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Abstract

Domain-Specific Machine Learning

- A Human Learning Perspective

by

Chuanhe (Jay) Shan

This dissertation focuses on Domain-Specific Machine Learning (DSML) with appli-

cations in the semiconductor industry. We first illustrate characteristics of DSML in view

of semiconductor design and test processes, where a task is usually carried out in an it-

erative fashion. We introduce a new concept called Local No-Free-Lunch (Local NFL) to

characterize the learning problem in an iteration, where one learns from the data in the

current iteration and tries to predict the outcome in the next iteration. A consequence

of Local NFL is that optimization of a learning model is no longer as critical in DSML

as that in traditional Machine Learning.

To study how to build a practical DSML solution, we take Wafer Map Pattern Recog-

nition (WMPR) as the application context. Historically, WMPR is an important problem

to solve for semiconductor manufacturers, where wafer failing patterns are used to guide

their yield improvement effort. In recent years, fabless companies became interested in

the problem because understanding wafer patterns can help them communicate more

effectively with the manufacturers. In the past, prior works treated WMPR as solving a

multi-class classification problem. However, in view of DSML, we argue that a multi-class

classifier is not what is needed for building a practical DSML solution.

We then develop the requirements and constraints for building a practical DSML

solution. From there, we reach a list of tool capabilities to be supported by the solution.

To enable these capabilities, we develop novel learning techniques for performing various

viii



analyses on wafer maps. Based on the enabled capabilities, a novel methodology is

introduced. Given a sequence of wafer maps, this methodology enables a user to quickly

see what potential patterns are in the sequence and based on their own perspective, to

make a final decision to classify them.

This methodology enables building a practical DSML solution that helps a user answer

two main questions in each iteration: (1) Is there a wafer pattern indicating a potential

yield issue? 2) If yes, has this pattern occurred previously? An important aspect of the

solution is that it enables a user to quickly grasp what crucial information is contained

in the data and facilitates them to make a final classification decision. The solution does

not make a final decision for them. From this angle, the focus of a DSML solution is on

understanding of the data, rather than on optimization of a learning model.

ix
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Chapter 1

Introduction

“The only good is knowledge and the only evil is ignorance.”

— Socrates

The tacit success of machine learning (ML) is evident by its seamlessly integration into

our daily lives. When an user visits a social media website, their profile and activities data

are used to suggest more pages and/or people of interest [1]. Similarly, when a shopper

visits an e-commerce website, their profile and activities, such as shopping history and

product reviews, are fed into a product recommendation system which aims to enhance

the shopper’s experience [2].

When someone takes a photo with a smartphone, people, pets, common objects and

locations, are automatically identified and tagged [3]. The tagged photos enable searching

using keywords, such as “beach”. Additionally, the photos are automatically grouped,

such as a collection of the same pet. For a more rigorous application, bio-metrics au-

thentication with facial recognition is used abundantly across smartphones [4]. The

authentication can still be accurate when the user has different accessories and facial

hair.
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With the advent of smart-home devices, a user can speak English directly to the

device to inquire about today’s news or check their order status [5]. When an user

travels abroad and sees a road sign in another language, they can translate the sign with

their smartphone camera in real-time [6]. When working on a coding project, an user can

query a desired prompt in natural language (e.g.“Return list with elements incremented

by 1.”) and get back generated programming code [7].

From these aforementioned examples, we can see that ML has revolutionized our lives,

specifically excelling in regression, image classification, and natural language processing

tasks. All of us probably have interacted with at least one of the above examples.

With ML’s evident success, one must wonder “Why is Machine Learning so successful?”;

followed by “How do we bring ML’s success into areas outside of the currently established

ones?” We explore the first question for the remainder of this chapter, and aim to answer

the second question with the remainder of this thesis.

1.1 Machine Learning & Notable Successes

Although ML encompasses a large field of algorithms and methods to automatically

learn from the data, all recent examples above involve some form of deep learning. In fact,

as of 2020, deep learning has become the dominant application and research in the field of

ML [8]. In view of ML’s success, we can briefly trace back to its early developments from

the 1950s to the 2000s, and then examine the recent inception and dominance of deep

learning. These more recent milestones provide valuable insights on how deep learning

is being applied to the extent of its current success.
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1.1.1 Foundational developments

Starting with the perceptron [9] in 1958, the algorithm was invented based on a

simplified model of a biological neuron. The perceptron algorithm can perform supervised

learning of binary classification, where the input are represented by a numerical vector

and the output specifies some class. The perceptron is a linear classifier, where it is

only capable of learning linearly separable patterns. For a learning dataset that is not

linearly separable (e.g. XOR function), the algorithm does not terminate, as it cannot

linearly separate all the input vectors. This is unless an error threshold is specified and

met or a preset iteration limit is met. To distinguish it from future developments, the

perceptron was also prepended with an identifier and became the single-layer perceptron.

The single-layer perceptron is considered the simplest form of feedforward neural network

(NN), where it served as a building block for future works.

Figure 1.1: Brief history of machine learning foundational developments

Even though the invention of the perceptron generated much excitement at the time

in the AI community, it was later proven in 1969 that the algorithm had severe limitations

due to only having linear separability [10]. There was also further sentiment that the
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extension to multi-layer perceptron, invented 4 years earlier in 1965, was not going to

solve this issue [10]. In retrospect, this was certainly a large miscalculation. As a result,

the NN research and funding areas experienced a stagnation of roughly 10 years. It was

later around the 1980s, a resurgence of NN research transpired and many multi-layer

perceptron models were being discovered.

During the resurgence around the 1980s, many notable events took place. These

include Neocognitron [11] in 1979, which will later inspire convolutional neural networks

(CNNs). Soon after, in 1982, the Hopfield network [12] was popularized, which is a form

of recurrent neural networks (RNNs). Next in 1986, the widely used backpropagation [13]

training algorithm was popularized. Backpropagation enabled efficient gradient-based

methods for learning a NN and is a core technology still widely used today [14][15].

Figure 1.2: The data points are mapped using SVM’s kernel from a 2-dimensional
space (left) to a 3-dimensional space (right), where a separating hyperplane can be
easily found. Illustration from [16].

In 1992, the initial work for Support-Vector Machines (SVM) [17] were published.

Although SVM is not directly a part of deep learning, it still had significant impacts for

classification and regression tasks. SVM was accompanied by strong mathematics and

theoretical framework [18], where it could efficiently perform non-linear classification of
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samples with the “kernel trick” [19] (Figure 1.2) . This led to SVM quickly becoming

the popular classification method around this time, especially on the handwriting recog-

nition problem, courtesy of the NIST database [20]. In addition, SVM’s popularity also

kicked off a series of subsequent work which focused on kernel-methods [21], all of which

employed some form of “kernel trick”.

With kernel-methods in favor, in 1998, the Modified NIST (MNIST) database [22]

was released. This dataset comprises 60,000 training images and 10,000 testing images

of curated and labeled handwritten digits from NIST, where it became the standard

benchmark for evaluating handwriting recognition classifiers. Although there were neural

networks at the time that could offer competitive accuracy [22], the NN approaches would

result in much larger models and took a significant amount of computational resources to

train. In general, it was widely believed that very large networks are required to capture

a detailed learner, but it was impractical to train such classifiers (e.g. vanishing gradient

problem [23]).

During the 2000s, kernel-methods remained popular and unsupervised ML become

widespread. Notably, the unsupervised learning extension to SVM [24] was published in

2001. Unsupervised ML involves algorithms and methods which does not require user-

provided labels in the training dataset for a learning task. There was sentiment that the

existing kernel-methods can already appropriately handling their supervised tasks, thus

the expansion into unsupervised ML felt like a natural direction to advance ML research.

