
Lawrence Berkeley National Laboratory
LBL Publications

Title
Non-smooth Bayesian optimization in tuning scientific applications

Permalink
https://escholarship.org/uc/item/3m46j6zn

Journal
The International Journal of High Performance Computing Applications, 38(6)

ISSN
1094-3420

Authors
Luo, Hengrui
Cho, Younghyun
Demmel, James W
et al.

Publication Date
2024-11-01

DOI
10.1177/10943420241278981

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3m46j6zn
https://escholarship.org/uc/item/3m46j6zn#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Non-smooth Bayesian Optimization in Tuning Problems

Non-smooth Bayesian Optimization in Tuning
Problems

Hengrui Luo hrluo@lbl.gov
Lawrence Berkeley National Laboratory
Computational Research Department
1 Cyclotron Rd, Berkeley, CA 94720, USA

James W. Demmel demmel@berkeley.edu
Younghyun Cho younghyun@berkeley.edu
University of California, Berkeley
Department of EECS,
253 Cory Hall, Berkeley, CA 94720, USA

Xiaoye S. Li xsli@lbl.gov
Yang Liu liuyangzhuan@lbl.gov
Lawrence Berkeley National Laboratory
Computational Research Department
1 Cyclotron Rd, Berkeley, CA 94720, USA

Editor:

Abstract
Building surrogate models is one common approach when we attempt to learn un-
known black-box functions. Bayesian optimization provides a framework which
allows us to build surrogate models based on sequential samples drawn from the
function and find the optimum. Tuning algorithmic parameters to optimize the per-
formance of large, complicated “ black-box” application codes is a specific important
application, which aims at finding the optima of black-box functions. Within the
Bayesian optimization framework, the Gaussian process model produces smooth or
continuous sample paths. However, the black-box function in the tuning problem
is often non-smooth. This difficult tuning problem is worsened by the fact that we
usually have limited sequential samples from the black-box function. Motivated by
these issues encountered in tuning, we propose a novel additive Gaussian process
model called clustered Gaussian process (cGP), where the additive components are
induced by clustering. In the examples we studied, the performance can be im-
proved by as much as 90% among repetitive experiments. By using this surrogate
model, we want to capture the non-smoothness of the black-box function. In addi-
tion to an algorithm for constructing this model, we also apply the model to several
artificial and real applications to evaluate it.
Keywords: Bayesian optimization, surrogate modeling, additive Gaussian models.

1

ar
X

iv
:2

10
9.

07
56

3v
1

 [
cs

.L
G

]
 1

5
Se

p
20

21

Authors

1. Introduction
As an introduction, we briefly review the recent literature on Bayesian optimization
and identify the problem caused by non-smoothness in tuning scenarios in subsection
1.1. The follow-up subsections 1.2 and 1.3 describe the non-smoothness phenomena
and focus on one specific kind of non-smoothness.

1.1 Problems and Challenges

Suppose that we have a scalar function f whose expression we do not know, but
we can draw noisy samples in the form of pairs (x, y) = (x, f(x)) from function f ,
i.e., we consider a noisy optimization model. The methodology we present in the
current paper focuses on univariate functions and could be extended to multivariate
functions, but this remains a possible future work.

• When it is easy (or cheap) to evaluate this function at any point of its domain,
the default strategy is to use an exhaustive grid search of x to find its optimum.

• When it is difficult (or expensive) to evaluate this function at some points of its
domain, one strategy is to use a relatively cheap surrogate model to approximate
the black-box function.

The general tuning problem is to find the maximum or minimum of such a function
f based on (noisy) samples sequentially drawn from the function. This function with
an unknown expression is usually called a black-box function. An analytic solution
for the optimum of f is usually impossible; even if the analytic expression of the
function is known, the analytic optimum could be not tractable or expensive to
evaluate. In various scenarios, we need to solve this kind of black-box optimization
problem (Müller and Day, 2019; Gramacy, 2020).

Following common strategies, a surrogate model g is proposed to model the
underlying black-box function f . The chosen surrogate model g needs to be easier
to evaluate and approximate the black-box function f reasonably well. This strategy
usually works well for smooth functions.

Bayesian optimization provides a surrogate modeling optimization framework
that allows us to model and optimize these black-box functions using sequential
sampling (Booker et al., 1999; Snoek et al., 2012; Shahriari et al., 2016; Gramacy,
2020). In practice, we sequentially draw expensive samples from the black-box
function f and update the surrogate model g with the samples drawn using Bayes’
theorem. If the surrogate model g approximates the black-box function f suffi-
ciently well, we will expect that the optimum obtained from the surrogate model
is sufficiently close the true optimum maxx f(x) of the black-box function. That
is, if we can ensure g ≈ f , then their optima can be off by a max error at most
‖f − g‖∞. Gaussian process (GP) modeling is a predominantly popular choice for
building surrogate models g in Bayesian optimization. The most obvious reason for
this choice of GP surrogate model is its convenient conjugacy in Bayes’ theorem
and its well-studied covariance dependence structures (Rasmussen and Williams,
2006; Shah et al., 2014). And the sequential sampling scheme can be guided by

2

Non-smooth Bayesian Optimization in Tuning Problems

maximizing the acquisition function within the Bayesian framework (Gramacy and
Polson, 2010; Gramacy and Ludkovski, 2015). We summarize the recent progress of
the existing problems and challenges pointed out by Shahriari et al. (2016), where
a comprehensive introduction to Bayesian optimization is given.

• Constrained Bayesian optimization. A constrained Bayesian optimization problem
considers a domain which is not a full space. Notably, Müller and Day (2019) pro-
pose grid-based searches for optimization with hidden constraints, following a line
of research tackling mixed integer (Holmström et al., 2008), unknown (Gramacy
and Lee, 2011) and noisy constraints (Letham et al., 2019).

• Cost sensitivity. The problem of cost sensitivity arises in computer experiment ap-
plications and can be incorporated in the Bayesian optimization context (Brochu
et al., 2010). Lee et al. (2020) recently propose a cost-aware metric, in combination
with cost-effective pilot samples.

• High-dimensional problems. Most Bayesian optimization models focus on low-
dimensional domains (Gramacy and Polson, 2010; Snoek et al., 2012). Chen et al.
(2012) propose a two-stage strategy to fit high-dimensional GP surrogate models
by dropping some dimensions. However, when there are insufficient samples, high-
dimensional over-parameterized surrogate models may suffer.

• Multi-task. Multi-task optimization aims at approximating multiple responses si-
multaneously. Following Williams et al. (2007), Swersky et al. (2013) provide a
unified framework for multiple-output GP surrogates. Additive GP surrogate
models are designed for multi-fidelity applications with approximations (Kan-
dasamy et al., 2017) or generalized acquisition functions (Song et al., 2019).

• Freeze-thaw. The freeze-thaw strategy considers a subcategory of GP surrogate
models where inner loops of iterative optimization are needed (Swersky et al.,
2014). This approach has been incorporated into the iterative learning framework
(Nguyen et al., 2020). Meanwhile, the criticisms of freeze-thaw approach are
mostly based on its complicated implementation and highly application-dependent
nature (Dai et al., 2019).

The main application that motivates the current paper is the tuning problem in
computational science. In the tuning problem, an expensive black-box cost func-
tion f , typically the running time of a complicated simulation, with a moderate
dimensional variable x, typically a set of algorithmic tuning parameters, needs to
be optimized with a limited sequential sample size. In addition, another important
challenge is the potential non-smoothness in the black-box cost function. Tuning
becomes more crucial in large-scale computational applications, and surrogate mod-
eling with GP becomes an effective approach (Sid-Lakhdar et al., 2019). The GP
modeling will produce continuous sample paths (Cramér and Leadbetter, 2013), but
has difficulty in capturing potential non-smoothness (e.g., jumps in black-box per-
formance functions) in the black-box function. This feature of GP surrogates makes
it difficult to model cost functions in tuning problems, whose black-box functions
often come with potential discontinuities.

3

Authors

As a motivation, we consider a univariate cost function that arises in a spe-
cific tuning problem. In a matrix multiplication problem AB = C, the practice of
blocking large matrices A,B,C and performing block-wise multiplication is done to
improve the computational performance (Hong and Kung, 1981; Blackford et al.,
2002; Bilmes et al., 1997; Whaley et al., 2001; Zee et al., 2016). The black-box
function f is the measured computational speed (Mflops/s) of this matrix mul-
tiplication operation (matmul), which is determined by the efficiency of the block
matrix multiplication algorithm along with the potential measurement noise. The
tuning parameter in this problem is the block size for these blocked matrices. On
one hand, we can increase the block size in order to reduce the amount of data
movement between fast and slow caches to speed up the multiplication. On the
other hand, since the processor cache is finite, when the matrix block is too large
to fit into the cache, it would cause cache misses and hence a sudden drop in the
computational performance.

Hong and Kung (1981) use a pebble game model on an acyclic directed graph
to derive an analytical optimal bound for cost function of this application. The
optimal block size is machine dependent since processor cache sizes can differ, and
also depends on the structure of the innermost loops. We want to “tune” the optimal
block size to attain the fastest matrix multiplication. This motivating example
drives us to consider an optimization problem where the black-box function f :
Z+ → R1 has potential non-smoothness with respect to the block size to be tuned
(and where there is no explicit way to compute the optimal block size).

This application of matmul will be our example showing why different partitions
may arise naturally in the context of tuning. We also provide multiple synthetic
and real-world tuning examples like SuperLU (Yamazaki and Li, 2012) showing the
improvement when partitioning is well utilized in the optimization. We want to
optimize a non-smooth black-box function with a variant of GP surrogate, which
leads to our proposal below.

1.2 Non-smoothness caused by the domain

The black-box function f may be defined on a discrete domain like Zd instead of Rd.
This kind of problem is known as a problem with integer constraints (Müller and
Day, 2019; Garrido-Merchán and Hernández-Lobato, 2020). Furthermore, if only
some of the input dimensions are discrete and the black-box function is defined as
f : Zd−r × Rr → R1, then the problem has mixed-integer constraints. This kind of
problem could be addressed with different grid-based search methods and general-
ized into multiple-objective situations within the Bayesian optimization framework
(Holmström et al., 2008; Gramacy and Lee, 2011).

Usually, a GP surrogate model will be assumed to be fitted on a continuous
input domain. In the situation where the input domain is (partially) discrete, a
common practice is to discretize the continuous input variables of a (univariate) GP
surrogate model g : Rd → R1 whose mean function approximates f with uncertainty
quantification, while the handling of categorical or integer variables in Bayesian
optimism is ongoing research (Ru et al., 2020). However, if we have a (piecewise)

4

Non-smooth Bayesian Optimization in Tuning Problems

continuous black-box function f : Rd → R1, this simple discretization without
appropriate adjustment in the covariance structure of GP surrogate model may
yield incorrect results (Garrido-Merchán and Hernández-Lobato, 2020). We mainly
focus on another kind of non-smoothness in the next section – the non-smoothness
in the black-box function f on a continuous domain.

1.3 Non-smoothness in the black-box function

In this paper, we consider the non-smoothness of the function f of the following
two types, where we assume the function domain is Rd.

Example 1 For example, the function f1 : R1 → R1

f1(x) =

{
−x+ 1 x < 0

x2 x ≥ 0
, (1)

defined on R1 is a piecewise continuous function. The function f1 is not smooth and has a
“jump” at the point x = 0 from 1 to 0 with minimum 0 reached at 0.

Other than the non-smoothness caused by “jumps”, another kind of non-smoothness
in the black-box function is caused by discontinuous derivatives.

Example 2 For example, the function f2 : R2 → R1

f2(x) =

{
(‖x‖−1) ‖x‖> 1

(‖x‖−1)4 ‖x‖≤ 1
, (2)

has support R2 and a discontinuous derivative on the circle S1 : ‖x‖= 1, where it attains its
minimum value of 0. In special cases, such non-smoothness can be captured asymptotically
with sufficient samples (Luo et al., 2020a).

Although different choices of covariance kernels would adjust the smoothness of
the surrogate model g, a GP surrogate would not accurately model “jumps”. Here
is one example of the effect of non-smooth black-box functions. Since there could
be more than one parameter that specifies the kernel, we use κ to denote all kernel
parameters for kernel K = Kκ below for brevity.

In Figure 1.1, we show the fitted mean function of GP and piecewise GP sur-
rogate models (with a deterministic partition) in the unrealistic best-case situation
where we know the exact location of the discontinuity. All models are based on
the same 10 pilot samples drawn from equally spaced locations on [−1, 1] from
f1 above, with Gaussian noise with variance 0.01. We provide surrogate fits with
Matérn covariance kernels with parameters ν = 1/2, 3/2, 5/2,∞, which adjusts the
smoothness of the GP surrogate.

For the simple GP surrogate models displayed in the first row, near the non-
smooth point x = 0, we see a lack-of-fit between the black-box function and the fit-
ted mean function from the surrogate models. We also fit a piecewise GP surrogate

5

Authors

model g = g1 + g2 where g1 and g2 are supported on (−∞, 0] and [0,+∞) respec-
tively. From the second row of the figure, we can see that this additive approach
captures the non-smoothness that occurs at x = 0, and the minimum obtained from
g is closer to the true minimum at 0 for a single GP with any kernel. An important
observation is that an appropriate partition of the input domain helps the surrogate
model capture the non-smoothness, compared to simple GP surrogate models.

The non-smoothness in f2 is caused by discontinuous derivatives, and the non-
smoothness in f1 is a “jump”. This terminology is more general than the “change-
point” and “change-surface”, which are usually restricted to specific dimensions. The
presence of non-smoothness in the black-box function will cause GP surrogate mod-
els g to be mis-specified, and have a underlying lack-of-fit to the black-box function
f . The existence of non-smoothness in f presents challenges to the optimization
since the optima may no longer be close to the true optimum when the black-box
functions are non-smooth as shown in Figure 1.1.

On one hand, mathematically, the non-smoothness should be considered in the
context of continuity of functions. However, the mathematical definition requires
arbitrarily many points to characterize discontinuities.

On the other hand, in the surrogate modeling context, we only take finitely
many sample points. Therefore, we consider those points x2 near a (fixed) point x1
at which the finite difference |f(x1)− f(x2)|/‖x1 − x2‖ exceeds a certain threshold
to be “non-smooth” but those points where the finite difference ratio falls below
certain threshold to be “smooth”. This is a proxy for the formal mathematical
concept. Such a consideration motivates our later construction where we use (x, ξy)
as the clustering criterion in our algorithm, with a factor ξ for threshold adjustment.
Detailed discussions are delayed to section 2.3.

This conflict between mathematical and modeled non-smoothness cannot be
resolved without high-order derivative modeling (e.g., Solak et al. (2003)). One
solution is to put yet another GP surrogate to model first-order derivatives and
then use that as a criterion for clustering. This scheme can be generalized to higher
order derivatives, but we leave this as future work.

Formally, we have a definition of non-smoothness of a function f , which captures
both jumps and discontinuous derivatives:

Definition 1 (Non-smoothness) Let f be a function of variable x ∈ Rd, we define a non-
smooth point x0 of f to be such a point that its first-order gradient ∇xf is either unbounded
or does not exist at some point x in any open neighborhood of x0.

The two examples above do not have gradients at certain points of their domains
due to “jumps” or different left- and right- limits. Another example is the function
f0(x) = x3/2 ·sin(1/x), which has a gradient 0 at x = 0 but is not bounded near x =
0. These kinds of non-smoothness can be observed in various black-box functions,
as we shall see later.

The algorithm we introduce later does not use the definition, but we are moti-
vating the choice of the clustering criterion (x, ξy) (for the moment ξ = 1, and its
role will be clear later) using this specific definition, which will enable the surrogate
fitting to take non-smoothness into account.

6

Non-smooth Bayesian Optimization in Tuning Problems

ν = 1/2 ν = 3/2 ν = 5/2 ν =∞

GP

additive GP (with 2 components supported on (−∞, 0] and [0,+∞) respectively)

Figure 1.1: Mean function extracted from the fitted GP (first row) and piecewise
GP (second row, with components supported at (−∞, 0] and [0,+∞) respectively)
surrogate model with 10 equally spaced samples on [−1, 1] from f1. The blue solid
line is the fitted surrogate mean function and the red dashed line is the true function
f1.

1.4 Organization

We have briefly reviewed surrogate modeling and pointed out the problem of non-
smoothness in the tuning context. The organization of the rest of this paper is as
follows. In Section 2, we describe our methodology of building a non-smooth GP
surrogate model, which we call a clustered GP (cGP) surrogate model, leveraging
the partitioning scheme induced by the clustering to accommodate the potential
non-smoothness. We first review relevant methods in handling non-smoothness
in subsection 2.1, and 2.2. Subsection 2.3 discusses the intuition and construc-
tion of the proposed model. Section 3 provides simulated experiments with bench-
mark functions and analysis for the blocked matrix multiplication tuning problem
we mentioned in subsection 1.1. Through these experiments, we observe that the
surrogate-based optimization with cGP is better than GP while providing reason-
able partitions. (For example, we gain around 5% improvement with a limited
number of evaluations when tuning the widely used LU factorization application
in Section 3.2.2.) Moderately high-dimensional experiments are also provided to
evaluate the proposed cGP surrogate model. The paper concludes with a discussion
of the cGP surrogate model and future work in section 4.

7

Authors

2. Methodology
From what we described above in Definition 1 and the example in Figure 1.1, the
problem of tackling non-smoothness in the form of “jumps” or “piecewise continuity”
can be addressed by building a GP surrogate model with appropriately chosen
additive components.

In Section 2.1, we discuss the existing GP methods that are relevant to consider
non-smooth modeling. In the context of the tuning problem, we further focus on
modeling a potentially non-smooth black-box function with limited sequential (and
possibly noisy) samples. Then, we present our proposed method that is suitable
for surrogate modeling in a high-dimensional domain with detailed algorithms in
Section 2.3.

2.1 Relevant methods for non-smooth modeling

The first line of relevant research is the online change-point detection problem with
GP models (Adams and MacKay, 2007; Saatçi et al., 2010). In a one-dimensional
domain (e.g., a time-series), a change-point means that the function behavior is
different before and after this point. The observed response could be characterized
using different models. The problem involving change-point detection investigates
whether and when such a change of behavior occurs. The setup of sequential sam-
pling and inference is known as online detection, in contrast to offline detection
where the samples are fixed and the inference is retrospective (Basseville and Niki-
forov, 1993; Saatçi et al., 2010). Page (1954) first posed the problem of change-point
detection, but not until Smith (1975) was the change-point problem studied with
a Bayesian approach, and then Barry and Hartigan (1993) put the offline inference
into a fully Bayesian framework. However, not until Adams and MacKay (2007) did
a popular Bayesian change-point detection for online inference appear. This kind
of online Bayesian change-point model relies on the one-dimensional time domain,
making it hard to generalize to higher dimensions.

The second line of relevant research are the non-stationary GP models. In a
broader (yet more vague) sense, another collection of research that is related to
non-smooth modeling is non-stationary GP modeling, which is investigated in the
context of spatial statistics (2-dimensional domain). Since people use the term sta-
tionary to refer to a specific family of GP models with covariance kernels depending
only on pairwise point distance, GP models without such a covariance kernel could
be referred as non-stationary. A stationary kernel (e.g., Matérn kernels) takes the
form of Kκ(xi,xj) = Kκ(‖xi − xj‖), while a non-stationary kernel could take
the form that depends on specific locations xi,xj (Paciorek and Schervish, 2004).
In the context of offline surrogate models, Krause and Guestrin (2007) propose a
mixture model to address the non-stationarity based on a partition of the input
domain provided by the user. Furthermore, Martinez-Cantin (2015) suggest that
the partition weight functions consist of a local part and a global part in order to
learn global local features including potential non-smoothness. In a different di-
rection, Herlands et al. (2016) propose a model for the partition weight function

8

Non-smooth Bayesian Optimization in Tuning Problems

to model general change-surfaces. These non-stationary kernels are usually overly
parameterized, which might be a problem when there are only limited samples.

The third line of relevant research are in the context of online (non-GP) sur-
rogate models. When the derivative information is not available, Stoyanov et al.
(2017) model piecewise constant functions for cracking patterns using hierarchical
grid-based methods, and generalize to piecewise polynomials in Stoyanov (2018);
Fuchs and Garcke (2020). Although motivated by a similar problem, we do not
see an immediate adaptation of the grid-based method into Bayesian optimization
framework, which gives up the sequential sampling procedure. A simpler model
that is often used in non-smoothness detection is MARS (Friedman, 1991). When
the derivative information is available, Solak et al. (2003) suggested an approach
to model observation derivatives using GP directly in the specific situation of a
dynamic system where the generative equations are known. However, this is not
the usual situation in the tuning or data analysis context.

2.2 Partitioning the input domain

The observation we made in Figure 1.1 is that, by fitting additive Gaussian compo-
nents on appropriate partitions, the non-smoothness can be captured in the fitted
model.

In the setting of limited samples, an overly parameterized surrogate model would
not provide a good fit. There may be more model parameters than the samples and
no unique fit is possible. Due to high dimensionality, grid search methods are no
longer efficient and the non-smoothness or a change of behavior would require more
samples to fit a surrogate model. These two challenges both urge for a parsimonious
surrogate model, which is able to model the non-smoothness in an effective way. As
a generalization of the piecewise GP shown in Figure 1.1, we believe a partition
based GP surrogate model is a good candidate for handling non-smoothness in the
tuning context, as will be explained below. With normalization of the inputs, we
can assume the following without loss of generality.

Assumption. Hereafter, we assume that our input domain is a d-dimensional
unit hypercube Hd = [0, 1]d ⊂ Rd (d ≥ 1) for the simplicity of discussion. Our
methodology can be modified to work for Rd and Zd.

It is natural to think that different components in such a surrogate model should be
fitted over different partition regions determined by the non-smooth points. For in-
stance, in Figure 1.1, the only non-smooth point for f1 is x∗ = 0 and its complement
divides the domain R into (−∞, 0] and [0,+∞).

As explained in Section 1.3, we are inspired by the partitioning method used for
GP modeling in general. For example, a tree-like partition is utilized in order to han-
dle non-stationarity in GP modeling (Chipman et al., 1998, 2010; Luo et al., 2020b).
Furthermore, overly parameterized change-surface models (Martinez-Cantin, 2015;
Herlands et al., 2016) can be perceived as partitioning the domain with the sup-
port of the weight functions using the change-surfaces. The effect of partitioning
is restricting each surrogate model component to the corresponding piece of the

9

Authors

domain, and assembling these components to obtain the overall surrogate. Existing
partition-based GP models are usually for offline situations, but in our context, the
partition must be able to update according to the sequential sampling.

The tuning problem brings us the following challenges. Although our main
focus is to develop a novel modeling method to model non-smoothness, we will show
by experiments and examples that our model can address the following challenges
relatively well.

• Limited and sequential samples. For tuning problems, we need to fit a GP sur-
rogate model with limited sequential samples. Limited and sequential samples
make fitting GP surrogate models more difficult and dependent on the choice
of samples in each sampling step. With limited samples, it is impossible to fit
(non-stationary) models with over-parameterization.

• High-dimensional generalization. Bayesian optimization for the tuning problem
usually has a natural moderately high-dimensional domain (e.g., Rd with d >
2), but it is not immediately clear how to generalize these partition-based GP
methods into a high-dimensional domain. Besides, the number of parameters and
the samples needed for fitting for surrogate models also grows quickly in high
dimensions.

• Restrictive partition shape. Most existing partition-based GP methods have quite
restrictive partition shapes (i.e., determined by a system of inequalities t−i ≤ xi ≤
t+i , i = 1, · · · , d. (Gramacy and Lee, 2008; Chipman et al., 2010)). When the true
non-smooth partition boundaries are not aligned with the coordinate axes, rect-
angular partitions would not be appropriate for non-smoothness modeling since
we cannot expect non-smoothness along rectangular boundaries.

The clustered GP method we propose below could be considered as a special
partition-based GP, where the partition is induced by clusters of the observed lo-
cations and their responses (i.e., the pairs (x, y)). It not only has improved per-
formance over classical GP surrogate models when there are abundant samples,
but also does not have the problem of over-parameterization as the other existing
partitioning models. With a reasonable computational cost, we design a clustering
induced partition to build a surrogate model. The idea behind our method is to
partition using decision boundaries of a clustering method, which generalizes nat-
urally to a domain of any dimension. A good clustering would not only induce a
partition adapting to non-smoothness, but also guide the sequential sampling in the
Bayesian optimization procedure.

2.3 Clustered GP (cGP) surrogate model

As we explained in Section 2.2, partitioning is central to our solution to the problem
of non-smoothness in the black-box function to be modeled. The intuition for our
clustered GP surrogate (cGP) model can be explained as follows.

The proposed surrogate model uses the decision boundaries (of classifiers trained
by cluster results on observations) to model partition boundaries directly, with

10

Non-smooth Bayesian Optimization in Tuning Problems

a modified acquisition function weighted by the cluster sizes used in sequential
sampling. We can introduce clustering based on the joint input-response pair (x, ξy)
in accordance with our sample-based definition of non-smoothness as follows.

