we interpret as the burst

size parameter (see Fig. 2.14c).

2.4 Discussion

The role of intracellular phase separation in gene expression regulation is still an emerging

field of study. Here, we developed several models to examine how phase separation of mRNAs

can suppress noise in protein copy numbers. We first analyzed a linearized phase separation

model and demonstrated that noise can be reduced by partitioning cytosolic mRNA into
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“active” and “inactive” states, even if the transition rates between states are constant. We

then developed a phenomenological model for concentration-dependent phase separation, and

used numerical simulations to quantify expression noise in two distinct biological scenarios

consistent with RNP droplet function. The buffer model assumed that droplets act as a

reservoir for inactive mRNAs, effectively extending their lifetime, while in the filter model

mRNA decay happens primarily within the droplet phase. In both scenarios we demonstrated

significant noise reduction, which was largely achieved due to the action of phase separation,

which under reasonable conditions maintains the dilute mRNA copy number near the phase

separation threshold (see Fig. 2.15). We finally introduced fluctuations into the phase

separation threshold, and found that noise suppression can still be significant provided that

phase separation threshold fluctuations are sufficiently rapid.

2.4.1 Efficiency in Gene Expression Regulation and Optimal Noise Suppression

Our results indicate that through phase separation of transcripts, gene expression networks

can operate efficiently in the absence of any feedback or active transcriptional control, while

still achieving precision in protein copy number. While infrequent transcriptional bursts can

introduce a substantial amount of noise into a gene network, phase separation models show

that protein abundances are largely insensitive to these large variations, so long as transitions

into the droplet phase are sufficiently rapid. In fact, in the case of noise buffering, we see that

in Fig. 2.8a for a fixed translation rate and phase separation threshold, that large bursts are

in fact crucial in reducing noise. If burst intensities are too small, then dilute mRNAs are not

maintained at the phase separation threshold, and transcriptional noise becomes significant.

Due to the tradeoff between transcriptional cost and expression noise, we can imagine that

selective pressures may drive burst sizes to values near the phase separation threshold, since

we observe only marginal increase in noise suppression for larger bursts. In contrast, in the

filter model we observe strict minima for expression noise as both a function of droplet decay

rate and mean burst size. While predicting optimal values for these parameters in live cells
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would require quantifying the cost of bursts and selective decay machinery and so remains

an unmet challenge, these results demonstrate that kinetic parameters in phase separating

systems can be tuned to effectively shift the burden of mRNA regulation from the nucleus to

the cytosol.

2.4.2 Time Scale of Fluctuations

In this chapter, we were able to quantify protein abundance noise in our models through CV 2,

which measures variations over many realizations of identical systems. While this quantity is

well represented in current literature on gene expression noise, we note here that the time

scales of protein fluctuations, which do not factor into CV 2(p), may also be selected for. If,

for example, copy numbers fluctuate on a time scale comparable to cell cycle length, even

minor deviations from the mean protein copy number could prove to be deleterious to a cell.

We can observe this to some extent in Fig. 2.3, where the small magnitude fluctuations in

protein abundance are driven by slow fluctuations in in inactive mRNA. We can also see this

in Fig. 2.12, where we introduced fluctuations into the phase separation threshold. Consider

the red and magenta time series, where σr < σm, θr < θm. Although the CV 2(pr) < CV 2(pm),

fluctuations in the magenta protein copy number are significantly faster than the red protein,

meaning that the magenta cell may produce more stable phenotypes if relevant processes

occur at a much slower time scale than its fluctuations. These predictions suggest that the

time scale of fluctuations in the phase separation threshold could prove to be an important

factor in exhibiting the validity of our model, as slow variations would limit the efficacy of

the buffering and filtering mechanisms.

2.4.3 Comparison with CLN3 data

The biological data available on the CLN3 model RNP-forming system were broadly supportive

of droplets playing a role in suppressing protein fluctuations. Specifically, we observed that
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phase separation occurred at a threshold abundance of approximately 0.092 RNA/µm3 or

approximately 3.4 per nuclear neighborhood. This value closely matched the burst size

estimated by counting mRNAs within nuclei (2.6). While the inferred value of mpt appears

surprisingly small, it is consistent with in vitro findings reported by Zhang et al. [66], where

phase separation was observed at concentrations as low as 0.1 RNA/µm3. For example,

the potential dimerization of RNAs may facilitate the emergence of additional binding sites

essential for nucleating droplet formation. Additionally, these droplets involve not only RNA

binding proteins but also numerous other RNAs that act as scaffolds [70], allowing small

numbers of CLN3 mRNAs to be drivers of phase separation. The relationship between

optimal burst size and phase separation threshold is not deeply dependent upon whether

condensates are filters or buffers, or equivalently whether sequestration within a condensate

increases or decreases mRNA lifetimes. Indeed available experimental evidence suggests that

either may be possible, including in homologous systems. For example, in data from yeast

cells, which contain near-homologs of CLN3 and Whi3, suppressing Whi3 protein expression

extends the lifetimes of CLN3 mRNAs, suggesting that condensates destabilize mRNAs. But

data in the filamentous fungus A. gossypii indicate that RNP droplets extend the lifetime of

CLN3 mRNAs. The question of whether the droplets are functioning as buffers, or as filters,

remains unanswered here, though the generality of our analysis supports noise reduction by

either mechanism.

We include an additional two notes of caution here – it is not yet possible to quantitatively

measure the abundance of Cln3 proteins at the scale of individual cells, so we do not offer

direct proof that Cln3 protein noise is effected by RNP formation for this system. Additionally,

the main assumption of our model: that mRNAs within droplets are translation-inactive, has

not yet been experimentally tested. However, RNPs are assuming an ever more central role

in cell biology, and there has been a corresponding expansion, in recent years, of techniques

for perturbing and measuring RNP formation kinetics in live cells [71], and we expect the

predictions from our mathematical model to shortly become experimentally testable.
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(a) Ternary Phase Diagram

(b) (c)

(2.5) Modeling RNA Phase Separation. (a) The formation of RNP droplets arises from a
combination of homotypic and heterotypic interactions between RNA and proteins, often leading
to closed loop phase boundaries characterized by positively sloped tie-lines. Within a certain
range of bulk protein concentration (shaded region), the equilibrium concentration of dilute mRNA
remains close to a fixed value mpt, unaffected by fluctuations in the bulk concentration of mRNA.
Adapted from Seim et al. [1]. (b) In our model, we make the assumption that phase separation
occurs within specific localized volumes surrounding the nucleus, which we refer to as ”nuclear
neighborhoods.” In these regions, RNA and RNA binding proteins undergo phase separation,
forming ribonucleoprotein droplets distinct from the cytosolic environment. (c) At a fixed protein
concentration, any additional RNA introduced beyond mpt will be sequestered into droplets, upon
reaching equilibrium. Depending on the nature of the interactions and relative concentrations of
molecular components, this distribution curve can persist across a range of protein concentrations,
providing a robust mechanism for buffering dilute RNA concentrations precisely at mpt.
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(2.6) Transition rate used to emulate a phase separation process. Droplet formation begins once
m > mpt = 20. A smoothing constant, ϵ, controls the range of dilute phase concentrations over
which the phase transition may occur. Here C = 1, mpt = 20, and ϵ = 0.01, 0.1, 1, 10
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(a) “Buffering” Model

(b) “Filtering” Model

(2.7) (a) In the buffering model, mRNA may exist in two phases; the dilute phase m or the
droplet phase a. Only mRNAs in the dilute phase may be translated into protein or decay. The
transition function Cin was chosen so that the probability that a dilute mRNA transitions into
the droplet phase is negligible if the dilute mRNA copy number m is below the phase separation
threshold mpt. mRNAs within the droplet phase can transition into the dilute phase with rate D.
(b) In the filtering model, mRNAs in the droplet phase additionally may decay with rate γa. We
assume that γa ≫ γm so that decay occurs primarily in the droplet phase.
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(a) (b)

(2.8) In the buffering model for phase separation with fixed phase separation threshold mpt = 20,
only mRNAs in the dilute phase are active. (a) For fixed bursting rate km, increasing mean burst
size decreases protein CV 2 well below the CV 2 for the single mRNA state gene expression system
with identical rate constants and mean protein abundance. (b) Sample trajectories of dilute mRNA
population demonstrate that for a given phase separation threshold, burst intensities at or above the
threshold can maintain a mean dilute mRNA abundance at mpt with fluctuations that are averaged
out on sufficiently large timescales. Here, km = 0.05, kp = 2, γm = 0.05, γp = 0.02, C = 1, D = 0.01,
ϵ = 0.01, colors correspond to highlighted points in panel (a).

(2.9) Fig. 8a reproduced with different values of epsilon. The curves are qualitatively the same,
approaching the same limiting value of CV 2 as the mean burst size is increased.
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(a) Noise suppression vs. filter strength:
km = 0.05, γm = 0.001, kp = 2, γp = 0.02,
⟨B⟩ = 20, ϵ = 0.01, C = 1, D = 0.01.

(b) Select time series of dilute and droplet
mRNA: km = 0.05, γm = 0.001, kp = 2, γp =
0.02, ⟨B⟩ = 20, ϵ = 0.01, C = 1, D = 0.01.

(c) Sensitivity to D km = 0.05, γm = 0.001,
kp = 2, γp = 0.02, ⟨B⟩ = 20, C = 1.

(d) Sensitivity to ϵ: km = 0.05, γm = 0.001,
kp = 2, γp = 0.02, ⟨B⟩ = 20, C = 1, D = 0.01.