Even with kernel-methods’ popularity around this time, there were still notable work

developed for neural networks, especially with emphasis on how to efficiently train neural

networks with a large amount of data [25][26].
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1.1.2 Deep learning in the recent years

In 2009, considered by many as the catalyst of deep learning, ImageNet [27], was

released. ImageNet is a database of 14 million labeled full-resolution images, where

semantic hierarchies exist between appropriate labels. Before that, WordNet [28], a

lexical database of the English language which linked words into semantic (e.g. synonyms)

relations, was released in the mid-1990s. At the time of ImageNet’s release, WordNet

had roughly 80,000 groups of synonyms, called synsets. From the original ImageNet

publication: “ImageNet aims to populate the majority of the 80,000 synsets of WordNet

with an average of 500-1000 clean and full resolution images.” In Figure 1.3, we have

Figure 1.3: ImageNet examples of root-to-leaf branches from [27], “mammal” to
“husky” (top) and “vehicle” to “trimaran” (bottom).

two example root-to-node branches of the ImageNet data. On the top, we have a root

category “Mammal”, where it keeps branching to more hyponymys, until “Husky” on

the very right. Similarly, the bottom branch starts from “vehicle” and branches to

“trimaran”. Each node/category of the branch shows 9 sample images from the dataset.

Accompanying ImageNet’s large data collection and annotation effort, the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) [29] is also posted annually. The

challenge involves using software to correctly classify and detect objects on a disjoint

subset of the ImageNet data, around 1000 classes. This contest kicked off the develop-
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Figure 1.4: The ImageNet challenge drove the development of more accurate classifica-
tion networks, where these annual winners continued to exhibit deeper architectures.

ment of a series of advanced ML technologies, driven by the goal of achieving a lower

error-rate. Figure 1.4 provides a quick summary of the annual winners of ILSVRC and

their respective error-rates. Regarded by many as the inception point of deep learning, a

notable event took place in 2012, indicated by the blue arrow in Figure 1.4. This event

marked a large decrease in error-rate accomplished by AlexNet [30] when compared to

the previous 2011 winner. This reduction in error-rate was made feasible by employing a

8-layer network, where the now-affordable Graphic Processing Units (GPUs) are utilized

during training, ultimately kicking off the trend of utilizing GPUs and other specialized

hardware for training subsequent deeper networks. Aside from the trend of deeper net-

works leading to higher accuracy, it is interesting to note, by 2015, the winner networks

were already outperforming sampled human classifiers.

Ever since the success story of AlexNet in 2012, advancements in neural network

architecture had been in full-throttle. Many notable architectures were published in the
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following years, including Generative Adversial Networks (GANs) [31] and Variational

Autoencoders (VAEs) [32], both of which are generative models [33] and can handle

unsupervised learning tasks. These two NN architectures will be covered in Chapters 6

& 7 when we detail our main body of work. Just to give context to what “full-throttle”

means, in a little over four years of the original GAN publication, there were roughly 500

publications on variations and modifications of GANs [34].

In additional to the image/object classification problem that catalyzed deep learning,

there were also massive deep learning advancements in the domain of natural language

processing (NLP), specially language understanding. To put the advancement of models

into perspective, as of 2021, the state-of-the-art language model is Generative Pre-trained

Transformer 3 (GPT-3) [35] created by OpenAI. As its name implies, GPT-3 is the 3rd

generation of their language model. Sitting at 175 billion parameters, this generation’s

capacity is over two orders of magnitude larger than its previous generation [35]. In fact,

the next largest model, Turing Natural Language Generation (T-NLG) [36] published

by Microsoft, sits at 17 billion parameters. For a baseline juxtaposition, Bidirectional

Encoder Representations from Transformers (BERT) [37] is a language model published

in 2018 and achieved state-of-the-art performance on language understanding tasks at

that time. BERT boasted 340 million parameters, roughly 500 times smaller than GPT-3.

It is important to note, as their names indicate, both BERT and GPT-n architec-

tures involve transformers [38], which is a NN model also designed to handle sequential

data, but allows for more parallelization compared to traditional RNNs. This additional

parallelization enabled training on larger datasets than previously feasible. As a result,

accompanying the enormous capacity of GPT-3 is an enormous amount of training data.

Table 1.1 is from the GPT-3 publication [35] and details the amount of training tokens

per dataset and their corresponding dataset weighting. During training, the authors used

weightings presented in Table 1.1 to draw samples from each dataset. These weights are
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Dataset Quantity(tokens) Weight in training mix
Common Crawl 410 billion 60%
WebText2 19 billion 22%
Books1 12 billion 8%
Books2 55 billion 8%
Wikipedia 3 billion 3%

Table 1.1: Dataset used to train GPT-3.

intentionally disproportional to the size of each dataset, where higher weightings were

assigned to datasets of perceived higher quality. Given the scale of 175 billion parameters

and hundreds of billions of training tokens, the training was performed on high-bandwidth

clusters equipped with V100 GPUs, which took 3.64E + 03 petaflop-days of training.

Now that we have some context to the massiveness of GPT-3, we can examine its

capabilities. Since GPT-3 was trained on data from the open Internet, which includes a

large variety of NLP interactions, it does not require further training for distinct NLP

tasks. This is unlike most other NLP services which are designed for specific tasks, such

as sentiment analysis or language translation. GPT-3’s usage revolves around an input

prompt, where it will attempt to match whatever context or pattern is present in the

prompt and generate a text completion. The following are some examples provided by

GPT-3’s documentation. User input prompt is highlighted in brown and GPT-3 output

is highlighted in blue.

Example 1

Write a tagline for an ice cream shop

We serve up smiles with every scoop!

Example 2

The following is a conversation with an AI assistant. The assistant is helpful,

creative, clever, and very friendly.
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Human: Hello, who are you?

AI: I am an AI created by OpenAI. How can I help you today?

Human: I’d like to cancel my subscription.

AI: Sure, I can help you cancel your subscription. Just let me know what

type of subscription you have.

Example 3

### Postgres SQL tables, with their properties:

#

# Employee(id, name, department id)

# Department(id, name, address)

# Salary Payments(id, employee id, amount, date)

#

### A query to list the names of the departments which employed more

than 10 employees in the last 3 months

SELECT

DISTINCT department.name

FROM department

JOIN employee ON department.id = employee.department id

JOIN salary payments ON employee.id = salary payments.employee id

WHERE salary payments.date > (CURRENT DATE − INTERVAL ‘3 months’)

GROUP BY department.name

HAVING COUNT(employee.id) > 10;
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The examples above are just a small snippet of all the official examples on how to

leverage GPT-3. In fact, at the time of this writing, there were 49 official examples on

how to create prompts for GPT-3, each example aimed at a different NLP task [39]. If

we examine GPT-3’s output from these examples, we can see that the quality of the gen-

erated text is very high. In addition, like many other NN models, GPT-3 also allows for

fine-tuning. This is especially helpful for the smaller GPT-3 model variants [35]. When

the user encounters NLP tasks and contexts which might not be abundantly available in

the GPT-3 training dataset, the user can fine-tune GPT-3 with some additional examples

of their specific data, where it can lead to an overall performance improvement [35].

1.2 Machine Learning in Semiconductor D & T

In the previous section, we have briefly covered the developments of ML, to the

inception of deep learning, and an example state-of-the-art deep learning model. In this

section, we aim to review related works in the domain of semiconductor design and

test (D & T). This review is largely based on the summary paper reported in [40] and

recent tutorials presented at the IEEE International Test Conference [41].

In semiconductor D & T, tasks can be divided into three separate stages: pre-silicon,

post-silicon, and in-field. Figure 1.5 depicts some of the tasks in these three stages.

From left to right, the first is functional verification which concerns the correctness

of the simulation model, e.g. the RTL model. Layout verification concerns manufactura-

bility of the layout model, e.g. detecting hot spots. Design-silicon timing verification

concerns the convergence between the predicted timing in the pre-silicon stage and the

observed timing in the post-silicon stage. Various data learning techniques had found

application in these verification tasks in the past [40].

Moving into the post-silicon stage, speed test concerns the quality and cost of delay
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Figure 1.5: Some examples of tasks across semiconductor D & T where ML had found
an application [40][41].

testing. Fmax prediction concerns sorting chips into performance bins. Post-silicon (Po-

Si) validation concerns validating certain performance metrics that are hard to predict

accurately in the pre-silicon stage, such as bit error rate of a high-speed serial link. Test

cost reduction concerns optimizing the test efficiency, constrained by a test quality metric.