When x0 is not a non-smooth point, by our definition 1, we have a small ε-
neighborhood of x0 and in this neighborhood the gradient of f exists and is bounded.
Given our assumption that our domain is Hd for continuous functions, we can find
an x∗ in this neighborhood such that

|f(x1)− f(x2)| ≤ ‖x1 − x2‖·‖∇x∗f(x)‖, (3)

The rationale for using the joint input-response pair (x, y), y = f(x) to determine
whether x0 is a smooth point is that, if we can find such a pair of (x1, y1) and (x2, y2)
that ‖x1 − x2‖ is small but |y1 − y2| is large then the necessary condition (3) for
some point x0 being a non-smooth point is violated. Therefore, (x1, y1), (x2, y2)
should belong to different clusters. To summarize,

1. When ‖x1 − x2‖ is small, but |y1 − y2| large, then we put (x1, y1) and (x2, y2)
into two distinct clusters.

2. When ‖x1 − x2‖ is small, and |y1 − y2| is small), then we expect (x1, y1) and
(x2, y2) to belong to the same cluster.

3. When ‖x1 − x2‖ is large, the value |y1 − y2| can be small or large, regardless
of smoothness of f . So we do not make a decision about whether (x1, y1) and
(x2, y2) are in the same cluster.

Based on these considerations, we propose clustering the (d+ 1)-dimensional pairs
(x, y),x ∈ Hd, y ∈ R1 using one of the methods discussed below, and then use
these cluster labels to train a classifier. This classifier would label points and in-
duce a partition scheme on the input domain, and hence on the new locations. One
advantage of such clustering is that we do not have to model the support of each ad-
ditive component nor the change-surface explicitly. This cluster-classify procedure
is described in Figure 2.1.

The clustering labels define classes and can be used for training classifiers.
The classifier partitions the domain Hd. In addition, we can maintain an inter-
pretable model which indicates where the discontinuities appear. Compared to
other partitioning-based methods (Gramacy and Apley, 2015; Luo et al., 2020b),
our cluster-classify algorithm creates a relatively parsimonious parameterization for
the partition-based surrogate GP model and generalizes to high-dimensional do-
mains well.

With the additive Gaussian components induced by the clustering scheme, we
can fit independent smaller Gaussian processes instead of one large one. This not
only allows parallelization over additive components, but also normalization within
each component across sequential samples. These features bring computational
convenience.

The procedure of sequential sampling with this cluster-classify surrogate model
can be summarized as below and also in Figure 2.1.

11

Authors

(1) Clustering step
Cluster X_obs

by joint pair (X,Y)

(2) Classifying step
Classify X_new by

cluster labels of X_obs

(3) Surrogate fitting step
Fitting components
using GP surrogates

(4) Acquisition maximization step
Acquisition maximization

and sample

Classifier trained by cluster label

Known # of clusters
k-means...

Unknown # of clusters
Bayesian Dirichlet mixture...

Local classification
k-nearest neighbors...

Global classification
SVM...

Frequentist
MLE for model parameters

Bayesian
Posterior for model parameters.

Gradient-based optimization
L-BFGS

Global optimization
Annealing

Cluster 1
Cluster 2

Class 1
Class 2

Component 1
Component 2

x x x

(A) Clustering step (B) Classifying step (C) Surrogate fitting step

Figure 2.1: The cluster-classify algorithm for partitioning in the cGP surrogate
model. In each step, we illustrate options for the task and highlight these options.
In the bottom panel, we illustrate how the cluster-classify algorithm works for a
one-dimensional non-smooth function according to the bullet list on page 12. In
the illustration, we use solid lines to indicate black-box function f and dashed lines
for the fitted surrogate model g.
(A) There are 4 pairs of observations (x, y), and the clustering algorithm clusters
them into 2 clusters, represented by circles colored in red and blue.
(B) There are 2 new locations x1,x2 represented by squares. The classification
algorithm classifies these two locations into different clusters, represented by dif-
ferent colors.
(C) We use the corresponding surrogate component to predict at these 2 new lo-
cations x1,x2. Using (x1, y1) and (x2, y2) we can update each component of the
surrogate model.

1. (Clustering step) Cluster pairs (x, y), with the clustering method you choose (e.g.,
if you do not know the number of clusters, Bayesian Dirichlet GP mixture (DGM)

12

Non-smooth Bayesian Optimization in Tuning Problems

(Teh, 2010) works1; if you know the number of clusters, k-means (Devroye et al.,
2013) works2). can attach cluster labels to samples x and form classes among
samples 3. This step labels the observed locations and takes cluster labels as class
labels for each location x.

2. (Classifying step) Classify xnew by a classification method trained by the labeled
samples x (e.g., k-nearest neighbors (k-NN, (Devroye et al., 2013)) provides a local
classification4; a support vector machine provides a global classification.) The new
predictive locations xnew (without knowledge of corresponding responses) can be
assigned to one and only one cluster class. In each sampling step, the clustering
step (re-)labels the observations; and the classifying step is (re-)trained using the
labels and predicts on domain.

3. (Surrogate fitting step) Construct additive GP modeling over the partition and
fit it by either a frequentist or Bayesian approach.

4. (Acquisition maximization step) Maximize the modified acquisition function (See
details in Appendices A and E) for each component (e.g., expected improvement,
which concerns maxima of the black-box function) using a selected (gradient-based
or global) optimization algorithm to determine the next sequential sample.

To familiarize the novel notion of cluster-classify step, we use k-means and DGM
(introduced below) in the cluster step of all examples; but use only k-NN in the
classify step of all examples in the current paper. However, our implementation
supports a wide variety of clustering and classification algorithms used in machine
learning. In the cluster-classify scheme, the k-means use the proximity of pair
(x, ξy) to cluster sampled observations; and the k-NN use only the proximity of x
to classify any location x without the knowledge of y.

Following the Gaussian process modeling notation (Rasmussen and Williams,
2006), the overall clustered GP surrogate model (with k clusters) for a sample
{y1(x1), · · · , yn(xn)} at n different locations X = {x1, · · · ,xn} takes the following
vector form:

y(X) = (y1(x1), · · · , yn(xn))T =

k∑
j=1

fj(X) · 1j(X) + ε, (4)

where the fj(x) = (fj(x1), · · · , fj(xn))T denotes the vector of the j-th scalar func-
tion evaluated at n different locations X = {x1, · · · ,xn} of all k Gaussian mean
components; the overall Gaussian noise ε has mean 0 and variance σ2ε . 1j(x) is an

1. However, we still need to set the maximum number of clusters. Selection of hyper-parameters of
clustering and classification are not avoidable, see also Section 4.

2. By default, we use k-means with k = 3 for the clustering step.
3. The difference between clusters and classes is that clustering does not need predetermined labels

while classification does (which are called “classes”). Our method uses the clustering labels as
predetermined labels for classifications.

4. By default, we use k-nearest neighbors with k = 3 for the classifying step.

13

Authors

indicator function returning 1 if x is classified as belonging to the j-th class and 0
otherwise.

In contrast to a hierarchical partitioning model like the sparse additive Gaus-
sian process (SAGP) model proposed by Luo et al. (2020b); Park and Choi (2010),
the additive components of this model are mutually independent due to the dis-
joint partition scheme induced by our cluster-classify procedure. In the cGP model
(4), each fj is modeled by a zero-mean Gaussian process prior, i.e., fj(x) ∼
Nn(0,Kj), where the notation Nd(m,Σ) denotes the d-dimensional Gaussian dis-
tribution with mean vector m and covariance matrix Σ, with covariance matrix
Kj = [Kκ(xr,xs) · 1j(xr) · 1j(xs)]nr,s=1 and the covariance kernel Kκ modeling the
dependence between x within the same j-th class.

To evaluate the acquisition functions and determine the next sequential sample,
we need to fit the surrogate model and draw predictions from the surrogate model.
The model parameters are the kernel parameter κ that determines K and the error
variance σ2ε . One approach to fit the model is to estimate the parameters by maxi-
mizing the likelihood function L(κ,σ2

ε | 11(·), · · · ,1k(·),y,x1, . . . ,xn) of (4), which
is usually known as the “frequentist approach”. Alternatively, we can impose priors
on the parameters κ,σ2

ε and use the modes of their joint posterior

P (κ,σ2
ε | 11(·), · · · ,1k(·),y,x1, . . . ,xn) ∝

P (y | κ,σ2
ε ,f1, · · · ,fk)

k∏
j=1

P (fj | 1j(·),x1, . . . ,xn)︸ ︷︷ ︸
Likelihood Function

·

P (κ | 11(·), · · · ,1k(·))︸ ︷︷ ︸
Kernel Prior

· P (σ2
ε)︸ ︷︷ ︸

Error Prior

.

as their estimates. This is usually known as the “(fully) Bayesian approach”.
The Bayesian approach is preferred by multiple authors (Snoek et al., 2012,

2014; Gramacy, 2020) for its flexibility of incorporating prior information and re-
producibility. However, the frequentist approach is still widely used due to its
computational efficiency and clear convergence criteria.

Our main idea follows the scheme on page 11 and Figure 2.2. We create labels
for locations in the input domain based on (d+ 1)-dimensional pairs (xobs, yobs) by
clustering (unsupervised). Then, we compute the decision boundary of a classifier
trained by xobs and its cluster labels, to induce a partitioning of the input domain.
We expect that sample points that belong to different regimes determined by the
non-smoothness would be assigned to different partition components.

With this trained classifier (supervised), we can classify any point xnew in the
Hd and form a partition over the domain. Then the (weighted) acquisition function
(by default we use the expected improvement (EI) as the acquisition function)
based on the surrogate model is maximized over each component. This weighted
acquisition function can be applied to different kinds of acquisition functions like
UCB or PI (Hernández-Lobato et al., 2014), we provide a theoretic justification of
this weighting scheme in the additive surrogate model in Appendix E. In short, such

14

Non-smooth Bayesian Optimization in Tuning Problems

a weighting scheme and the exploration rate below would ensure convergence of the
Bayesian optimization procedure based on cGP.

In a broader view, this cluster-classify scheme also introduces a model selection
problem in an online context. When the data accumulates, we want to determine
the number of clusters dynamically. Currently, we retrain the clustering algorithm
in every step, but to reduce the computational complexity, a more principled way
might be to derive an online version of selection criteria like the gap statistics
developed by Tibshirani et al. (2001).

We have to point out again that we consider noisy observations, and we pick the
expected improvement (Shahriari et al., 2016) as our default acquisition function.
However, if a noiseless model is assumed, a different choice of acquisition function
is needed. Our algorithm is described in Algorithm 1, and we call this model the
clustered Gaussian process (cGP) model.

The cGPmodel is intrinsically related to at least two different kinds of (Bayesian)
GP models. One is the treed GP model (Gramacy and Lee, 2008) that partitions
the input domain using a dynamic tree (hence not clear how acquisition function
can be elicited for an online setting), while the cGP uses a more flexible way of
component creation via the cluster-classify step. The other is a (two-layer) hierar-
chical model with input clusters (Park and Choi, 2010), but the hierarchical model
requires latent parameters and user-specific clusters, and it is unclear whether the
existing acquisition functions are still suitable if used in an online setting, compared
to the cGP model as a simple additive model without latent parameters.

In the implementation of the cGP model, we introduce the notion of exploration
rate, following the practice described by Bull (2011) (in Definition 4) in the spirit
of reinforcement learning (Sutton and Barto, 2018). The exploration rate is the
probability that the next sequential example would be sampled according to the
acquisition maximization. When the exploration rate is exactly 0, the sequential
samples are all randomly chosen without referring to the acquisition function at
all. When the exploration rate is exactly 1, the sequential samples are all sampled
according to the maximizer of the acquisition function. In our specification, we
default the exploration rate to be 0.8. It is worth pointing out that adjusting
the exploration rate would affect the efficiency with which the sequential sampling
explores the domain. In the algorithm described in Appendix A, we can see how this
exploration rate controls alternating between acquisition maximization and random
sampling schemes. We introduce this element to allow different sequential sampling
schemes and investigate its effect in Section 3.1.

Another minor adjustment we introduce in our implementation is to add a
boundary penalty function to the acquisition function. In the problem of handling
non-smoothness, it seems that it is of benefit to sample more near the boundary
of the partition. In an offline context, Park et al. (2011) had discussed thoroughly
about the effect of partition boundaries in GP modeling. In the online optimization
context, we implement a user-specified additive penalty function (normalized to the
same scale) adding to the acquisition function, therefore, the maximization step
would be biased towards the boundary of a component. For instance, the penalty
function of a specific component can be configured to be proportional to the squared

15

Authors

Generate a random number u

Cluster X_obs
by joint pair (X,Y)

Classify X_new by
cluster labels of X_obs

Random search
and sample

Fitting components
using GP surrogates

Response Y pre-processing
(Censoring and normalizations)

u≤EXPLORATION_RATE

Y

N

Acquisition maximization
and sample

Reach required sample size

Fit (cGP) surrogate model and
find sample optimum

Y

N

C
la

ss
ifi

e
r

tr
a

in
e

d
by

 c
lu

st
e

r
la

b
e

l

R
an

do
m

 lo
ca

tio
n

in
 th

e
 in

pu
t

d
om

a
in

Figure 2.2: The algorithm flowchart for the cGP surrogate model. The dashed line
indicates the usual GP surrogate model, which does not include a partition scheme.
The detailed psuedo-code is available in Appendix A. Note that in each step, the
clustering and the classifiers are re-trained with the newly sampled observation.
Detailed pseudo-code for this algorithm is in Algorithm A.

distance of a point to the boundary of this component. As the partition components
determined by the cGP algorithm updates according to sequential sampling, this
penalty function can also be updated to account for updated partitions as well. We
recommend a careful penalty adjusted to the design and constraints on the domain
or no penalty by default.

Our cGP model can address the challenges in Section 2.2 while not introducing
too much complexity in surrogate modeling:

• Limited and sequential samples. We do not introduce more complex parameteriza-
tions for the partitioning scheme induced by clustering, except for the parameters
required by the additive GP components. Even with few samples, unlike more pa-
rameterized and complex models (Damianou and Lawrence, 2013; Herlands et al.,
2016), cGP models can still be fitted in an online context.

16

Non-smooth Bayesian Optimization in Tuning Problems

• High-dimensional generalizations. We do not have a high computational cost even
in a high-dimensional domain, since the clustering and classification algorithm are
usually not affected by the curse of dimensionality. The major computational cost
is fitting the component GP surrogate model.

• Restrictive partition shape. We introduce the cluster-classify procedure to de-
termine the partition scheme. Since the classification boundary determines the
partitions, we expect that the shape of partitions would reflect non-smoothness
better.

We also point out that cGP is unable to model non-smoothness within a single
component by its construction. In an extreme situation, we pick only two points,
x1 = −0.5 and x2 = 0.5 for f1 function with f1(x1) = 1.5, f1(x2) = 0.25 as shown in
Figure 1.1. If we treat x1, x2 as one cluster, then we fail to capture the non-smooth
point x∗ = 0 and will have a constant mean function at 0.375. If we treat x1, x2
as two clusters, then we will have piecewise constant functions of values 0.5 and
0.25 respectively with a non-smooth change-point at 0. This problem is intrinsic to
any partition-based method with a mis-specified partition scheme. Empirically, we
observe that this is not a too serious issue for cGP if we have enough pilot samples.

3. Experiments
Subsection 3.1 starts with simple illustrations of our proposed cGP model. Then,
subsection 3.2 revisits the motivating tuning problem we briefly mentioned in Sec-
tion 1.1 and qualitatively compares the performance of different surrogate models.
We first showed that cGP is a competitive alternative for simple smooth and non-
smooth functions. Then in matmul, piston and SuperLU applications, our cGP
model shows considerable improvement in tuning results. In specific synthetic func-
tions (i.e., Bukin.N6), the improvement is strict in 90% of repeated experiments.
The partitioned regime identified by the cGP model is also described and discussed.

3.1 Synthetic Studies

To establish an intuition of how the cGP surrogate model and Algorithm 1 behave,
we show two synthetic examples in H2 ⊂ R2. These low-dimensional examples
allow us to examine the results visually and qualitatively along with quantitative
summaries.

3.1.1 Smooth functions

First, we want to consider a smooth black-box function and see if cGP is competitive
against GP surrogates when there is no non-smoothness. In this situation, we expect
a simple GP surrogate to perform the best, but expect that cGP models are also
competative. Since when we choose the number of clusters k = 1, the cGP model
reduces to the usual GP model, we also expect that GP and cGP would have
similar fits when k is small. In the situation where the black-box function has
no non-smoothness, for example, we take the simple function f3(x) = f3(x1, x2) =

17

Authors

1/(1+(x1−0.25)2+(x2−0.25)2). We examine one sample of cGP fits (with Matérn
3/2 kernels) for k = 1, 2, · · · , 5 in Figure 3.1 and average performance in Table 3.1.

When we try to maximize the function, the two key statistics we observe are

∆ arg max := ‖arg max
x

(f)− sample maximum point x‖2

the L2 distance between sample maximum point x and the exact maximum point,
and the

∆ max := |fmax − sample maximal observed y|

which is the difference between sample maximum function value y and the exact
maximum value fmax = f(arg maxx f).

In the optimization context, smaller statistics ∆ arg max indicate better per-
formance of the surrogate model, which leads to a sample maximum closer to the
truth. And smaller statistics ∆ max indicates the surrogate model finds an (possibly
noisy) observed value that is closer to the true function value.

We can see that for this f3 with the unique maximum 1 attained at (1/4, 1/4),
only the case k = 3 gives significantly worse performance than the simple GP models
in one fit in Figure 3.1, but reasonably close to simple GP on average. And we can
see that cGP performs very closely to the simple GP surrogate as shown in Table
3.1; as the number of k increases, the surrogate fits improve.

Surrogate f3 (smooth, Figure 3.1) f4 (non-smooth, Figure 3.2)

∆ arg max ∆ max ∆ arg max ∆ max

GP (k = 1) 0.018718 0.000349 0.082762 0.006721

cGP (k = 2, k-means) 0.034503 0.001182 0.067821 0.004524

cGP (k = 3, k-means) 0.041824 0.001730 0.085938 0.007180

cGP (k = 4, k-means) 0.028472 0.000808 0.078971 0.006084

cGP (k = 5, k-means) 0.026969 0.000724 / /

cGP (k = 2, DGM) / / 0.082752 0.006623

cGP (k = 3, DGM) / / 0.078508 0.006031

cGP (k = 4, DGM) / / 0.067031 0.004412

cGP (partitioned) / / 0.160008 0.022961

Table 3.1: Average statistics ∆ arg max and ∆ max for the repeated 50 experiments
(different random pilot samples) for synthetic functions f3 and f4. The smallest
statistics (indicating the best model in terms of this statistics) in each column are
shown in bold fonts.

This set of synthetic experimental results supports that the cGP method per-
forms reasonably when the black-box function is smooth and would not create a lot

18

Non-smooth Bayesian Optimization in Tuning Problems

of non-smoothness in the fitted surrogate model. Averaging over multiple runs with
different pilot samples leads to similar results, therefore, we conclude that adopting
the cGP model would not create comparable tuning results on average compared to
GP surrogates even there is no non-smoothness at all.

3.1.2 Non-smooth functions

Second, we want to see how cGP performs when non-smoothness exists in the black-
box function, compared to GP. We create some non-smoothness in the function
f3 along the line x2 = 0. We use the indicator function 1(·) to complete the
construction. f4(x) = f4(x1, x2) = 1(x2 > 0) · (1/(1+(x1−0.25)2 +(x2−0.25)2))+
1(x2 ≤ 0) · (0.25/(1 + (x21 + x22))) as shown below with the same unique exact
maximum point (1/4,1/4) as f3. Therefore, if the non-smoothness introduced by
the indicator functions does not affect the surrogate-based optimization at all, then
we would be able to locate the maximum value of f4 as easily as f3. We examine the
mean of cGP fits (with Matérn 3/2 kernels) for k = 1, 2, · · · , 4 in Figure 3.2 using
both k-means and Dirichlet Gaussian mixture (DGM) as clustering algorithms. In
this case, k = 1 (i.e., simple GP surrogate) is underfitting and cGP with k = 3, 4 are
overfitting since we know from its expression that there are exactly two continuous
regimes of this function, separated by the straight line x2 = 0, in the true black-box
function f4.

Since the cGP model consists of two main parts, the cluster-classify step to
get the partitions and modeling on the partitions, we want to explore how the cGP
model works when the exact partitioning is known, and compare to the results when
the partitions must be computed. Following the practice in Figure 1.1, we get a
partitioned cGP assuming that we know the partition is given by x2 = 0. The panel
“cGP (partitioned)” in Figure 3.2 shows that when we know the partition exactly,
an additive GP (i.e., cGP with known partition) produces the best surrogate fit
among all models when compared to the truth of f4. In short, if we know the
exact partition, then we should not use cluster-classify step, but the model with the
exact partition components directly (i.e., additive GP) in this sequential sampling
context. Our algorithm Algorithm 1 can be shown to converge when the exact
partition is fixed, see Proposition 3 in Appendix E.

When k = 3, the non-smoothness at x2 = 0 cannot be modeled very appropri-
ately with either k-means or DGM as we observe. The cGP with k = 1 (i.e, GP) is
over-smoothed, while the cGP with k-means (k = 4) does not capture a transition
boundary near x2 = 0 well. The cGP with k-means(k = 2) and DGM (k = 3)
captures the x2 = 0 better, with optima similar to the true black-box function.
The cGP with DGMs all have smaller ∆ arg max compared to GP and reasonable
improvement, while cGP models with k-means (k = 2, 4) DGM (k = 2, 3, 4) have
better ∆ max and ∆ arg max compared to a simple GP on average as observed from
Table 3.1. This means that with the same limited sample budget, cGP models (with
appropriate clustering) get closer to the true maximum value. We observe that a
cGP model with DGM performs better in terms of identifying clusters. The number
of clusters is selected by the DGM with a prespecified maximal number of clusters

19

Authors

(Teh, 2010). DGM does not require us to know the number of clusters k exactly
but the algorithm learns this number from sequentially sampled data. As shown,
we can see that DGM with the maximal number of components being 3 adjust the
number of partitions better and performs better compared to k-means with k = 3,
as shown by one run in Figure 3.2.

One more observation we made based on the average statistics shown in Table
3.1 is that we can see that compared to f3, f4 tends to inflate the two statistics,
no matter what surrogate model we use. This strengthens and is consistent with
our intuition established in Figure 1.1 that when there exists non-smoothness, the
Bayesian optimization based on surrogate models would encounter difficulties due
to the lack of fit near the non-smooth points. In this non-smooth example, we only
change the maximal number of clusters allowed in DGM (e.g., in Figure 3.2, we
show the k parameter and the number of clusters finally chosen as well).

20

Non-smooth Bayesian Optimization in Tuning Problems

black-box f3 ∈ [8/33, 1] GP (k = 1) k-means (k = 2)

k-means (k = 3) k-means (k = 4) k-means (k = 5)

Figure 3.1: Mean function and partition scheme extracted from the GP surrogate
model evaluated on 100 × 100 equally spaced grids on [−1, 1]2 with weighted ex-
pected improvement acquisition function and n = 10 random pilot samples (trian-
gles), n = 30 sequential samples (circles) from f3. We use the same clustering meth-
ods with different assumed numbers of clusters: k-means (with k = 1, 2, 3, 4, 5). We
show exact minimal point by a black cross; sample minimal point by a green cross.

21

Authors

black-box f4 ∈ [1/3, 1] cGP (partitioned) GP (k = 1)

k-means (k = 2) k-means (k = 3) k-means (k = 4)

DGM (k = 2, fits 2) DGM (k = 3, fits 2) DGM (k = 4, fits 4)

Figure 3.2: Mean function and partition scheme extracted from the GP surro-
gate model evaluated on 100× 100 equally spaced grids on [−1, 1]2 with weighted
expected improvement acquisition function and n = 10 random pilot samples (tri-
angles), n = 30 sequential samples (circles) from f4, We provide the cGP with
oracle partition (x2 = 0) in cGP (partitioned) panel. We use different kinds of
clustering methods: k-means (with k = 2, 3, 4), Dirichlet Gaussian Mixture (DGM,
the algorithm fits the surrogate with 2, 3, 4 clusters when the maximal allowed
number of components are 2,3,4, respectively.) We show exact minimal point by a
black cross; sample minimal point by a green cross.

22

Non-smooth Bayesian Optimization in Tuning Problems

Furthermore, the choice of clustering algorithm in the cluster-classify step mat-
ters. When k = 2 the fit of cGP with k-means clustering seems to capture the
non-smoothness well while retaining the behavior that is similar to the underlying
function. However, in practice, we do not know how many clusters are there. One
approach is to treat k as a hyper-parameter that is subject to further tuning with
model selection criteria or cross-validation on real data. The other approach, which
we take here, is to use Dirichlet Gaussian mixture. We show the fit of these latter
two approaches in Figure 3.2 with k = 2, 3, 4. Figure 3.2 serves as a qualitative
verification of our method in a low-dimensional domain (d = 2). Usually, a rea-
sonably large k (e.g., 3,4) and DGM would be a practical choice for cluster-classify
step whenever our sampling budget allows.

The illustrative examples above show how cGP behaves in terms of mean func-
tion and error statistics. cGP behaves differently as we change the number k of
components and clustering algorithms. Note that since we use expected improve-
ment (EI) as our guiding acquisition function throughout the paper, it is expected
that the ‖f − g‖max would accumulate from clusters, hence possibly worse than the
GP.

Next, we want to see how the sequential sample size n and exploration rate
τ could change the behavior of the cGP model when compared to the GP model.
As a third example, we study a well-known benchmark function called Bukin N.6
function (displayed in Figure 3.3) defined on a 2-dimensional domain.

We experiment with cGP surrogates with exploration rates 1 (always sample
based on acquisition maximization), 0.8 and 0.5. When the exploration rate is 0,
the sequential samples are all randomly chosen; while when the exploration rate
is 1, the sequential sampling is fully based on acquisition maximization. In some
situations (like matmul in Sec. 3.2), adjusting the exploration rate would allow us
to explore the domain more efficiently.