(2.10) In the filter model for phase separation of mRNAs, mRNAs within the droplet phase are
unable to be translated and have a higher rate of decay. (a) Varying the droplet mRNA decay rate
and keeping all other parameters constant, the CV 2 curve exhibits a well defined minimum for
γa/γm ≈ 10. Across all values of γa assayed, CV 2 is near the Poisson limit of protein copy number.
(b) Sample trajectories of the filter model for different values of γa. Fluctuations in dilute mRNA
copy number can be minimized by maintaining a small, but nonzero population of droplet mRNA.
Colors correspond to highlighted points in panel a. (c) Figure 10a replicated with different values of
D, the diffusion rate out of the droplet phase. CV 2 curves shift upwards uniformly with increasing
D, due to the reduced ability of the droplet phase to filter out excess mRNA. (d) Figure 2.10a
reproduced for increasing values of ϵ. CV 2 curves shift upward, but are still well below the CV 2 of
the single mRNA state system.
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(2.11) Simulations were performed on the filter model with a phase separation threshold that
evolves as an Ornstein-Uhlenbeck process. CV 2 of the protein copy number was computed for
increasing values of the noise parameter σ of the Ornstein-Uhlenbeck process. Simulated CV 2(p)

(red) is plotted against CV 2(m) = σ2

2θµ2 , with µ = 20. The simulated CV 2(p) curve was compared to

the exact CV 2 of the gene expression system with deterministic translation and protein decay, and
mRNA copy number driven by an Ornstein-Uhlenbeck process (blue). The CV 2 of a single state
system with the same mean mRNA and protein abundances as the red and blue systems is plotted
in green. Here km = 0.05, kp = 2, γm = 0.001, γp = 0.02, C = 1, D = 0.01, ϵ = 0.01, ⟨B⟩ = 20,
θ = 0.01.

(a) (b)

(2.12) (a) CV 2(p) values were computed for increasing values of σ and θ so that CV 2(mpt) =
σ2

2θµ2

remained fixed. Curves were produced for four different values of CV 2(mpt). (b) Sample simulations
with colors corresponding to their values of σ and CV 2(mpt) in Fig. 2.11a. Here, km = 0.05, kp = 2,
γm = 0.001, γp = 0.02, γa = 0.05, C = 1, D = 0.01, ϵ = 0.01, ⟨B⟩ = 20
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(2.13) 3D segmentation of fungal cells in Ashbya gossypii. Top left panel: maximum intensity
projection of a stack of phase contrast images of the cells, processed using steerable filters to
highlight cell boundaries. Images are false colored so that edges in the middle of the z-stack are
colored green, and edges within 3µm of the top or bottom layer are colored magenta, allowing cells
that are not completely contained in the z-stack to be ignored. Three hyphae are shown outlined.
Bottom left panel: Fluorescence image showing the CLN3 mRNA spots. Spots are shown in the 3D
image color coded by the number of mRNAs that each is inferred to contain, ranging from 1 (blue)
to 12 (yellow). Right panel: 3D reconstruction of the 3D cell surfaces, suspended above fluorescence
image.

38



(a)

(b) (c)

(2.14) (a) Spheres of radius 2.5µm were constructed around each nucleus to carve out cytoplasmic
regions we refer to as nuclear neighborhoods. Each diffraction-limited spot detected was assigned a
weight based on its intensity compared to a single mRNA. (b) In each nuclear neighborhood, we
measured the number of mRNAs divided by the neighborhood volume, and the mean spot weight.
From this we formed a scatter plot, and binned the data in 40 uniform compartments. In each
bin, we measured the median mean spot weight to form the curve in blue. In order to detect
clustering resulting from RNA interactions, we performed an analysis where, for each neighborhood,
we calculated the anticipated mean spot weight that would be expected if the same number of
RNA molecules were uniformly distributed. The resulting median filtered curve was then plotted in
red to illustrate these findings. At a concentration of approximately 0.092 mRNA/µm3, the curve
derived from the smFISH data exhibits a discernible upward trend, surpassing the curve representing
uniformly distributed data. This notable deviation signifies the threshold for phase separation.
With a mean neighborhood volume of ≈ 37µm3, we estimate an average phase separation threshold
of ≈ 3.4 mRNA per neighborhood. (c) A histogram of the number of mRNA in actively transcribing
nuclei, which we use to approximate the distribution of bursts. The mean number of transcripts
synthesized in a burst was estimated to be ≈ 2.6.
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(a) Buffer Model

(b) Filter Model

(2.15) Graphical Summary of RNA Phase Separation Models. (a) Schematic of the Buffer Model.
Here noise suppression is achieved through the partitioning of the cytosol between an active dilute
phase and inactive droplet phase. The droplet phase acts as a reservoir for mRNAs that may
have been synthesized in large bursts. So long as the net concentration of mRNAs is above the
phase separation threshold, the dilute mRNA copy number remains close to the phase separation
threshold with minimal fluctuations, thus reducing protein copy number noise. (b) Schematic of the
Filter model. Here we assume that mRNAs are long-lived in the cytosol, and degradation primarily
occurs in the droplet phase. Fluctuations due to stochastic transitions between states are reduced
compared to the Buffer model, since excess mRNAs created in bursts will be quickly degraded.
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CHAPTER 3

Mitigating Transcription Noise Via Rapid Protein

Sharing in Syncytial Cells

3.1 Introduction

Syncytial or multinucleate cells are found across biospheres and kingdoms, including in

protists, plants and animals. The syncytial cells of fungi represent the most extreme forms

of this form of organization, common with cytoplasm extending for centimeters. The basic

cellular unit of fungi is the hypha, a long, branching filamentous cell characterized by extreme

polarity and apical growth. Hyphal growth is sustained by cytoplasmic flow, which is vital

for the transport of nutrients, nuclei and other organelles to the growing hyphal tip [72].

The collective mass of branching filaments is called the mycelium. Higher order filamentous

fungi have evolved porous septa which act to dynamically compartmentalize the hyphae,

aiding in cellular differentiation. Porous septa permit continuous and selective cytoplasmic

streaming in favorable conditions, but may be plugged via different mechanisms when a

hyphal compartment is damaged, ensuring survival of the hyphal network [73,74].

Syncytism can confer multiple selective advantages over unicellular systems. Mutations,

and in some species, the potential for hyphal fusion between dissimilar strains allows a

single mycellium to harbor populations of genetically different nuclei [75] Yet the sharing of

proteins within compartments can shield the mycelium from deleterious mutations, endowing

the whole with a remarkable tolerance for internal genetic diversity [76,77]. The principal
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benefit we explore in this chapter is that of division of labor between nuclei, specifically

concerning transcription. In order to achieve a given steady-state protein abundance, a

cell may combine infinite combinations of transcription, translation and molecular decay

rates. In this process, for fixed protein decay rates, transcription frequency will primarily

dictate the energetic cost, as the number of translation events per unit time will remain

invariant of mRNA abundance [38]. Frequent transcription can incur additional fitness cost

in the form of transcriptional interference, in which one transcriptional process negatively

interacts with another [39]. Transcriptional frequency is also built up from the number of

mRNAs transcribed in each transcriptional event and the spacing of these events in time.

Mechanistically, these processes are regulated by changes changes in genome conformation

associated with transcription, in which chromatin will locally decondense to expose the target

operon to transcription factors. This method of chromatin remodeling results in, to an

approximation, a two state system in which a gene is “active” or “inactive”. The average

transcription rate of a gene is thus determined by the product of the number of mRNAs

synthesized per unit time in the active state and the fraction of time a gene is active. When

this fraction is small, mRNAs will be synthesized in bursts, characterized by infrequent but

intense periods of transcription. Although decondensation of chromatin is believed to be an

intrinsically random event, cells may modulate burst size and deactivation rates by controlling

transcription factor abundance and binding affinity respectively [78].

When considering transcriptional efficiency, burst-like production of mRNAs is advan-

tageous compared to more Poissonian mode of transcription, as gene activation events and

duration are decreased, which reduces transcriptional interference. One way transcriptional

interference may arise is in a process called promoter occlusion, in which an elongating

RNA polymerase (RNAP) encounters a downstream promoter and precludes binding of

transcription factors [79]. Transcription may also interfere with DNA replication, result-

ing in collapsed replication forks and potential genome damage [80]. The energetic cost
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of intense yet infrequent bursts is less clear. Information theoretical modeling by Huang

et al. [45] hints that for a fixed RNA abundance, the slower promoter switching which

is characteristic of bursty transcription consumes less energy due to decreased chromo-

somal conformational changes, but is offset by the energy required to synthesize enough

RNA during the intermittent active periods. However, there is more clarity a about the

noise trade-offs of bursty transcription: when burst frequency is on the same time scale of

mRNA and protein decay, the large fluctuations in mRNAs will be transferred to the proteins

they encode. For some genes, large amounts of noise may be detrimental to a cell’s fitness [34].

In a syncytium, the burden of transcription may be distributed amongst the nuclei

coexisting in the cytoplasm. For example, syncytism may permit the existence of robust

circadian oscillators at remarkably low transcription frequencies [81]. Here, we develop several

syncytial gene expression models that will quantify the extent to which protein sharing can

buffer expression noise, and comment on the improvements in transcriptional efficiency in

such systems. Integral to these models are the existence of nuclear sub-compartments which

partition the cytosol of the hypha. In some syncytial organisms, neighboring nuclei repel

one another via microtubules to establish quasi-independent nuclear sub-compartments [82].

Proteins may freely diffuse between sub-compartments, and nuclei can respond indepen-

dently to compartmental protein concentrations, enabling operations such as asynchronous

nuclear division [82]. In our models, we will extend results on protein distributions in gene

expression models ( [27, 42]) to multinucleate systems, and derive the fluctuations in nuclear

compartmental protein abundance. The first model will consider a system in which there

is a fixed number of nuclei in each hyphal compartment, approximating the distribution of

nuclei in hyphal cells, where nuclear spacing is highly regular, as observed in Aspergillus

nidulans [83]. Subsequent modeling will explore the effects of non-uniform distributions of

nuclei, as seen in species like Neurospora crassa [84]. A second model will generalize this

scenario by incorporating uncertainty into the number of nuclei per hyphal compartment.
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(3.1) Schematic of gene expression without
mRNA state changes. A random number B of
mRNAs are transcribed with rate km; mRNAs are
translated into proteins at rate kp, decay at rate
γm. Protein decay rate is γp.

Event Population Update Propensity

Transcription m(t) → m(t) +B km

Translation p(t) → p(t) + 1 kpm(t)

mRNA Decay m(t) → m(t)− 1 γmm(t)

Protein Decay p(t) → p(t)− 1 γpp(t)

(3.1) Reaction propensities and population
updates for unregulated gene expression model.