Tasks in this stages rely on measurement data from actual silicon chips, in contrast to

those pre-silicon tasks where simulation data are involved.

In the in-field stage, the major concern is to make sure there is almost zero defective

chips at the customer site. For example, zero DPPM (defective parts per million) can be a

quality metric promised to the customer, which can mean that no single part will be found

defective among a million parts. A common approach to attain this promise is to have

an effective customer-return resolution methodology in place. This methodology allows

the chip supplier to quickly respond to any customer-found defective part and resolve

the issue so that no future parts will have a similar problem. Usually, the root cause and

the resolution need to be communicated back to the customer. Certain evidence need to

be presented for the resolution to be accepted by the customer.
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1.2.1 Lacking the “care” samples

One common problem faced when applying ML in a task from D & T is the lack of

samples that we really care about. To elaborate, this does not mean we do not have a

large amounts of data. It means that, even within a large amount of data, we might not

have a large number of samples relevant to the task we are trying to perform, i.e. “care”.

Let us consider functional verification as an example.

Functional verification starts with a verification plan, specifying the aspects of the

design to verify [42], where ultimately the verification quality is measured by some cov-

erage metrics. In addition to manually-written direct tests, tests can be generated by

constrained random test generation, which is guided by constraints and biases specified

in a test bench (or test template). In functional verification, the main objective is to

improve the coverage. Figure 1.6 illustrates the problem setup.

Figure 1.6: Functional verification for improving coverage

Suppose a coverage point CP in the design is not hit (or “covered”) or only hit a few

times (once or twice) by the simulation so far. The task is to attain a functional test

that can hit the coverage point CP in the next simulation. Suppose we know how to

prepare tests to control a certain set of state variables, f1, . . . , fn. In essence, we can say

that the underlying question is “what combination of values should be set for those state

variables in order to hit CP?” Although, the problem is not as simple because there is
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the timing cycle aspect involved in the simulation [43].

We can view the essence of the learning problem as having a dataset similar to the

illustration in Figure 1.7. One can think that each sample is an observation extracted

from the simulation traces. Each xij is the value of state variable fj on observation vector

xi. If CP is hit once, without loss of generality, we have y1 = 1 and all other y’s are zero.

If CP is never hit, we have yi = 0,∀i. For a xi with yi = 1, it is called a positive sample.

Otherwise, it is called a negative sample. Given such a dataset, the learning goal is to

understand how to assign values to the state variables to achieve yi = 1.

Figure 1.7: An illustration of dataset

A similar example in terms of lacking the care samples is the task of design-silicon

timing verification. In this verification task, from the dataset view, a sample xi is defined

as a path in the design. Features f1, . . . , fn are some design features affecting the timing

of a path. The label yi is 1 if the path is deemed to be critical (explained below).

Otherwise, yi is 0. The goal is to use the features to explain the criticality of the path.

For example, Figure 1.8 shows critical paths collected from a silicon experiment [44]

and their predicted timing slacks from a Static Timing Analysis (STA) tool. For a path,

its actual delays are measured on a set of process cores. The measurement is carried out

by frequency stepping where step 1 has the lowest frequency. Each dot shown in the plot

represents a path. For instance, at step 1 there are four silicon-critical paths.

14



Introduction Chapter 1

Figure 1.8: Silicon critical paths found in 4 frequency steps [44]

For this particular design, the assumption is that if the timing slack is less than a

selected value (denoted as x), then the path is reported as a STA-critical path. In the

plot, the (normalized) value of x is shown. It can be observed that 350 out of the 480

paths shown in the plot are not reported as STA-critical paths. In fact, based on the

given x value, STA reports 21,589 STA-critical paths and only 130 of those paths show

up in this plot as a silicon-critical path [44].

To understand why a silicon-critical path is not a STA-critical path, one can start the

analysis with the first four silicon-critical paths shown on the left of the plot. However,

a more reasonable way is to analyze them one by one because each might be due to

a different reason. In this case, the positive sample is one path. The negative samples

could be the 21,459 (= 21,589−130) STA-critical paths which do not show up as a silicon-

critical path. To enable the analysis, a set of design-related features need to be developed

for describing a path [44].

The learning problem illustrated above can be stated as the following: Given a dataset

with mostly negative samples, the learning goal is to extract a rule that explains the

dataset [43][44]. This rule is supposed to guide us to find a positive sample.
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Figure 1.9: Learning as a filtering process [45].

The work in [45] proposes an approach to tackle this learning problem. Figure 1.9

illustrates the thinking behind the approach. Essentially, the approach views the learning

problem as a filtering process. At the start, a hypothesis space is formed based on the

features provided. Then, samples are used to filter out hypotheses that do not fit the

dataset. In this process, a positive sample has much more filtering power than a negative

sample [45]. However, it is important to note that the filtering power of a negative sample

is not zero. The answer, i.e. the rule, is found when the hypothesis space has only one

hypothesis left. As a simple example, this answer can be a combination of two features

such as “fi = 1 ∧ fj = 1”. In other words, after the filtering, there is an unique answer.

The work in [45] develops a tool to check for this uniqueness property. In essence, the

tool is evaluating a coverage of the samples on the hypothesis space.

It should be noted that solving the above learning problem with few positive samples,

in essence, is the same as with no positive samples. The reason is that given a hypothesis

space H, we can use the few positive samples to filter out hypotheses in H to obtain a

new and reduced hypothesis space H ′. Then, we are left with the same learning problem

with H ′ where there is no positive sample.

Also note that for a given hypothesis space, it is possible that all hypotheses are

filtered out by the samples. In this case, the hypothesis space contains no answer and
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the “learning” fails. Such a failure can tell the user that a modification of the hypothesis

space is required. For example, a user picks an initial set of features to perform the

analysis. The tool tells the user no rule can be found. Then, the user can pick a different

set of features to search again. In such a search process, having a tool that can decide

there is no rule found, can facilitate the search. In contrast, a traditional learning tool

would always give its so-called “best” answer and the user has to verify manually if the

answer is actually meaningful in view of the task.

The above two examples illustrate a learning problem setup commonly encountered

in a task from D & T: Given a dataset with a large number of negative samples and given

a hypothesis space, determine if the hypothesis space contains the cause for a positive

sample. The problem is essentially a “space-pruning” problem. Because the goal is to

look for a cause, the problem is more of a diagnosis or debug problem (an induction)

than a traditional machine learning problem (a transdunction, see e.g., [46]).

1.2.2 Being able to answer “No Models Found”

One of the most successful results reported from our lab was the yield optimization

work documented in [47]. The work started when we were given the data to resolve a

production yield issue for a high-volume automotive SoC chip product line. The pro-

duction had been in progress for more than a year. A significant yield fluctuation was

observed, which is illustrated by the left plot in Figure 1.10. This plot is based on ap-

proximately 2000 wafers. The yield distribution is shown as a density plot where the

box shows the 25%-75% quantile spread with its mean noted by a red line. Prior to our

engagement, both the product team and the design team had worked on the problem for

many months. One design revision, multiple test revisions, and several adjustments to

the manufacturing process had been implemented to improve the yield. None of these
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attempts succeeded. We were tasked by the company to investigate if “advanced machine

learning” techniques could help discover a new solution.

Figure 1.10: Yield improvement result documented in [47].

After working on the problem for weeks, we discovered enough evidence to recommend

5 process parameters for tuning. After several meetings, the contracted foundry accepted

and implemented them as two recipe adjustments (ADJ#1 and ADJ#2). Wafers were

produced based on applying each adjustment individually, and both together. The right

plot in Figure 1.10 shows the resulting yield improvement. In each case, the average yield

increased and the fluctuation reduced, both significantly.