For now, let us see how different exploration rates would affect the performance
of cGP surrogate models. In this set of experiments, we first investigate the dis-
tribution of optima found by different surrogate models. In the first row of Figure
3.4, we repeat the optimization for 100 different random seeds and we can see that
when there are moderate or sufficient sequential samples (n = 90, 190), cGP sur-
rogates produce fmin’s that are lower (hence better) than the optima given by the
GP surrogate with the same sample size. When there are only limited samples
(n = 10), cGP seems to have small improvements. In each of the box plots, we can
see that this comparison is systematic and not due to randomness. It is not hard
to see in the second row of Figure 3.4 that, partition schemes are actually captur-
ing the level sets of Bukin N.6 function rather accurately and sample more near the
optima. Quantitatively, we provide the percentages that cGP surrogates (under dif-
ferent combination of exploration rates) outperform their GP counterparts among
100 runs with distinct random seeds. We not only provide the percentages that
cGP gives equal or strictly smaller fmin, but also the percentage that cGP gives
strictly smaller fmin. The percentage that cGP gives equal or strictly smaller fmin

should be over 50% to justify the use of cGP, and a larger percentage of strictly
better optima indicates the superiority of cGP.

23

Authors

Figure 3.3: The Bukin N.6 function is defined by f(x) = 100
√
|x2 − 0.01x21| +

0.01|x1+10|. The function has unique global minimum f(x∗) = 0 at x∗ = (−10, 1).
We optimize the function to find its minimum over the domain of (−15, 5)×(−3, 3).
The plot is based on evaluation of f(x) on a 100 by 100 grid.

This experiment shows a consistent and qualitative advantage of cGP over GP
surrogates. However, more importantly, it also shows that different configurations of
hyper-parameters in the cGP model can be adjusted to yield better performance over
the same function. The partition scheme accompanying the cGP surrogate fit also
reveals the nontrivial geometric structure of the black-box function. Empirically,
we find cGP fits slightly faster compared to GP when n = 190, since inverting
k smaller covariance matrices costs less than 1 large covariance matrix of GP. In
general, if the black-box function has optima in a relatively small region compared
to the whole domain or the function has non-smoothness (also sharp changes) near
optima, then the cGP surrogate may reach better optima compared to the GP
surrogate, and run faster. And cGP can identify different kinds of behavior rather
faithfully through the cluster-classify procedure. Even if the cGP fails to capture
the different behaviors in the domain, we still observe that cGP has competitive
performance when compared to GP (which is consistent with Figures 3.1 and 3.2).

3.1.3 Summary

We explore the effect of hyper-parameters of the cGP surrogate model in this sec-
tion. With qualitative distributional summaries of experiments like box plot and
quantitative analysis introduced, we present evidence that cGP has advantages over
classical GP surrogates:

1. In the smooth function example (Figure 3.1), we observe that cGP with small
k performs similarly to GP. When there is no non-smoothness in the black-box
function, we can use cGP in place of GP without much loss of performance. In
fact, GP is a special case of cGP with k = 1.

2. In the non-smooth function example (Figure 3.2), we observe that cGP with dif-
ferent k’s can outperform GP when k is appropriately chosen. When there is

24

Non-smooth Bayesian Optimization in Tuning Problems

k = 2 k = 3 k = 4

●

●

● ●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

● ●

●

●

● ● ●

●

●
●

●

●

●

●

● ● ● ● ●

●

●

● ●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

● ●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

● ●

●

●

●

●

● ● ●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

●
●

●

● ● ●

●

●

●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ● ●

●

●

●

● ●

●

●

● ●

●
●

●

● ● ● ● ●

● ● ●

●

● ● ●

● ● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

● ●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ● ● ● ● ● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

● ● ●

● ● ● ● ● ● ● ● ●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ● ● ●

●

●

● ●

●

● ●

●
● ● ● ● ●

●
●

●

●

●
●

●
● ● ● ● ● ● ● ● ●

●
●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

● ●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ●

● ●

●

●

●

● ● ● ● ● ●

●

● ● ●

●

●

● ● ●

●

●

●
●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

● ●

●

● ● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ●

●

●

●

●

● ● ● ● ●

●

●

● ●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

0

25

50

75

100

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=2)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.96

expRate
=0.8(strict)

0.95

expRate
=1.0(equal)

0.95

expRate
=1.0(strict)

0.34
0.8
0.87

0.95
0.95
0.94

0.28
0.79
0.87

0.98
0.97
0.97

0.3
0.78
0.89

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

● ●

●

● ● ● ● ●
● ●

●

●

● ● ●

● ● ● ● ●

●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

● ●
●

● ● ●

●

●

●

●
●

●

●

●
●

●

●

● ● ●

●

● ● ●

●
● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●
●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

● ●

●

●

●

● ●

● ● ● ● ● ● ●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

● ●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ●

●

●

● ●

●
● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

● ●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

● ●

●

●

● ● ●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

● ●

● ● ●

● ● ● ● ●

● ●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ●

● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ● ●

●

●

● ●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●
●

● ● ● ● ●

●

●

● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

● ● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ●

● ●

●

● ●

●

● ● ● ● ●

●

●
●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

● ● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ●

●

●

●

●

● ● ● ● ●

●

● ●

●

●

● ●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ●

●

●

●
● ●

●

●

●

●

● ● ● ● ●

●

● ● ●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

0

25

50

75

100

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=3)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.96

expRate
=0.8(strict)

0.95

expRate
=1.0(equal)

0.98

expRate
=1.0(strict)

0.33
0.83
0.91

0.96
0.98
0.97

0.26
0.85
0.88

0.98
0.96
0.95

0.22
0.87
0.9

●

●

●

●

●

● ●

●

●

●
● ●

●●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

● ●
●

● ● ● ● ●

●

●

●

●

●

●

●●

●

● ● ●

●

●
●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

● ●

●

●

● ●

● ●

● ●

●

●

●
●

●

● ● ● ● ●

●

●

●

●

●
●

●

● ● ● ● ● ● ●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ● ●

●

●

● ●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

● ●

●

● ● ● ● ●

●

●

●

●

● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●
●

●

●

●
●

●

●
●

● ● ●

●

● ●

●

●

● ●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ● ●

● ●

●

●

● ●

●

● ● ● ● ●

● ●

● ●

● ●

●

● ● ● ● ●

●

● ●

●

●

● ●

●

●

●

● ●

● ●
●

●

● ●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

● ● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ●

● ●

●

●
●

●

● ●

● ● ● ● ●

● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ● ●

● ● ● ● ●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

● ● ●
●

● ● ●

●
●

●

●

●
●

●

●

●

● ● ● ● ●

●
●

●

●

●

●

●

● ● ● ● ●

●

●

● ●

● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●● ● ● ● ● ● ●

● ●

●

● ●

● ● ● ● ●

●

●

●

●

●

● ●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●
●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

0

25

50

75

100

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=4)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.94

expRate
=0.8(strict)

0.97

expRate
=1.0(equal)

0.97

expRate
=1.0(strict)

0.3
0.87
0.92

0.97
0.95
0.98

0.18
0.83
0.92

0.99
0.98
0.98

0.14
0.89
0.93

Figure 3.4: The box plot of optima (minimum) obtained from the cGP surrogate
model with exploration rates (expRate) of 0.5, 0.8 and 1.0, 10 pilot samples and a
sequential sample of size (seqSize) n = 10, 90, 190 from Bukin N.6 function. Each
dot on the box plot means one optimum obtained from one random seed. We dis-
play the performance in terms of distribution of optima from sequential samples
from GP and cGP surrogate models, with different numbers of components, explo-
ration rates and sequential sample sizes.
In the percentage table, “(equal)” columns show the percentage of cGP fitted surro-
gates with optima equal or better than the baseline GP surrogate under different
exploration rates in 100 different random seeds. “(strict)” columns shows the per-
centage of cGP fitted surrogates with optima strictly better than the baseline
GP surrogate under different exploration rates in 100 different random seeds.
We also provide corresponding partition schemes (different clustering components
are indicated by different colors) for one fit of cGP surrogate model with 190 se-
quential samples.

25

Authors

non-smoothness in the black-box function, we can use cGP to improve optimiza-
tion results and adjust hyper-parameters. cGP would also produce a partition
scheme that illustrates the non-smooth behavior in the black-box function.

3. In the Bukin N.6 function example (Figure 3.3), we observe that cGP with different
exploration rates and sample sizes outperforms GP under the same conditions,
but different configurations of these hyper-parameters can affect the optimization
performance of cGP. In this example, cGP produces a partition scheme illustrating
a non-trivial structure of the black-box function and yields better optima.

cGP has the potential of detecting the non-smoothness in the black-box function
and cGP usually performs at least as well as GP. We include further synthetic study
evidence in Appendix B to support this claim. In the next section, we investigate
the performance of the cGP surrogate model in real tuning problems.

3.2 Tuning Problems

As we explained in our cGP model specification above, there are quite a few (hyper-
)parameters we could select for the cGP surrogate model.

In a general application, the default choice would suffice. We run some pilot
experiments and choose the model parameters like the maximal number of compo-
nents and exploration rate sequentially. Although the most rigorous way is to find
a grid of all possible combinations of these parameters and conduct an exhaustive
search, empirical choices would also help. For example, we could guess how many
components are there in the black-box functions from the observed data.

The first example is a classic low-dimensional tuning problem, that is to find an
appropriate blocking to improve the performance of a large matrix multiplication.
We focus on the challenge of limited sample sizes. The second and the third exam-
ples, on the other hand, have rather high-dimensional parameter spaces, and hence
the difficulty to fit a surrogate model in a high-dimensional parameter space will be
present. One of them uses the piston cycling function, the other involves the tuning
of the sparse matrix factorization time in the SuperLU_DIST package (Yamazaki
and Li, 2012).

3.2.1 Low-dimensional tuning

Let us revisit the matrix multiplication tuning problem we mentioned in subsection
1.1. The black-box function is the computational speed function of the operation
A ∗ B = C with blocking structure, where the n× n matrices A,B,C have double
precision entries, and consist of N ×N blocks each of size b× b such that n = Nb.
The parameter we attempt to tune is the shared block size b and the computational
speed function f(b). Therefore, we have six nested loops (3 outer loops to perform
N3 multiplications of b × b matrices, and 3 inner loops to perform 1 b × b matrix
multiplication). Let m be the amount of memory traffic (i.e., slow communication)
between main memory and cache, and f be the number of floating point operations.

26

Non-smooth Bayesian Optimization in Tuning Problems

In this example, we have the following analytical performance model:

m =N · n2 +N · n2 + 2n2 read each block of A,B N3 times, N3 · b2 = N · n2

=(2N + 2)n2 read and write each block of C 1 time, 2N2 · b2 = 2n2

f =n3 + n3 number of additions,N3 · b3 = n3

=2n3 and number of multiplications, N3 · b3=n3

The quotient q = f/m of these two quantities, known as computational intensity,
can be used to model the computational speed of the matrix multiplication. It can
be calculated as q = f/m = 2n3

(2N+2)n2 ≈ b as n→∞, s.t. n = Nb. Therefore, based
on this analytical performance model, we can optimize (maximize) the function
q(b) by increasing the block size b (denoted as x below). However, this analytical
model has an implicit assumption: the 3 b× b blocks always fit into the cache. We
want to increase the block size to reduce communication but also avoid overflowing
the cache, which would cause a sudden decrease in performance. Hong and Kung
(1981) proved that the minimum number of words moved between cache of size
M and memory is Ω(n3

√
M

) which corresponds to q ≈ b = O(
√
M). The exact

optimal value of b depends on details of how the loops are organized, compiler
optimizations, and hardware architecture, which has led to a large literature on
the topic, including the development of special purpose autotuners. More details
of optimization for matrix multiplication are explained by Bilmes et al. (1997),
Whaley et al. (2001) and Zee et al. (2016). Our goal is not to compete with these
autotuners, which may include custom code generation as well as tuning parameters,
but to use matrix multiplication as a motivating example, where clear non-smooth
and different regimes can be observed, for the clustered GP surrogate.

The machine on which we conduct this experiment is a Cori Haswell computing
node, with an L1 cache size of 32KB, 256KB for L2 cache and 40960KB for L3
cache. All cache-line sizes are 64 bytes, i.e., 8 double precision words. Each node
has an Intel Xeon Processor E5-2698 v3 2.3 GHz processor (with a theoretical peak
of 2.81 PFlops) with a 128GB memory.

Large matrix multiplication is quite expensive, and if we evaluate the compu-
tational speed of each block size b from 1 to n = 1000 (when the block size is 1 or
1000, there is no blocking). The L3 cache is large enough to fit all 3 1000 × 1000
matrices A, B and C. Based on multiple runs, we observe that there is little noise
in the data and do not consider averaging it further here. In this dataset, we can
make preliminary observations that there are several different kinds of behavior,
apart from the noise:

• When b < 160, the speed increases rapidly with some oscillations and then drops
to a plateau level. The oscillations, with local peaks at b equal to multiples
of 8, are to be expected since the cache-line size is 8 words. In practice, one
might limit the search space to b being multiples of 8, resulting in a smaller
search space and a smoother function to optimize, but here we consider all val-
ues of b to more rigorously evaluate the cGP. The optimal configuration is at-
tained at (xmax, fmax) = (112, 2010.702), with the 2 second best configurations at

27

Authors

0 200 400 600 800 1000

50
0

10
00

15
00

20
00

matmul performance on cori

b (block size)

M
F

lo
ps

112 160 500

Figure 3.5: The computational speed for matrices of size n = 1000. This is the true
black-block function obtained from a Haswell node. We also use a green dashed line
to indicate the actual maximum (xmax, fmax) = (112, 2010.702); and red dashed
lines for the regime cutoff x = b = 160, 500 discussed in the text.

(120, 2001.35) and (128, 2000.758). The choice of b that minimizes memory traffic
and so (potentially) maximizes speed, depends on details like the ordering of the
loops, and what the cache chooses to keep inside or not. In particular, anywhere
from just over 1 b × b to 3 b × b blocks may need to fit in cache. In our case,
since A, B and C all fit in L3 cache, the question is what b minimizes the traffic
between L2 and L3. Since the L2 holds 32K words, this means it can hold at most
1 square block of size b = 181, 2 of size b = 128, and 3 of size b = 104, ignoring
cache conflicts, etc. So it is no surprise that the performance falls off rapidly past
b = 128, reaching a plateau around b = 160. For a regular sampling scheme, it
requires some more sampling in this interval to attain this point, as seen from
Figure 3.6 (a) and (d), while cGP benefits from a good partitioning.

• When 160 ≤ b ≤ 500, the computational speed has a stable trend and rough
behavior, with some fluctuations caused by memory alignment and code imple-
mentation. Again, most of the small peaks occur at multiples of 8.

• When b ≥ 500, there is another significant drop (the trend can also be identified
starting from b = 400) until a roughly constant computational speed is attained.

We choose only 20 to 100 samples (including 10 pilot samples) when fitting
surrogates so that our surrogate model with sequential sampling can be completed
within 20 minutes (versus 3-4 hours needed for an exhaustive search) on the same
machine configuration. However, to reduce randomness, we use the recorded dataset
as the black-box function f defined on [1, 1000]∩Z. In Figure 3.6, we show the cGP
with Dirichlet Bayesian Mixture clustering with maximal number of components

28

Non-smooth Bayesian Optimization in Tuning Problems

as 3 (which is also the actual number of components chosen), a k-nearest neighbor
classifier (k = 3), and a Matérn 3/2 covariance kernel (with nugget). We start with
the same 10 randomly chosen pilot samples and then cap the total sample size at
20 and 100, respectively.

(a) GP, 10 sequential samples. (b) GP, 90 sequential samples.

(c) cGP, 10 sequential samples. (d) cGP, 90 sequential samples.

Figure 3.6: The computational speed function and fitted surrogate models. The
dark blue solid line and light blue shaded area are the mean and variance of fitted
prediction models. (xmax, fmax) records the optimal block size and the actual
optimal speed is illustrated by green vertical line on the figure. Bottom colored
bars with different colors indicate to which cluster certain portions of the domain
belong (but color has no semantic meaning). We also use magenta solid lines to
overlay the truth from Figure 3.5 for comparison purposes. (The exploration rates
of these experiments are all 1.)

29

Authors

We can get a first impression of the difference between GP and cGP surrogates
by looking at Figure 3.6. When the sample size is 20, we can see that there is
a big difference between the surrogate fits of GP and cGP, although their sample
maxima are close. This difference is due to the fact that the clustering algorithm
we choose gives us a correct cluster-based partition when there are as few samples
as 20. When the sample size is 100, we observe that the cGP identifies the drop
starting from b = 160 and b = 500 and attains maxima as good as b = 128 (with
f(128) = 2000.758, close to the optimal f(112) = 2010.702), and the same as
GP. While its performance is similar to GP with larger sample sizes, we can see
that cGP correctly identifies the change of function behavior caused by the drop of
computational speed near b = 160 and another behavior that changes rapidly when
b ≥ 500 even with very limited samples. Within each partition regime, the cGP
provides a better fit in the sense that its mean function captures the sharp slopes
caused by cache size. The main point we try to make here is that cGP can provide
additional partition information while still maintaining a similar performance as
GP in searching for maximum. This observation is further strengthened by the
summary of repeated experiments in Figure 3.8.

(a) (b) (c)

Exploration rate = 1.0 Exploration rate = 0.8 Exploration rate = 0.5

Figure 3.7: The computational speed function and fitted surrogate models. Bottom
colored bars with different colors indicate to which component a certain portion
of the domain belongs (but color has no semantic meaning). We also use magenta
solid lines to overlay the truth from Figure 3.5for comparison purposes. The fit
from GP surrogate model with 60 sequential samples and exploration rate (a) 1.
(b) 0.8. (c) 0.5.

So far, we consider all sequential samples selected by acquisition maximization
(exploration rate 1). In Figure 3.7, we show how the cGP fit changes with different
exploration rates, which are defined in the flowchart (see Figure 2.2) and affects the
random sampling procedure. If the exploration rate is 0.6, then with a probability

30

Non-smooth Bayesian Optimization in Tuning Problems

0.6 we choose the next sequential sample with acquisition maximization; and with
probability 0.4, we randomly choose the next sample from the input domain (i.e.,
a random block size b).

It is not difficult to observe from Figure 3.7 that, with a lower exploration rate,
the partition components remain similar, where for all exploration rates the drops
at b = 160 and b = 500 are clearly indicated by the change of additive components.
However, with a lower exploration rate, we also observe that the sample locations
are more spread over the input domain.

In Table 3.2, we also provide the percentage (among 100 runs with different
shared random seeds) of runs that cGP outperforms simple GP surrogate models,
as a quantitative supplement to the illustration in Figure 3.8, which supports the
claim that our cGP surrogate models with the setups above (and different explo-
ration rates) would consistently behave similarly like a simple GP surrogate model,
while providing the non-smooth information of the black-box function in terms
of both partitions and number of components. As the sequential sample size in-
creases from 10 to 90 (see Table 3.2 (a)), we can see that both surrogate models
behave similarly in terms of reaching optima, but the cGP model reaches the true
optimum b = 112 of the underlying black-box function more often (see Table 3.2
(b)). A medium exploration rate of 0.8 in the cGP model seems to improve the
performance in this specific data application. Eventually, the number of additive
components in the fitted cGP model stabilizes at around 2.9 (see Table 3.2 (c)),
which is consistent with our observation that there are 3 partition regimes for the
full recorded dataset. The average number of components is not exactly 3 since the
[1, 80]∩Z partition component of the domain is usually under-sampled in surrogates
with small sequential sample sizes.

In this matrix multiplication tuning example, the cause of non-smooth points
(i.e., reduction of communication; overflow of fast cache) and different kinds of
behavior is clear and observed in the recorded dataset as shown in Figure 3.5.
cGP surrogates behave similarly to the GP model when there are few samples; but
when there are enough samples, the cGP model clearly identifies different partition
regimes much better with a reasonable performance in optimization. It is also clear
that each additive component has a different normalization for the data within
this label, hence different degrees of smoothness are better elicited in the surrogate
fit. The non-smooth change-points between components are also captured in the
cGP model. Therefore, the cGP model searches the optimum fmax and xmax more
efficiently compared to a simple GP surrogate. In short, cGP provides non-smooth
information about the black-box function without loss of optimization performance
compared to GP in this application.

In a different setting of matmul application, where we do not change our blocking
strategy but vary the matrix size, we even witness the accuracy improvement by
adopting the cGP as our surrogate model, see Appendix C.

31

Authors

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●●●

●

●

●

●

●

●
●●
●

●

●

●●●●●●●●●

●

●●●●●
●
●
●●●●●●●●

●

●●● ●

●

●●●
●●●●
●●

●

●●●●

●

● ● ● ●

●

● ●

●

●

● ●

●
●

●

●
●

●

●
●

●

●

● ● ●
●

●

●

●
●

●

●
● ●

●
● ●

●

● ●
●

● ● ● ●

●

● ●

●
●

●

● ●

●
●

● ●
●

● ●

●

●

● ● ●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
● ●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ● ● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
● ●