In the third model, we will examine the scenario in which hyphal subcompartments are

partitioned according to the mean number of nuclei in the hypha, and the number of nuclei is

allowed to fluctuate. Finally, we will comment on how the division of labor among nuclei may

permit burstier transcriptional kinetics in each nucleus, increasing transcriptional efficiency.

3.2 Materials and Methods

3.2.1 Uninucleate Gene Expression Model

To develop a syncytial model for gene expression, we will begin by introducing a model for

single nucleus systems that exhibit Poissonian bursting. This model, derived in Singh [27] using

the method of moments, is a special case of the common two-state random-telegraph model

for transcription. In this model, the promoter undergoes alternating states of transcriptional

activity, transitioning between an “on” and “off” state [85]. During the ”on” periods, bursts
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of RNA are synthesized, following a geometric distribution. When the transition to the ”off”

state is rapid, the arrival of bursts approximates a Poisson point process [86]. Each burst

results in the production of B mRNAs, where B is sampled from a geometric distribution.

The parameters km, kp, γm, and γp represent the burst, translation, mRNA decay, and protein

decay rates, respectively. If m(t) and p(t) are random variables denoting the mRNA and

protein abundance in the uninucleate cell at time t respectively, the time evolution of their

moments may be described by the following set of differential equations:

d ⟨m⟩
dt

= km ⟨B⟩ − γm ⟨m⟩

d ⟨p⟩
dt

= kp ⟨m⟩ − γp ⟨p⟩

d ⟨m2⟩
dt

= km
〈
B2
〉
+ (γm + 2km ⟨B⟩) ⟨m⟩ − 2γm

〈
m2
〉

d ⟨p2⟩
dt

= kp ⟨m⟩+ γp ⟨p⟩+ 2kp ⟨p⟩ − 2γp
〈
p2
〉

d ⟨mp⟩
dt

= kp
〈
m2
〉
+ km ⟨B⟩ ⟨p⟩ − (γm + γp) ⟨p⟩

(3.1)

From the first two equations, we immediately find that

⟨m⟩ = km ⟨B⟩
γm

⟨p⟩ = kp⟨m⟩
γp

,

(3.2)

where ⟨·⟩ denotes the steady-state ensemble average of a time dependent random variable.

As we will only be concerned with steady state distributions, we will proceed to use ⟨·⟩ ≡ ⟨·⟩

unambiguously. To quantify the steady state relative fluctuations in our variables we will use

CV 2(·) = ⟨·2⟩ − ⟨·⟩2

⟨·⟩2
(3.3)
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In this single nucleus gene expression model, we find that

CV 2(m) =
⟨B⟩
⟨m⟩

=
γm
km

(3.4a)

CV 2(p) =
1

⟨p⟩
+

1(
1 + γm

γp

)CV 2(m). (3.4b)

The first term in Eqn. 4b represents the Poissonian noise that arises due to the stochastic

birth and deaths of proteins, and as a result depends solely on the mean protein expression

level. The second term encodes the downstream contribution of stochastic mRNA production

and degradation to protein noise. The size of this term is affected by the ratio γm
γp
, and the

relative mRNA noise CV 2(m). The ratio γm
γp

represents the ratio of protein to mRNA lifetime.

Increasing this ratio decreases CV 2(p), since rapid fluctuations in mRNA abundance may be

averaged out over a long-lived protein’s lifetime. When mRNA decay rates are held constant,

CV 2(m) maintains a direct proportionality with the average waiting period between bursts,

1
km

, highlighting the noise penalty linked to more sporadic transcriptional bursts.”

3.2.2 smFISH Analysis in A. Gossypii

To estimate nuclear CLN2 mRNA distributions in A. gossypii, we utilized a multistage

image analysis algorithm on six previously collected deconvolved hyphal image stacks, each

containing smFISH-labeled CLN2, Hoechst-labeled nuclei, and phase-imaged hyphae with

voxel size 0.1× 0.1× 0.3µm3, along with manually traced 2D segmentations of the hyphae.

To generate accurate nuclear masks, a multi-step approach was employed. Initially, Otsu

thresholding was applied to the raw deconvolved Hoechst images, effectively separating the

nuclei from the background. Subsequently, for each (x, y) coordinate in the image, the z

index (depth) with the optimal intensity was determined. This information was then utilized

to apply a standard deviation filter to identify and filter out any corona present at the nuclear

boundaries. To further refine the masks and eliminate spurious detections resulting from
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(3.2) Sample distribution of protein in a hyphal compartment subdivided into n subcompartments,
(three shown here). While proteins are free to diffuse into neighboring subcompartments, mRNAs
are assumed to localize near their nucleus of origin. Proteins originating from the center nucleus are
highlighted in red.

deconvolution artifacts of hyphae extending beyond the imaging volume, voxels situated

more than six z-slices away from the nuclear centroid were set to zero. Finally, the nuclear

boundaries were smoothed by applying a dilation operation to the resulting mask, using a

spherical structuring element with a radius of 2 pixels.

3D hyphal segmentations were generated using the identical procedure described by

Mayer et al. [86], allowing for the subtraction of background fluorescent intensities from each

raw smFISH image. In the resulting image, candidate RNAs were identified by locating

the regional maxima of the median-filtered image. The identified voxels were then further

refined through dilation using a 3-pixel radius spherical structuring element. Spots in close

proximity were segmented by applying a watershed transformation to the image, and the

mean integrated intensity of each segmented spot was calculated. Across all segmented

spots in the image, the spots were binned by intensity into 30 uniformly sized bins, and the

mid-point of the most populated bin was identified as the single-RNA intensity threshold.
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3.3 Results

3.3.1 Deterministic Nuclear Number with Homogeneous Compartment distri-

bution

Now, consider a cellular system containing n identical nuclei, with each nucleus defining

a spatial compartment with volume V =
Vhypha

n
(see Fig. ??). Assume homogeneous

concentrations of translational and decay protein complexes across compartments, so that kp,

γm, γp are all constant. Each nucleus will synthesize mRNA in bursts with rate km, and burst

size is characterized by the discrete random variable B, so that the net average transcription

rate per nucleus is km ⟨B⟩. Thus each compartment i is equivalent to the system described

in the previous model, so that

⟨mi⟩ =
km ⟨B⟩
γm

,

⟨pi⟩ =
kp ⟨mi⟩
γp

,

(3.5)

where the subscript i denotes the steady state copy number of the gene product originating

from nucleus i. We can then define the random variables mtot, ptot to represent the total

mRNA and protein abundance respectively in the syncytium, i.e mtot =
∑

imi, ptot =
∑

i pi.

If all nuclei are identical, then we can simply compute

⟨ptot⟩ = n ⟨pi⟩

CV 2(ptot) =
Var(ptot)

⟨ptot⟩2

=
CV 2(pi)

n
.

(3.6)

To better understand the benefits of compartmentalization, we will focus on expression noise

per cellular compartment. This is a useful metric when considering proteins that strongly

interact with nuclei, such as nuclear import proteins or cell-cycle signaling proteins. We will
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notably assume that the proteins encoded by gene in consideration are highly diffusive on

the time scales considered, so that proteins will instantaneously and randomly distribute

themselves amongst the n compartments after each reaction with equal probability. We

define the random variable psub to measure the steady state protein abundance within a single

nuclear sub-compartment. For homogeneous nuclear compartment volumes, we assume that

psub|ptot ∼ Bin

(
ptot,

1

n

)
(3.7)

since there is a 1/n chance a hyphal protein will reside in a given compartment. From these

conditioning assumptions, we find

CV 2(psub) =
Var(psub)

⟨psub⟩2

=
⟨Var(psub|ptot)⟩+Var(⟨psub|ptot⟩)

⟨⟨psub|ptot⟩⟩2

=

〈
ptot(n−1)

n2

〉
+Var

(
ptot
n

)
〈
ptot
n

〉2
=

n−1
n2 ⟨ptot⟩+ Var(ptot)

n2

⟨ptot⟩2
n2

= CV 2(ptot) +
n− 1

⟨ptot⟩

=
1

n

(
1

⟨pi⟩
+

1

1 + γm
γp

γm
km

)
+
n− 1

n ⟨pi⟩

=
1

⟨pi⟩
+

1

1 + γm
γp

γm
nkm

.

(3.8)

In the second line, we use the law of total variance. Notice that CV 2(psub) bears resemblance

to CV 2(pi) with an additional factor of 1
n
multiplying the transcriptional noise term. As

pcomp measures the effective protein abundance in each nuclear neighborhood, the benefits of
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Arrangement 1

Arrangement 2

Arrangement 3

(3.3) Hyphae generally contain a variable number of nuclei. Here we assume that the number
of nuclei follows a Zero-Truncated Poisson distribution with intensity parameter λ. For a given
number of nuclei n, the nuclei will arrange themselves into n uniform sub-compartments, resulting
in the infinite set of configurations depicted above.

protein sharing can be quantified by comparing to pi, the steady state number of protein

originating from a given nucleus:

Percent decrease in noise =
CV 2(pi)− CV 2(psub)

CV 2(pi)
× 100

= 100

(
n−1
n

)
1

1+ γm
γp

γm
km

1
⟨pi⟩ +

1
1+ γm

γp

γm
km

≈ 100

(
n− 1

n

)
.

(3.9)

In the final line we assume 1
⟨pi⟩ ≪

1
1+ γm

γp

γm
km

, which is true for genes encoding highly abundant

proteins [87]. For example, in the fungus Ashbya gossypii, where n ≈ 10, in each hyphal

compartment [88], expression noise is reduced by 90 percent under this model.

3.3.2 Random number of Nuclei with Homogeneous Compartment Size

In practice, the number of nuclei in a given hyphal compartment will generally fluctuate with

time, and will vary between compartments. This may be due to asynchronous nuclear division

[89], or flow through pores in the septal walls that partition the hypha into compartments [73].