There were two aspects with our analytics effort [47]. The first was to search for

the process parameters to be tuned. On one end, we had a set of process parameters

whose values were measured across wafers. On the other end, we had a set of fail types

recorded across wafers. The search was about finding a correlation between a parameter

and a fail type. Note that this correlation might exist on a subset of the wafers but not

all. While the problem looked like a search problem, the solution also required us to

find a way to justify there is no correlation. Suppose we found a correlation model to

show that a process parameter p was correlated to a fail type t. In order to implement

the process change by adjusting p, we needed to show that p had no correlation to any

other fail types. This was to prevent causing more issues by fixing one issue. To ensure
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this, we needed a way to say “no correlation” existed [47]. From the high-level, this is

similar to the problem discussed above: Given a hypothesis space and the data, we want

to determine the space contains no answer with respect to the data.

Figure 1.11: Using an outlier method, input samples are assigned outlier scores, where
a threshold can be applied to decide the outliers.

The “no model found” decision problem is also observed in other applications in the

post-silicon stage. For example, in production testing, one of the most popular screening

is based on outlier analysis. Figure 1.11 depicts the outlier analysis setup.

First, a set of samples (chips) are defined. For example, this can be the chips from

the same wafer, the same wafer lot (25 wafers), or lots produced in the same week, etc.

Then, an outlier method is chosen. This method calculates an outlier score for every

sample, based on one or more test values measured on the sample. The scores allow

ranking of the samples. Finally, a threshold is chosen to separate outliers from inliers.

When developing an outlier model, these three aspects all need to be considered. These

decisions are usually based on a collection of chips where some of them are known to be

failing chips. Then, the goal is to find a model to screen all known failing chips while not

screening too many known good chips.

In some applications, the number of known failing chips is small, e.g. one. For

example, in customer return analysis [48], one customer return is given and we are asked
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Figure 1.12: Projecting a known failing part as an outlier

to find a model that projects the known failing chip as an outlier. Figure 1.12 depicts

such an example. The bottom-right picture shows the actual cause for the failure, a

picture taken by the Failure Analysis (FA) team. The plot is based on two test values

and every dot represents a chip. The known failing chip seems to be an “outlier” in this

space. Similarly, in burn-in cost reduction, one tries to learn an outlier model to screen

those chips that are likely to fail during burn-in testing [49].

Figure 1.13: Searching for an outlier model for a chip, where each branch is a possible
choice of test space defined by one or more tests.

In those applications, one is searching for an outlier model for a given chip. In this
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search, what we need is a way to say no outlier model exists that can project the chip as an

outlier. This is illustrated in Figure 1.13. Each branch in the search tree can correspond

to a choice of a test space, e.g. based on a test or a combination of tests. Then, for

example, no outlier model can mean that no outlier method with a reasonable threshold

can project the chip as an outlier in that test space. This is in essence the method

proposed in [50], which defines a notion called consistent outlier to enable making a

decision to say there is no outlier.

In the two application contexts described above, the solutions proposed include the

capability to provide a “No” answer to the search question. In the first context, given

the data, one searches for a correlation model. The solution demands the capability to

say there is no correlation model found. In the second context, one searches for an outlier

model. The solution demands the capability to say there is no outlier model found.

1.2.3 Applicability check

Figure 1.14: Initial set of wafers may not be representative for future set of wafers

As mentioned above, in production testing, one develops an outlier screening model

based on the data at hand, for example an initial set of wafers in the early production.

However, this initial set may not be representative for future sets of wafers produced.

This raises the question of how applicable a model is on the future wafers, if the model is

developed based on the early wafers. In production, many things can change over time.
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For example, the process might be improved. The test set might be optimized. These

changes can affect the characteristics seen in the test data. The work in [51] studies this

issue and proposes an applicability check method to mitigate the issue. The idea is that,

before applying a model to a dataset, applicability check would first check the dataset to

see if it is suitable for the model or not.

In a typical learning setup, we are given a dataset and asked to find the best model

based on the dataset. In view of applicability check, we are given a model and asked if

the dataset is suitable for the model. In [51], the applicability is measured by evaluating

against the assumption of the outlier method that built the model. In other words,

every learning method starts with an assumption of the underlying hypothesis space,

and applicability check should evaluate this assumption against the data.

1.3 Summary

Figure 1.15: Three important components in a ML setup

In a typical machine learning setup, there are three important components to consider,

as illustrated in Figure 1.15. There is a data generator G that provides the data. There

is an assumed hypothesis space H that contains all possible answers to fit the data.

Then, there is a learning algorithm A that finds the best answer in H. If the learning is

supervised, for every sample x, a label F (x) is also included. If we view applying ML as

a process to find the best model for the given data under a given hypothesis space (e.g.

best in terms of an accuracy measure), then it is not surprising that ML largely focuses

on the algorithm component.
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For all the D & T tasks reviewed above, it seems that all the solutions require attention

on issues related to the hypothesis spaceH and the data generatorG. For example, for the

two applications reviewed in Section 1.2.1, the solution is required to evaluate a coverage

on H. For the two applications reviewed in Section 1.2.2, in order to say no model is

found, the solution is required to exhaust the search on H. Finally, in Section 1.2.3, the

solution needs to deal with the issue where a model h found based on the current data

may not be applicable on future data. This can be seen as G being changed after h is

found. In all these tasks, it seems that the real concern is on the other two components

but the learning algorithm A.
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Chapter 2

Domain-Specific Machine Learning

“Ignorance is preferable to error, and he is less remote from the truth

who believes nothing than he who believes what is wrong.”

— Thomas Jefferson

As detailed by the last chapter, it seems applying ML in semiconductor D & T is

very different from applying general ML. In this chapter, we aim to articulate these

differences. Specifically, we aim to demonstrate unique aspects of Domain-Specific

Machine Learning (DSML) discussed in Section 1.1.

2.1 Iterative Process

As discussed in Section 1.2, all DSML tasks in the semiconductor D & T domain

involve an iterative process. This is understandable because in a company, most of the

engineering works are carried out in an iterative fashion. It is in such an iterative process

that a design is improved, a production process is optimized, a test content is finalized,

an issue is resolved, etc. In such an iterative process, one of the most valuable tools an
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engineer desires is the one that can help them achieve a closure faster. In a high-level

sense, a closure is determined if the observed data has stabilized. We use Figure 2.1 to

illustrate this point.

Figure 2.1: Three major components involved in an iterative process

Conceptually, the iterative process is involved to improve on a target which can be

the design, the production, the test set, and so on. Some characteristics of the current

target can be observed in the data collected. For example, if the target is a design, the

means for this observation can be a simulation. If the target is a production, the means

for this observation can be through some sensors on the equipment. If the target is a

test set, the observation is through the test data. An engineer analyzes the data to learn

about the characteristics. This learning leads them to take an action to improve the

target. The improved target leads to new data. The data leads to new action, and so on.

In this iterative process, when the data stabilized, i.e. from the engineer’s perspective,

nothing new can be learned, then a closure is reached.

Recall, in functional verification, an expert is modifying a set of state variables per

iteration, trying to hit a specific or more cover points compared to previous iterations.

Similarly for yield optimization, the expert is performing an iterative search for the

process parameters to be tuned. Likewise, for outlier analysis, the expert is searching for

a part’s outlier model and adjusting the comprised tests at every iteration. Generally
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speaking, these DSML tasks are trying to iteratively debug and improve the current

design and production process. These iterative improvements are across all aspects of

functional, performance, and/or cost. To state this DSML iterative improvement process

in another way, we can refer to Postulate 1 from my colleague’s thesis [52], which also

indepthly focused on DSML problems.

Postulate 1: For a domain-specific machine learning problem

involving a data generator G, the goal of learning based on a data-

set D given through G is to modify G to obtain a new data-set D′,

where D′ contains new information that is previously unknown.

In [52], Postulate 1 views an expert’s iterative improvement process as a process which

generates novel samples (i.e. “surprising” information), which is inherently unsuper-

vised. Interpreting this view, it is natural that an expert desires to see new results from

their debugging/improvement process, as this is indicative of their further understanding

towards their data and the underlying problem to be solved.