●
● ●

●
● ●

●
● ●

●
● ●

●

●

●
● ● ●

● ● ● ●

●

●

●

●

●
●

●
●

●

●
●

●
● ● ● ●

● ● ● ● ●

●

● ●

●

● ●

●

●

● ●

● ●

● ● ●

●
● ●

●

●

●

●
●

●
●

●
● ●

●
●

●

●

● ● ●

● ●

●

●

●

●

●

● ●
●

●

● ●

●

●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
●

● ● ●
●● ● ● ● ●

● ● ●

●

● ●

●

● ●

●

●

● ●

●

●

●

● ● ● ●

● ●

●

●
●

●
●

●

●

● ●

●

● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

● ●
●

● ●

● ● ● ●

●

● ●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

●
●

● ●
●

●
● ●

●
● ●

● ● ●

● ●

● ● ●

● ●
●

● ●
●

● ●
●

● ●
●

●

● ● ● ●

● ● ● ● ● ● ● ●
● ● ●

●

●

● ●
● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

● ●

● ● ●

●
●

●

●
●

●

●
●

●

●
●

●● ● ● ●

●

● ● ●

●
●

● ●
●

●

●

●
●

●

●

●
● ●

● ●

● ● ● ●

●

●
●

● ●

●

● ●

●

● ●

● ● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●● ● ● ● ● ● ● ● ● ●

●
● ●

●
●

● ● ● ● ●● ● ● ● ● ● ● ● ● ●
● ●

●
● ●

● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ●

● ●

●
●

●

● ●

●

●
●

● ●
●

● ●●

● ● ● ●

●

● ●

●

● ●

●

● ● ● ●
●

● ●
●

● ● ●

● ●

● ● ● ● ●

●

● ●

●

●

●
●

●

●
●

● ●

● ● ●

● ● ● ● ● ● ● ● ●
●

●

●
●

●

●

●

● ● ● ●

● ● ● ● ●

●

● ●

●

● ●

●

●

●

●

● ● ● ●

●

● ● ●
●

●

●
●

●

●
●

●

●
●

●

●●
● ● ● ●

● ● ● ●

●

●

●

●

●
● ●

●
●

●
●

● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

● ●
●

●
●

● ● ●

●●

● ●

●

● ●

●

● ●

●

●
●

● ● ●

● ●

● ● ●● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●

●

●

●

●

●
●

● ●
●

●
● ● ● ● ●

● ●

●
● ●

●

● ●

●

● ●

●

● ●

●
●

●

●
● ●

● ●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ●

●

● ●

●

●
●

● ●

●

● ●

●

● ●
●

●

●

● ● ●

● ● ●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ● ●
●

●

●

●
●

●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●
● ●

● ● ●

● ● ●
●

● ●

●

● ●

●

●
●

●
●

●

●

● ● ● ●

● ● ●

● ●

●

●

● ●

●

● ●

●

● ●

●

●

● ● ●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

● ● ●

●

●

●

●

● ●

●

● ●

●

● ●

●

● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

● ● ● ●

● ● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●

● ● ●

●

●

●

●
●

● ●

●

● ●

●

● ●

●

●

●

● ●
● ●

●

● ●

●
● ●

●
●

●

●
●

●

●

●

●

●

● ● ● ●

● ● ●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ● ●

● ● ●

● ●

●

●
●

●

●

● ● ● ● ●

●

●

● ● ●

●

●

●

●

●

●
●

● ●

●

● ●

●

● ●

● ● ●

● ●
●

● ●

●

●
●

●
●

●

●
●

●

●
●

●

●

● ● ● ●● ●

●

● ●

●

● ●

●

● ● ●
● ●

●

●

●

● ● ●

● ● ● ●

●

●

●

●

●

● ●

●
●

●
●

● ● ● ● ●● ● ● ● ● ● ●

●
●

● ●
●

● ●
●

● ● ● ● ●● ● ● ● ● ●

●

●

●
●

●
●

●
●

●

● ● ● ●

●

●

● ●

● ● ● ●

● ●

●

● ●
● ● ●

● ●

● ● ●

● ● ● ●
●

●

●

●

●
●

●

●
●

●

●

●

● ● ● ●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

● ● ●

● ●

●

● ●

●

● ● ● ● ● ●

● ●

●

●

● ● ● ●

●

● ●

● ●

●

●

●

●
●

●
●

●

● ●

● ● ● ● ●

●
● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ● ●
●

● ● ●

●
●

●

● ●
●

● ●

● ● ● ●

●

●

●

● ●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ● ● ●

● ● ● ● ●

●

● ●

● ●
● ●

●
● ●

●

● ●

● ●

●

● ●

●

● ●

●

●

●
●

●

●
●

● ●

●

● ● ●
●

●
●

●

● ●

●
●

● ●
●

● ●
●

● ●

●

● ● ● ●

● ●

●

●

●

●
●

●

●
● ●

●
● ●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

●
●

● ●
● ●

●● ● ● ● ●

●

●

●

●

●

●

● ●
● ●

●
● ●

●
●

●

● ● ● ●

● ●

●

●

●

● ●

●

● ●

●

● ●

●

●

● ● ● ● ●

● ● ● ● ●
●

● ●
●

● ●
● ●

●
●●

● ● ● ●
● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

● ● ●

●

● ●

●

●

●

● ●

●

● ● ●
● ● ● ● ●

●

● ●

● ● ● ● ● ● ● ●

●

● ●
● ●

● ● ● ●

●

● ●

● ●
●

● ●
●

● ●

●

●

●

●
●

●

● ●

●

● ●

●
●

●

●
●

●
●

●

●

●

● ● ● ●
●

●
●

● ● ● ● ● ● ●
●

● ●
●

●

●

● ● ● ●

●

●

●

● ●

●

● ● ● ● ● ● ● ● ●

● ● ● ●

●

●

● ●

●

● ●

●

●

●

●

● ● ● ● ●

●

●

● ●

●

● ●

●

●

●

●
●

● ●
●

● ● ● ● ●
● ● ● ●

●
● ● ●

●
● ●

●
● ●

●
●

● ● ● ●● ● ● ● ●
● ●

●
● ●

●

● ●

●

● ●

●

● ●

●
● ● ● ● ●

● ● ●

● ● ● ● ● ● ● ● ●

●

● ● ● ●
●

●

● ●

●

● ●

●

●

●

●

●
● ●

●
● ● ● ● ●

●

● ●

●

● ●

●

●
●

●

●
●

●

●
●

● ●
● ● ●

●

●

●

● ● ● ● ● ● ● ●

●

● ●

●

●

● ● ●
●

●
●

●

●

●

● ●

●

● ●

●

●
●

●

●
● ● ● ● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

● ● ● ●

●

●

●

●

●

● ●
●

● ●
●

● ●
● ●

●
●

●

● ●
● ●

●
● ●

●

●
●

●

●
●

●

●
●

●
● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ●
● ●

true f_max = 2030.80902

1250

1500

1750

2000

G
P

 1
0

1

cG
P

 1
0

0.
5

cG
P

 1
0

0.
8

cG
P

 1
0

1

G
P

 3
0

1

cG
P

 3
0

0.
5

cG
P

 3
0

0.
8

cG
P

 3
0

1

G
P

 5
0

1

cG
P

 5
0

0.
5

cG
P

 5
0

0.
8

cG
P

 5
0

1

G
P

 7
0

1

cG
P

 7
0

0.
5

cG
P

 7
0

0.
8

cG
P

 7
0

1

G
P

 9
0

1

cG
P

 9
0

0.
5

cG
P

 9
0

0.
8

cG
P

 9
0

1

setup

f_
m

ax

matmul surrogate f_max performance over 100 fits

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

● ●●

●●●●●
●
●
●

● ●

●

●

●

●

●

●
●

●

●● ●
●●
●●
●
●●●

●

●
●
●

●

●●●●

●

●

●

●
●●●●●●
● ●

●

●

●

●●

●

●●

●

● ● ● ●
●

● ●

● ● ● ●
●

●

●
●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●
●

● ● ● ●

●

● ●

●
● ●

●

●

● ●
●

● ●
●

●

●

●

● ● ●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

● ● ● ● ●
●

● ●
●

● ●
●

● ●
●

● ●
● ●

●

●

● ●
● ●

● ● ●

●

●
●

●

● ●

●

● ● ●
● ●

●

● ● ● ●

●

● ●

● ●

●

●
●

●

●
●

●

●
●

●

● ● ● ● ●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●

●
● ● ●

● ● ● ●

●

●

●

● ●

●

● ●

●

● ●●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ●

●

● ●
●

●

●

●
●

●

●

●
●

●

●
●

●

● ● ● ●

● ●

● ●
●

●
●

●
● ●

●
● ●

●
●●

● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

●
● ●

●
● ● ● ● ●

● ● ●

●

● ●

●

● ●

●

●

●
●

●
●

●

● ● ● ●
● ●

●

●

● ●
●

● ●

●
● ●

●
● ●

●

● ● ● ●

●

●

●

●
●

●

●
●

●

●
●

● ● ● ●

● ●
● ● ●

● ● ● ●
●

● ●
●

●
● ●

●
●

● ●

●
●

●
● ●

●
●

●

●

●

●

●

● ●

●

● ●

● ●

● ● ●

● ● ●

● ●
●

● ●
●

● ●
● ● ● ●● ● ● ● ●● ● ● ● ●

●
●

●
●

●
●

● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ●

● ● ●

●

●
●

●

●
●

●

●
●

●

●
●● ● ● ● ●

● ● ●

●

●

● ●

●

●
●

●

●
●

●●

● ●

● ●
● ● ●

●

●

●

●

● ●

●

● ● ● ● ●
● ● ● ● ●

● ●

●

●
●

● ●
●

● ●
●

● ● ● ●
● ● ● ● ●● ● ● ● ● ● ● ● ● ●

●

● ●
●

●

● ● ● ● ●

●
● ●

●
● ●

●
● ●

●

● ●

●

● ●
● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ●
●

● ●
●

●

●

●
●

●
●

●

●
●●

● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●
●

● ●

●

● ●

●

● ●

●
●

●

●

●
●● ● ● ● ●● ● ● ● ● ● ● ● ●

●

●
●

●

●
●●

● ● ● ●● ●
●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
● ● ● ●

● ● ● ● ●

●

●

●
●

●
●

●

● ●
●

● ● ● ● ●● ● ● ●
●

● ●
●

● ●

●

● ●
● ●

●
● ● ●

●● ● ● ● ●

●

● ●

●

● ●
●

● ●
●

●
● ● ● ●

● ●
●

● ●
●

● ●

●
● ●

●
● ●

●● ● ● ● ●● ● ● ● ● ● ●
●

● ●
●

● ●
●

●
● ● ● ● ●

●

● ●

● ●

●
●

●

●
●

●

●

● ●

●

● ●

● ● ●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●
● ●

● ●
●

● ● ● ● ● ● ● ● ●
●

● ● ● ●

● ● ●

● ● ● ● ● ●
●

● ● ● ● ●

●

● ● ●
●

●
●

●

●
●

● ●
● ●

●

●
●

●

●
●

●

●
● ● ●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

● ● ●

● ● ●
●

● ●

●

● ●

●

● ●
●

● ●
●

●
● ● ●

● ● ●

●

●

●

●

● ●

●

● ● ● ●
●

●

●

● ● ●

●

●

● ●

●

●
●

●
●

●
●

●
● ●

●

●

● ● ● ●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

● ● ● ●

●

●

● ●

●

●

● ●

●
●

●

●
●

●

●

●

● ● ● ●

● ● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●
● ● ●

● ●

●

● ●

●

● ●

●

●●

● ●
● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●

●
● ● ● ●

●
● ● ●

●
●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ●

● ● ●

●

●

● ●
●

● ● ●
●

● ●
●

●
● ● ● ●

●

● ●

●

●

●
●

● ●

●

● ●

●

● ●

● ● ●

● ●
●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

● ● ● ●

● ●

●

● ●
●

●
●

●

●
●

●

●
●

●

●

●
● ● ●

● ●

●

●

●
●

●

● ● ●

●

●

●

● ●

● ● ● ● ●● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ●● ● ● ● ● ●

●

●

●
●

● ●

●

● ●

● ● ● ●

●

●

●
●

● ● ● ●

● ●

●

● ●

●
●

●

● ●

● ● ●

● ● ● ●
●

● ●

●

●
●

●

●
●

●

●

●

● ● ● ●

●

●

●
●

●
●

●
● ●

●
● ●

●

● ●

●

●

● ● ●

● ●

●

● ●

● ●

● ● ● ● ● ● ● ●

●

● ● ● ●

●

● ●

● ●

●
●

●

●

● ●

●

● ●
●● ● ● ● ●

●

● ●

●

●

●
●

●

●
●

●

● ● ● ●

●
● ● ●

●

● ● ● ●
● ● ●

●

●

●

●

● ● ● ●

●

●

●
● ●

●

● ●

●

●
●

●

●
●

●

●
●

●

●
●

● ● ●

● ●

●

●

●

●

● ●

●

● ●

●

● ●

●

● ●
● ● ● ● ●●

●

● ●

●

● ●

●

●
●

●
● ●

●
●

●

● ● ● ●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●
●

●
●

● ●

●

● ● ● ● ● ● ● ● ● ●

●

● ●
● ●

●
●

●
●

●

●

●

●

●
● ●

●
● ●

●

●

●
● ● ●

●

● ●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

● ●
●

●

● ●

●

●
●

●

●
●

●

●
●

●
●

●● ● ● ● ●

●

●

●

●

●

●

●
●

●

●
● ●

●
● ●

●

● ● ● ●

● ●

●

●

●

●
●

●

●
●

●

●
●

● ●● ● ● ● ●

● ● ● ● ●
●

● ●
●

● ●
●

●

●
●

● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●
●

● ●
●

● ●
●

● ●
●

● ●
●

● ●

●

● ●
●

●

● ● ●

●

● ●

●
●

●
● ●

●
● ●

●
● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●
● ●

● ●

● ● ● ●
●

● ●
● ●

●
● ●

●
● ●

●

●

●

●
●

●

● ●

●

●
●

●
●

●

●
●

●
●

●

●

●

● ● ● ●
●

● ●

● ● ● ● ● ●
●

● ●
●

● ●
●

● ● ● ●●

● ●
● ●

●
● ●

●
● ●

●
● ●

●
● ● ● ●

●

●

● ●

●

● ●

●

● ●

●

● ● ● ● ●

●

●

● ●

●
● ●

●

●
●

●
●

●
●

●

●
● ●

●
●

● ● ● ●
●

● ● ●

●

● ●

●

● ●

●

●
● ● ● ●

● ● ● ● ●

● ●

●

● ●
●

● ●
●

● ●
●

● ●

●
● ● ● ● ●

● ● ●

● ●

●

● ● ● ● ● ●

●
● ● ● ●

● ● ● ● ● ● ●

● ●

●

●
● ●

●
●● ● ● ● ●

●

● ●

●

●
●

●
●

●

●
●

●
● ●

●

● ●

● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●
●

●

●

●

●
● ●

●
● ●

●
● ●

●
● ●

● ● ● ● ●

● ●

●

● ●

●

●
●

● ●

● ●

●

● ●

●

● ● ● ●

●

●

●

●
●

● ●

●

● ●

●

● ●

●
●

●

●

●
● ●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ●● ● ● ● ● ● ● ● ●
● ● ●

● ● ●true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112true x_max = 112

0

200

400

600

G
P

 1
0

1

cG
P

 1
0

0.
5

cG
P

 1
0

0.
8

cG
P

 1
0

1

G
P

 3
0

1

cG
P

 3
0

0.
5

cG
P

 3
0

0.
8

cG
P

 3
0

1

G
P

 5
0

1

cG
P

 5
0

0.
5

cG
P

 5
0

0.
8

cG
P

 5
0

1

G
P

 7
0

1

cG
P

 7
0

0.
5

cG
P

 7
0

0.
8

cG
P

 7
0

1

G
P

 9
0

1

cG
P

 9
0

0.
5

cG
P

 9
0

0.
8

cG
P

 9
0

1

setup

x_
m

ax

matmul surrogate x_max over 100 fits

Figure 3.8: The box plot of fmax (top) and xmax (bottom, log scale) elicited from
sequential samples of 100 fitted surrogate models, each dot in the box plot rep-
resents the optimal point in each run (hence each box plot contains 100 points).
The sequential sample size varies from 10 to 190 with 10 pilot samples. The ex-
ploration rates of the cGP model are chosen to be 0.5, 0.8 and 1 (x-axis format:
model/sequential sample size/exploration rate).
Results for simple GP surrogates are highlighted with red labels as a baseline sur-
rogate model; while cGP surrogates with different exploration rates are highlighted
with black labels.

32

Non-smooth Bayesian Optimization in Tuning Problems

(a) (b) (c)

Exp. rate 1.0 0.8 0.5 1.0 0.8 0.5 GP 1.0 0.8 0.5

Sample size

n = 10 0.72 0.66 0.62 2 2 1 2 2.71 2.64 2.63

n = 30 0.57 0.54 0.48 2 5 3 4 2.89 2.83 2.85

n = 50 0.55 0.51 0.45 4 8 6 9 2.84 2.91 2.86

n = 70 0.55 0.57 0.49 14 14 11 11 2.88 2.90 2.91

n = 90 0.54 0.63 0.54 15 19 16 13 2.94 2.94 2.97

Table 3.2: (a) The percentage of cGP fitted surrogates with optima equal or
better than the baseline GP surrogate under different exploration rates. (b) The
number of cGP (and GP) fitted surrogates that attain the actual optimal matrix
size xmax = 112 under different exploration rates in 100 different random seeds.
(c) The average number of additive components in the fitted cGP surrogate models
among 100 different random seeds.

33

Authors

3.2.2 High-dimensional tuning

We acknowledge that there are different definitions for high dimensionality. In
the tuning context, we usually consider 3- to 32- dimensional domains as high-
dimensional tuning domains. This is partially due to the fact that grid searches are
no longer an effective strategy in these dimensions. When we conduct a grid search
on a one or two dimensional domain, the grid size (i.e., the number of grid points) is
usually of the magnitude of 103 to 106 when we use 1000 grids in each dimension.
However, when the dimensionality is 3, the magnitude grows to 109, which takes a
long time to enumerate. And when the dimensionality exceeds 32, even a binary
enumeration vector would take more than 232 bytes=32Gb to assign. This already
exceeds the usual cache size of current computational machines, and makes the grid
search infeasible.

In high-dimensional domains, the tuning problem can benefit from adopting
surrogate models (Gramacy, 2020). Like the GP surrogate generalizes into high
dimensions, it is possible to generalize our cGP model into a domain with higher
dimensions. However, the limited sample size would restrict our focus since we need
more samples to fit a higher dimensional surrogate model. In the existing literature,
synthetic and real examples with dimensionality higher than 32 are seldom studied,
with an exception by Chen et al. (2012).

3.2.2.1 Emulated piston cycle time (d = 7). The first high-dimensional applica-
tion we study is the piston cycle time model which was proposed in Kenett et al.
(2013) for quality control in industrial applications, and has been well-studied in
Owen et al. (2014). It is important to tune the variables (e.g., piston surface area,
initial gas volume, etc.) of a piston to manufacture products whose minimum and
maximum cycle time are within a certain range. This piston model function is a
continuous function describing the cycle time of a piston, defined on a 7-dimensional
domain with all of its tuning variables being continuous. Although the model func-
tion is continuous, empirically it does produce dramatic changes that make it almost
look “non-smooth”, as we already observed in the Bukin N.6 function (Figure 3.3).
In this specific application, both maximum and minimum are of interest. Therefore,
we expect that we need to fit a good surrogate to find all function optima.

In Figure 3.9, we show the performance of GP and cGP surrogate models. We
use the DGM classifier and set the maximal number of components to be 3 for cGP
and compare against the GP with the same kernel. The choice of the number of
components does not affect the results much for this application. However, we still
calibrate the exploration rate and increase the allowed sequential sample size in our
exploration, and show all boxplots on the same scale. We can see that cGP clearly
outperforms GP when we search for fmax. Panel (a) in Figure 3.9 shows that cGP
systematically gives larger fmax and performs much better than GP surrogate when
there is a lack of sequential samples. When we search for fmin, panel (b) in Figure
3.9 shows that both GP and cGP produce similar fmin. However, cGP still explores
the high-dimensional domain more efficiently and gives the smallest fmin among
GP surrogates. Note that in the fmax situation, cGP produces a roughly 0.10 in
function value improvement on average (difference between sample means of fmax);

34

Non-smooth Bayesian Optimization in Tuning Problems

but in the fmin situation, cGP only loses less than 0.02 function value on average.
Considering the fact that this function is defined on a 7-dimensional domain, we
observed that cGP can approximate the underlying black-box function quite well
with relatively few samples.

(a) (b)

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ● ● ●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●
●

● ● ●

●

● ● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

● ●

● ●

● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ●
●

●

●

● ●

●

●

● ●

●

●

● ●

●

● ●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●
●

●

● ● ●

●

● ●

●

●

● ●
●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●
●

●

● ● ●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

●
●

●

● ●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

● ●

●

● ● ●

●

●
●

●

●

●
●

●

● ● ● ●

●

● ● ●

●

● ● ●

●

● ●

●

●

●
● ●

●

●
● ●

●

●

● ●

●

●
● ●

●

●
● ●

0.6

0.8

1.0

1.2

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

ax

seqSize ● ● ●10 90 190

Performance over 50runs, N_COMPONENTS=3)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.6

expRate
=0.8(strict)

0.72

expRate
=1.0(equal)

0.82

expRate
=1.0(strict)

0.34
0.7
0.82

0.68
0.9
0.98

0.5
0.88
0.96

0.76
0.84
0.94

0.6
0.84
0.94

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

● ●

● ● ● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

● ●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

● ●

●

●

● ●● ● ● ● ● ● ● ●

●

● ● ●●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

●
●

● ●

●

●

● ●
●

●

● ●
●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

● ● ●

●

● ●

●
●

●

●

●

●

● ● ●

●

●
●

●

●

●
●

●

● ● ●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
● ●

●

●
● ●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ● ●

●

● ● ●

●

● ●

●

●

● ●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●

● ●

●
●

●

●

●
●

●

●

● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ●

●

● ●

●

●

●

●

●

● ● ● ● ●
●

● ● ●
●

●

●

● ● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●
●

● ● ● ● ●

●

● ●

●
●

● ●

● ● ● ● ●

●

● ●

●

●

● ●

0.15

0.20

0.25

0.30

0.35

0.40

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 50runs, N_COMPONENTS=3)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.56

expRate
=0.8(strict)

0.34

expRate
=1.0(equal)

0.28

expRate
=1.0(strict)

0.18
0.3
0.28

0.56
0.3
0.22

0.18
0.2
0.18

0.54
0.38
0.32

0.24
0.26
0.3

Figure 3.9: (a) The box plot of fmax with y-scale (0.5, 1.2) and (b) fmin with y-scale
(0.1, 0.8) from sequential samples of 50 fitted surrogate models of piston simulation
function, each dot in the box plot represents the optimal point in each run (hence
each box plot contains 50 points). The sequential sample size varies from 10 to 190
with 10 pilot samples. Exploration rates of the cGP model are chosen to be 0.5,
0.8 and 1. We also show the sample mean (yellow horizontal bar) and median (red
horizontal bar) among 100 optima points.

In the table at the bottom of Figure 3.9 we provide a similar quantitative com-
parison for GP and cGP surrogates. The fraction of out-performing batches shows
that the cGP with a high exploration rate is preferred when looking for fmax. Al-
though the quantitative percentage does not favor cGP when searching for fmin, by
comparing the sample means and medians obtained from GP and cGP, the claim
that cGP does not give a much worse fmin is supported. This kind of trade-off is
common in choosing different surrogates. It is worth pointing out that cGP models
can have a significant gain like this even if a real “non-smoothness” does not occur.
It is not hard to

3.2.2.2 SuperLU_DIST parallel tuning (d = 4). The second high-dimensional
application we are studying is the tuning problem arising in the distributed-memory
parallel sparse LU factorization of SuperLU_DIST (Yamazaki and Li, 2012). Su-

35

Authors

●●

●
● ●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●● ●●●
●●●●●●● ●●

●●●
●●●●● ●●

●●●
●
●●●● ●●

●●●
●
●●●●

●

●

●●●
●

●●
●
●

●
●

●●●
●
●●●● ●

●

●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

0

10

20

30

40

50

Si2.bin SiH4.bin SiNa.bin benzene.bin Na5.bin Si5H12.bin Si10H16.bin SiO.bin H2O.bin GaAsH6.bin Ga3As3H12.bin
matrix_name

LU
_f

ac
to

riz
at

io
n_

tim
e

Figure 3.10: Box plots for LU factorization time when 4 parameters in the SuperLU
application are randomly chosen with the same random number generator. To
reduce randomness, we repeat 10 times for each parameter configuration and use
the average value for each point in each column.

perLU_DIST is a numerical software package developed for LU factorization of
large sparse matrices in parallel. There are several mechanisms introduced to speed
up the LU factorization for large matrices. We use 8 Haswell nodes with 32 cores on
each node, and 256 MPIs in total. This tuning problem has 4 tunable parameters,
LOOKAHEAD (number of lookahead panels used to overlap the communication
with computation), nprow (number of row processes out of 256 MPI processes),
NSUP and NREL (parameters defining sizes of the so-called supernode representa-
tions). There are other categorical parameters COLPERM (different ways of per-
muting the columns) etc., for which we take the default paramter values of SuperLU
and do not tune in this example.

All of these parameters are integers, and so we need to round them to the nearest
integer when fitting the surrogate model over a continuous domain. The black-box
objective function f in this tuning problem is the running time of LU factorization
for a given matrix; our examples arise in chemistry. In Table 3.3 and Figure 3.10,
we display the approximate time range for the LU factorization when cGP explores
the 4-parameter space with different parameter configurations, the details of these
matrices are available at https://sparse.tamu.edu/PARSEC.

36

https://sparse.tamu.edu/PARSEC

Non-smooth Bayesian Optimization in Tuning Problems

Size of
raw

data file

Matrix
dimension
(d× d
square

matrices)

Number of
nonzeros
entries in
matrix

Matrix
name

Approximate
range of

factorization
times (seconds)

GP
baseline
factoriza-
tion time
(seconds)

224Kb 769 17801 Si2 ≈ 0.10-0.90 0.145

2.0Mb 5041 171903 SiH4 ≈ 0.20-2.0 0.283

2.3Mb 5743 198787 SiNa ≈ 0.20-2.0 0.311

2.9Mb 8219 242669 benzene ≈ 0.30-4.0 0.362

3.6Mb 5832 305630 Na5 ≈ 0.20-3.0 0.285

8.6Mb 19896 738598 Si5H12 ≈ 1.0-14.0 1.136

11Mb 17077 875923 Si10H16 ≈ 0.6-8.0 0.698

16Mb 33401 1317655 SiO ≈ 2.0-22.0 1.992

26Mb 67024 2216736 H2O ≈ 5.5-53.0 5.686

39Mb 61349 3381809 GaAsH6 ≈ 5.0-55.0 5.207

36Mb 61349 5970947 Ga3As3H12 ≈ 5.0-65.0 5.382

Table 3.3: The fixed matrices (stored in raw text files with the size indicated in
bytes) considered in the SuperLU_DIST application and their typical factorization
time (without tuning) on 8 cori Haswell nodes, with 32 cores used on each node.
We consider those matrices smaller than 10Mb as “small” while the others “large”.
We also include baseline execution time when the application is tuned by a simple
GP surrogate.

As above, we fix the random seed to ensure the pilot samples are the same for
each surrogate model. Even with the same random seed, the running time has some
noise due to the working condition of each node. In our experiments, we use the
DGM classifier with the maximal number of components k=2, 4 and expRate=0.5,
0.8, 1.0 for the cGP model and compare their performance against the simple GP
surrogate model. In this application, we want to find an optimal configuration of
the SuperLU_DIST application so that the minimum running time fmin becomes
as small as possible. fmax is not relevant in this application.

In Figure 3.11, we show the performance of GP and cGP surrogate models.
In these applications, the choice of the maximal number of components affects
the result. For matrices smaller than 10Mb, we can see that cGP can provide
configurations of SuperLU_DIST that are faster than using the GP surrogate. cGP
is usually not much worse than GP except when in the Na5 matrix (but its absolute
value is also close). Therefore, we can use cGP in place of GP without much worry

37

Authors

about getting a much worse fmin. For matrices larger than 10Mb, the noise in
the running time is negligible, and we observe that cGP is generally producing a
better factorization time with only a few exceptions. The improvement can be as
much as 7% (7.3% for GaAsH6 matrix). Again, we expect that when cGP is giving
a worse result (e.g., Si10H16 matrix), it is within a 7% margin and for a better
choice of exploration rate (1.0, the number of components k = 2), we can achieve a
5% improvement. Such an improvement is quite important when we often need to
conduct LU factorization multiple times.

The geometries of the objective function in both piston and SuperLU_DIST
applications are not known to us. And it is hard to explore the true geometry as
we did for the one-dimensional matmul application. However, we show the power
of cGP by simply choosing a few different cGP surrogate models. In the piston
application, we can see that fmax is much improved while fmin only loses slightly.
In the SuperLU_DIST application, we can see that fmin gets improved over GP
results very frequently, and again it would not lose by a large margin.