To model this uncertainty in nuclear number N , we will assume that N follows a Poisson

distribution with intensity parameter λ > 0, conditioned on N > 0, also known as the
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Zero-Truncated Poisson Distribution, or ZTP. This distribution has mean and variance

E[N ] =
λ

1− e−λ

Var(N) =
λ+ λ2

1− e−λ
− λ2

(1− e−λ)2

(3.10)

We need not consider the scenario when N = 0, since there would be no nuclear compartment

to distribute proteins. Since the number of nuclei is now itself a random variable, the total

number of protein in the hypha is now a random variable conditioned on N , i.e

ptot|N =
N∑
i=1

pi. (3.11)

We again will assume that nuclear compartments are uniformly distributed, so that psub| {ptot, N} ∼

Bin
(
ptot,

1
N

)
. Statistically, this means that

〈
psub

∣∣∣ptot, 1
N

〉
=
ptot
N

Var

(
psub

∣∣∣ptot, 1
N

)
=
ptot(N − 1)

N2

(3.12)

Intrinsic to this assumption is that nuclei respond instantaneously to changes in nuclear

number, redistributing themselves to form uniform compartments. This approximation is

valid if the time scale of nuclear fluctuations is much larger than gene expression kinetics, so

that the system reaches steady state well before the number of nuclei changes again. As psub

is now conditioned on two independent random variables, its variance as now given by

Var(psub) = ⟨Var(psub|ptot, N)⟩+ ⟨Var (⟨psub|ptot, N⟩ |N)⟩

+Var(⟨psub|N⟩)
(3.13)
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(a) (b)

(3.4) Noise suppression comparison for syncytial gene expression models with fixed number of
nuclei, and stochastic number of nuclei. Here λ is the intensity parameter for the Zero-Truncated
Poisson Distribution, and we use n = λ

1−e−λ in equation (10). (a) Integrating stochasticity into nuclei

number minimally affects the CV 2 of the determinstic syncytial system, implying that under this
range of parameters, subcompartmental protein abundances are robust to nuclei number fluctuations.
(b) The intensity parameter λ closely approximates the mean number of sub-compartments n for
λ ⪆ 3. Here we use km = γm = γp = 1, ⟨pi⟩ = 2000.

where we have used the general formula for variance decomposition derived in Bowsher and

Swain [90]. Using equations (11) and (12), we find

CV 2(psub) =
1− F (λ)

⟨pi⟩
+ F (λ)CV 2(pi),

with F (λ) =
Ei(λ)− ln(λ)− γ

eλ − 1
.

(3.14)

where γ is the Euler Mascheroni Constant, and Ei(λ) is the exponetial integral.

For fixed gene expression kinetic rates, we plot this result as a function of λ, along

with equation (8), using n = λ
1−e−λ . We observe that under the assumption of a random,

Poisson-distributed number of nuclei, the computed CV 2 is close to equivalent to that of a

compartment containing a fixed number of nuclei. Qualitatively, there is a small difference

between the CV 2 values for λ ≤ 5 (n ≤ 5), but nonetheless, even when nuclear number noise

is incorporated, noise is significantly reduced relative to a uninucleate cell (Fig. 3.4).
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3.3.3 Compartment Size Independent of Number of Nuclei

In fast flowing hyphae such as Neurospora crassa, nuclear positions in sub-apical compartments

are dictated primarily by bulk cytoplasmic flow, rather than by their microtubule interactions.

In these systems, protein noise reduction is best assessed as a purely spatial phenomenon,

using volumetric sub-compartments independent of the instantaneous number of nuclei in

the hypha. As in the first model for protein sharing, we will assume that each hypha is

subdivided into n uniform compartments. The number of nuclei N will again follow a

Zero-Truncated Poisson distribution, with intensity parameter λ(n) such that ⟨N⟩ = n, so

that on average, each compartment is occupied by one nucleus. Biologically, we imagine that

n is the optimal number of nuclei for the hypha, so that the target number of protein in the

hypha is p∗ = n ⟨pi⟩ Again applying the assumption that protein diffusion is rapid, we can

redefine the random variable psub so that psub|ptot ∼ Bin(ptot,
1
n
), and ptot is defined as in

equation (10). Applying equation (12) to psub, ptot and N , we find

CV 2(psub) = CV 2(psub|N = n) + CV 2(N)

=

[
1

E[Pi]
+

1

1 + γm
γp

γm
nkm

]
+

[
1 + λ(n)− n

n

]
.

(3.15)

Equation (15) can be decomposed as the sum of two contributions to noise. The first

term represents the noise intrinsic to gene expression for a deterministic number of nuclei N

equivalent to the number of subcompartments, which is precisely what we computed in the

first model. The second term encodes the relative fluctuations of the number of nuclei in

(3.5) In the filamentous fungi Neurosporra crassa, nuclear spacing is largely unregulated as nuclei
flow through subapical compartments. We assume that there is some optimal number of nuclei
n in each hypha, so that on average each spatial compartment is occupied by one nuclei. If the
instantaneous number of nuclei follows a Zero-Truncated Poisson distribution with mean n, there
are infinitely many occupational configurations, one such is shown above.
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(a) (b)

(3.6) In hyphal compartments containing n nuclei on average, we define n uniform spatial
subcompartments along their length. (a) Under the assumption that protein are highly diffusive,
we plot CV 2 of protein within a single compartment for a fixed number of nuclei (red) and
nuclei following a Zero-Truncated Poisson distribution with intensity λ(n) (green) as we vary n.
Fluctuations in the number of nuclei per hyphal compartment non-negligibly increases CV 2(psub)
over the deterministic scenario explored in the first model, but this effect is suppressed as the mean
number of nuclei n increases. (b) The total sub-compartmental noise may be decomposed into the
sum of CV 2(psub|N = n) (magenta) and CV 2(N) (green). Both terms, and hence their sum (red)
decay as O(n−1) for large n. Here we use km = γm = γp = 1, ⟨pi⟩ = 2000.

the hyphal compartment, which is determined from its ZTP distribution assumption. The

additive effect of noise makes clear that the additional effect of varying the habitation of

nuclear sub-compartment only affects noise if CV 2(psub) ≈ CV 2(N). Now, for large n,

CV 2(N) ∼ 1

n

(
1 +O(e−n)

)
, (3.16)

so the two effects continue to contribute at the same order even as n increases. But, both

decrease proportionately to 1
n
; and the general story that adding nuclei to a syncytium

reduces protein-noise continues to hold. This result is plotted in Fig. 3.6, along with the

first term of equation (15). We see that for a small number of compartments, we no longer

benefit from protein sharing, as the large relative fluctuations in N dominate the noise in the

network. As n increases, these relative fluctuations are suppressed and CV 2(Pcomp) tends

towards the CV 2 of the first model. If noise reduction is strongly selected for in syncytial
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systems, we would predict that the mean number of nuclei per hyphal compartment is greater

in dynamic, fast flowing hyphae like Neurospora crassa, in contrast to more static systems

like Ashbya gossypii. In fact, compartmental nuclear density in N. crassa has been observed

to exceed that of A. gossypii by nearly an order of magnitude [84, 91], thereby providing

support for this hypothesis.

3.3.4 Fitness Costs

Our previous results have shown that, as a result of protein sharing, genes in syncytial envi-

ronments are often expressed with less noise than their unicellular homologs under identical

expression kinetics, even when the number of nuclei per cell is subject to fluctuations. At

the onset, we have hypothesized that due to the increased precision conferred by protein

sharing, syncytial nuclei may be able to operate more efficiently by increasing burst size and

decreasing burst frequency. To explore this idea, we develop a rudimentary model for the

fitness cost of expressing a gene at some mean abundance p∗ in our model hyphal system, and

determine how the fitness-optimizing burst frequency km depends on the number of nuclei n.

Hausser et al. [38] postulated that the total fitness cost of expressing a gene could be

decomposed as

∆fp∗ = ∆fnoise +∆ftrans, (3.17)

where ∆fnoise and ∆ftrans are the fitness costs due to noise and transcription respectively.

They found that ∆fnoise = αCV 2(p), where α represents the gene’s sensitivity to noise.

Operating under the assumption that deleterious transcriptional interference scales solely

with burst frequency, we assume that ∆ftrans = βkm, where β is a constant of proportionality

whose value varies between genes. Taken together we can apply this equation to our first

model to find that

∆fp∗ = α

(
1

p∗
+

1

1 + γm
γp

γm
nkm

)
+ βkm (3.18)
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If we presume that p∗, translation rate, and mRNA/protein decay rates are fixed, then the

mean number of mRNAs m∗ must also be fixed, where

m∗ =
km⟨B⟩
γm

, (3.19)

so ⟨B⟩ ∝ k−1
m . The cost function ∆fp∗ ≡ ∆fp∗(km), and will achieve a minimum when

km =

(
αγm

β
(
1+ γm

γp

)
) 1

2
1√
n
. Since the optimal burst frequency decreases monotonically with n,

this finding suggests that genes adapted to multinucleate cells may experience less frequent

but more intense bursts of transcription compared to their single-cell counterparts. While

measurement of burst scalings in real syncytia poses great chalenges, this calculation serves

to illustrate the concept that cells with the potential for protein sharing might favor more

intermittent and noisier transcription events.

3.3.5 CLN2 Transcription Profile Comparison: S. cerevisiae and A. Gossypii

To explore the potentially differential transcriptional noise ceilings in mononucleate and

multinucleate cells, we performed a comparative analysis of the transcription profiles of the

mRNAs encoding the cyclin Cln2, which plays a crucial role in promoting G1 to S phase

transition, in both Saccharomyces cerevisiae and the filamentous fungus Ashbya gossypii.

Aberrant expression of Cln2 in S. cerevisiae can lead to adverse effects, such as increased cell

size [92] and delayed cell cycle progression [93], making Cln2 a candidate for protein noise

reduction.

Previously, burst intensities and frequencies of genes have been estimated by fitting

single-molecule fluorescence in situ hybridization (smFISH) data to random telegraph models

of transcription, which implicitly assume exponential waiting times between gene activity

states [41,60,94]. However, with the emergence of mounting evidence showcasing the non-

Markovian nature of transcriptional bursting across diverse genomes [95], we adopt a different

approach. Instead, we focus on nascent RNA distributions, which decouples the analysis from
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downstream processes that may skew distributions, such as RNA export, post-transcriptional

modifications, and decay, as noted by Choubey et al. [96]. In this study, we heuristically

characterize the “burstiness” of a gene by defining a normalized measure of nascent RNA

intensity at transcription sites in actively transcribing nuclei. To this end, we analyzed

transcript count data collected by Maekiniemi et al. in S. cerevisiae [97] and compared them

with six existing smFISH image stacks collected in A. gossypii by Dundon et al. [20], which

we reanalyzed to collect data of RNA localization and quantification. After applying image

filtering, single RNA thresholding, and nuclear mask segmentation (see Methods section

for details), we proceeded to identify active nuclei by initially detecting transcription sites,

where nascent RNAs are localized (see Fig. 3.7, left panel). To distinguish spots representing

transcription sites from mature RNAs, we applied an intensity threshold of 1.4 times the

intensity of mature RNAs in each image, consistent with results from Maekiniemi et al. [97].