To elaborate, during this iterative improvement process, an enormous amount of data

are produced. Specifically, the data is accumulated over iterations. In view of applying

ML, the goal is to predict results in iteration i + 1 from the accumulated data at the

current iteration i. However, in view of the domain expert’s need, they are trying to

understand what happened in the data during the current iteration i, to guide them to

new data points (i.e. new information) in the next iteration i + 1. In a sense, the expert

is performing a search in this “improvement” search space, where they aim to explore a

new region of the search space during every iteration. Consequently, in every iteration,

they desire to establish the next search region for their i + 1 iteration.

Following the essence of Postulate 1, we can refer back to the three main components

in a ML setup depicted by Figure 1.15. In a general ML setup, it is presumed the
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sample generator G and hypothesis space H are fixed, where the focus is on the learning

algorithm A finding a hypothesis h. However, as discussed in Section 1.3, when applying

DSML, during every iteration, the expert desires to actively modify G and H (i.e. current

search region) based on the results, to obtain potentially new G′ and a new H ′ (i.e. new

search region) for establishing their next iteration. In this sense, DSML is trying to

achieve a goal that is fundamentally different from general ML. In DSML, the value is in

attaining the new G′ and/or new H ′. In general ML, the value is in accurately modeling

G with a given H.

2.2 Embracing Local No-Free-Lunch in DSML

This DSML phenomenon of being unpredictable is described as a new notion called

Local No-Free-Lunch from the related thesis [52], where “local” is referring to the scope

of iteration i to i + 1. To give more context, the No-Free-Lunch theorem [53] “state[s]

that any two optimization algorithms are equivalent when their performance is averaged

across all possible problems” [54]. Essentially, this theorem implies that given a learning

algorithm A, when considering all instances of problems, A does not perform better than

random. In view of Figure 1.15, when applying general ML, if G and H are fixed, then

we do not know if No-Free-Lunch will strictly apply for learning algorithm A. However,

in an iterative DSML context, when G and H can change per iteration, we approach the

definition of No-Free-Lunch between iterations, thus the name “Local No-Free-Lunch”.

In view of this Local No-Free-Lunch phenomenon in DSML, if we look back at the

works discussed in Section 1.2, it is natural that they focused on developing capabilities

to facilitate the domain experts’ iterative search, as opposed to focusing on developing

better models to predict future data with current samples.

In other words, an implication of Local No-Free-Lunch is that, for DSML contexts, the

27



Domain-Specific Machine Learning Chapter 2

learning algorithm A should not make final decisions for the experts. As these decisions

could be anti-synergistic towards the experts ultimate goal, to better understand how to

modify both G and H. Instead, especially with the enormous amount of data involved,

DSML tools should focus on how to summarize the data from the current iteration i, to

assist the expert’s decision making towards establishing i + 1. In fact, Section 1.2 had

already discussed some capabilities required by such a DSML data summarization tool.

Below are the list of these requirements, where the newly introduced fourth capability

will be discussed extensively in later chapters.

1. The capability to evaluate coverage of the samples on the hypothesis space

2. The capability to perform an exhaustive search of a user-defined hypothesis space

to get a “no models found”.

3. The capability to evaluate a given model’s applicability for the current data.

4. The capability to perform an unsupervised sample-based analysis.

In essence, when developing DSML tools, we need to consider the data generator

G and assumed hypothesis space H, where they both can be dynamic. The first three

requirements above resonate with this theme. In contrast, general ML is more focused

on optimizing the learning algorithms. In this sense, when developing a DSML solution,

we need to focus on aspects which are complementary to general ML, or simply Co-ML.

The four capabilities listed above are examples for the problems considered in Co-ML.

However, even though the focus is different from a traditional ML algorithm, existing

ML techniques might still be useful to implement a Co-ML approach.

In this thesis, our application of focus is theWafer Map Pattern Recognition (WMPR)

problem. It is in this application context we observe the need for the fourth capability

listed above. To attain this capability, ML techniques are utilized. The capability calls
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for the ability to analyze data at a sample-to-sample unsupervised fashion (explained in

later chapters). In the later chapters, we will introduce and detail the WMPR problem.

Additionally, using the WMPR problem as a DSML application context, we will discuss

intuitions and implementations of our DSML data summarization tools.

2.3 Existing Workflow

Note that DSML applied to D & T usually aims for an existing task context. In a

company, this task is accomplished with an existing workflow or methodology which can

be quite manual. However, because the existence of such a workflow, it is important to

keep in mind that a DSML solution can only receive wide adoption if it provides a clear

added value in view of the current workflow. Therefore, a second postulate for DSML

can be included to emphasize this baseline for considering the added value [52].

Postulate 2: For a domain-specific machine learning problem,

there exists a non-machine-learning approach for solving the same

learning problem. Consequently, failure to solve the problem with

a machine learning approach is not catastrophic.

Postulate 2 states that DSML is not necessary for performing the target task. Because

DSML is not necessary, its added value then needs to be justified. For example, if DSML

produces a piece of information from the data that is already well known to the user,

then this result has no value. In contrast, if the information presents a surprise, then

it is valuable. In this sense, DSML might be seen as learning to surprise its user. This

“surpise” aspect needs to be taken into account in our data summarization view of DSML,

i.e. data which tend to be more valuable to the user should be presented first.

Postulate 2 can have another implication. As a DSML technology provider, we aim
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to provide a DSML software system to be used in performing a target task. However, we

cannot assume we would know all the detail regarding the existing workflow or have direct

access to all the data sources internal to the company. This is because such detail and

data source access might be confidential. In this regard, we can get certain functionality

requirements to facilitate the development of the DSML solution, but it would be very

hard for a DSML technology provider to invent a new workflow intended to replace the

existing one. This is a crucial limitation to consider. The consequence is that, we need

to identify places in an existing workflow where DSML can provide added value. If such

a place does not exist, then DSML is not suitable for the particular task context.
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Chapter 3

The Principle of Parsimony

“The first principle is that you must not fool yourself and you are the

easiest person to fool.”

— Richard P. Feynman

For all the DSML problems discussed before, we can view the essence of the problem

as playing a guessing game. Figure 3.1 depicts this view.

Figure 3.1: DSML problem as a guessing game

In the figure, the “dark entity” represents the target we try to improve on. There is

a “true answer” associated with the dark entity. Observable evidences are revealed to

the learner about this true answer. The job of the learner is to guess correctly what the

answer is.
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In this picture, the learner can simply be an engineer. The engineer does possess

some “domain knowledge” regarding the dark entity. The domain knowledge helps the

engineer in playing the game. If we replace the leaner entirely with a machine, this is one

way to see what “applying ML” means. In this chapter, we will discuss the challenges

associated with taking this view.

3.1 Occam’s Razor in ML

We can look at how the guessing game can be played with a traditional ML approach.

To play the game, the learner starts with an assumption of a hypothesis space containing

all possible answers. Note that the number of the answers can be infinite or even not enu-

merable, depending on the assumption. Regardless of what kind of assumed hypothesis

space, the important aspect is that, there is such an assumption.

It is also important to emphasize that here we really refer to the effective hypothesis

space in view of the three components depicted in Figure 2.1 before. The point is that,

even a hypothesis space contains an answer h, if the complexity for reaching this answer

h is too high for a learning algorithm to pick the answer, then effectively this answer

does not exist in the hypothesis space. Hence, an effective hypothesis space depends on

the learning algorithm.

With a hypothesis space, we can essentially look at learning as following two steps:

(1) The first step is to use the data samples to filter out all inconsistent answers. (2)

For all the remaining hypotheses, find the simplest one as our answer. This means that

a ML algorithm usually tries to minimize the objective with a form like the following:

(Fitting Error) + α(Model Complexity) (3.1)
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For example, if our aim is to filter out all inconsistent hypotheses, then we require the

fitting error to be zero. Under that objective, we also minimize the model complexity in

our answer, i.e. picking the simplest one. In an actual implementation, tradeoff between

these two objectives is controlled by a user-defined parameter called α.

Figure 3.2: Learning as “filtering” + Occam’s razor

Figure 3.2 illustrates in essence what the learning intends to do. Of course, in a

practical implement when an objective function like equation (3.1) is employed, it is not

exactly doing what is shown in the figure. However, conceptually we can still use the

picture to illustrate its fundamental issues.