0.
32

6

0.
38

3

0.
34

8

0.
32

6

0.
33

5

0.
37

8

0.
36

2

5.
37

9

5.
31

3

5.
39

6

5.
41

3

5.
54

7

5.
31

7

5.
38

2

4.
82

5 5.
24

9

5.
12

8

5.
06

3

5.
07

7

5.
08

7

5.
20

7

5.
37

8

5.
27

3

5.
50

5

5.
43

2

5.
48

2

5.
23

2 5.
68

6

0.
28

3

0.
33

3

0.
30

9

0.
32

1

0.
34

2

0.
28

8

0.
28

5 0.
66

3

0.
74

4

0.
72

3

0.
70

8

0.
7

0.
67

7

0.
69

8

0.
14

7

0.
14

8

0.
14

9

0.
15

2

0.
14

6

0.
14

0.
14

5

1.
19

1

1.
13

3

1.
16

4

1.
13

5

1.
16

9

1.
11

1.
13

6

0.
28

1

0.
30

3

0.
32

7

0.
28

5

0.
27

2

0.
27

5

0.
28

3

0.
28

2

0.
30

8

0.
28

8

0.
29

9

0.
30

5

0.
30

3

0.
31

1

1.
95

1

1.
93

7

1.
87

4

1.
85

9

1.
90

4

1.
90

4

1.
99

2

0

2

4

f_
m

in

MODEL
cGP, N_COMP=2,
 EXP_RATE=0.5
cGP, N_COMP=2,
 EXP_RATE=0.8
cGP, N_COMP=2,
 EXP_RATE=1
cGP, N_COMP=4,
 EXP_RATE=0.5
cGP, N_COMP=4,
 EXP_RATE=0.8
cGP, N_COMP=4,
 EXP_RATE=1
GP

f_min (absolute), N_SQUENTIAL=190

Si2 SiH4 SiNa benzene Na5 Si10H16 SiO H2O GaAsH6 Ga3As3H12Si5H12
MATRIX_NAME

0.
90

1

1.
05

8

0.
96

1

0.
90

10.
92

5

1.
04

4

1

0.
99

9

0.
98

7

1.
00

3

1.
00

61.
03

1

0.
98

8

1

0.
92

7

1.
00

8

0.
98

5

0.
97

2

0.
97

5

0.
97

7

1

0.
94

6

0.
92

7

0.
96

8

0.
95

5

0.
96

4

0.
92

1

0.
99

3

1.
16

8

1.
08

4

1.
12

6

1.
2

1.
01

1

1

0.
95

1.
06

6

1.
03

6

1.
01

4

1.
00

3

0.
97

1

1.
01

4

1.
02

1

1.
02

8 1.
04

8

1.
00

7

0.
96

6

1

1.
04

8

0.
99

7 1.
02

5

0.
99

9

1.
02

9

0.
97

7

1

0.
99

3

1.
07

1

1.
15

5

1.
00

7

0.
96

1

0.
97

2

1

0.
90

7

0.
99

0.
92

6

0.
96

10.
98

1

0.
97

4

1

0.
97

9

0.
97

2

0.
94

1

0.
93

30.
95

6

0.
95

6

1

0.9

1.0

1.1

1.2

f_
m

in
/f_

m
in

(G
P

)

MODEL
cGP, N_COMP=2,
 EXP_RATE=0.5
cGP, N_COMP=2,
 EXP_RATE=0.8
cGP, N_COMP=2,
 EXP_RATE=1
cGP, N_COMP=4,
 EXP_RATE=0.5
cGP, N_COMP=4,
 EXP_RATE=0.8
cGP, N_COMP=4,
 EXP_RATE=1
GP

f_min (relative), N_SQUENTIAL=190

Si2 SiH4 SiNa benzene Na5 Si10H16 SiO H2O GaAsH6 Ga3As3H12Si5H12
MATRIX_NAME

Figure 3.11: In the top panel, we show the absolute SuperLU_DIST running time
(fmin) obtained by each specific surrogate model with 190 sequential samples and
10 pilot samples in one run. In the bottom panel, we show the relative ratio (fmin

obtained by certain cGP models divided by the fmin obtained by simple GP) of
SuperLU_DIST running time obtained by each specific surrogate model against
the one using simple GP surrogate model, ratios that are less than 1 means better
performance. Further results can be found in Appendix D.

38

Non-smooth Bayesian Optimization in Tuning Problems

4. Discussion
4.1 Contribution

In this paper, we start with a comprehensive literature review of recent progress
in Bayesian optimization. By a thorough review and practical experience, we iden-
tify the non-smoothness problem in the tuning context. For tuning problems, we
usually have limited samples and tune more than one or two parameters. The
non-smoothness problem is more challenging when we have limited samples and rel-
atively high dimensionality. This specific problem has not been treated nor explored
to the best of our knowledge, but arises in the tuning context.

To address this potential problem in the tuning context, we propose a new
clustering-based method that potentially improves surrogate modeling for non-
smooth black-box objective functions, which extends to high-dimensional domains
without much increase in complexity. The accompanying algorithm with acquisition
re-weighting is a parsimonious but novel way to fit an additive GP model by au-
tomatically creating partitions, which can be utilized in the Bayesian optimization
and more general online contexts.

The cGP surrogate model works well when the black-box function shows non-
smoothness or even changes sharply near the optima. When we have a clear knowl-
edge of the underlying geometry of the problem, this knowledge usually helps us
to choose the parameters of cGP surrogate models to attain better results (e.g.,
Bunkin N.6 in Figure 3.4). However, even when we do not know the objective
functions for certain applications, cGP may help us to identify the geometry (e.g.,
matmul in Section 3.2.1). Even if we do not care about the geometry of the objec-
tive function, we can usually get improvement in our tuning task (e.g., piston, large
matrices in SuperLU_DIST in Section 3.2.2). In the least favorable situation, using
cGP would not lose much in tuning tasks compared to GP (e.g., small matrices in
SuperLU_DIST).

The cGP model usually has a computational advantage over GP since it fits
multiple smaller GP components instead of one large GP. This advantage is more
obvious when we have a lot of samples to feed the surrogate model. When we
have a bigger computational budget and many samples (as opposed to limited and
sequential samples), a cGP is k2 times (where k is the number of clusters in the cGP
model) faster than a GP with the same number of samples (assuming the clusters
are roughly the same size). In addition, cGP can be considered as a generalization
of the GP model, when we choose the maximal number of components to be 1, cGP
reduces to the GP model. In this sense, cGP can be a standalone modeling method
that incorporates the change-surface detection within a Bayesian framework as well.
Further extensions to the sparsified versions are possible.

In terms of the partitioning induced by the cluster-classify step, we connect the
sample points with the underlying black-box function in a novel way, which opens
the door to more sophisticated designs to explore properties of black-box functions
using sequential samples.

39

Authors

4.2 Future work

Considering the high flexibility of the cGP surrogate model, we can refine cGP in
several natural ways. From a Bayesian perspective, it would be natural to insert a
prior mechanism to allow different kinds of acquisition functions in cGP sequential
sampling, potentially a different weighting of clustering components with apriori
information. This may require us to modify the current cGP model into a fully
Bayesian framework which exceeds the scope of the current paper. The cGP model
could also be extended to multiple-output scenarios, where we may learn the parti-
tion from multiple similar runs of the application.

Proposed as an additive model, we may want to allow different covariance kernels
for different components (or adaptive choice of kernels) induced by the cluster-
classify step in our algorithm. Combined with the current implementation, we
are able to parallelize the fitting of cGP, since the components are conditionally
independent.

One practical issue is to determine the hyper-parameters used for the cGP
model. For instance, we need to pick an appropriate number of components in
the cGP model. One future direction is to develop a refined way of determining the
number of additive components in our surrogate model. The typical cross-validation
approach would not work here when there is non-smoothness, because we need to
know the “correct partition” to create an appropriate training and testing set that
are sampled from different regions in a balanced way. Potentially, we need an algo-
rithmic multi-level approach: at the coarse level we use a small number of samples
to bound the number of components and pin down the number of components.

It is of theoretic interest how GP surrogate models work in conjunction with
non-stationary and/or compactly supported covariance kernels in the tuning con-
text. And it is also of theoretic interest whether the clustering and classification
consistency would be ensured when we have a lot of sequential samples, although we
have experimental results showing good large-sample behavior Or in other words,
how many samples are needed to recover the “true partition of the black-box func-
tion”? In the tuning context, an error bound for early stopping may be of more
practical interest. Besides, replacing the simple GP model with more sophisticated
models like deep GP (Damianou and Lawrence, 2013) would introduce another
question: how can the trade-off between the number of model parameters and the
number of sequential samples be balanced when we have limited samples for mod-
eling?

One potentially more general approach is to choose different acquisition func-
tions and exploration rates for different partition components adaptively. It is of
interest to know how this relatively heuristic approach performs against the more
sophisticated approach like optimization-based decomposition (Park et al., 2011).
And we also intend to develop new clustering criteria that fits into the cGP frame-
work. For instance, let each sample point (x, y) be a vertex in a graph with edge
weights equal to the reciprocal of a difference metric like 1/(‖x1−x2‖+ξ · |y1−y2|).
Then we only keep those edges with large enough weights to form a graph-based
clustering, so only “nearby” vertices representing “no jumps” (i.e., smoothness) are

40

Non-smooth Bayesian Optimization in Tuning Problems

connected. The cGP model with the cluster-classify mechanism could leverage the
(graph-based) convex clustering as a potential clustering algorithm (Sun et al.,
2021).

Following the consideration of a different clustering method, a natural and im-
portant future direction for addressing non-smoothness in surrogate modeling is to
consider higher order non-smoothness. In Definition 1, we are motivated by non-
existence of the first-order gradients of black-box functions in an open neighborhood.
We expect that higher order non-smoothness motivated by higher order gradients
is more complicated and so will be efforts to model that kind of non-smoothness.
And the incorporation of both geometric and topological information conveyed by
the non-smooth features of the black-box function may assist our modeling further
(Luo and Strait, 2019).

Another main question we have not touched in the current paper is the han-
dling of categorical (or binary) variables in the tuning context. More often than
not, high-performance computing applications bring categorical variables without
explicit ordering (e.g., different kinds of algorithms used for a specific optimiza-
tion problem). When there are few categories involved, we build separate surrogate
models for each of these categories. However, it is still of interest how we could
model non-smoothness in a tuning problem where many categorical variables with
multiple categories involved. In addition, we can also view the choice of clustering
and classification algorithms as a categorical variable.

To summarize, we have identified a rarely explored practical problem, proposed
and implemented a novel algorithm that generalizes the classical GP surrogate
model. This cGP model has the ability to handle non-smoothness and complex
geometry of the objective black-box function with limited online samples. We pro-
vide evidence how this model outperforms the simple GP surrogate model for high
and low dimensional functions, and discuss its flexibility and possible extensions.

4.3 Ethics Compliance

• Code and data availability
We stored our code at https://github.com/hrluo/cGP for reproducibility and
production purposes. For the SuperLU_DIST application, we use the embedded
code stored at https://github.com/gptune/GPTune as part of GPTune project
and the SuperLU software available at https://github.com/xiaoyeli/superlu_
dist.

• Acknowledgment/Funding source
We thank Giulia Guidi for providing us the C++ code for the matmul application
and helpful comments.

This research was supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration. We used resources of the National
Energy Research Scientific Computing Center (NERSC), a U.S. Department of

41

https://github.com/hrluo/cGP
https://github.com/gptune/GPTune
https://github.com/xiaoyeli/superlu_dist
https://github.com/xiaoyeli/superlu_dist

Authors

Energy Office of Science User Facility operated under Contract No. DE-AC02-
05CH11231.

42

Non-smooth Bayesian Optimization in Tuning Problems

Appendix A. cGP Algorithm

Algorithm 1: Clustered Gaussian process (cGP) surrogate model algorithm
(the algorithm that carries out the idea described in Sec. 2)

Data: Xn0,d (data matrix consisting of pilot samples in Hd)
Input: Xnew (data matrix of predictive locations in Hd), k (optional, the number of

clusters), τ , (the exploration rate), maxSampleSize (the maximal number of
samples that can be drawn from f)

Result: list g of GP surrogate model components corresponding to clusters
Prediction of clustered GP surrogate model at predictive locations Xnew

GP (Xn,d, Yn) is a Gaussian process surrogate model fitted with the data matrix Xn,d and
response Yn.

EI (x,g) is an acquisition function based on the surrogate model g, evaluated at x ∈ Hd.
CLUSTER (Xn,d,Yn,k) is a (e.g., k-means) clustering method performed on Xn,d, Yn that
returns the labels of a data matrix Xn,d as an n× 1 vector.

CLASSIFY (Xn,d,(X
′

n′,d, L
′

n′,1)) is a (e.g., k-nearest neighbors) classification method that is
trained by a set of labeled data (X

′

n′,d, L
′

n′,1); and returns the labels of a data matrix
Xn,d as an n× 1 vector.

uni (v) is a function that returns unique values in the vector v.
1 begin
2 X = Xn0,d

while i < maxSampleSize do
3 Generate a random number u ∈ [0, 1]

if u ≤ τ then
4 g = [· · ·]; x0 = [· · ·]; ei0 = [· · ·]
5 dataLabel = CLUSTER (X,k); clusLabel = uni (dataLabel)

/* fit the clustered GP surrogate model with X = Xn0,d */
/* In practice, we also eliminate those clusters with too small

sizes to avoid mis-fits. */
for j in clusLabel do

6 Xj = X[dataLabel == j, :]
7 Yj = Y [dataLabel == j]
8 g[j] = GP (Xj ,Yj)
9 x0[j] = arg maxx∈HdEI (x,g[j]); ei0[j] = EI (x0[j],g[j])

/* The CLASSIFY (x,(X, dataLabel) is implicitly used in this
step. */

end
10 j0 = arg maxj∈clusLabel ei0[j]/|dataLabel == j|

/* weighted acquisition function by cluster size */
11 Append x0[j0] and its function values f(x0[j0]) to the X and Y

else
12 Append random location x1 and its function values f(x1) to the X and Y

end
end
/* predict based on the fitted clustered GP surrogate model */

13 dataLabel = CLUSTER (X,Y ,k)
for x in Xnew do

14 Find the label CLASSIFY (x,(X, dataLabel)) and let jx = the dataLabel of x
15 Predict the value of surrogate function at x using GP model g[jx]

end
end

43

Authors

Appendix B. Additional Synthetic Studies
In this set of experiments, we pick a set of 2-dimensional benchmark functions. For
each of these functions, we know the exact minimum from its expression. However,
these analytical solutions are designed to be difficult to find by popular optimization
methods. We would briefly describe the function at the beginning of each section and
display its minima. Among all these well-known benchmark functions, practitioners
only concern about minima. We do not have to consider maxima, as suggested in
most benchmarks. In addition, there is a typical domain for these benchmark
functions, over which people would like to search for minima.

For each run, we assume that we always have 10 randomly chosen pilot samples
(it turns out that the optimal design would not systematically help in synthetic
function cases). In addition, we choose three different sample sizes: 10 (limited
sample size), 90 (normal sample size) and 190 (abundant sample size). The major
factor we tune for cGP model is the number of components (k = 2, 3, 4), which is the
maximal number of components allowed in the cGP model. We use DGM cluster
algorithm to decide clustering labels; and k-NN (k = 3) to decide the classification
labels. For each random seed, we have the same set of 10 pilot samples, and fit GP
model, cGP models (with N_SEQUENTIAL 10, 90, 190). For each sample size, we
also adjust the expRate of the cGP model as 0.5, 0.8 and 1.0. Therefore, we would
have 3× 3 = 9 different cGP models against one GP model for a fixed sample size.

The first comparison is the violin plot, a generalization of the box plot. The
violin plot shows 10%, 25%, 50%, 75%, 90% quantiles of the estimated density of 100
minima obtained by each surrogate model among 100 runs, with black solid lines.
We also show the sample mean (yellow horizontal bar) and median (red horizontal
bar) among 100 points. In the violin plot, we can see the estimated density of
surrogate minima as the sequential sample size increases. In addition, since minima
are displayed as a distribution of dots in the plot, we can avoid the delusion of a
good single run and see the systematic performance of a specific surrogate model
against another model. When we see a significantly lower clump, we can conclude
that the cGP model is distributionally better than the GP model. This shows a
significant trend and eliminates the randomness in single runs as much as possible.

The second comparison is the percentage table, as we have seen in Figure 3.4.
The table includes two types of percentage. The “(equal)” percentage means the
percentage of batches that the corresponding cGP models give an equal or smaller
minimum among all sequential samples drawn. The “(strict)” percentage means
the percentage of batches that the corresponding cGP model gives strictly smaller
minima among all sequential samples drawn. When we see (equal) greater than 50%
and (strict) greater than 1-(equal)%, we can conclude that there is a significant
advantage of using cGP (with an appropriate setting). This means that at least
half of times cGP outperforms or equal to GP; and cGP performs better more often
than GP.

44

Non-smooth Bayesian Optimization in Tuning Problems

1. The Bukin N.6 function has an expression f(x) = 100
√
|x2 − 0.01x21|+ 0.01|x1 +

10|. The function has four global minima f(x∗) = 0 at x∗ = (−10, 1). We optimize
over [−15, 5]× [−3, 3].

● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

● ●

●

●

● ● ●

●

●
●

●

●

●

●

● ● ● ● ●

●

●

● ●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

● ●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

● ●

●

●

●

●

● ● ●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

●
●

●

● ● ●

●

●

●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ● ●

●

●

●

● ●

●

●

● ●

●
●

●

● ● ● ● ●

● ● ●

●

● ● ●

● ● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

● ●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ● ● ● ● ● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

● ● ●

● ● ● ● ● ● ● ● ●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ● ● ●

●

●

● ●

●

● ●

●
● ● ● ● ●

●
●

●

●

●
●

●
● ● ● ● ● ● ● ● ●

●
●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

● ●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ●

● ●

●

●

●

● ● ● ● ● ●

●

● ● ●

●

●

● ● ●

●

●

●
●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

● ●

●

● ● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ●

●

●

●

●

● ● ● ● ●

●

●

● ●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

0

25

50

75

100

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=2)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.96

expRate
=0.8(strict)

0.95

expRate
=1.0(equal)

0.95

expRate
=1.0(strict)

0.34
0.8
0.87

0.95
0.95
0.94

0.28
0.79
0.87

0.98
0.97
0.97

0.3
0.78
0.89

● ● ● ● ●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

● ●

●

● ● ● ● ●
● ●

●

●

● ● ●

● ● ● ● ●

●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

● ●
●

● ● ●

●

●

●

●
●

●

●

●
●

●

●

● ● ●

●

● ● ●

●
● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●
●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

● ●

●

●

●

● ●

● ● ● ● ● ● ●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

● ●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ●

●

●

● ●

●
● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

● ●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

● ●

●

●

● ● ●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

● ●

● ● ●

● ● ● ● ●

● ●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ●

● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ● ●

●

●

● ●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●
●

● ● ● ● ●

●

●

● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

● ● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ●

● ●

●

● ●

●

● ● ● ● ●

●

●
●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

● ● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ●

●

●

●

●

● ● ● ● ●

●

● ●

●

●

● ●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ●

●

●

●
● ●

●

●

●

●

● ● ● ● ●

●

● ● ●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

0

25

50

75

100

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=3)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.96

expRate
=0.8(strict)

0.95

expRate
=1.0(equal)

0.98

expRate
=1.0(strict)

0.33
0.83
0.91

0.96
0.98
0.97

0.26
0.85
0.88

0.98
0.96
0.95

0.22
0.87
0.9

● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

● ●
●

● ● ● ● ●

●

●

●

●

●

●

●●

●

● ● ●

●

●
●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

● ●

●

●

● ●

● ●

● ●

●

●

●
●

●

● ● ● ● ●

●

●

●

●

●
●

●

● ● ● ● ● ● ●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ● ●

●

●

● ●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

● ●

●

● ● ● ● ●

●

●

●

●

● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●
●

●

●

●
●

●

●
●

● ● ●

●

● ●

●

●

● ●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ● ●

● ●

●

●

● ●

●

● ● ● ● ●

● ●

● ●

● ●

●

● ● ● ● ●

●

● ●

●

●

● ●

●

●

●

● ●

● ●
●

●

● ●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

● ● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ●

● ●

●

●
●

●

● ●

● ● ● ● ●

● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ● ●

● ● ● ● ●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

● ● ●
●

● ● ●

●
●

●

●

●
●

●

●

●

● ● ● ● ●

●
●

●

●

●

●

●

● ● ● ● ●

●

●

● ●

● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●● ● ● ● ● ● ●

● ●

●

● ●

● ● ● ● ●

●

●

●

●

●

● ●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●
●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

0

25

50

75

100

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=4)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.94

expRate
=0.8(strict)

0.97

expRate
=1.0(equal)

0.97

expRate
=1.0(strict)

0.3
0.87
0.92

0.97
0.95
0.98

0.18
0.83
0.92

0.99
0.98
0.98

0.14
0.89
0.93

2. The Easom function has an expression f(x) = − cos(x1) cos(x2) exp(−(x1−π)2−
(x2 − π)2). The function has four global minima f(x∗) = −1 at x∗ = (π, π). We
optimize over [−10, 10]× [−10, 10].
● ● ● ●

●

●

●

●

● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ●

●

● ● ●

●

● ● ●

● ● ● ● ● ● ● ● ●

●

●

●● ● ● ● ● ● ●

●

● ●

●

●

● ● ● ● ● ●

●

●

●

●

●

●● ● ● ● ●

●

● ●

●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●
● ●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

●● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ●
●

● ●

●

●
●

●

●

● ● ● ●

●

●

●

●

●

●

●

●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●

● ●

●

●

● ●

●

● ● ● ● ●

● ●

● ●

●

●

●

● ● ● ● ●

●

● ● ●

●

●
●● ● ● ● ● ●

● ●

●
●

● ●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

● ● ●

●

● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●

●

●● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

●

● ● ●

●

● ● ●● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ●

● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

● ●

● ●

● ●

● ● ● ●

●

●

●

●

●

●

●

●● ● ● ● ●

● ●

●

●

●

●

●

● ● ● ●

● ●

● ●

● ●

● ●● ● ● ● ●

● ●

●

● ● ●

●● ● ● ● ●

●

● ●

●

●

● ●

● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ●●

●

● ● ●

●

● ●

●

●

● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

●

●● ● ● ●

● ● ● ●

●

●

●

●

● ●

●

● ●

● ●

● ●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

●

●

●

●● ● ● ● ●

●

● ● ●

●

● ●● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ●

● ●

● ●

● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

● ●

●

●

● ●

●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ● ● ● ● ● ● ●

●

●

●● ● ● ●

●

● ● ●

●

●

●

●

●

● ●

● ●

● ● ●

●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●

●

● ● ●

●

● ●

● ● ● ● ● ●

●

● ● ●

●

●● ● ● ● ● ● ● ●

●

●

● ●● ● ● ●

●

● ●

● ●

● ●

●

● ● ● ● ● ● ● ●

●

●

●

●● ● ● ● ●

● ●

● ●

● ●

●● ● ● ●

●

● ●

●

●

● ●

●

● ● ● ●

●
●

●

●

●
●

●

●

● ● ● ●

● ●

●

●

●

● ●

●●

● ● ●

●

● ●

●

●

● ●

●

● ● ● ● ● ● ● ●

●

● ● ●● ● ● ●

●

● ●

●

●

●

●

●

● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ●

● ● ●

●

● ● ●

● ● ● ● ● ●

●

● ●

●

●

●● ● ● ● ● ● ● ● ●

●

●

●● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ● ● ● ● ●

●

●● ● ● ● ● ● ●

●

●

●

●

●

● ● ● ● ●

●

●
●

●

●

●

●● ● ● ●

●

●

●

●

●

●

●

●● ● ● ● ● ● ● ● ●

●

● ●● ● ● ● ● ●

●

●

● ● ●

●

● ● ● ● ●

●

●

● ● ●

●

●

● ● ● ●

● ●

●

●

● ●

●

●

● ●

● ●

● ●

●

●

● ●

● ●

● ● ● ● ●

● ●

●

●

● ●

●

●

●

● ● ●

●

● ● ●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

● ● ● ● ●

● ●

●
●

● ●

●

● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ● ●

●

● ●● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ●

●

●

●

●

−1.00

−0.75

−0.50

−0.25

0.00

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=2)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.99

expRate
=0.8(strict)

0.84

expRate
=1.0(equal)

0.78

expRate
=1.0(strict)

0.05
0.35
0.48

0.97
0.85
0.79

0.02
0.35
0.44

0.97
0.82
0.73

0.01
0.3

0.44

● ● ● ●

●

● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ●

●

●
● ●

●

●
● ●● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ●

●

●

●

●

●

● ●

● ● ● ● ● ● ●

● ●

●

●

●

● ● ● ● ● ●

●

● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

●

● ●● ● ● ● ●
●

●
● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ● ● ● ●
●

●

●

●
●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ●

●

● ● ●

● ● ● ●

●

●

●

●

●

●

●

●● ● ● ● ● ● ●
●

●

●

●
●

● ● ● ●
●

● ● ●
●

●

● ●● ● ● ●

●

● ● ●

●

●
● ●

● ● ● ● ● ● ● ● ●

●

● ●● ● ● ● ● ● ●

● ● ●

●

●

● ● ● ● ● ●

●

● ● ●

●

●

● ● ● ● ● ●

●

● ●
●

●

●● ● ● ● ● ● ● ●

●

●

●

●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●

●

● ● ●

●

●
● ● ● ●

● ●

● ●

●

●

● ●

● ● ● ● ● ● ● ● ●

●

● ●

● ● ● ●

●

●

●

●

●

● ●

●
● ● ● ● ● ●

●

● ● ●

●

●● ● ● ● ● ● ● ● ●

●

●

●● ● ● ● ● ● ● ●

●

● ● ●● ● ● ● ●

●

● ● ●

●

●

●
● ● ● ●

●

● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

●

●

● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●● ● ● ● ●

●

●

●

● ●

●

●

● ● ● ●

●

● ● ●

●

● ●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

● ● ●

●

●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ● ●

●

●

●

●

● ●

● ● ● ● ● ● ●

●

● ●

●

●

● ● ● ● ● ● ● ● ●

●

● ●● ● ● ●

● ●

● ●

●

●

●

●

●

●

● ● ●

●

● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ●

●

●

● ● ● ● ●

●
●

●

●

●
●

●

● ● ● ● ●

●

● ● ●

●

●

●
● ● ● ●

●

● ●

● ●

● ●

●

● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ●

●

●

●

● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ●

●

●
●

●

●

●
●

●

● ●

● ●

● ●

●

●

● ●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

●

● ●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

● ● ● ●

● ●

● ●

● ●

● ●● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ●

●

● ● ●

●

● ●● ● ● ●

●

●

●

●

● ●

●

●

● ● ● ●

●

● ● ●

●

● ● ●● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

● ● ● ● ● ● ●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

● ●

● ● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ● ● ● ●

●

●

●● ● ● ● ●

●

● ● ●

●

● ●● ● ● ● ● ● ● ● ●

●

●

●● ● ● ● ● ● ●

● ●

●

●

●

● ● ● ● ● ● ●

●

● ●

●

●

● ● ● ● ● ●

●

● ● ●

●
●

● ● ● ● ●

●

●

●
●

●

●

●

● ● ● ●

●

● ● ●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●

●

● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ●●

●

●

● ●

●

●

● ●

●

●

●● ● ● ● ●

●

● ●

● ●

● ●● ● ● ● ● ● ●

●

● ●

●

●

● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ●

● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●

● ●

●

●

● ●

● ● ● ● ● ● ● ●

●

●

●

●

−1.00

−0.75

−0.50

−0.25

0.00

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=3)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