Nuclei containing these spots (nascent RNAs) were identified as active, indicating that they

had either recently transcribed or were currently in the process of transcribing (see Fig. 3.7,

left panel). If multiple nuclear spots exceeded this threshold, we chose the brightest spot

as the transcription site and recorded the number of nascent RNAs in the nucleus as the

nearest integer multiple of the transcription site’s intensity relative to the base RNA intensity.

To measure the “burstiness” of the gene and distinguish it from constitutive expression, we

compiled the distributions of nascent RNAs in active nuclei in both data sets, normalizing

each by the median number of RNA per nucleus. This normalization accounts for differing

transcriptional outputs between the two cell types. Across all samples, we formed histograms

of this measure in both data sets (Fig. 3.7, right panel). In S. cerevisiae, transcription

sites often constitute only a small fraction of the total nuclear content, with the top 7% of

transcription sites accounting for 50% or more of the median nuclear content. In contrast, in

A. gossypii, RNA distributions are more heavily weighted at the transcription site, with the

top 55% of transcription sites accounting for ≈ 50% or more of the median nuclear mRNA

content, implying a more bursty transcription process.
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(3.7) CLN2 RNA quantification in smFISH images of A. gossypii. Left panel: Projected
smFISH image after segmentation and thresholding (magenta) overlaid with projected nuclear masks
(green). The threshold for single transcripts (marked by red circles) were established by binning
integrated spot intensities and selecting the bin with the highest frequency, setting the threshold
at the midpoint of the chosen bin. Clustered transcripts (denoted by blue circles) were assigned
RNA counts based on the nearest integer multiple of the baseline RNA intensity. Transcription sites
were identified as spots contained in nuclei with integrated intensity > 1.4 the base RNA intensity,
(labeled in red). Right panel: Nascent RNA counts normalized by median nuclear RNA contents
were compared in S. cerevisiae and A. gossypii.

3.4 Discussion

Syncytial cells possess a remarkable ability to distribute the RNA synthesis workload across

multiple nuclei. In this chapter, we have extended results on gene expression noise in

uninucleate cells to develop a gene expression model for the syncytium. We specifically

investigated three syncytial systems that mimic the broad range of hyphal nuclei distributions

observed in filamentous fungi. Central to all three models was the assumed rapid diffusion of

proteins within the hypha, which effectively average out the total expression noise among

the n nuclear sub-compartments partitioning the hypha. In the first scenario, nuclei were

uniformly distributed so that the number of nuclei per hypha was fixed and deterministic,

and our analysis revealed an n-fold reduction in protein noise due to mRNA fluctuations.

We then generalized this result to consider random nuclear abundances following a Zero-

Truncated Poisson distribution, and found that compartmental protein noise was robust to

nuclear spacing variability. Finally, we examined the situation where the number of spatial

subcompartments depended only on the average number of nuclei per hypha, and found
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that the advantages of protein sharing is realized provided that the nuclear distribution N

satisfies CV 2(N) ≪ CV 2(pi), where CV
2(pi) is the noise level of the single nucleus system

with identical gene expression kinetics.

Our presented model indicates that even in the presence of high transcriptional stochas-

ticity, these nuclei can achieve precise protein abundances by sharing proteins through an

extensive, continuous cytosol, akin to an uncoordinated assembly line. This distinguishing

characteristic leads us to hypothesize that the sharing of gene products among compartments

in syncytial fungi plays a significant role in facilitating robust gene expression across various

cellular processes, and may provide a means to engage in more efficient transcription through

bursting. Transcriptional bursting is widely recognized as a primary signature of gene ex-

pression noise, yet it simultaneously indicates a shift towards efficiency, allowing for the

allocation of fewer resources towards the transcription of a given level of RNAs. In the closely

related S. cerevisiae, to our model syncytia A. gossypii, predominantly exhibits constitutive

transcription of mRNAs for the majority of genes currently assayed [94]. This suggests a

selective pressure for consistent transcription in the face of substantial noise arising from

low-copy number effects, which are omnipresent in S. cerevisiae genes [98].

Comparative analysis of CLN2 distributions in S. cerevisiae and A. gossypii reveals

that while mean transcription levels are similar between the two organisms, there exists a

clear bias towards transcriptional bursting in A. gossypii, as evidenced by the high relative

localization of RNAs at transcription sites. We do not have direct evidence that the Cln2

protein is shared between nuclei; indeed RNAs are observed to congregate near nuclei through

liquid-liquid phase separation, possibly as a means of shielding the influence of other nuclei

on cell cycle, and each may not travel far from its nucleus of origin [20]. Emerging pipelines

on transcriptional activity in yeast and in the closely related A. gossypii are powerful tools

for testing whether this instance of evolved syncytism has triggered a genome-wide selection

for bursty transcription.

The immense enzyme outputs of filamentous fungi have been exploited for thousands
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of years in food production, and in more recent years have made fungi into workhorses for

the production of antibiotics [99–101]. Mathematical models have shed light on various

aspects of fungal biology, including the transcriptional and cellular mechanisms underlying

fungal circadian rhythms [23, 102], cellulase secretion [103], and catabolism [104]. Yet, few of

these models have considered the syncytial context of filamentous fungus gene expression.

Unraveling the efficiency gain of transcription is necessary both for the proper formulation

of these models and to harnessing them to pave the way for innovative applications in the

biotechnology and industrial sectors.
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CHAPTER 4

The Spatiotemporal Regulation of Gene Expression in

Fungal Syncytia

4.1 Introduction

Among the most diverse of all of the kingdoms of life, fungi can be found in every biosphere,

from deep bedrock, to atmospheric particulates [105]. Fungal syncytism – the ability of a

single fungal mycelium to harbor tens, or even millions of nuclei, bathed in a single, common

cytoplasm, has shaped fungal life histories, and created distinctive routes to phenotypic

plasticity, reproduction and dispersal [88]. In particular, the tolerance of the fungal syncytia

for internal genetic diversity, acquired via mutation, or more rarely, through transfer of

nuclei or genetic materials between genetically dissimilar mycelia, allows for levels of genetic

experimentation that make pathogenic fungi formidable adversaries to their hosts, and

allow fungi to adapt in real time to new niches and habitats. Their potential to rapidly

adapt to new hosts inspired Buxton [106] to call fungi “the mutable and treacherous tribe”

(though Caten traces the phrase back even earlier [107]). Internal genetic diversity, and

fungal nuclear totipotence challenge definitions of what counts as a fungal individual, and at

what level in the hierarchy from gene to mycelium selection occurs [108]. However, almost

80 years ago, Pontecorvo, one of the pioneers of microbial genetics, predicted that fungal

heterokaryosis would be both a challenge and an opportunity for the then nascent science of

population genetics [109]. He argued that the fluid nuclear populations present in a fungal

syncytium had proportions that are set by the dynamics of competition and cooperation,
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intrinsic fitness and drift [109]. Recent experiments promise to turn Pontecorvo’s vision into

a quantitative scientific model [88]. In particular, live cell imaging of histone-labelled nuclei

allows quantification of nuclear dispersal [84], while quantitative PCR allows measurement

of the number of nuclei present from different populations, and has been used to infer the

presence of selection upon individual nuclear populations [110, 111], and to demonstrate that

selfish nuclear populations can invade a syncytium [112,113]. These results on the genetic

dynamics of nuclei within fungal syncytia may provide a conceptual template for explaining

the wide-spread appearance of syncytia across the tree of life [114].

Although syncytism has profound consequences for fungal evolution, the subject of this

chapter is upon the less scrutinized question of how how syncytism has allowed fungi to

evolve into remarkable factories for the production of secreted enzymes. Although secreted

enzymes have direct importance in biotechnology, we will expand our focus to study nuclear

coordination for protein production generally. Recent modeling has highlighted the importance

of the distinctive form of syncytism adopted by fungi in enabling their prodigious cellular

outputs [115]. Absence of cell walls between nuclei permits rapid translocation of resources

and organelles across substrates, and allows the labor involved in multistep synthesis pathways

to be divided among many nuclei – creating syncytial assembly lines – with corresponding

efficiency gains. Here we will discuss evidence and ideas both from biological experiments

and mathematical modeling, focusing on the adaptations that in a single mycelium allow

nuclei to coordinate across an entire organism or to maintain autonomy. We will discuss the

implications of sharing of mRNAs or proteins between nuclei upon the amounts of proteins

that can be expressed, the stability and predictability of expression, and of the amount of

labor that each nucleus must perform.
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4.2 Implications of syncytial cell structure for protein synthesis

It is clear that syncytia exploit global integration and coordinated responses as well as

regional and localized processes, with the ability to harbor both kinds of processes in the cell

and switch between these modes depending on conditions [116–118]. How can we begin to

understand the mechanistic benefits of global or local modes of coordination? In these next

sections we develop several theoretical frameworks for considering the benefits of a syncytial

state for conserving resources, sustainable production and minimizing noise in synthesis or

signaling.