3.2 Occam’s Razor in Learning

Occam’s razor, in many scientific fields is also known as the Principle of Parsimony.

Occam’s razor states “Entities should not be multiplied unnecessarily” [55]. From the

surface, it seems that the Occam’s Razor is saying that “the simplest answer is the

best”. This idea is certainly behind the thinking depicted in Figure 3.2 above. It should

be noted that this thinking essentially treats Occam’s Razor as the first principle in

learning. When two answers both can fit the data, the principle gives preference to the

simpler one without the need of a justification.

However, Occam’s Razor does not need to be taken as a first principle. It can be

justified in view of Bayesian inference. In this view, we are given two hypothesis space
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H1 and H2 and are asked to decide which hypothesis space is more likely based on

the given data D. Using Bayes’ theorem, we can evaluate the probabilities of the two

hypotheses by considering their probability ratio as the following:

P (H1∣D)

P (H2∣D)
=
P (H1)

P (H2)

P (D∣H1)

P (D∣H2)
(3.2)

Note that P (H1) and P (H2) are our prior probability assumption toward the two

hypothesis spaces. Assuming they are equal, then the comparison is based on the two

posterior probabilities, P (D∣H1) and P (D∣H2). Assuming that in each of the hypothesis

spaces, there is exactly one hypothesis that fits the data. Further assume that H1 is

simpler than H2, which can be characterized in their “size”. For example, we have

∣H1∣ = N1 and ∣H2∣ = N2 where N1 < N2. Then, simply we have P (D∣H1) =
1
N1

and

P (D∣H2) =
1
N2

, where 1
N1
> 1

N2
. In other words, the answer from simpler hypothesis space

is more likely to be the answer.

Figure 3.3: Normalized probability distribution of models H1 & H2 on dataset D.
Figure adopted from [56].

This concept can be illustrated in Figure 3.3, where the normalized probability dis-

tributions of predictions on D by H1 and H2 are visualized. H2 is a more complex (i.e.

has more free parameters) model than H1, thus it can make predictions that are spread
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out across the space of data samples D. Whereas H1 is a less powerful model, which

results in predictions that are concentrated around the evidence provided by the data.

If the dataset to be predicted falls in the range indicated by c1, then the simpler H1 will

be a more probable model as it makes stronger predictions compared to H2.

In view of Bayesian inference, Occam’s Razor makes sense. However, in this view,

Occam’s Razor is used to pick a hypothesis space rather than to pick an answer from a

fixed hypothesis space. In DSML, it seems that taking the Bayesian inference view to

interpret Occam’s Razor is more appropriate. This is because, as mentioned before in

view of the three components Figure 1.15, DSML is more about concerns on the hypoth-

esis space assumption and the data generation, and less about the learning algorithm.

If our focus was on the algorithm (with a fixed hypothesis space assumption to begin

with), then taking Occam’s Razor as the first principle facilitates implementation of the

algorithm, i.e. equation (3.1). However, if our goal is to search for a hypothesis space

assumption, then Occan’s Razor should not be taken as the first principle. It becomes a

principle justified by Bayesian inference.

3.3 Local No-Free-Lunch

As discussed in 2.2, from one iteration to the next, DSML is facing a local No-Free-

Lunch problem. In the following, we will use a simple example to illustrate that if

Occam’s Razor is taken as the first principle, it cannot help solve the problem.

For the two learning contexts discussed in Section 1.2.1, we can consider the learning

as solving a Monomial Learning problem. In essence, we are given a set of feature

f1, . . . , fn which are Boolean variables. From the data we are interested in learning what

the underlying cause is, represented as a monomial based on the feature variables, i.e. a

combination of features.
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As a simple example, suppose we are given a dataset with three feature f1, f2, and

f3 which looks like the following:

f1 f2 f3 label
1 1 1 1
1 0 1 1

Table 3.1: An example dataset for learning a monomial

The dataset implies three possible answers: f1, f3, and f1f3. Without further data,

we would not know which one is the cause. For example, if we get to see one future

sample as depicted in the left in Table 3.2, then we know that the answer must include

f1. However, at this point we still do not know if the answer is f1 or f1f3.

Answer includes f1
f1 f2 f3 label
1 1 1 1
1 0 1 1
0 0 1 0

Answer is f1f3
f1 f2 f3 label
1 1 1 1
1 0 1 1
0 0 1 0
1 0 0 0

Table 3.2: Future samples reveal the true answer

The true answer is revealed only we see an additional sample as depicted in the right

in Table 3.2. At this point, we know the answer is f1f3.

The local No-Free-Lunch situation takes place when we are in Table 3.1 and in the

left of Table 3.2. In the first case, we are left with three possible answers. In this case,

even applying Occam’s Razor as the first principle would not save us because we still

would not know how to choose between f1 and f3. In the second case, applying Occam’s

Razor as the first principle would provide us with a clear choice. We would choose f1 as

the answer because it is the simpler one between the two choices. However, there is no

justification for the answer other than we believe in the Occam’s Razor principle. In fact,

when we see the last sample in the right of Table 3.2, we would realize that this belief
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was misleading. The simple example illustrates the risk of treating Occam’s Razor as the

first principle in DSML. One may argue that providing f1 before seeing the true answer

can still offer “half” the value to the user. However, as a DSML technology provider

we would not really know this, because how the user perceives and utilizes the answer

depends on the task’s context and user’s domain knowledge.

3.4 Occam’s Razor in DSML

The above discussion explains the risk of taking Occam’s Razor as the first principle

in DSML. The implication is that, in DSML we would not apply Occam’s Razor to pick

an answer for the user when multiple answers (from a hypothesis space) are all suitable

for explaining the data. In other words, we would reserve from make a decision for the

user when such a decision is not completely justifiable from the data.

On the other hand, Occam’s Razor can still be a guided principle to select in between

hypothesis space assumptions, where the selection is justifiable in view of Bayesian infer-

ence. Practically though, this is hard to implement. To realize such a scheme, we require

the user, as a starting point, to provide a set of hypothesis space assumptions where they

can be somehow ranked according to some complexity measure. This can put too much

burden on the user. However, with this thinking, it seems that the underlying problem

is actually in obtaining a manageable set of initial assumptions. As a DSML software

provider, it seems that we would like to provide a software system to facilitate attaining a

manageable set of assumptions for the user. Then, the user can pick an hypothesis space

assumption that is more suitable in view of their perspective driven by their domain

knowledge. In the rest of the thesis, we will present a sequence of works leading to the

realization of such a software system.
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Law of the Instrument

“Do not try bending the spoon. That is not possible. Only try to realize

the truth: There is no spoon. Then you will see. It is not the spoon that

is bending. It’s only yourself.”

— The Matrix, 1999

To recap, the previous chapters have laid down key considerations for developing a

DSML solution. It is important to recognize that in view of Local No-Free-Lunch and the

lack of sufficient domain knowledge from the perspective of a DSML technology provider,

we should not try to apply ML aiming to build a model that makes decisions for the user.

Instead, the solution should aim to facilitate the user to make those decisions themselves.

In other words, the solution should play the role of an assistant to the user rather than

a decision maker (to replace them).

In this chapter, we will be providing a concrete example to illustrate the key consid-

erations in DSML. For the remainder of this thesis, we will be using the Wafer Map

Pattern Recognition (WMPR) problem as our DSML application context.

Before we dive into the WMPR problem, as the title of this chapter suggests, there
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is an interesting phenomenon to be discussed, known as the Law of the Instrument. To

quote the American psychologist Abraham Maslow in 1966, ”I suppose it is tempting, if

the only tool you have is a hammer, to treat everything as if it were a nail.” [57]. Simply

put, Law of the Instrument is a cognitive bias where when we discover a new tool or

acquire a new skill, we tend to see opportunities to use it as much as we can. Sometimes,

we could be biased by our desire to utilize the new tool/skill and overlook if it is actually

suitable for a given scenario. In a sense, this is not surprising, as everyone would want

to formulate their problems in ways that leverage their well-developed techniques.