1

expRate
=0.8(strict)

0.82

expRate
=1.0(equal)

0.72

expRate
=1.0(strict)

0.05
0.27
0.44

0.97
0.78
0.65

0.01
0.3
0.45

0.97
0.78
0.71

0.01
0.31
0.4

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ●

●

●
● ●

●

● ●

●● ● ● ● ● ● ●

●

● ●

●

●

● ● ● ● ● ●

● ●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●
● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ●● ● ● ● ●

●

● ●
●

●

● ●
● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

●

●

● ●

●

● ●

●

● ● ● ● ● ● ● ● ●

●

● ●● ● ● ●
●

●
●

●
●

●
●

●● ● ● ●

● ●

●

● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

●
●

●

●

●

●

●

● ● ● ● ● ●

●

● ●

● ●

●

● ● ● ● ● ● ●

●

●
●

●

●

● ● ● ● ●

●

●

●
●

●

●

●

● ● ● ● ● ●

●

● ● ●

●

●● ● ● ● ● ● ● ● ● ●
●

●
● ● ● ●

●

●

● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

●

● ●

●

●

●

●

●● ● ● ● ●

●

● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

●

●

●

●● ● ● ● ● ●

●

● ●

● ●

●

● ● ● ●

●

● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

●

● ●

●

●

●

●

●

● ● ● ● ●

●

● ● ●

●

●

●● ● ● ● ●

●

●

●

● ●

●

●
● ● ● ●

●

● ● ●

●

● ● ●● ● ● ● ●

●

●

● ● ●

●

●

● ● ● ●

●

● ● ●

●

● ● ●● ● ● ● ●

● ●

● ●

● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

● ● ●

●

●● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●● ● ● ● ●

●
●

● ●

●

●

●● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ●

●

● ●

● ●

● ●

●

● ● ● ● ●

●

● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

●
●

● ● ● ● ● ● ●

●

● ●

●

●

● ● ● ● ● ● ●

●

●

● ● ●

● ● ● ●

●

●

●

● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

●

● ●

● ●

● ● ● ●

●

● ●

●

●

● ●

●

● ●

● ●

● ●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

●

●

● ●

●

●

●● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ●● ● ● ●

●

● ● ●

●

●

●

●● ● ● ● ●

●

● ●

● ●

● ●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ●

●

●

●

●

● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

●● ● ● ●

● ● ●

●

●

●

●

●

● ● ● ● ●

●

● ●

●

●

●
●● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●
● ● ● ● ● ●

●

●
● ●

●

●

● ● ● ● ● ● ● ● ● ●

●

●● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

●

●

● ●

●

● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ●
●

●

●

● ●
●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

● ●● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●● ● ● ●

●

● ● ●

●

● ● ●

● ● ●

●

● ● ●

●

● ● ●

●● ● ● ● ● ● ●

●

● ● ●

●

●

●

● ● ●

●

● ● ●

●

●

●● ● ● ● ● ●

●

●

●

●

●

●● ● ● ● ● ● ●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

● ●● ● ● ● ●

●

●

● ●

●

●

●

● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ● ● ●

●

●

●

●

●

−1.00

−0.75

−0.50

−0.25

0.00

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=4)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

1

expRate
=0.8(strict)

0.81

expRate
=1.0(equal)

0.74

expRate
=1.0(strict)

0.03
0.27
0.43

0.99
0.82
0.67

0
0.3
0.36

0.98
0.83
0.71

0
0.37
0.48

3. The Michalewicz function has an expression f(x) = − sin(x1) sin20
(
x21
π

)
−sin(x2) sin20

(
2x22
π

)
.

The function has four global minima f(x∗) = −1.8013 at x∗ = (2.20, 1.57). We

45

Authors

optimize over [0, 4]× [0, 4].

●

● ●

●

●

●

●

●

●

● ●

●

● ●

● ●

●

●
● ●

●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

● ●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

● ●

● ●

● ●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●
●

●

●

●

● ● ●

●

●

●
●

●
●

●

●

● ● ● ●

● ● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

●
●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●
● ●

●
●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●

● ● ● ●

● ●

●

●

●

●

● ●

●

● ●

●

●

● ●

● ●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●
●

● ● ●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

● ● ● ●

● ●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

● ●

●

●

● ● ● ● ● ●

●

● ●

● ● ●

●

● ● ●

●

●
●

●

● ●

● ●

● ●

● ●

● ●

●

●

●
●

●

●

● ● ● ● ●

●

●

●

● ●

●

●

● ●

●
●

● ● ●

●

● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ●

●

●

● ●

● ● ● ●

●

● ●

●
●

● ●

●

● ● ● ● ●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

● ● ● ● ● ● ● ●

● ●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

● ● ●

●

● ● ●

●

● ● ● ●

●

●

● ●

●

●

●

●

● ● ● ●

●

● ● ●

●

● ● ●

● ● ● ●

● ●

●

● ● ●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

● ● ● ●

● ●

●

●

● ●

● ●

● ● ● ● ●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ● ●
●

●

●
●

● ●

● ●

● ●

●

●

● ●

●

●

●

● ● ●

●

● ●

● ●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ● ●

●

●

●

● ● ● ●

●

●

●

●

●
●

●

●

● ● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

● ● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ● ●

●

●
●

●

● ● ●

●
● ●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

● ●

● ● ● ●

●

●

● ●

●

●

● ●

● ●

●

●

● ● ●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●
●

●

●

● ● ●

●

● ●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

● ●

● ●

● ●

● ● ● ●

●

●

●

●

●

●

●

●

−1.5

−1.0

−0.5

0.0

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=2)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.82

expRate
=0.8(strict)

0.6

expRate
=1.0(equal)

0.6

expRate
=1.0(strict)

0.23
0.38
0.4

0.76
0.64
0.51

0.26
0.44
0.39

0.77
0.65
0.57

0.28
0.48
0.48

●

●

● ●

● ●

●

●

● ●

●

●

● ● ● ● ●

●

● ●

●

●

● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●

●

● ●

●

●

●

● ● ● ● ●
●

●
●

●
●

●

●

● ● ● ●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●

● ● ●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ●

● ●

●

● ●

●

●

●

●

●

●

●

● ● ●

●

● ● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

●

●

●

●

● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ●

●

●
● ●

●
●

●

●

●

● ●

● ●

●

●

● ● ●

●

●

●

●

● ● ●

●

● ● ● ●

● ●

●

● ● ● ●

●

●

●

●

●
●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ● ●

● ● ● ●

●
●

●

●

● ●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

● ● ● ●

● ●

●

●

● ●

●

●

●

● ● ●

● ● ●

●

● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

● ●

●

●

●

● ● ● ●

●
●

● ●

●

●

●

●

● ● ● ● ●

●

● ● ●

●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●
● ●

●

●

● ● ● ●

●

●

●

● ●

●

●

●

●

●

● ●

● ●

●

●

● ●

●
●

●

● ●

●

● ● ●

●

● ●

●

●

● ●

● ●

●

●

● ●

●

●

●

●

● ● ● ●

●

●
● ●

●

●

● ●

●
● ●

●

●

● ●

●

●

● ●

●
● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●
●

●

●● ● ●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●
●

●

● ● ● ● ●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●

● ● ●

● ● ● ● ● ● ●

●
●

● ●

●

● ● ● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ● ● ● ●

●

●

●

● ●

●

● ● ● ● ● ● ●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

● ●

● ●

● ●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

● ●

● ● ● ●

●

● ● ●

●

●

● ●

● ● ● ●

●

●

● ● ●

●

● ●

● ● ● ● ● ● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ●

●

●

●
●

●

●

●
●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

● ● ●

●

● ● ●

● ● ● ●

●
● ●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

● ● ● ●

●

● ●

●
●

●
●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●
●

●
●

●

● ●

●

●

●

● ● ● ● ● ● ● ●

●

● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

● ● ●

●

●

●

● ● ● ●

●

● ●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

● ● ●

●
●

●

●

●

●

●

●
●

●

●

● ●

● ●

● ●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

● ●

●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

● ●

●

● ●

●

● ● ● ●

●

●

●

●

● ●

●

●

● ● ● ●

●

● ● ●

●

● ● ●

● ● ● ●

●

●
●

●

●

●

●

●

−1.5

−1.0

−0.5

0.0

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in
seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=3)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.89

expRate
=0.8(strict)

0.74

expRate
=1.0(equal)

0.69

expRate
=1.0(strict)

0.2
0.51
0.54

0.86
0.63
0.58

0.15
0.44
0.5

0.83
0.69
0.66

0.17
0.55
0.59

●

●

●

●

● ● ●

●

● ● ●

●

● ● ● ● ●
● ● ●

●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

●

● ●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●● ● ● ● ●

●

●

●
●

●

●

●

● ● ● ● ●

●

●

●
●

●

●

●

● ● ● ●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

●

●

●

● ●

●

●

●

● ● ● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ●

●

●

●

● ● ● ●

●

●

●
●

●

●

●
●

● ● ● ●

●

●

●
●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

●

●

●

● ● ●

● ●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ●

● ●

● ●

●

● ● ● ●

●

●

● ●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

● ● ●

●

●

● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

● ●

●

●

●

● ● ● ●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

● ● ●

●

● ● ●

●● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

● ●

● ●

● ● ● ● ● ●

● ●

● ●

● ●

● ●

● ●

● ●

●

●

●

●

●

●

● ● ● ●

●

●

●

●
●

●

●

●

● ● ● ●

●

● ●

●

●

●

● ●

●

●

● ●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

●

● ●

● ● ● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

● ● ● ● ● ●

●

● ● ●

●

●

● ● ● ● ● ● ●

● ●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●● ● ● ● ●

● ●

●

●
● ●

●

●

● ●
●

● ●

●
●

● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

● ●

●

●

●

●

● ●

● ● ● ● ●

● ●

●
●

● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ● ● ● ●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

● ●

● ●

●

●

●

● ●

●

●

● ●

●

●

● ●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

●

● ●

●

●

● ●

●

● ● ● ●

●

● ● ●

●

● ● ●

● ● ● ●

●

●
●

●

●

● ●

●

● ● ● ● ● ● ● ●

●

●

●
●

● ● ● ●

●

●

● ●

●

●

● ●

● ● ● ● ●

● ●
●

● ● ●
●

● ● ● ●

● ●

●

●

● ●

●

●

● ● ● ●

●

●

●

●

●

●

● ●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ●

●

●

●

●

●
●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ●

●

● ●

●

● ●

●

●

● ● ●

●

● ●

●

●

●

●

●

●● ● ● ● ● ● ●

●

●

●

●

●

● ● ● ●

●

● ● ●

●

● ● ●

● ●

● ●

●

●

●

●

●

●

●

●

● ● ● ●

● ●

●

●

●
● ●

●

● ● ● ●

●

● ● ●

●

●
●

●

● ● ● ●

●

●

● ● ●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ●

● ●

●

●

● ● ● ●

●

● ●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

● ●

●

● ● ● ●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

● ● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

● ●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

−1.5

−1.0

−0.5

0.0

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=4)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.93

expRate
=0.8(strict)

0.71

expRate
=1.0(equal)

0.64

expRate
=1.0(strict)

0.16
0.42
0.46

0.91
0.65
0.67

0.11
0.46
0.55

0.9
0.71
0.54

0.12
0.49
0.43

4. The Schaffer N.2 function has an expression f(x) = 0.5 +
sin2(x21−x22)−0.5

[1+0.001·(x21+x22)]
2 . The

function has four global minima f(x∗) = 0 at x∗ = (0, 0). We optimize over
[−2, 2]× [−2, 2].

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

●
●

●

●

●

●

● ●

●

● ● ●

●

● ●

●

●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ● ●

●

●

●

● ●

●

● ●

●

● ● ●

●

● ● ●

● ●

●

● ● ●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●
●

●

● ● ● ● ●

●

●

●

● ●

●
●

● ● ● ● ●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ●

●

● ●

● ● ● ●

●

●

●

● ●

●

●

●

● ● ● ●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ●

●

● ● ●

●

●

●

●

●

● ● ●

●

● ● ●

●

● ●

●

●

●

●

●

● ●

●

●

● ● ● ●

● ●

●

●

●

●

● ●● ● ● ● ● ● ●

● ●

●

●

●

● ● ● ●

●

●
●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

● ●

●

● ● ● ● ● ●

●

●
● ●

●
●

● ● ● ●

●

● ● ●

●

● ● ●

● ● ● ●

●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ● ● ● ●

●

● ●

●

●

●

● ● ●

●

● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●

● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

● ●

●

● ● ● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

● ● ● ●

●

● ●

●

●

● ●

●

● ● ● ● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ● ● ● ● ● ● ● ● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

●

● ● ●

●

● ●

● ●

●

● ●

●

●

● ●

●

● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

● ●

●

● ●

●

●

● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

●

● ● ● ●

● ● ●

●

●

● ●

●

● ● ● ● ● ●

●

●

●

● ●
●

● ● ● ● ● ●

● ● ●

●

● ●

●

● ● ●

● ●

●

●
●

●

●

●

●

● ●

● ●

●

●

● ●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

● ● ●

● ●

●

●

● ●

●

● ●

● ●

● ●

● ●

●

●

●

●

●

●

● ● ● ●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

● ●

●

● ● ●

●

●

●

●

●

● ● ●

●

●

● ● ●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ● ● ●

●

● ● ●

●

● ● ●

● ● ● ● ● ● ●

●

●

●

●

●
● ● ● ●

● ●
● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

● ● ● ●

● ●

●

● ●

●

●

●

● ● ● ● ● ● ● ● ●

●

● ●

●

● ●

●

●

●

●
●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

0.0

0.1

0.2

0.3

0.4

0.5

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=2)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.75

expRate
=0.8(strict)

0.66

expRate
=1.0(equal)

0.59

expRate
=1.0(strict)

0.25
0.44
0.45

0.72
0.64
0.64

0.25
0.45
0.44

0.76
0.64
0.61

0.32
0.45
0.45

● ● ● ● ● ●

●

● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ● ● ●

●

● ● ●

●

● ● ●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

● ●

●
●

●

● ● ● ● ●

● ●

●

● ●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

● ●

● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

●

● ●

●

●

● ●

● ● ● ●

● ●

●

●

● ●

●

●

● ● ● ●

●

●

●

● ●

● ●

●

● ● ● ●

● ●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

● ●

●

● ● ● ●

● ●

● ● ●

●

● ●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ● ●

●

● ●

● ●

● ●

●

●
● ●

● ●

●

●

● ● ●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●
●

●

●

● ● ● ●

●

●

●

●

● ●

●

●

● ● ●

●

● ● ●

●

● ● ●

●
● ● ● ●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ● ●

●

● ● ● ●

●

● ●

● ●

●

●

●

● ● ● ● ● ● ●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

● ●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ● ●

●

●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

● ●

●

●

● ●

● ●

●

●

● ●

● ●

●

●

● ●

●

●

● ●

● ●

● ●

●

●

● ●

●

●

● ●

● ● ● ●

●

●

●

●

●

●

● ●

● ● ●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

● ●

● ●

● ●

●

● ● ● ●

● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

● ● ●

●

● ● ●

● ●

●

●

● ●

●

●

● ● ● ● ● ●

●

● ● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ● ●

●

●

● ● ●

●

● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

● ● ●

●

● ● ●

●

●

●

●

● ●

●

● ●

●

● ● ●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ● ● ●

●

● ●

●

●

● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

● ●

● ●

● ●

●

● ●

●

●

● ●

●

●

● ●

●

● ●

●

● ●

●

●

●

● ● ● ●

●

●
●

●

●

●
●

●

● ● ● ● ● ● ●

●

●

● ●

●

● ● ● ●
●

●

● ●

● ●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

● ● ● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

● ●

●

●

● ●

●

● ●
●

●

●

●

●

● ● ● ●

● ●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

0.0

0.1

0.2

0.3

0.4

0.5

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=3)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.82

expRate
=0.8(strict)

0.6

expRate
=1.0(equal)

0.62

expRate
=1.0(strict)

0.15
0.39
0.39

0.76
0.61
0.59

0.15
0.45
0.44

0.78
0.61
0.52

0.25
0.47
0.41

● ● ● ● ● ● ●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

●

● ●
● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ● ● ●

●

● ●

●

● ● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

● ●

●

● ● ● ● ●

● ●

●

●

● ●

●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●
●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

● ●

●

●

●

● ● ● ●

●

● ●

●

●

● ●

●

● ● ● ●

●

●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

● ●

● ● ● ●

●

● ●

● ●

●

●

●

● ● ● ● ● ● ● ●

●

● ● ●

● ● ● ●

●

●

●

●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

● ●

● ●

●

●

● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

● ●

● ●

● ●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

● ●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ●

●

●

● ●

●

● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

●
●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

●

●

●

●

●

●

● ●

● ● ● ● ●

● ●

● ●

● ●

●

● ● ● ●

●
● ●

●

●
● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

● ●

● ● ● ●

●

●
●

● ●

●
●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ●

●

● ● ● ● ● ●

●

● ●

● ●

●

● ● ● ●

●

● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

● ● ● ●

●

● ● ●

●

●

●

●

● ● ● ●

● ●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●

● ● ● ●

● ●

●

●

● ●

●

●

● ● ● ● ●

●

● ●

●

●

●

●

● ● ● ● ● ● ● ●

●

● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

● ●

●
●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

● ●

●

●

● ●

● ● ●

●

● ●

● ●

● ●

● ●

● ● ● ●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

● ● ●

●

● ●

●

● ● ●

●

●

● ● ●

●

●

●

●

● ●
●

●

●

● ● ● ●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

● ●
●

●

●

●

● ● ●

● ●

●

●

● ●

● ●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

● ● ● ●

●

●
●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ●
●

●

● ●

● ●

● ●

● ● ●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

● ●

● ●

● ●

● ● ● ●

●

● ●

●

●

●

●

●

● ● ● ●

●

●

● ●

●

●

● ●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

0.5

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=4)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.89

expRate
=0.8(strict)

0.66

expRate
=1.0(equal)

0.54

expRate
=1.0(strict)

0.14
0.47
0.4

0.87
0.57
0.56

0.14
0.43
0.44

0.85
0.68
0.51

0.13
0.45
0.4

5. The Holder Table function has an expression

f(x) = −

∣∣∣∣∣sin(x1) cos(x2) exp

(∣∣∣∣∣1−
√
x21 + x22
π

∣∣∣∣∣
)∣∣∣∣∣ . (5)

46

Non-smooth Bayesian Optimization in Tuning Problems

The function has four global minima f(x∗) = −19.2085 at x∗ = (±8.05502,±9.66459).
We optimize over [−10, 10]× [−10, 10].

● ● ● ●

●

● ●

● ●

● ●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

● ●
●

● ● ●

●

●

●

●

●

●

● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

●

●

● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

● ●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

● ●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

● ● ● ●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

● ●

●

●

● ●

●

● ●
●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ● ●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●
●

●
●

●

●

● ● ● ● ● ● ● ● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

● ● ● ●

● ● ●

●

● ● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●

● ●

● ●

●

● ●

●

● ● ● ● ●

●
●

●

●
● ●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●● ● ● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●
●

● ● ● ● ●

●

● ● ●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ●

● ● ● ● ● ● ●
●

● ● ●
●

●

●

●

●

●

●

●

●

●

● ●

●
● ● ● ● ● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

● ●

●

●

● ●

●

●

● ● ● ● ●

●

●

●

●

● ●

●

● ● ● ●

●

● ●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ● ● ●

●

●

● ●

● ● ● ●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●
●

●

●

●
●

● ● ● ● ●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

● ● ●

● ●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ● ● ●

●
●

● ●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

● ●

●

●

●

●

● ● ● ●

●

●

●

●

●

● ●

●

●

● ● ●

●

● ●

●

● ●

●

●

●

● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

−20

−15

−10

−5

0

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=2)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.64

expRate
=0.8(strict)

0.64

expRate
=1.0(equal)

0.61

expRate
=1.0(strict)

0.31
0.49
0.52

0.58
0.61
0.59

0.25
0.46
0.46

0.67
0.63
0.56

0.24
0.49
0.48

● ● ● ●

● ●

●

●

● ●

● ●

●

● ● ●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

● ● ● ● ● ● ●

● ● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

● ● ●

● ●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

● ● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

● ●

●

● ●

●

●

● ●

●

● ● ● ● ● ● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

● ● ● ● ●

● ●
●

●

●
● ●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

● ●

● ● ● ●

●

●

●

●
●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

● ●

●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

● ● ●

● ●

● ●

●

●

●

●

●

●

● ●

●
●

● ●

●
●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

● ● ● ● ●

●

● ●
●

●

●

●

●

●

●

●

● ●

● ●

● ●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

●●

● ●

● ●

●

●

● ●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ● ●

● ●

●

●

● ●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

● ● ● ● ● ● ● ● ●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●

● ●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

●

●
●

●

●

● ●
●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

● ●

●

●

●

●

●

●

● ● ● ●

●

●

● ●

●

●

● ●

● ● ● ● ●

●

●

●

●

● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ●

●

● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

● ●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

●

● ● ●

●

● ● ●

●

● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

● ●

● ● ●

●

●

●

● ●

●
●

●

●

● ● ● ● ● ● ●

●

●

● ●

●

● ●
● ●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

● ●

●
●

●

●

●
●

●
●

●
●

● ● ●
●

● ● ●

●

● ●

●

● ● ●

●

●

● ●

●

●

●
●

● ● ● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

−20

−15

−10

−5

0

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=3)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.64

expRate
=0.8(strict)

0.68

expRate
=1.0(equal)

0.69

expRate
=1.0(strict)

0.28
0.53
0.58

0.73
0.62
0.6

0.28
0.47
0.53

0.76
0.69
0.64

0.18
0.52
0.56

● ● ● ●

●

● ●

●

● ●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●
● ●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●
●

●

●

● ● ● ● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ● ●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

● ●

●

●

● ●

●

● ● ● ●

●

●

● ●

●

●

●

●

● ● ● ●

●

●

● ●

●

●

● ●

● ● ● ●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ● ●

●

● ● ●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

● ● ●

●

● ●
●

●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ●

●
●

● ●

●

● ● ● ●

●
●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●
● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●
●

● ●

●
●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ●

● ●

●

●

●

● ● ● ●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

● ● ●

● ● ● ● ● ●

●

●

● ●

●

●

●

●

● ● ●

●

● ●

●

●

● ●

● ● ● ● ● ● ●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ● ● ● ● ●
●

● ● ●
●

●

●

●

● ●

●

● ● ●

●

● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ● ●

● ● ● ●

●

● ●

● ●

● ●

●

● ● ● ● ●

●

● ●

●

● ●

●

● ● ● ●

●

● ●

●

●

● ●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

● ● ●

●

● ●

●

●
●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

● ●

●
● ●

●

● ●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ● ● ●

●

●
●

●

● ● ●
●

● ● ● ● ●

● ●

● ●

● ●

●

● ● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

● ● ●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

−20

−15

−10

−5

0

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=4)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.64

expRate
=0.8(strict)

0.65

expRate
=1.0(equal)

0.66

expRate
=1.0(strict)

0.28
0.55
0.59

0.73
0.68
0.63

0.21
0.52
0.54

0.81
0.68
0.67

0.13
0.5

0.63

6. The Cross-in-Tray function has an expression

f(x) = −0.0001

(∣∣∣∣∣sin(x1) sin(x2) exp

(∣∣∣∣∣100−
√
x21 + x22
π

∣∣∣∣∣
)∣∣∣∣∣+ 1

)0.1

. (6)

The function has four global minima f(x∗) = −2.06261218 at x∗ = (±1.3494,±1.3494).
We optimize over [−10, 10]× [−10, 10].