Filamentous fungi are distinguished for their use as cellular factories, capable of synthesiz-

ing and secreting a wealth of enzymes at an industrial scale [101]. A central question in the

study of global gene expression in syncytia is how this vast output of enzymes is achieved while

still maintaining consistent expression of housekeeping proteins, which are essential for basic

cell function. One potential evolutionary advantage of syncytism is through the economical

division of transcriptional labor. In Hausser et al. [38], analysis of high-throughput sequencing

data in several model organisms reveal a strong evolutionary bias towards combining low

transcription and high translation to achieve a given protein abundance, which they attribute

to cells being adapted to minimize the energetic costs of mRNA transcription. Another possi-

ble advantage towards infrequent transcription may be come from reducing transcriptional

interference, which occurs when the transcription of one gene interferes with the transcription

of an independently regulated gene [39]. However, transcription rates are generally prevented

from being driven too low, because small mRNA copy numbers are more strongly affected

by expression noise, leading to larger fluctuations in protein abundance [32]. In our recent

modeling work, we have studied whether syncytism allows for even lower floors on mRNA

copy numbers, and more stochastic, less frequent transcription because the dispersion of

proteins between nuclear neighborhoods smooths out fluctuations in single nucleus-expression.

In this section, we present a simple mathematical model of gene expression in multinucleated

63



cells, and illustrate how nuclear cooperation for common goods may emerge spontaneously

through stochastic transcription.

Mathematical models for gene expression vary extensively in scope and methodology.

In this chapter, we focus on simplified mass-action kinetics based models, which involve

modeling the synthesis, decay, and binding of biochemical components, to form a dynamical

picture of the gene network. Typically, mass-action models incorporate the transcription of

RNAs, translation of proteins, and their corresponding degradation as single step reactions

that occur with certain propensities. In uninucleate gene expression models, the cytoplasm

is generally assumed to be well-mixed, which allows for gene networks to be studied purely

temporally. The well-mixed assumption necessitates that gene products are highly diffusive in

their cytoplasmic environment, allowing for spatial heterogeneities to be smoothed out. The

nucleus may additionally be modeled as a well-mixed compartment within the cell, in which

case each participating molecule will be prescribed nuclear import/export rates. This added

layer of complexity is necessary when modeling feedback mechanisms such as the binding of

transcription factors that regulate circadian clocks [119,120].

When extending gene expression models from uninucleate cells to multinucleate syncytia,

the partitioning of mRNAs and proteins becomes an important model element. To model

this partitioning, we must measure or make assumptions about the spatial organization of

nuclei in the cytosol, as well as the extent to which they enjoy transcriptional autonomy.

Indeed, nuclear spacing is highly regulated in fungi; in A. gossypi, microtubule and motor

protein assisted repulsion between neighboring nuclei space them regularly through the

syncytium [82]. Even in syncytia in which nuclei are rapidly moved by protoplasmic flows,

eddy currents can lead to formation of stable nuclear aggregates. For these reasons, we treat

the cytosol has being divided into distinct nuclear neighborhoods, which may function as

“cells-within-cells” [89].

In syncytia, nuclei can exhibit different degrees of nuclear cooperation and nuclear auton-

omy. Nuclear cooperation refers to the situation where nuclei within the syncytium express
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Nucleus
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(b)

(4.1) Modeling RNA and protein distributions in a syncytial cell. (a) Linear arrangement of N
identical nuclear compartments. (b) A single nuclear compartment with characteristic length L.

the same set of genes, potentially in a synchronous fashion, and work together to control

the overall function of the syncytium. Conversely, in the case of transcriptional autonomy,

nuclei are shielded from the influence of one another, and exhibit distinct transcriptional

programs [121].

Nuclear cooperation may emerge spontaneously, without the need for explicit programming

or direct communication between nuclei. Even in genotypically identically nuclei, transcription

of RNAs will generally not be precisely coordinated, due to stochastic effects, and resulting

in heterogeneity in gene product levels between nuclear compartments, which is exacerbated

in the case of transcriptional bursting, where mRNAs are synthesized in infrequent pulses

rather than individually. However, due to the homogenizing ability of molecular diffusion,

the sharing of proteins between nuclear compartments may suppress noise in compartmental

protein abundance, providing the the time scale of diffusion is sufficiently fast. To illustrate

this idea, we consider an elementary model for syncytial gene expression, which consists of

a linear arrangement of N nuclear compartments, which we assume to be uniform in size
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Mononucleated Cells

Syncytial Cells

(4.2) Sharing of proteins in syncytial cells permits consistent protein expression under identical
transcriptional kinetics. Left panel: In mononucleated cells (top), global protein abundance strictly
depends on the synthesis rates of mRNA in the nucleus and translation rates in the cytoplasm.
In syncytial cells (bottom), proteins are free to diffuse into other nuclear neighborhoods, and
typically protein diffusive time scales are substantially faster than the gene expression time scales of
transcription, translation, and decay. Right panel: Stochastic simulations derived from standard
and syncytial models of gene expression reveal that spatial averaging of diffusive proteins results in
a tighter distribution of local proteins in nuclear neighborhoods of syncytial cells. In the syncytial
model, we simulate the sharing of proteins among ten nuclei, all of which have identical transcription
kinetics. In the limit of rapid diffusion, CV 2 is reduced by a factor of 1/10 compared to the scenario
where protein sharing is prohibited.

(Figure 4.1). This model resembles the typical morphology of hyphal compartments in A.

gossypi, which consists of N ≈ 8-10 nuclei spaced L ≈ 2-5µm apart [82, 91]. A protein,

modeled as a Brownian particle with diffusivity D, will diffuse half a cell length NL
2

in time

∆τp =
N2L2

4π2D
at which point there is roughly an even probability that it occupies any of the N

compartments. Taking the protein GFP for example, which has diffusivity D ≈ 30µm2/s in

eukaryotic cytoplasm [122], the homogenization time in a hyphal compartment of A. gossypi is

∆τp ≈ .75s. As the kinetics of gene expression often operates on the timescale of minutes [38],

we may make the limiting assumption that at any given time t, the total protein content p(t)

is disseminated with uniform probability between nuclear compartments. As a reminder, in

Chapter 3, we found that the magnitude of relative fluctuations of protein abundance in a
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(4.3) Compartmental protein abundance is subject to poissonian diffusive noise in the limit where
protein synthesis is deterministic, (i.e cellular protein abundance fixed).

compartment in this model is found to have the approximate scaling

CV 2(psub) ∼
CV 2(pmono)

N
(4.1)

(see Figure 4.2), where pmono is the distribution of protein in a mononucleated cell with

identical expression kinetics, and

CV 2(pmono) ≈
τB

τm + τp
. (4.2)

Here τm is the average mRNA lifetime, τp is the average protein lifetime, and τB is the average

waiting time between transcriptional bursts. As transcription is often an energetic bottleneck

67



(4.4) Stochastic time series of sub-compartmental protein abundance in syncytial gene expression
model with finite diffusion rate. Averaging over characteristic time periods reduces the perceived
magnitude of protein copy number fluctuations.

in gene circuits [38] this result suggests that in syncytia permit more stochastic transcription

(i.e larger and more infrequent bursts) before reaching a compartmental noise ceiling driven

by selection. Preliminary analysis of smFISH data in A. gossypi on the cell cycle associ-

ated genes encoding cln2 and clb2 support this hypothesis revealing potentially divergent

modes of transcription to analogous genes in the genetically similar S. cerivisae (Mayer et. al).

While the sharing of protein between nuclei can act to suppress fluctuations due to noisy

transcription, it introduces a degree of fluctuations via the random diffusion of proteins away

from their nuclei of origin. This effect is most pronounced when nuclei are each independently

expressing identical numbers of proteins, which may occur if the protein’s abundance is tightly

regulated by nondiffusive molecules such as RNAs [27]. In our syncytial model, we assume

each nucleus expresses a target protein copy number of ptarget which provides maximum
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fitness benefit per nuclear neighborhood. Given that the N sub-compartments are uniform

the total number of protein in the syncytium is given by ptot = Nptarget. At steady state, the

probability that a single protein occupies a particular compartment is simply 1
N
. Therefore,

the distribution of proteins in a syncytium follows a multinomial distribution with a uniform

compartment occupancy probability (see Figure 4.3). The number of proteins a particular

nucleus has access to, psub, say through interactions with associated microtubules, follows

a binomial distribution with Nptarget trials and success probability 1
N
. The fluctuations in

protein number per compartment is then given by

CV 2(psub) =
1− 1

N

ptarget
(4.3)

It can be shown that for large N , psub ∼ Poisson(ptarget), which sets an upper limit on the

noise contribution of diffusion to CV 2 = 1
ptarget

. For proteins expressed at high levels, i.e on

the order of 102 molecules/nucleus, this degree of noise is negligible. Although little data

exists on whole proteome abundances in A. gossypii, if it follows its near relative, the yeast

S. cerevisiae, for which 90% of proteins are expressed with median levels over 822 per cell,

then we expect protein partitioning noise to be negligible.

What about low abundance proteins, such as transcription factors? For such proteins,

random diffusions can lead to very uneven distributions through the syncytium. However,

even when instant-to-instant distributions of proteins may be very uneven, function may only

be impaired if the protein level in a given nuclear neighborhood is persistently too low or

too high [34]. If the time-varying protein in a given nuclear neighborhood is p(t), then the

phenotype associated with the protein likely reflects the time averaged abundance of the

protein. Supposing this time averaging occurs over a characteristic time scale T (e.g. the

time taken for protein recruitment to a particular organelle, which is often on the order of
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seconds or 10s of seconds), then

pT =
1

T

∫ t0+T

t0

p(t)dt (4.4)

Although p(t) fluctuates on a time scale τP , if these fluctuations are rapid, meaning that

τP ≪ T then deviations from the mean are suppressed (see Figure 4.4 and Appendix Section

5.2 for more details).