With the success of general ML techniques, this phenomenon is also prevalent in the

WMPR problem. Although we have already defined many aspects of DSML which do

not align with general ML, courtesy of Law of the Instrument, it is not surprising that

many works had tried to apply general ML techniques in the context of WMPR. In the

following sections, we will introduce the WMPR problem and review these works.

4.1 Wafer Map Pattern Recognition

In the semiconductor testing process, each die gets tested across multiple stages,

under various conditions, such as temperature. A wafer map is a composite image of

these tested dies, usually visualizing the test results of dies from the same wafer. Each

die location on the image is marked with a value, such as a binary value indicating

pass/fail, or a numerical value indicating a parametric measurement.

Analysis of wafer maps is commonly practiced for investigating potential yield issues,

as visual patterns can shed probable insights to problematic manufacturing equipment.

Specifically, when presented with the visual failure patterns, experienced process engi-

neers can identify the cause of such failures. Due to the extremely large scale production

and the increasingly more complex technology nodes, it is desirable to automate the anal-
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ysis of wafer maps. It should be noted that the need to automate WMPR originally came

from semiconductor manufacturers. In the past, yield was an issue largely concerned by

the manufacturers. If there was a yield issue, the responsibility largely fell on the man-

ufacturers to fix it. A fabless company only needed to report the issue, which could be

simply based on observing the yield. In recent years, fabless companies became more

interested in WMPR because they would like to pursue more effective communications

with the manufacturers. In other words, fabless companies can help improve the yield

more effectively if they can feedback more insightful yield information.

Figure 4.1: Wafer map examples from the 8 labeled classes in the WM-811K dataset.
Yellow dots indicate failed dies.

With the goal to automate WMPR, in 2015, the authors in [58] developed and pub-

lished a comprehensive wafer map dataset called WM-811K. As its name suggests, this

dataset contains 811,457 binary pass/fail wafer maps fabricated by TSMC, where 172,950

of these were labeled into 9 classes. Figure 4.1 illustrates the 8 pattern classes (where

yellow dots indicate failed dies). In addition, the 9th class is the “None” class, used to

denote wafer maps containing no patterns.

Following the publication of this dataset, many ML focused works emerged, where

they could be categorized into two common ML paradigms. As shown in Figure 4.2,

in the Traditional ML paradigm, feature extraction is performed by the expert, where

40



Law of the Instrument Chapter 4

Figure 4.2: Traditional ML approach versus Deep Learning approach for wafer map
pattern recognition.

the ML portion stresses on the model building aspect. In the Deep Learning paradigm,

neural networks, e.g. CNNs, are used to perform automatic feature extraction, as part

of the end-to-end classification model.

4.2 Traditional Machine Learning

Accompanying the release of their WM-811K dataset, the authors in [58] developed

a methodology for wafer map pattern recognition and similarity ranking. The work

employed several types of expertly-crafted wafer map features, including features based

on Radon transform [59] and geometric properties of failure patterns (e.g. failing die

counts, region labeling, line detection, etc.). Then, these expertly-crafted features were

fed into SVM [17] for the model building step. This work reported an overall 94.63%

accuracy on the labeled dataset, compared to the deep learning approach at the time

which achieved 89.64% accuracy.

Similarly, the work in [60] followed the same methodology approach as above, but

with a slightly different feature set, aimed at improving multi-pattern detection accu-

racy. Another work in [61] advocated using more discriminant features based on Linear

Discriminant Analysis (LDA) to simplify the model building step. With Radon transform
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based features, the work in [62] proposed a special Decision Tree based ensemble learning

method, as Decision Tree models are generally more interpretable than SVM models.

4.3 Deep Learning

The work in [63] transitions into the deep learning view, where they proposed using an

Autoencoder (AE) [64] as a pre-training step to learn features before leaning a classifier.

However, the authors found that expertly-crafted features were still needed, thus these

feature vectors were fed into the AE, as opposed to the wafer map images themselves.

Later in work [65], the authors proposed a 2-stage classification process: first to classify

between having a pattern and having no pattern (i.e. “None” in the WM-811K dataset).

If there is a pattern, then proceed with the classification and output one of the 8 pattern

classes. Both authors of [63] and [65] acknowledged that the wafer map images were

noisy and a de-noising step was required to make the learning work.

With the aim of addressing the extreme imbalanced between classes in the WM-811K

dataset, the work in [66] & [67] proposed special data augmentation methods based on

Generative Adversarial Networks (GANs) [31] and Autoencoders respectively. Moreover,

the authors in [67] found that augmenting samples with rotation could help the data

enhancement effort. In contrast, the authors in [68] did not rely on NNs to augment

data samples, instead they used pre-determined methods and applied a deeper CNN for

training the classifier.

The authors in [69] approached the WM-811K dataset from a different angle. They

tried to address the concern that a wafer map to be predicted might contain a new pattern

not seen in the training dataset, which includes multi-pattern failures. As a result, the

classifier’s prediction might not be reliable. The work proposed using Selective Learning

to estimate confidence of a prediction. Then, the deep learning model could include the
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choice to abstain from making a prediction.

4.4 Issues

The WM-811K dataset is valuable from an academic research point of view. It enables

many studies of various modern ML techniques and their applicability to the dataset.

However, as discussed previously, the core issues in DSML are not in the learning algo-

rithm, but in other components in a learning setup. In this section, we illustrates what

those issues are. Consider how WMPR is solved in all the prior works. They essentially

follow a flow like the following:

1. Define a set of pattern classes.

2. Collect a set of training samples and a set of test samples.

3. Search for the best multi-class classifier.

4. Determine if the accuracy is acceptable for deploying the classifier.

First of all, step 1 takes the position that solving the WMPR problem should start

with a definition of the pattern classes, e.g. there are 8 classes of patterns instead of 12

classes. This is a strong assumption to begin with, assuming that someone has the full

knowledge about what is happening in the manufacturing process and what will happen

in the future. This someone therefore has the knowledge to provide a good definition of

the classes.

Then, step 2 takes the position that enough samples can be collected to enable training

a sufficiently good multi-class classifier. This means perhaps that they are not aiming at

applications in the early stages of a production. Although, in practice, it is in the early

stages where the yield is the top concern.
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If one accepts the first two positions, then the next step is to search for the best

classifier. The assumption here is that the test set can provide a reliable assessment of

the goodness of a classifier, in view of its actual application in a production. This raises

the question on the quality of the test set.

The last step assumes that a domain expert would know how to judge a classifier’s

accuracy value in terms of its acceptance for deployment. For example, such an ex-

pert understands what 97% accuracy means and would consider this number enough for

deployment.

As seen, treating WMPR as solving a multi-class classification problem can raise many

concerns to its practicality. In fact, in the WM-811K dataset, we can demonstrate such a

concern, where there are samples whose labels are quite questionable. This is illustrated

in Figure 4.3. The label ambiguity is exhibited in three pairs of samples where each pair

of samples have a similar pattern but are labeled differently.

Figure 4.3: 3 example pairs of ambiguously labeled samples from the WM-811K dataset.

Figure 4.4 illustrates another issue with the labeling. Each of the three wafer maps

has a pattern that is somewhat unique, comparing to other wafer maps in the same class.

Hence, if they are not included in the training set but in the test test, a classifier is likely

to misclassify them. These examples show that one can assign the same label to two

wafer maps, but that does not mean these two wafer maps must have a similar pattern.

The assignment is inherently subjective. For example, two engineers can disagree on the

label for a given wafer.
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Figure 4.4: 3 examples of unique pattern

4.5 A DSML View

If we consider a scenario where WMPR is utilized in the early phase of a production,

then we cannot assume that (1) there is enough data to train a classifier, and (2) we

have seen all possible patterns. If we take a step back, then determining a classification

of the patterns is part of the problem. In other words, given a sequence of wafer maps

w1, . . . ,wn, our first goal should be to determine how many classes of patterns are in this

sequence of wafer maps.

It is important to also realize that there might not be a golden answer to this definition

of classes. Different engineers might consider different definitions in their favor. Even for

the same engineer, the perception to this golden definition might change over time, after

learning more about the production process.