●

●

●

●

●

●

●
●

●

●

●

●
● ● ● ● ● ● ● ●

● ●
●

●

●

●

● ●

● ● ●

●

● ● ●

●

● ● ● ●

●

●

●
●

● ●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●

● ●

● ●

● ●

● ● ● ● ●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

●

●

●

●

●

●
●

●

● ●

●

● ● ●
●

● ●

●

●

●

● ● ● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●
●

● ●

● ●

●

●

● ● ●

●

● ●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

●

●
●

●

●

● ●

●●

● ●
●

●
●

● ●

●
●

●

●

● ● ● ●

●

●

●

● ●

●

●

●

● ● ●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

● ● ● ●
●

● ● ●

●

● ● ●

● ● ●

●

●

●
●

●

●

● ●

●

● ● ● ●

●

● ●

● ● ●

●

●

● ● ● ●

● ●

●

● ● ●

●

●

● ● ● ●

●

● ●

●

●

●
● ●

● ● ● ●

●
● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ● ●

●

● ●
●

●

● ●
● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

● ●

● ●

● ●

●
●

●

●

● ●
●

●

●

●

● ●

●

● ●

●

● ●

●
●

● ●

● ●

● ●
●

●

● ●
●

●

●

● ● ●

●

● ●

●

●

● ●
●

● ● ● ●

●

● ● ●

●

● ●
●

●
●

● ●

● ●

● ●

● ●

● ●

●

● ● ●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

● ●

● ●
● ● ● ●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ●

●

●

●

●

●

● ● ● ●
● ●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

●

● ●

●

● ● ●

●

●
● ● ●

●

● ● ●
●

● ● ● ●

● ● ● ●

● ● ●

●

● ●

● ●

● ●

●

●

●

● ●

●

●
●

●

●●

●

●

● ●
●

●
● ●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ● ● ● ●

● ●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ● ● ●

●
● ●

● ●
● ●

●

●

● ● ●

●

●

●

●
●

●
●

●

●

● ● ●

●

●

● ●

●

● ● ●

● ●

● ●

●

● ●

●

●

● ●

●

●

● ● ●

●

● ● ●

●

● ● ●

● ● ● ●

●

●

●
●

●
●

● ●

● ● ● ●

●

●

●

●

●

●

● ●

● ● ● ●

●

●

●

●

●
● ●

●

●

● ● ●

●

● ●

● ●

● ● ●

● ● ● ●
●

●

●

●

●

●

●
●

● ● ● ● ●

● ●
●

●
● ●

●

● ● ● ●

●

●

●
●

●

●

●

●

● ● ● ●

● ●

●

●

● ●

● ●

● ● ● ● ●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

● ● ●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●
●

● ● ● ●

● ● ● ●
● ●

● ●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ● ●
● ●

● ● ● ●
● ●

● ●

● ●

● ● ● ● ● ●
● ●

●

● ● ●

●

● ●

● ●

● ●

●

●

●

● ●

●

●
● ●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ● ●

●

●
●

●
●

● ● ●

● ● ● ●

● ●

●

●

●
●

●
●

● ● ● ●

●

●
●

●

●

●
●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ●

●

●

●

●

● ● ● ●

●

● ● ●

●

●

●

●

● ● ●

●

● ● ●

●

● ● ●

●

●

● ● ●

●

● ●

● ●

●
●

●

−2.0

−1.8

−1.6

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=2)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.82

expRate
=0.8(strict)

0.66

expRate
=1.0(equal)

0.58

expRate
=1.0(strict)

0.3
0.47
0.38

0.8
0.67
0.63

0.21
0.51
0.5

0.8
0.63
0.59

0.31
0.53
0.48

●

● ●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ●

● ● ●
●

●

●

●

● ●

●
●

●

● ●
●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

● ● ●

● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ● ●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

● ● ●

●

●

● ● ● ●

●
●

●

●

●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

● ●

● ●

●

●

●

●

●
●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●
●

●

●

● ●

● ●

● ● ●

●

● ● ● ●

●

●

● ●

●

●

●

●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

● ● ● ● ●

●

●

● ●

●

●

●

● ● ●

●

●

●

●
●

● ● ●
●

● ● ● ●
●

●

●

●
●

●

●

●

● ● ● ● ● ●

●

●

●

●

●
●● ● ● ●

●

● ● ●

●

●

●

●

● ● ● ●

●

●

●

● ●

● ●

●

● ● ● ●

●

●

●

●

●

●
● ●

● ● ● ●

● ● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

● ● ●

●

●

●

●

●

●

● ●

● ● ● ●

●
● ●

●
●

● ●
●

●

●

● ●

●

● ● ● ● ● ●

●

● ●

● ●
●

●

●
●

●
●

●
●

●

● ● ●

●

●
●

●

●

●
●

●

● ● ● ●

●

●

●

● ●

●

●

●

●
●

● ●

● ●

●

●

● ●

●

●

● ●

● ●

●

●

●

●

●
●

● ●

● ● ● ●

●

●

●

●

●

● ● ●

●

● ● ●

●
●

●
● ●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

● ●
●

● ●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
●

● ●

●

● ● ●
●

●● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

●

● ● ●

●

● ●
●

●

●

●

● ●

●
●

●

●

●
●

●
●● ●

● ●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●
● ● ●

● ● ● ● ● ●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

● ● ●

●
● ● ● ●

●

● ● ●

●
●

●
●

● ● ● ●

● ●

●

●

● ●
●

●

● ● ● ●

●

●

●

●

● ●

●

●

● ●

● ●

●

● ●
●

●

● ●
●

● ●

●

● ●

●
●

● ● ● ● ●

● ● ● ●

● ●

●

●

● ●

●

●

● ● ● ●

●

●

●

●

●
●

●
●

● ● ● ●

●

●

●
●

●
●

●
●

● ● ●

●

● ●

●

● ●

●

● ●

● ● ● ●
●

●

●

●
●

●

●

●

● ● ● ● ●

●

●

●

●
●

●

●

● ● ● ●

●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

● ●

●
●

●

● ● ● ● ●

● ●

●

● ● ●

●

●

●

●

●

● ● ●

●

●
●

● ●

● ● ● ●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

● ● ●

●

● ● ●
●

● ● ● ●

●

●

●

●

● ●

●

●

● ● ● ●
● ● ●

●
● ● ●

●

● ●

● ●

● ●

●

● ● ●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

●
●

● ● ●

● ● ● ●

●

●
●

●

●
● ●

●

● ● ● ●

●

●

●

●

●

●

●
●

● ● ● ●

●

●
●

●

●
●

●
●

● ● ● ● ●

●

●

●

●

●

●

●
● ● ● ●

●

● ● ●

●

● ●

●

● ● ● ●

●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

−2.0

−1.8

−1.6

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=3)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.91

expRate
=0.8(strict)

0.67

expRate
=1.0(equal)

0.6

expRate
=1.0(strict)

0.27
0.47
0.45

0.85
0.63
0.59

0.26
0.46
0.44

0.82
0.61
0.58

0.26
0.51
0.5

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●
● ● ●

●

●

●

● ●

●
●

●

●

●
●

●

●

● ● ● ●

●

● ●

●

● ●

● ●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

● ● ●

● ●

● ● ● ● ● ●

●

● ● ●

●

●

● ● ● ● ● ● ●

● ●

● ●

●

●

● ●

●

●

●
●

●

● ●

●

●

● ● ● ●

●

●

●

●

●

●
●

●

●

●

● ●

● ●
● ●

● ●
●

●

● ● ● ●

●

●

●

● ●

●

●

●

● ● ● ● ● ●

●

● ● ●

● ●

● ● ● ●

●

● ● ●

● ●
●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

● ●

●

●

● ●

● ●

● ●

● ●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●
● ●

●

●
●

● ●

●

●

● ●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

●

●
●

●

● ●
● ●●

●

● ● ●
● ●

● ●

●
●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ●

●

●
●

● ●

● ● ●

●

●

●

●

● ●
●

●

●

● ● ● ●
●

●

● ●
●

●

●

●

● ● ● ● ●

●

●

● ●
●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●
●

●

● ● ● ●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●
●

●

●

● ● ● ●

● ●

●

●

● ● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●
● ●

● ●

●

●

●

● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

● ●

●

●

● ● ● ●

● ●
●

●

● ● ●

●

● ●

● ●

●

●

● ●

● ●

● ●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●
●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●
●

●

●

●
● ●

● ● ● ●

●
●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ● ●

●
●

● ● ●

●

● ● ●

● ●

● ●

●
●

●

● ●
● ●

●

● ● ● ●

●

●

●

●

●

●

●
●

● ● ● ●
● ●

●

●

● ●

● ●

●

● ● ●

●

● ● ●

●

● ● ●

● ● ● ●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

● ●

●

●

● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ●

● ● ● ● ● ● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

● ●
● ●

●
●

● ●
●

●
● ●

●

●

● ●

●

●
●

●
●

● ●

●

● ● ● ●

● ● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ●

●

●

● ●

●

● ● ● ●

●
●

●

● ● ● ● ●

● ● ● ●

●
● ●

●

●
●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

● ●

●

● ●

● ●

● ● ● ● ● ● ● ●

● ● ● ●

●

●
●

●

●
● ●

●

● ● ● ●

●

●

●

● ●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

● ●

●

●

● ●

●

●

● ● ●

●

●

● ●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

●
●

●

● ● ● ●

●

●
●

●

● ●
●

●

● ● ● ● ●

● ●

● ● ● ● ●

● ● ● ●

● ●
●

●

● ●
●

●

● ● ● ●

● ●

●

● ● ●

● ●

●

● ●

●

●

●

●

●

●

● ●
●

● ● ● ●

● ●
●

● ● ● ● ●

● ● ● ●

●

●

●

●

●

●

● ●● ● ● ●
● ● ●

●

● ● ●

●
● ● ●

●

● ● ●

●

● ● ●
●

● ● ● ●

●

● ●

●

● ● ●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

● ●

●

●

●
● ●

●

●

● ●

● ● ● ●

●

●

●

● ●
● ● ●

● ● ● ●

●

● ●
●

● ● ●

●

● ● ● ●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

● ● ● ● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

● ●

● ● ● ●

● ●

●

●

● ●

●
●

● ● ● ●

●

●

●

●

●
●

● ●

−2.0

−1.8

−1.6

G
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
10

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
90

,
 e

xp
R

at
e=

1

G
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
5

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

0.
8

cG
P,

 s
eq

S
iz

e=
19

0,
 e

xp
R

at
e=

1

f_
m

in

seqSize ● ● ●10 90 190

Performance over 100runs, N_COMPONENTS=4)

seqSize

10

expRate
=0.5(equal)

90

expRate
=0.5(strict)

190

expRate
=0.8(equal)

0.95

expRate
=0.8(strict)

0.71

expRate
=1.0(equal)

0.66

expRate
=1.0(strict)

0.18
0.5
0.45

0.9
0.61
0.61

0.12
0.5
0.52

0.88
0.67
0.6

0.1
0.53
0.51

Based on the results of the synthetic studies we obtained from these benchmark
functions, the following empirical observations are made:

1. If the black-box function has optima hidden in a “slit-like” (low-dimensional and
also near dis-continuous) region, then cGP produces better and faster results,
along with a nice partition scheme (Bukin N6 as in Figure 3.4 and Easom).

2. In some situations where the black-box function is smooth, cGP could still show
competitive performance using several smaller GP components. It could also be
tuned to show better tail behavior in the sense that the obtained minima are closer
to the truth more often (Michalewicz).

47

Authors

3. If the black-box function has a noisy and rough surface, then cGP can be con-
figured to perform as good as GP, usually faster, and come up with clustering
regimes. (Schaffer N2)

4. If the black-box function has optima in a relatively small region compared to the
whole domain, then cGP may not produce very informative regimes (Easom and
Holder Table) but it would reach better optima; and runs faster.

5. If the true function has significant dis-continuities and relatively strong signal
(matmul with averaging), then cGP can identify different regimes rather faith-
fully. The common feature of those function where cGP outperforms GP is that
the function changes sharply (hence analogous to a non-smoothness) near the
minimum.

Appendix C. Additional Results of Experiments in Section
3.2.1
Besides the problem setting of changing block size in the matmul application, we can
also fix and optimize our blocking strategy but test the optimized blocking strat-
egy with different matrix sizes. In this experiment, when the matrix size exceeds
the memory cache size, the computational speed would experience an immediate
drop, as we would observe in Figure C.1 below. The black-box function f in this
application is still computational speed, but the tuning variable x is the matrix size.

All of their cache-line sizes are 64 bytes, equivalent to 8 double precision floating
point numbers. Based on this consideration, we can sample the block sizes b that
are multiples of 8 in this example.

To eliminate the randomness caused by a single run, we repeat cGP (and GP)
for 100 different random seeds with 10 pilot random samples for each run. In Figure
C.2, we compare the performance of a simple GP surrogate model searching over any
integer [16, 4096]∩Z against our cGP model with the exact number of components
3 (with k-means clustering) and k = 3 in the k-NN classification step (See Figure
2.1). Our cGP model searches over integers that are multiples of 8 over [16, 4096].
Qualitatively, it is not hard to see that cGP performs better than the GP model,
under almost all sample sizes.

In this matrix multiplication example with varying matrix sizes, the cause of
non-smooth points (i.e., reduction of communication; overflow of fast cache) and
different kinds of behavior are clear and observed in the recorded dataset as shown
in Figure C.1. Our optimized strategy would attain the best performance on the
matrix with matrix size xmax = 256. In the summary Figure C.2, cGP surrogates
behave similarly to the GP model when there are few samples; but when there are
enough samples, the cGP model clearly identifies different partition regimes much
better with a reasonable accuracy improvement. Therefore, the cGP model searches
the optimum fmax and xmax more efficiently compared to a simple GP surrogate,
with more evidence shown in Table C.1.

48

Non-smooth Bayesian Optimization in Tuning Problems

(a) (b)

x_
m

ax
=2

56

0

10000

20000

30000

0 1000 2000 3000 4000
matrix size (b)

M
flo

ps
/s

matmul performance over 5 runs on haswell

x_
m

ax
=2

56

0

10000

20000

30000

0 1000 2000 3000 4000
matrix size (b)

M
flo

ps
/s

matmul performance over 5 runs on haswell (multiple of 8)

xmax = 256 xmax = 256

Figure C.1: The computational speed for matrices of sizes varying from 16 to 4096.
The red line shows the maximum among 5 runs; the green line shows the minimum
among 5 runs; the blue line shows the average among 5 runs. (a) The matrix
size varies from 16 to 4096, obtained from 5 different runs. (b) The matrix sizes
are multiples of 8, varying from 16 to 4096. We also use dashed lines to indicate
the matrix sizes that are multiples of 256 where we expect a drop by machine
architecture.

(a) (b) (c)

Exp. rate 1.0 0.8 0.5 1.0 0.8 0.5 1.0 0.8 0.5

Sample size

n = 10 0.57 0.69 0.78 2 2 2 1.79 1.85 1.83

n = 30 0.65 0.74 0.82 3 3 5 2.08 2.10 2.20

n = 50 0.67 0.74 0.85 4 5 9 2.15 2.20 2.27

n = 70 0.62 0.74 0.82 4 6 11 2.24 2.31 2.38

n = 90 0.61 0.70 0.80 4 7 12 2.30 2.37 2.38

Table C.1: (a) The percentage of cGP fitted surrogates with optima equal or better
than the baseline GP surrogate under different exploration rates. (b) The number
of cGP fitted surrogates that attain the actual optimal matrix size xmax = 256
under different exploration rates. A simple GP surrogate model would only reach
xmax = 256 once in 100 different random seeds. (c) The average number of additive
components in the fitted cGP surrogate models among 100 different random seeds.

49

Authors

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●
●

●

●

●

●
●
●
●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●●

●●

●
●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●
●

●
●

●

●
●●

●

●

●●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●
●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●
●

●●

●

●

●●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

truth_max = 30165.29

27000

28000

29000

30000

G
P

 1
0

1

cG
P

 1
0

0.
5

cG
P

 1
0

0.
8

cG
P

 1
0

1

G
P

 3
0

1

cG
P

 3
0

0.
5

cG
P

 3
0

0.
8

cG
P

 3
0

1

G
P

 5
0

1

cG
P

 5
0

0.
5

cG
P

 5
0

0.
8

cG
P

 5
0

1

G
P

 7
0

1

cG
P

 7
0

0.
5

cG
P

 7
0

0.
8

cG
P

 7
0

1

G
P

 9
0

1

cG
P

 9
0

0.
5

cG
P

 9
0

0.
8

cG
P

 9
0

1

setup

f_
m

ax
matmul surrogate performance over 100 fits

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●
●●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●

●●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●
●

●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●
●
●
●●

●
●

●

●

●

●

●

●●

●●
●

●

●

●●
●

●
●
●

●

●

●

●●
●●

●

●●

●●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●

●●●●●●

●

●

●

●

●●
●

●

●●

●
●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●●

●

●
●

●
●

●

●●

●

●●
●
●●●●

●

●
●

●

●

●●

●

●

●
●

●●
●

●

●

●●

●

●

●●
●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●●●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●
●

●●

●
●

●
●
●

●

●

●
●

●

●●
●

●

●

●
●●
●
●

●●
●

●

●
●

●●
●

●

●
●●
●
●●

●

●●

●

●●

●●●

●●●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●
●
●
●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●
●

●
●●

●●
●●

●

●

●

●

●
●
●

●●

●

●

●
●

●

●
●

●●
●

●

●●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●
●

●●

●●

●

●

●

●

●

●

●
●●

●●
●

●

●
●

●
●

●

●

●

●

●●

●●●

●●

●●●●

●

●

●●

●

●
●●●

●

●●

●

●●

●

●

●
●

●

●

●

●●

●●●●

●

●

●

●

●●

●
●

●●

●
●

●●

●

●
●

●

●●

●●

●

●

●
●
●

●

●●

●●

●

●●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●●●

●

●

●

●

●●
●

●●

●

●●
●
●●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●
●

●
●

●
●
●

●
●

●

●●

●●

●
●
●●●●

●

●
●

●
●

●●

●
●
●

●
●●

●

●●

●

●●

●

●●

●●●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●●●
●●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●●
●
●
●

●

●

●
●

●
●

●

●
●
●●●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●
●●

●●●
●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●
●●

●●

●

●

●
●
●

●●

●
●

●
●

●

●
●

●●

●●

●●

●
●

●
●●●●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●●

●
●
●
●

●

●

●

●

●
●

●

●
●
●●
●

●●

●●

●

●

●

●●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●

●●

●●●

●

●

●●●●

●

●

●●

●

●

●

●

●●

●
●

●

●●

●

●

●
●

●

●

●

●●

●●●●

●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●

●

●●

●●

●●●

●●

●

●

●

●●

●

●

●
●●

●●

●●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●●●

●●

●●

●

●●●

●●

●

●

●●●
●●
●●
●●
●●

●
●

●

●

●

●●

●●●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●

●●

●●●

●
●

●

●●

●

●
●

●

●
●●

●●

●

●

●

●

●

●
●

●●

●

●

●●

●●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●●
●
●

●

●

●

●

●●
●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●●

●●
●
●
●

●

●

●
●

●
●
●●
●
●●●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●●●●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●
●

●

●

●●

●
●
●

●●

●

●●
●

●

●
●

●●

●

●

●●

●

●

●
●●●●●●
●
●●●●

●
●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●●
●
●

●●●
●

●●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●
●●

●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●●●●

●●

●

●

●

●●

●

●

●●

●●●

●●

●

●

●●●

●

●●

●

●

●●

●

●

●

●●

●●

●

●●

●●●

●●

●●

●

●

●

●

●●

●

●

●●●
●●
●●

●

●
●●

●
●

●

●

●

●●

●●●●

●

●

●

●

●●

●

●●●●

●

●

●

●●

●

●

●●

●

●
●
●
●

●
●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●●
●
●

●

●

●

●

●●
●●
●

●

●
●

●
●

●

●
●●●

●
●

●●●

●

●
●

●

●

●●

●
●
●

●
●

●

●

●
●

●
●
●●
●
●●●

●●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●

truth_x_max = 256

0

1000

2000

3000

4000

G
P

 1
0

1

cG
P

 1
0

0.
5

cG
P

 1
0

0.
8

cG
P

 1
0

1

G
P

 3
0

1

cG
P

 3
0

0.
5

cG
P

 3
0

0.
8

cG
P

 3
0

1

G
P

 5
0

1

cG
P

 5
0

0.
5

cG
P

 5
0

0.
8

cG
P

 5
0

1

G
P

 7
0

1

cG
P

 7
0

0.
5

cG
P

 7
0

0.
8

cG
P

 7
0

1

G
P

 9
0

1

cG
P

 9
0

0.
5

cG
P

 9
0

0.
8

cG
P

 9
0

1
setup

x_
m

ax

matmul surrogate x_max over 100 fits

Figure C.2: The box plot of fmax (top) and xmax (bottom) elicited from sequential
samples of 100 fitted surrogate models, each dot in the box plot represents the op-
timal point in each run (hence each box plot contains 100 points). The sequential
sample size varies from 10 to 190 with 10 pilot samples. The exploration rates of
the cGP model are chosen to be 0.5, 0.8 and 1.
Results for simple GP surrogates are highlighted with red labels as a baseline sur-
rogate model; while cGP surrogates with different exploration rates are highlighted
with black labels.

To better understand the performance behavior, we provide cache-miss profiling
results of the matrix multiplication for varying matrix sizes. We used Linux’s Perf
to collect the cache miss rates. The profiling results show that the cache miss rate
at each cache level has a jump when exceeding a certain matrix size.

50

Non-smooth Bayesian Optimization in Tuning Problems

We show the peak performance and cache traffic for only one execution of the
matmul application. The execution is done on the same node type with the Haswell
architecture as mentioned in Sec. 3.2.1. We obtain the data read/load traffic of L1
(Data cache, 32KB), L2 (Unified cache, 256KB) and L3 (Unified cache, 40960KB;
also known as LLC, last layer cache) cache.

Theoretical calculations concerning only whether matrices fit into storage show
that, ideally, the matrix size that makes the matrices exceed the L1 (≈52), L2

(≈105) and L3 (≈1322) caches (using
√

1
3cache bytes/8 for accessing three double

precision square matrices in the matmul application.) These threshold matrix sizes
are illustrated by blue vertical lines in the Figure C.3.

The statistic we monitor is the cache miss rate5. For L1 cache, we monitor the
data load miss rate; for L2 cache, we monitor the data demand miss rate and all
demand miss rate; for L3 cache, we monitor the data load, store miss rates and their
sum. These hardware measurements lend support to our claim that the black-box
function f does have some non-smoothness and partially explain why the partition
obtained by the cGP model is beneficial. It also partially validates the findings of
surrogate models in the tuning context. By incorporating the non-smoothness in
the tuning context, our model also induces informative partitions consistent with
non-smoothness observed in the profiling.

5. Its definition is slightly different for L1, L2 and L3 cache, but generally it is the number of cache
misses among all cache read/write during a certain procedure.

51

Authors

64 25
6

52
.3
10

4.
5

13
22

0

20

40

60

0

10000

20000

30000

40000

0 1000 2000 3000 4000
block size

m
is

s
ra

te
M

flops/s

cache
L1−dcache−load−misses rate

l2_rqsts.all_demand_references rate

l2_rqsts.demand_data_rd_miss rate

LLC−load−and−stores−misses rate

LLC−load−misses rate

LLC−stores−misses rate

Cache traffic for matmul example

64 25
6

52
.3

10
4.

5
0

20

40

60

0

10000

20000

30000

0 100 200 300 400 500
block size

m
is

s
ra

te
M

flops/s

cache
L1−dcache−load−misses rate

l2_rqsts.all_demand_references rate

l2_rqsts.demand_data_rd_miss rate

LLC−load−and−stores−misses rate

LLC−load−misses rate

LLC−stores−misses rate

Cache traffic for matmul example

Figure C.3: Cache traffic and computational performance for one batch of the
matmul application. The top panel shows the traffic when the block size changes
among multiples of 8 from 10 to 4096; the bottom panel shows a zoom-in version of
the top panel focusing on the traffic for block size less than 512. The x-axis is the
block size in the matmul application. The left y-axis is the percentage of miss rate
for each type of cache. The right y-axis is the computational speed of the matmul
application.

Appendix D. Additional Results of Experiments in Figure 3.11
The following figures are organized in the same formats: In the top panel, we
show the absolute SuperLU_DIST running time (fmin) obtained by each specific
surrogate model with different number of sequential samples and 10 pilot samples
in one run. In the bottom panel, we show the relative ratio (fmin obtained by cGP
models divided by the fmin obtained by simple GP) of SuperLU_DIST running

52

Non-smooth Bayesian Optimization in Tuning Problems

time obtained by each specific surrogate model against the one using the simple GP
surrogate model, ratios that are less than 1 means better performance.

0.
39

8

0.
48

2

0.
49

7

0.
48

3

0.
47

9

0.
46

2

0.
39

6

6.
11

4

5.
72

3

6.
36

1

5.
49

6

5.
27

2

5.
36

5

5.
63

5

5.
44

9

5.
91

5.
94

8

5.
90

2

5.
24

8

5.
22

4

5.
50

9

6.
08

8

5.
58

1

5.
74

9

5.
60

1

5.
77

96.
13

2

5.
70

3

0.
37

3

0.
39

8

0.
36

7

0.
37

3

0.
4

0.
40

5

0.
35

6

0.
97

6

0.
98

8

1.
00

8

1.
00

8

1.
07

1

1.
04

2

0.
79

5

0.
16

5

0.
17

0.
16

6

0.
17

9

0.
16

6

0.
17

5

0.
17

4

1.
15

2

1.
42

6

1.
15

5 1.
44

3

1.
42

8

1.
57

3

1.
07

3

0.
32

2

0.
36

5

0.
32

9

0.
34

3

0.
32

9

0.
33

6

0.
32

2

0.
29

20.
4

0.
38

0.
36

7

0.
37

7

0.
36

9

0.
29

1

1.
84

7

2.
07

3

2.
12

2

2.
71

1

2.
65

5

2.
74

3

2.
08

2

0

2

4

6

Si2 SiH4 SiNa benzene Na5 Si10H16 SiO H2O GaAsH6 Ga3As3H12Si5H12
MATRIX_NAME

f_
m

in

MODEL
cGP, N_COMP=2,
 EXP_RATE=0.5
cGP, N_COMP=2,
 EXP_RATE=0.8
cGP, N_COMP=2,
 EXP_RATE=1
cGP, N_COMP=4,
 EXP_RATE=0.5
cGP, N_COMP=4,
 EXP_RATE=0.8
cGP, N_COMP=4,
 EXP_RATE=1
GP

f_min (absolute), N_SQUENTIAL=10

1.
00

5

1.
21

71.
25

5

1.
22

1.
21

1.
16

7

1

1.
08

5

1.
01

6

1.
12

9

0.
97

5

0.
93

6

0.
95

2

1

0.
98

9

1.
07

3

1.
08

1.
07

1

0.
95

3

0.
94

8

1

1.
06

8

0.
97

9 1.
00

8

0.
98

2 1.
01

3

1.
07

5

11.
04

8

1.
11

8

1.
03

1

1.
04

8

1.
12

4

1.
13

8

1

1.
22

8

1.
24

3

1.
26

8

1.
26

8

1.
34

7

1.
31

1

1

0.
94

80.
97

7

0.
95

4

1.
02

9

0.
95

4

1.
00

6 1

1.
07

4

1.
32

9

1.
07

6

1.
34

5

1.
33

1

1.
46

6

11

1.
13

4

1.
02

2 1.
06

5

1.
02

2

1.
04

3

1

1.
00

3

1.
37

5

1.
30

6

1.
26

1 1.
29

6

1.
26

8

1

0.
99

6

1.
01

9

1.
30

2

1.
27

5 1.
31

7

11.0

1.2

1.4

f_
m

in
/f_

m
in

(G
P

)

MODEL
cGP, N_COMP=2,
 EXP_RATE=0.5
cGP, N_COMP=2,
 EXP_RATE=0.8
cGP, N_COMP=2,
 EXP_RATE=1
cGP, N_COMP=4,
 EXP_RATE=0.5
cGP, N_COMP=4,
 EXP_RATE=0.8
cGP, N_COMP=4,
 EXP_RATE=1
GP

f_min (relative), N_SQUENTIAL=10

Si2 SiH4 SiNa benzene Na5 Si10H16 SiO H2O GaAsH6 Ga3As3H12Si5H12
MATRIX_NAME

Figure D.1: SuperLU_DIST results with 10 pilot and 10 sequential samples.