4.3 Circadian rhythm through the lens of nuclear coordination

Although much biochemical interest in fungal syncytia is associated with secreted proteins, due

to their many-fold uses in biotechnologies, specific pathways for secreted protein production

are usually not understood at the level of individual nuclei. By contrast, the circadian clock in

N. crassa is likely to provide an essential case study for understanding space and time-resolved

patterns of nuclear coordination, because of recent innovations both in developing carefully

parameterized models for the expression pathways that drive the clock, and innovative new

cell manipulation tools allowing the contributions of individual nuclei to be systematically

examined. N. crassa is a common model organism for studying circadian rhythm, as many of

the molecules and regulatory motifs involved in its circadian rhythm are conserved in other

organisms, including mammals [123,124]. The fundamental mechanism of the circadian clock

in N. crassa involves two interdependent feedback loops - one positive and one negative -

that pivot on the phosphorylation-mediated interactions between the White Collar-Complex

(WCC) and the protein frq. In its active state, the WCC is a transcriptional activator for frq,

promoting the synthesis of frq mRNAs. Within the cytoplasm, the frq protein associates with

the FRQ interacting RNA helicase (FRH) and the casein kinase-1a (CK1), culminating in the

formation of the FRQ-FRH complex (FFC), which drives the incremental phosphorylation of

frq and ultimately directs its degradation. During this process, the FCC may be imported

into the nucleus, where it interacts with and phosphorylates the WCC, eventually leading
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(4.5) (A) A simplified diagram of the Neurospora circadian clock. When active, the White-Collar
Complex (WCC) upregulates FRQ expression. FRQ forms a component of the FRQ-FRH complex
(FFC), which may inactivate WCC through a series of phosphorylations. (B) Cheong et al. [2]
employed a large chamber microfluidic device to investigate the synchronization of circadian clocks in
densely packed conidial cells of N. crassa. In the study, fluorescence intensity was used to represent
the ”hand” of the circadian clock. Scale bar: 50 µm (C) A microfluidic design proposed by Lee
et al. [3] to perform single nucleus tracking over long time periods in hyphal N. crassa cells. (D)
Bartholomai et al. [4] performed smFISH on N. crassa to localize the circadian clock associated
mRNA frq at various time points. Maximum-intensity Z projections of composite images of frq
(depicted in magenta) and nuclei (depicted in green) are presented, with arrows indicating nuclei
that contain colocalized frq transcripts (scale bar, 5µm).

to its inactivation (see Figure 4.8a) [23]. Due to the tractability of its principal molecular

components, data-calibrated mathematical models have been created to analyze the self-

sustaining and entrainable characteristics of the circadian clock [125,126], as well as to model

the circadian-linked oscillations in metabolism [29] and cell cycle [21].

The synchronization of circadian clocks is a fundamental characteristic of circadian

rhythms in populations of cells. Circadian clocks in uninucleate cells distributed through a
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tissue typically exhibit phase synchronization [127], but stochastic variation in gene expression

hinder this synchronization [128].

Cheong et al. [2] used fluorescent imaging of a mCherry labeled clock-associated promoter

to study the spatial scales over which synchronization among N. crassa nuclei that were not

cytoplasmically connected: They packed unfused N. crassa conidial cells into two specialized

microfluidic devices: a large chamber that simulated an artificial tissue (Figure 4.8b), and a

microwell device which inhibited cell-to-cell contact. Cells that were packed into microwells

of increasing density showed higher levels of synchronization, evidencing the presence of a

quorum sensing molecule that can diffuse between individual cells. Based on the time scales

over which cells became synchronized, they inferred this molecule must be protein-sized.

Although only minimally syncytial (since each conidium may contain one, two or even up to

10 nuclei), the ability to track the emergence of synchrony between nuclear neighborhoods in

syncytia is a tantalizing prospect for understanding how circadian clocks are assembled.

Microfluidic tools are likey to play a key role in allowing individual nuclear activities

to be mointored. A recent study by Lee et al. [3] introduced a novel method for tracking

single nuclei over circadian periods in N. crassa. To overcome the challenge posed by the

fungus’s rapid growth rate, which could cause nuclei to migrate outside of the imaging region,

the researchers utilized a microfluidic device with a spiral design that effectively held nuclei

within specified regions of interest (see Fig. 4.8c). smFISH (single-molecule fluorescence in

situ hybridization), already exploited in yeast, and to study fungal cell cycle, is a powerful

and flexible tool for creating static snap shots of the coronae of mRNAs surrounding each

nucleus. Bartholomai et al. [4] used it to quantify and locate frq mRNA at various points in

the circadian cycle. They discovered regular clustering of frq mRNA near nuclei (Figure 4.8d),

mediated by interactions with the RNA-binding protein PRD-2. Surprisingly, frq mRNA

levels were found to not exceed single digits per nucleus during a cycle, and only a small

fraction of nuclei were found to be actively transcribing at any given time, despite being

synchronized to the same oscillator. These low copy numbers are quantitatively discordant
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with existing mathematical models that tend to require much higher transcription rates. They

also suggest that circadian rhythm may be one of the first direct test beds for the general

result, given in the previous section, that syncytia can stably and economically operate with

more stochastic and lower transcription rates than uninucleate cells.

To probe whether syncytism allows for robust circadian clocks with low, noisy transcription

rates, Zinn et al. [81] employed a syncytial gene expression model for linked nuclear neighbor-

hoods, akin to the model outlined in Figure 4.1. This simplified model only encompassed the

negative arm of the transcription-translation feedback loop, simplifying the circuit to the level

of a solitary protein controlling its own transcriptional inhibition. This single feedback model

closely mimics the circadian oscillations of per proteins observed in mammals, as modeled

by Wang and Peskin [129], but with the added capability of the hypothetical clock protein

to diffuse freely between different nuclear neighborhoods. Stochastic simulations on this

system demonstrated that the sharing of clock proteins between neighborhoods facilitated

precise and synchronized oscillations with a period of 24 hours at transcription rates nearly

1000-fold slower than a uninucleate system with comparable oscillatory precision. As discussed

in Section 4.2, this noise insensitivity is due to the averaging of proteins between nuclear

neighborhoods. Importantly, the mathematical models exposed how the labor of transcription

is divided between nuclei; a readout that is hard to obtain from the static snapshots offered

by smFISH measurements. At low transcription rates, often a single nucleus was responsible

for the synthesizing the majority of mRNAs for the entire syncytial compartment, and this

energy-saving division of labor occurred spontaneously and without additional mechanisms

for coordination existing outside of the negative feedback loop.

4.4 Perspectives

In this chapter, we have highlighted specific adaptive characteristics that are present in fungal

syncytia, allowing nuclei to coexist in a shared cytoplasm. The diverse mechanisms employed
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by filamentous fungi to compartmentalize their cytosol and transport resources allow for

independent nuclear behavior when required, such as with asynchronous cell division, while

also facilitating coordinated responses to environmental stimuli. An essential trait found

in syncytial cells is the ability to allocate the workload of RNA synthesis among multiple

nuclei. We have termed this a ‘syncytial assembly line’, based on our presented mathematical

model of gene expression in syncytia that indicates that nuclei can achieve the necessary copy

number precision for a specific gene, even with increased transcriptional stochasticity, by

sharing proteins across a large, continuous cytosol. The efficiency gains resulting from this

division of transcriptional labor could explain the remarkable enzymatic output of filamentous

fungi, enabling them to thrive in challenging environments and serve as a valuable resource

for industrial protein production.

The themes of nuclear cooperation in syncytia explored in this chapter are not limited

to filamentous fungi. Windner et al [130] outline a top-down system of nuclear regulation

in Drosophila muscle cells, beginning with the global scaling of muscle cell size and number

of nuclei conserved across cell types. As in some filamentous fungi, nuclei are distributed

uniformly throughout the cell via microtubule repulsion [17], demarcating cytoplasmic

territories which contain nuclei which may vary considerably in size and DNA content. In

spite of this heterogeneity, the authors suggest that the diffusion of the nucleolar protein such

as Fibrillarin across neighborhood boundaries may perform a critical role in homogenizing

transcriptional activity, by regulating nucleolar-nuclear volume ratios. This mechanism

suggests that the sharing of proteins between cytoplasmic territories can coordinate nuclear

activity, which can help to smooth out expression heterogeneity at the cell level [130]. This

global coordination of nuclei is important in tissues such as mammalian myofibers, where the

nuclei work in concert to control muscle contraction [131].

Although we have highlighted circadian rhythm as a natural first place for bringing together

mathematical modeling with experimental observations, we hypothesize that the sharing

of gene products between compartments in syncytial fungi may contribute to robust gene
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expression in a variety of cellular processes. Further research and mathematical modeling in

this area is necessary to fully understand the complex mechanisms underlying fungal syncytial

behavior and to identify novel strategies for enhancing protein production and optimizing

biotechnological processes.
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CHAPTER 5

Appendix

5.1 Transcriptional Bursting in a Two-State Gene Model

In the general two-state telegraph model of transcriptional bursting, the gene of interest

stochastically transitions between an inactive and active state, characterized by switching

rates kon and koff, respectively. During the active state, RNA is transcribed at a rate of k0,

encompassing elongation, termination, and export as a single step. Here we define a burst to

occur if at least one RNA is transcribed during an activation period.

To understand the connection between the two-state model and Poisson bursting model used

in the paper, we first consider the scenario describing a single burst, through the lens of the

chemical master equation. We assume that at time t = 0, the gene is in the active state.

Define b ≥ 0 to be the random number of RNA transcribed before the gene turns off. The

master equation for this process is given by

∂Pb,1

∂t
= k0 (Pb−1,1 − Pb,1)− koffPb,1

∂Pb,0

∂t
= koffPb,1

P0,1(0) = 1

(5.1)

where Pb,i(t) represents the probability that b RNA are transcribed and the gene is in state i,

where i = 1 and i = 0 represent the active and inactive state respectively. The distribution
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of RNA transcribed during the active state is given by

Pb = lim
t→∞

Pb,0(t)

=

(
k0

k0 + koff

)b(
koff

k0 + koff

) (5.2)

Note that this is equivalent to a geometric distribution with “success” probability koff
k0+koff

,

and b the number of “failures” before first success. The mean number of RNAs transcribed

during a given activation period is then given by

⟨b⟩ = k0
koff

(5.3)

We may also consider the mean waiting time for bursts to occur, given that a gene is

initially inactive. To compute this, we consider the three state master equation

∂P0

∂t
= koffP1 − konP0

∂P1

∂t
= konP0 − (k0 + koff)P1

∂P2

∂t
= k0P1

P0(0) = 1

(5.4)

Where P0 is the initial, inactive state, P1 is the state in which the gene is active but RNA

have yet to be transcribed, and P2 is the state in which transcription has occurred. Let T

denote the waiting time distribution for the system to first transition to state 2. It follows

that Pr(T ≤ t) = P2(t), so Pr(T = t) = P ′
2(t). Upon solving in mathematica, we find

⟨T ⟩ = k0 + kon + koff
k0kon

. (5.5)
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Thus the frequency of bursts is given by

km =
1

⟨T ⟩

= kon

k0
koff

1 + k0
koff

+ kon
koff

.

(5.6)

To quantify the steady state distribution of RNA in the random telegraph model for gene

activity, we write out the corresponding moment equations:

˙⟨G⟩ = kon − (koff + kon) ⟨G⟩

˙⟨m⟩ = k0 ⟨G⟩ − γm ⟨m⟩

˙⟨G2⟩ = kon + (kon + koff) ⟨G⟩ − 2(kon + koff)
〈
G2
〉

˙⟨m2⟩ = k0 ⟨G⟩+ γm ⟨m⟩+ 2k0 ⟨Gm⟩ − 2γm
〈
m2
〉

˙⟨Gm⟩ = kon ⟨m⟩ − (koff + kon + γm) ⟨Gm⟩+ k0
〈
G2
〉
,

(5.7)

where γm is the cytoplasmic RNA decay rate, and we introduce the discrete variable G to

represent gene state, taking the value 0 when the gene is inactive and 1 when the gene is

active. Upon solving these equations, we find

⟨m⟩ = k0
koff

kon
γm

1 + kon
koff

CV 2(m) =
1

⟨m⟩
+

γm
kon

1 + γm
koff

+ kon
koff

.

(5.8)

In the limit where the gene spends the majority of the time in the inactive state, and the

RNA lifetime is much greater than gene activation time, we have γm
koff

≪ 1 and kon
koff

≪ 1. We

may consequently approximate bursts as instantaneous, arriving with frequency

km ≈ kon

k0
koff

1 + k0
koff

(5.9)

78



Figure 5.1 Stochastic Simulation Results With General Bursting Model. Left panel: Fig.
8a reproduced with kon/koff = {0.1, 1.0}. CV 2(p) qualitatively deviates from the Poisson bursting
model when (kon/koff = 1), but still decreases monotonically with burst size. Right panel: Fig. 10a
reproduced with kon/koff = 0.1 and kon/koff = 1. As kon/koff decreases to 0, CV 2(p) tends to shift
vertically to the Poisson bursting curve in black.

and distributed by the positive geometric random variable B = 1 + b, where

⟨B⟩ = 1 +
k0
koff

. (5.10)
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It can be shown that in terms of these limiting parameters,

⟨m⟩ = km ⟨B⟩
γm

CV 2(m) =
⟨B⟩
⟨m⟩

,

(5.11)

which is what we use in the main text.

In Figure , we investigate the impact of explicitly modeling gene activity on noise

suppression in the buffering and filtering models. We selected parameters to ensure that

the effective bursting frequency (Eq. 5.9) and burst size (Eq. 5.10) matched those of the

instantaneous bursting model, resulting in an equivalent number of transcripts per unit

time. The results demonstrate that, for a kon/koff = 0.1, the coefficient of variation squared

(CV 2(p)) exhibits minimal deviation from the noise curve computed in Figures 8a and 10a,

validating our approximation. In scenarios where genes spend an equal amount of time in

either state, noise is amplified in the buffering scenario but reduced in the filtering scenario,

while overall remaining qualitatively similar.

5.2 Syncytial Diffusion Time Scale

In this appendix section, we show that fluctuations in sub-compartmental protein abundance

can be ignored over sufficiently large time scales in the scenario where total hyphal protein

abundance is fixed. We begin by considering a hyphal system of radius R and length L

consisting of M brownian particles with self-diffusivity D distributed amongst N uniform

sub-compartments, as depicted in Figure 4.4. Now, consider the stochastic process

p(t) = Number of protein in given compartment k at time t
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governed by the system parameters, and let T be a characteristic measuring time scale of the

system. Then

pT =
1

T

∫ T+t1

t1

p(t)dt (5.12)

To determine how time scale averaging suppresses diffusive noise in syncytia, we compute

CV 2(pT ). Note first that

⟨p2T ⟩ =
〈

1

T 2

∫ t1+T

t1

∫ t1+T

t1

p(t′)p(t′′)dt′dt′′
〉

=
1

T 2

∫ t1+T

t1

∫ t1+T

t1

⟨p(t′)p(t′′)⟩dt′dt′′

=
1

T 2

∫ T

0

∫ T

0

G(t′ − t′′)dt′dt′′

(5.13)

where G(τ) = ⟨p(t)p(t+ τ)⟩ is the autocorrelation function of p(t). Now, observe that

p(t) =
M∑
j=1

wj(t)

wj(t) =


1 Particle j in compartment k at time t

0 Otherwise

(5.14)

Taking this decomposition of p(t) into M independent stochastic processes, we find that

G(τ) =
M∑
j=1

⟨wj(t)wj(t+ τ)⟩+
M∑
j ̸=i

M∑
i=1

⟨wj(t)wi(t+ τ)⟩ (5.15)

Since the proteins are non-interacting

∑
i,j

⟨wj(t)wi(t+ τ)⟩ = M(M − 1)

N2
, (5.16)
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and, additionally,

⟨wj(t)wj(t+ τ)⟩ = Prob(Particle j found in compartment k at times t and t+ τ) (5.17)

Now consider u(x, t), defined as the probability density of a single protein. It’s evolution

satisfies the diffusion equation

∂u

∂t
= D∆2u

∂u

∂n
= 0 at hyphal boundary

u(x, 0) =


1
V

in compartment j

0 Otherwise

(5.18)

where V = πR2L is the volume of compartment k. Taking u(t) = 1
πR2

∫
udA to be the

cross-sectional averaged probability distriubtion, we may show that

∂u

∂t
= D

∂2u

∂z2

u(z, 0) =


1
L

in compartment k

0 Otherwise

∂u

∂z
= 0 at ends of syncytium

(5.19)

Upon nondimensionalizing with t = L2N2

D
t∗, u = 1

L
u∗, z = LNz∗, we find

∂u∗

∂t∗
=
∂2u∗

∂z∗2

u∗(z, 0) =


1 (j−1)

N
< z < j

N

0 Otherwise

0 =
∂u

∂z
(0, t) =

∂u

∂z
(1, t)

(5.20)
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Solving equation (5.20) through separation of variables, we arrive at the series solution

u∗(z∗, t∗) =
∞∑
n=0

Ane
−π2n2t∗ cos(πnz∗)

An =


2
πn

[
sin
(
πjn
N

)
− sin

(
π(j−1)n

N

)]
n > 0

1
N

n = 0

,

(5.21)

which may be approximated by neglecting modes with n ≥ 2, i.e

u∗(z∗, t∗) ≈ 1

N
+

2

π

[
sin

(
πj

N

)
− sin

(
π(j − 1)

N

)]
e−π2t∗ cos(πz∗) (5.22)

Take t∗, z∗ to be new length scale

u(z, t) ≈ 1

NL
+

2

πL

[
sin

(
πj

N

)
− sin

(
π(j − 1)

N

)]
e−

Dπ2t
L2N2 cos

( πz
LN

)
(5.23)

Now,

⟨wj(t)wj(t+ τ)⟩ = 1

N

∫ jL

(j−1)L

u(z, τ)dz

=
1

N2
+

2

π2

[
sin

(
πj

N

)
− sin

(
π(j − 1)

N

)]2
e−

Dπ2|τ |
L2N2 ,

(5.24)

so

G(τ) ≈ M(M − 1)

N2
+
M

N2
+

2M

π2

[
sin

(
πj

N

)
− sin

(
π(j − 1)

N

)]2
e−

Dπ2|τ |
L2N2

=
M2

N2
++

2M

π2

[
sin

(
πj

N

)
− sin

(
π(j − 1)

N

)]2
e−

Dπ2|τ |
L2N2

(5.25)
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Since G(τ) = G(−τ),

⟨p2T ⟩ =
1

T 2

∫ T

0

∫ T

0

(
M2

N2
++

2M

π2

[
sin

(
πj

N

)
− sin

(
π(j − 1)

N

)]2
e−

Dπ2|t′−t′′|
L2N2

)
dt′dt′′

=
M2

N2
+

2M

π2T 2

[
sin

(
πj

N

)
− sin

(
π(j − 1)

N

)]2 ∫ T

0

∫ T

t′=t′′
2e−

Dπ2(t′−t′′)
L2N2 dt′dt′′

=
M2

N2
+

2M

π2T 2

[
sin

(
πj

N

)
− sin

(
π(j − 1)

N

)]2 2TDπ2

L2N2 + 2 exp
(
−TDπ2

L2N2

)
− 1(

Dπ2

L2N2

)2


=
M2

N2
+

4M

π2

[
sin

(
πj

N

)
− sin

(
π(j − 1)

N

)]2(
x+ e−x − 1

x2

)
≤ M2

N2
+

4M

N2

(
x
N2 + e−x/N2 − 1

(x/N2)2

)

= ⟨p⟩2 + 4⟨p⟩
N

(
x
N2 + e−x/N2 − 1

(x/N2)2

)

(5.26)

CV 2(pT ) ≤
4⟨p⟩
N

(
x
N2 + e−x/N2 − 1

(x/N2)2

)
,

where ⟨p⟩ = M
N
, and x = π2DT

L2 . Consequently, the reduction factor from time averaging

subcompartmental abundances is bounded by:

CV 2(pT )

CV 2(pcomp)
≤ 4

N − 1

(
x
N2 + e−x/N2 − 1

(x/N2)2

)
(5.27)

For fixed N = O(10), if x≫ N2,

CV 2(pT )

CV 2(pcomp)
≈ 4N

(N − 1)x

≤ 8

x

≪ 1

(5.28)
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In our analysis, we find that time averaged noise level become sub-Poissonian when the

temporal response window T greatly exceeds the threshold given by T ≫ L2N2

π2D
. Within the

context of our model organism, A. gossypii, we have estimated key parameters: L ≈ 3µm,

N ≈ 10, and D ≈ 30µ2m/s. Consequently, we can infer that T should be much greater than

3 seconds for the diffusive noise to be effectively suppressed. This result implies that by

averaging signal measurements over minutes, the absolute fluctuations in sub-compartmental

protein abundance due strictly to diffusion are effectively mitigated in A. gossypii.
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