0.
32

0.
33

8

0.
39

2

0.
33

6

0.
37

5

0.
39

9

0.
35

9

5.
956.
06

5.
7

5.
33

9

5.
35

5.
33

7

5.
47

3

5.
50

8

5.
14

8

5.
27

8

5.
09

5

5.
04

1

4.
99

7 5.
45

5

5.
68

5

5.
69

1

5.
55

1 5.
95

6

5.
55

1

5.
51

8

5.
62

2

0.
31

9

0.
30

4

0.
34

7

0.
35

4

0.
32

5

0.
32

3

0.
31

7 0.
73

1

0.
70

1

0.
75

9

0.
73

0.
77

5

0.
71

5

0.
70

1

0.
15

4

0.
15

0.
16

4

0.
17

4

0.
14

9

0.
15

7

0.
15

3

1.
18

8

1.
10

7

1.
26

6

1.
11

2

1.
15

2

1.
07

7

1.
12

6

0.
32

7

0.
31

5

0.
29

0.
28

2

0.
33

0.
31

7

0.
29

7

0.
32

3

0.
28

8

0.
31

1

0.
35

1

0.
34

2

0.
35

3

0.
30

4

1.
99

6

1.
94

1

2.
07

1.
94

4

2.
05

1

2.
08

7

2.
04

4

0

2

4

6

f_
m

in

MODEL
cGP, N_COMP=2,
 EXP_RATE=0.5
cGP, N_COMP=2,
 EXP_RATE=0.8
cGP, N_COMP=2,
 EXP_RATE=1
cGP, N_COMP=4,
 EXP_RATE=0.5
cGP, N_COMP=4,
 EXP_RATE=0.8
cGP, N_COMP=4,
 EXP_RATE=1
GP

f_min(absolute), N_SQUENTIAL=90

Si2 SiH4 SiNa benzene Na5 Si10H16 SiO H2O GaAsH6 Ga3As3H12Si5H12
MATRIX_NAME

0.
89

1

0.
94

2

1.
09

2

0.
93

6

1.
04

5

1.
11

1

1

1.
08

71.
10

7

1.
04

1

0.
97

6

0.
97

8

0.
97

5

11.
01

0.
94

40.
96

8

0.
93

4

0.
92

4

0.
91

6

1

1.
01

1

1.
01

2

0.
98

7

1.
05

9

0.
98

7

0.
98

2

1

1.
00

6

0.
95

9

1.
09

5 1.
11

7

1.
02

5

1.
01

9

1

1.
04

3

1

1.
08

3

1.
04

1

1.
10

6

1.
02

1

1.
00

7

0.
98

1.
07

2

1.
13

7

0.
97

4

1.
02

6

1

1.
05

5

0.
98

3

1.
12

4

0.
98

8

1.
02

3

0.
95

6

1

1.
10

1

1.
06

1

0.
97

6

0.
94

9

1.
11

1

1.
06

7

1

1.
06

2

0.
94

7

1.
02

3

1.
15

5

1.
12

5

1.
16

1

1

0.
97

7

0.
95

1.
01

3

0.
95

1

1.
00

3 1.
02

1

1

0.9

1.0

1.1

1.2

f_
m

in
/f_

m
in

(G
P

)

MODEL
cGP, N_COMP=2,
 EXP_RATE=0.5
cGP, N_COMP=2,
 EXP_RATE=0.8
cGP, N_COMP=2,
 EXP_RATE=1
cGP, N_COMP=4,
 EXP_RATE=0.5
cGP, N_COMP=4,
 EXP_RATE=0.8
cGP, N_COMP=4,
 EXP_RATE=1
GP

f_min (relative), N_SQUENTIAL=90

Si2 SiH4 SiNa benzene Na5 Si10H16 SiO H2O GaAsH6 Ga3As3H12Si5H12
MATRIX_NAME

Figure D.2: SuperLU_DIST results with 10 pilot and 90 sequential samples.

Appendix E. Theoretic Results
Let us start with a simpler situation by supposing the partitions of components are
fixed from the beginning of sequential sampling.

53

Authors

Assumption A. The number of components k < ∞ is known and cannot
change.

To ensure the convergence of the surrogate model, we need to assume that the
covariance kernel K satisfies:

Assumption B. The Fourier transform K̂(ξ) :=
∫
Rd 2−2πi〈x,ξ〉K(x)dx exists,

is isotropic and non-increasing and satisfy either K̂(ξ) = Θ
(
‖ξ‖−2ν−d

)
for some

ν > 0 or K̂(ξ) = O
(
‖ξ‖−2ν−d

)
for ∀ν > 0 (and denote ν =∞). We call this ν

the smoothness parameter of the covariance kernel K. (Assumption B is exactly
the Assumptions 1,2 and 3 in Bull (2011))

Assumption C. The covariance kernel K is Cd2νe and the d2νe-th order Taylor
approximation PK satisfy |K(x)− PK(x)| = O

(
‖x‖2ν(− log‖x‖)2α

)
as x→ 0

for some α ≥ 0. (Assumption 4 in Bull (2011))

Both Matern family and exponential kernel satisfy Assumption 2 and 3 above. When
the partitions are fixed, the crucial condition of the convergence of GP surrogate
lies in the regularity of the component domains and the sample size. The regularity
of the component domain can be described by

Definition 2 (Lipschitz domain, Wynne et al. (2021)) An open set Xi ⊂ Rd is called a
(special) Lipschitz domain if there exists a rotation of Xi, denoted by X̄i, and a function
ψ : Rd−1 → R which satisfies the following:

(1) Xi = {(x, y) ∈ Rd, y > ψ(x)}
(2) ψ is a Lipschitz function such that |ψ(x)− ψ(x′)| ≤M‖x−x′‖2 for any x, x′ ∈ Rd−1

and some M > 0.

For instance, the binary divisions adopted by Chipman et al. (2010) consist of
Lipschitz domains with piecewise constant functions ψ = cj .

Proposition 3 Suppose Assumptions A hold and that the domain X can be decomposed into
Lipschitz domains X1 ∪ · · · ∪Xk = X and each Xj is compact with an nonempty interior. In
the reproducing kernel Hilbert space (RKHS) Hθ(X) defined by the covariance kernel Kθ on
X , let us suppose that black-box functions f |Xj∈ HθU (Xj), j = 1, · · · , k with θ ≤ θU < ∞
satisfy Assumption B and C. Then there exists an integer n0 > k such that the interpolant
optimum (Bull, 2011) x∗n satisfy

sup
‖f‖H

θU
(Xj)≤ R

j = 1, · · · , k

Ef
∣∣∣∣f(x∗n)−min

X
f

∣∣∣∣ = O

((
n

log n

)−ν/d
(log n)α

)
(7)

for some R > 0 and all sufficiently large sample size n > n0. If ν = ∞ then the statement
holds for all ν <∞.

54

Non-smooth Bayesian Optimization in Tuning Problems

Proof. The idea of the proof is that the overall sequence x1,x2, · · · ,xn of se-
quential sampling can be organized into sub-sequences for each component, which
grow simultaneously due to our algorithm. Within each component we have an
asymptotic scheme, the regularity of the component domains allow us to apply
results in Bull (2011) obtained from the RKHS techniques for each component.

The sequential samples x1,x2, · · · ,xn are chosen from one of all k independent
components in the additive GP model. Therefore, if we use the super script to
denote the component a sample point belongs to, we can reorganize the sample
sequence x1,x2, · · · ,xn into k sub-sequences where the sizes of sub-sequences satisfy
n1 + · · ·+ nk = n:

x
(1)
1 ,x

(1)
2 , · · · ,x(1)

n1
; x

(2)
1 ,x

(2)
2 , · · · ,x(2)

n2
· · · x

(k)
1 ,x

(k)
2 , · · · ,x(k)

nk
.

Now we also need to show that all n1, n2, · · · , nk > 1 and tend to infinity, for
otherwise, there would be components containing no sequential sample points at
all. However, this cannot happen, due to the fact that overall sequential sampling
strategy is to pick the maximizer of EI acquisition function EIj(x) in each compo-
nent weighted by component sample size nj . If n1 = 1 while n2, · · · , nk > 1 then
we can pick n0 such that

maxj=2,···,k maxx∈Xj EIj(x)

min(n2, · · · , nk) + n0/(k − 1)
≤ max
x∈X1

EI1(x)/1

The numerator is the maximal acquisition function among all EIj(x), j = 1, 2, · · · , k,
which is non-increasing by the definition of EI function. The denominator n0/(k−1)
can be intuitively understood as each sequential sample avoiding X1 would add
1/(k − 1) sample to each of components 2, · · · , k.

Alternatively, assume that there exists some j0 such that nj0 6→ ∞ and bounded
by nj0 ≤ N0 < ∞ as n → ∞. When n is large enough, the following holds since
the RHS is a constant and the LHS has its denominator tending to infinity while
its numerator is bounded.

maxj∈A maxx∈Xj EIj(x)

minj∈A nj
≤

maxx∈Xj0 EIj0(x)

N0

Therefore, we can increase the sample size n > n0, then all weighted acquisition
functions from components 2, · · · , k would have maxima less than the maximum
of EI1(x). Therefore, the (n + 1)-th sequential sample must be selected as the
maximizer of EI1(x) in X1. Following similar arguments on nj −minj nj , we can
see that minj=1,···,k nj →∞ as n→∞.

When all n1, n2, · · · , nk > 0, by our algorithm, for the sub-sequence

x
(j)
1 ,x

(j)
2 , · · · ,x(j)

nj ,

x
(j)
J := arg max

x∈Xj
EIj(x)/J,

55

Authors

for j = 1, 2, · · · , k. It is straightforward to see that x(j)
J is also the arg maxx∈Xj EIj(x).

Due to the fact that additive components are independent, each sub-sequence con-
stitutes a sequential sampling within the component domain Xj with the same
strategy. We use the assumption on f |Xj and apply Theorem 5 of Bull (2011) to
each of these k independent components (j = 1, · · · , k) that

sup
‖f |Xj ‖HθU (Xj)≤Rj

Ef
∣∣∣∣f |Xj (x(j)∗

nj)−min
Xj

f |Xj

∣∣∣∣ = O

((
nj

log nj

)−ν/d
(log nj)

αj

)
,

and we take the maximum (since k <∞) on the LHS to yield the stated result (7)
with α = maxj αj > 0 and R = minj Rj > 0. �

Our result is slightly weaker than Theorem 5 in Bull (2011) in the sense that
the same claim of error in terms of the supremum norm holds for every sample size
n > 0. Our results can be applied to quite general additive GP surrogate models
with mutually independent components. One step further, Wynne et al. (2021)
proved that even the ν are mis-specified, the convergence may still hold with a
worse rate.

This discussion reveals the effect and importance of re-weighting acquisition
functions in the cGP algorithm. Assumptions B and C focus on the smoothness for
f within each component. This convergence would not hold if EI is not weighted,
regardless the distribution assumption of x′is.

However, we shall point out that our Algorithm 1 would update the partition in-
duced by the cluster-classify step for each sampling step. Therefore, this proposition
does not cover exactly cGP, but we provide a justification for weighting acquisition
functions when we use an additive model in a Bayesian optimization setting. Be-
sides, we do observe empirically that the partition usually becomes stable after
sufficiently many samples are collected, so the simplification is not groundless.

That being said, we still need to rigorously prove clustering and classification
consistency (in sense that the decision boundaries coincide with non-smooth borders
with an appropriately chosen ξ). This remains an unsolved theoretic question in
the current paper, but usually a reasonable choice of ξ or even ξ = 1 can lead to
empirically satisfying optimization results.

56

Non-smooth Bayesian Optimization in Tuning Problems

References
Ryan P. Adams and David J. C. MacKay. Bayesian online changepoint detection.

arXiv:0710.3742 [stat], 2007.

Daniel Barry and J. A. Hartigan. A bayesian analysis for change point problems. Journal
of the American Statistical Association, 88(421):309–319, 1993.

M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes: Theory and Application.
Prentice Hall Information and System Sciences Series. Prentice Hall, Englewood Cliffs,
N.J, 1993.

Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimizing matrix mul-
tiply using phipac: a portable, high-performance, ansi c coding methodology. In ACM
International Conference on Supercomputing 25th Anniversary Volume, pages 253–260,
1997.

L. Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R. Clint Whaley,
James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg Henry, et al. An
updated set of basic linear algebra subprograms (BLAS). ACM Transactions on Mathe-
matical Software, 28(2):135–151, 2002.

Andrew J. Booker, John E. Dennis, Paul D. Frank, David B. Serafini, Virginia Torczon,
and Michael W. Trosset. A rigorous framework for optimization of expensive functions
by surrogates. Structural optimization, 17(1):1–13, 1999.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian optimization
of expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv:1012.2599 [cs], 2010.

Adam D. Bull. Convergence rates of efficient global optimization algorithms. Journal of
Machine Learning Research, 12(10), 2011.

Bo Chen, Rui Castro, and Andreas Krause. Joint optimization and variable selection of
high-dimensional gaussian processes. arXiv:1206.6396 [cs, stat], 2012.

Hugh A. Chipman, Edward I. George, and Robert E. McCulloch. Bayesian CART model
search. Journal of the American Statistical Association, 93(443):935–948, 1998.

Hugh A. Chipman, Edward I. George, and Robert E. McCulloch. BART: Bayesian additive
regression trees. The Annals of Applied Statistics, 4(1):266–298, 2010.

H. Cramér and M.R. Leadbetter. Stationary and Related Stochastic Processes: Sample Func-
tion Properties and Their Applications. Dover Books on Mathematics. Dover Publications,
2013.

Zhongxiang Dai, Haibin Yu, Bryan Kian Hsiang Low, and Patrick Jaillet. Bayesian op-
timization meets bayesian optimal stopping. In International Conference on Machine
Learning, pages 1496–1506. PMLR, 2019.

57

Authors

Andreas Damianou and Neil D Lawrence. Deep gaussian processes. In Artificial intelligence
and statistics, pages 207–215. PMLR, 2013.

Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recognition,
volume 31. Springer Science & Business Media, 2013.

Jerome H Friedman. Multivariate adaptive regression splines. The annals of statistics, pages
1–67, 1991.

Barbara Fuchs and Jochen Garcke. Simplex stochastic collocation for piecewise smooth
functions with kinks. International Journal for Uncertainty Quantification, 10(1), 2020.

Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. Dealing with categorical and
integer-valued variables in bayesian optimization with gaussian processes. Neurocomput-
ing, 380:20–35, 2020.

Robert B. Gramacy. Surrogates: Gaussian process modeling, design, and optimization for
the applied sciences. Chapman and Hall/CRC, 2020.

Robert B Gramacy and Daniel W Apley. Local gaussian process approximation for large
computer experiments. Journal of Computational and Graphical Statistics, 24(2):561–578,
2015.

Robert B. Gramacy and Herbert K. H. Lee. Bayesian treed gaussian process models with
an application to computer modeling. Journal of the American Statistical Association,
103(483):1119–1130, 2008.

Robert B. Gramacy and Herbert K. H. Lee. Optimization under unknown constraints.
Bayesian Statistics, 9(9):1–18, 2011.

Robert B. Gramacy and Michael Ludkovski. Sequential design for optimal stopping prob-
lems. SIAM Journal on Financial Mathematics, 6(1):748–775, 2015.

Robert B. Gramacy and Nicholas G. Polson. Particle learning of Gaussian process models
for sequential design and optimization. arXiv:0909.5262 [stat], July 2010.

William Herlands, Andrew Wilson, Hannes Nickisch, Seth Flaxman, Daniel Neill, Wilbert
Van Panhuis, and Eric Xing. Scalable gaussian processes for characterizing multidimen-
sional change surfaces. In Artificial Intelligence and Statistics, pages 1013–1021. PMLR,
2016.

José Miguel Hernández-Lobato, Matthew W. Hoffman, and Zoubin Ghahramani. Predictive
Entropy Search for Efficient Global Optimization of Black-box Functions. arXiv:1406.2541
[cs, stat], June 2014.

Kenneth Holmström, Nils-Hassan Quttineh, and Marcus M. Edvall. An adaptive radial basis
algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization.
Optimization and Engineering, 9(4):311–339, 2008.

58

Non-smooth Bayesian Optimization in Tuning Problems

Jia-Wei Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In Proceedings of
the Thirteenth Annual ACM Symposium on Theory of Computing - STOC ’81, Milwaukee,
Wisconsin, United States, 1981. ACM Press.

Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabás Póczos. Multi-
fidelity bayesian optimisation with continuous approximations. In International Confer-
ence on Machine Learning, pages 1799–1808. PMLR, 2017.

Ron S. Kenett, Shelemyahu Zacks, and Daniele Amberti. Modern Industrial Statistics: With
Applications in R, MINITAB and JMP. John Wiley & Sons, 2013.

Andreas Krause and Carlos Guestrin. Nonmyopic active learning of gaussian processes: an
exploration-exploitation approach. In Proceedings of the 24th international conference on
Machine learning, pages 449–456, 2007.

Eric Hans Lee, Valerio Perrone, Cedric Archambeau, and Matthias Seeger. Cost-aware
bayesian optimization. arXiv:2003.10870 [cs, stat], 2020.

Benjamin Letham, Brian Karrer, Guilherme Ottoni, and Eytan Bakshy. Constrained
bayesian optimization with noisy experiments. Bayesian Analysis, 14(2):495–519, 2019.

Hengrui Luo and Justin Strait. Combining geometric and topological information in image
segmentation. arXiv e-prints, pages arXiv–1910, 2019.

Hengrui Luo, Steven N. MacEachern, and Mario Peruggia. Asymptotics of lower dimensional
zero-density regions. arXiv:2006.02568, pages 1–28, 2020a.

Hengrui Luo, Giovanni Nattino, and Matthew T. Pratola. Sparse Additive Gaussian Process
Regression. arXiv:1908.08864 [math, stat], 2020b.

Ruben Martinez-Cantin. Locally-biased bayesian optimization using nonstationary gaus-
sian processes. In Neural Information Processing Systems (NIPS) workshop on Bayesian
Optimization, volume 7, page 4, 2015.

Juliane Müller and Marcus Day. Surrogate Optimization of Computationally Expensive
Black-Box Problems with Hidden Constraints. INFORMS Journal on Computing, 31(4):
689–702, 2019.

Vu Nguyen, Sebastian Schulze, and Michael A. Osborne. Bayesian optimization for iterative
learning. arXiv:1909.09593 [cs, stat], 2020.

Art B Owen, Josef Dick, and Su Chen. Higher order sobol’indices. Information and Inference:
A Journal of the IMA, 3(1):59–81, 2014.

Christopher J. Paciorek and Mark J. Schervish. Nonstationary covariance functions for
gaussian process regression. In Advances in Neural Information Processing Systems 16,
pages 273–280. MIT Press, 2004.

E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100, 1954.

59

Authors

Chiwoo Park, Jianhua Z. Huang, and Yu Ding. Domain decomposition approach for fast
gaussian process regression of large spatial data sets. Journal of Machine Learning Re-
search, 11:1697–1728, 2011.

Sunho Park and Seungjin Choi. Hierarchical gaussian process regression. In Proceedings
of 2nd Asian Conference on Machine Learning, volume 13 of Proceedings of Machine
Learning Research, pages 95–110. JMLR Workshop and Conference Proceedings, 2010.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, Mass,
2006.

Binxin Ru, Ahsan Alvi, Vu Nguyen, Michael A Osborne, and Stephen Roberts. Bayesian
optimisation over multiple continuous and categorical inputs. In International Conference
on Machine Learning, pages 8276–8285. PMLR, 2020.

Yunus Saatçi, Ryan Turner, and Carl Edward Rasmussen. Gaussian process change point
models. In International Conference on Machine Learning, pages 1–8. PMLR, 2010.

Amar Shah, Andrew Wilson, and Zoubin Ghahramani. Student-t processes as alternatives
to gaussian processes. In Artificial intelligence and statistics, pages 877–885. PMLR, 2014.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking
the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE,
104(1):148–175, 2016.

Wissam M. Sid-Lakhdar, Mohsen Mahmoudi Aznaveh, Xiaoye S. Li, and James W.
Demmel. Multi-task and Transfer Learning for Autotuning Exascale Applications.
arXiv:1908.05792 [cs, stat], August 2019.

A. F. M. Smith. A bayesian approach to inference about a change-point in a sequence of
random variables. Biometrika, 62(2):407–416, 1975.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. Advances in neural information processing systems, 25,
2012.

Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input warping for bayesian op-
timization of non-stationary functions. In International Conference on Machine Learning,
pages 1674–1682. PMLR, 2014.

E. Solak, R. Murray-smith, W. Leithead, D. Leith, and Carl Rasmussen. Derivative ob-
servations in gaussian process models of dynamic systems. In S. Becker, S. Thrun, and
K. Obermayer, editors, Advances in Neural Information Processing Systems, volume 15.
MIT Press, 2003.

Jialin Song, Yuxin Chen, and Yisong Yue. A general framework for multi-fidelity bayesian
optimization with gaussian processes. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 3158–3167. PMLR, 2019.

60

Non-smooth Bayesian Optimization in Tuning Problems

Miroslav Stoyanov. Adaptive sparse grid construction in a context of local anisotropy and
multiple hierarchical parents. In Sparse Grids and Applications-Miami 2016, pages 175–
199. Springer, 2018.

Miroslav Stoyanov, Pablo Seleson, and Clayton Webster. A surrogate modeling approach for
crack pattern prediction in peridynamics, chapter 0, pages 1–11. American Institute of
Aeronautics and Astronautics, 2017. doi: 10.2514/6.2017-1326.

Defeng Sun, Kim-Chuan Toh, and Yancheng Yuan. Convex clustering: Model, theoretical
guarantee and efficient algorithm. Journal of Machine Learning Research, 22:1–30, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT
press, 2018.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. In
Advances in Neural Information Processing Systems, volume 26, pages 1–9. Curran Asso-
ciates, Inc., 2013.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimiza-
tion. arXiv:1406.3896 [cs, stat], 2014.

Yee Whye Teh. Dirichlet Process, 2010.

Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clusters
in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 63(2):411–423, 2001.

R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical optimizations
of software and the atlas project. Parallel computing, 27(1-2):3–35, 2001.

Chris Williams, Edwin V. Bonilla, and Kian M. Chai. Multi-task gaussian process prediction.
Advances in neural information processing systems, pages 153–160, 2007.

George Wynne, François-Xavier Briol, and Mark Girolami. Convergence guarantees for
gaussian process means with misspecified likelihoods and smoothness. Journal of Machine
Learning Research, 22(123):1–40, 2021.

Ichitaro Yamazaki and Xiaoye S. Li. New scheduling strategies and hybrid programming for
a parallel right-looking sparse LU factorization algorithm on multicore cluster systems.
In 2012 IEEE 26th International Parallel and Distributed Processing Symposium, pages
619–630, Shanghai, China, May 2012. IEEE.

Field G. Van Zee, Tyler M. Smith, Bryan Marker, Tze Meng Low, Robert A. Van De
Geijn, Francisco D. Igual, Mikhail Smelyanskiy, Xianyi Zhang, Michael Kistler, Vernon
Austel, et al. The blis framework: Experiments in portability. ACM Transactions on
Mathematical Software (TOMS), 42(2):1–19, 2016.

61

	1 Introduction
	1.1 Problems and Challenges
	1.2 Non-smoothness caused by the domain
	1.3 Non-smoothness in the black-box function
	1.4 Organization

	2 Methodology
	2.1 Relevant methods for non-smooth modeling
	2.2 Partitioning the input domain
	2.3 Clustered GP (cGP) surrogate model

	3 Experiments
	3.1 Synthetic Studies
	3.1.1 Smooth functions
	3.1.2 Non-smooth functions
	3.1.3 Summary

	3.2 Tuning Problems
	3.2.1 Low-dimensional tuning
	3.2.2 High-dimensional tuning

	4 Discussion
	4.1 Contribution
	4.2 Future work
	4.3 Ethics Compliance

	A cGP Algorithm
	B Additional Synthetic Studies
	C Additional Results of Experiments in Section 3.2.1
	D Additional Results of Experiments in Figure 3.11
	E Theoretic Results