Instead of a traditional flow to see the WMPR problem as shown in the previous

section, in view of DSML, we can list a set of different requirements as the following:

1. Defining a set of pattern classes is part of the WMPR problem.

2. There is no golden answer to the definition.

3. If two sets of classes are presented to a user as two options, the user can judge

which is the preferred one.

The first requirement essentially treats WMPR as an unsupervised learning problem.

The second requirement says the problem cannot be seen as an optimization problem
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— there is no well-defined optimization objective. The third requirement puts the final

decision of a classification definition at the hand of the user. In other words, a DSML

solution can present different options for the user to choose. If these options are presented

in an easy way for the user to see (e.g. in a single screen), then it should not be too hard

for the user to make a decision to choose the best definition.

Without a well-defined optimization objective, we need to state an end goal for the

DSML solution to satisfy. We can assume two such goals in view of an iterative learning

process. In each iteration, a batch of wafers are given. An engineer aims to attain the

answers for two questions as their end goals:

1. Is there a pattern that represents a potential yield issue?

2. If yes, is the pattern new or has it occurred previously?

It is important to note that, a DSML solution cannot provide a definite answer to the

first question if the pattern is new. This is because determining whether a new pattern

represents a potential yield issue or not, can require domain knowledge beyond what is

learnable from the data. Hence, only the user can make the final call to the question.

Although, a DSML solution can provide recommendations.

Regarding the second question, it is essentially a similar-pattern search problem.

However, the challenge here can be that we are given only one wafer map to search on,

and in the previous iterations, the pattern appeared only on one wafer map. In this

worst-case scenario, we are required to enable the search based on only one given sample.

4.6 The No-Pattern Class

Suppose we have a way to build a recognizer R for a given pattern P . There is a

subtlety in what we are asking R to do. In one case, R would take a wafer map w, where
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we know w contains a pattern, and determine if w’s pattern is of type R. In the other

case, R would take a wafer map w and determine whether w has a pattern. Then, if w

has a pattern, whether the pattern is of type R. Building a recognizer in the second case

is obviously harder.

Indeed, in an actual production, there can be many wafer maps without a pattern of

interest. They should be put into a “no pattern” class. This class is special. In view of

image classification, this is almost saying that we should have a class where the image

is not classifiable (e.g. because there is no interesting object in the image). This means

that WMPR includes not only the traditional classification aspect but also the aspect of

“no classification needed”. This is analogous to the application contexts discussed above

where DSML is required to include the capability to say “no model found”. For example,

it would be ideal when a DSML solution is asked to learn a recognizer for a given wafer

map that has no pattern, the DSML solution can decide that there is no pattern to be

learned on and output “no model found”.

In fact, the no-pattern class is well represented in the WM-811K dataset. For example,

Table 4.1 shows the sample count and percentages of each labeled class for these 23,802

wafers from the largest 2 wafer sizes in the dataset. As seen, more than 95% of the wafer

maps are labeled as no-pattern, i.e. the “None” class.

Center Donut Edge-L Edge-R Loc N-Full Random Scratch None
81 10 402 9 345 16 28 76 22115

0.351% 0.043% 1.742% 0.039% 1.495% 0.069% 0.121% 0.329% 95.811%

Table 4.1: Labeled wafer maps distribution from the WM-811K dataset (2 largest
wafer map sizes).

Prior works reviewed above treated the no-pattern class effectively as another class.

With this view, they took the problem as a dataset imbalance problem. Then, the

motivation to employ data augmentation in some prior works reviewed in Section 4.3
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becomes understandable. It is important, though, to recognize that doing so assumes that

classification into no-pattern is the same problem as classification into various patterns.

This assumption is not justified in any of the prior works.

4.7 Summary

In this chapter, we use WMPR as an example application context to illustrate the

differences between taking a ML view to the problem and taking a DSML view to the

problem. We review those prior works following a traditional ML approach as well as a

deep learning approach. We bring up Law of the Instrument in the review, not to devalue

the prior works, but to emphasize other practical considerations overlooked in the past

research. Those considerations are important for developing a useful DSML solution. We

emphasize the risk of being biased by Law of the Instrument because in the industry, it is

often tempting to consider DSML as simply “applying existing ML techniques to analyze

domain-specific data”. This simple view can often lead to quick result, but rarely to a

practical DSML solution. This is because a practical DSML solution needs to address

issues other than the learning algorithm component in Figure 1.15. As it will be shown

later, after considering all the requirements listed previously in Section 4.5, we eventually

reached a conclusion that no existing ML technique is suitable to meet our needs, thus

we had to develop a novel learning technique to enable a practical DSML solution.
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Chapter 5

Structural Risk Minimization

“In so far as a scientific statement speaks about reality, it must be falsifi-

able; and in so far as it is not falsifiable, it does not speak about reality.”

— Karl Popper

In Chapter 3, we discuss Occam’s Razor which is commonly taken as the first principle

in an ML algorithm. In DSML, the concern is less about the ML algorithm, but more

about searching for a hypothesis space assumption in view of a data generator that can

change from one iteration to the next in an iterative process. When our focus is on the

hypothesis space assumption, Occam’s Razor can be a principle justified by Bayesian

inference. However, while conceptually Occam’s Razor still makes sense, practically it

can be challenging to implement this principle for the search. This is because the starting

point asks for a set of hypothesis space assumptions. In DSML, these assumptions need

to be made explicit so that the evaluation result can be understandable by a user in order

for them to take an action (see Figure 2.1).

In this chapter, we will use WMPR as the application example again to illustrate the

problem of searching for a hypothesis space assumption. In particular, we will exam-
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ple the idea of Structural Risk Minimization (SRM) [17] which is a theoretical scheme

developed to optimize the process of learning a model. SRM was introduced in a 1974

paper by Vladimir Vapnik and Alexey Chervonenkis (VC). Associated with the scheme

is the concept called VC Dimension which is used as a measure for the complexity of

a hypothesis space assumption. The SRM scheme can be interpreted as following the

Occam’s razor principle under certain assumptions.

First, SRM states that there exists a “structure” of smallest (i.e. simplest) to largest

(i.e. most complex) hypothesis space for a class of fitting functions (e.g. polynomial

functions). This statement required a measure of modeling complexity for a function,

which was also developed by the same authors, known as VC Dimension. Second, SRM

states that there exists a way to homogeneously grow from a smaller hypothesis space to

the largest one (e.g. increasing the degree of polynomial functions), where each smaller

space is a subset of a bigger space. In other words, the subset hypothesis space has a

smaller VC Dimension compared to its immediate larger space. Under these assumptions,

a linearly search can be performed to find a first-fit (i.e. simplest & fitting) hypothesis

starting from the smallest hypothesis space, extending the search to increasing more

complex ones as needed.

Figure 5.1 demonstrates the learning setup proposed by SRM. In the figure, S1 is the

simplest hypothesis space, where it can produce a hypothesis h1 such that the empirical

risk (i.e. error on the training data) is high, thus is considered “underfitting”. In contrast,

SN is a more complex hypothesis space, where it can produce a hypothesis hn such that

the empirical risk is very low but the complexity of hn is very high, thus it is considered

“overfitting”. The ideal “fitting” hypothesis space, ST , can produce a hypothesis ht

such that the generalization error is the lowest. By following SRM’s hypothesis spaces

structure, this ensures the arrival of an effective hypothesis space, ST , the first time when

enough samples are seen. In summary, the SRM principle follows Occam’s razor for a
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Figure 5.1: A visualization of the homogeneously growing hypothesis space proposed
by SRM. Illustration adopted from [70].

class of fitting functions (i.e. a definition of a set of hypothesis spaces) by stressing the

importance of selecting models from a structure of increasing complexity.

5.1 Applying SRM in ML

Although SRM provides an outline of how to performing model selection for better

generalization, it is difficult to implement strictly in practice. For most practical methods

using nonlinear approximating functions, such as various types of neural networks, calcu-

lating the VC Dimension analytically or estimating the effective VC Dimension are both

difficult. Thus, it can be difficult to explicitly define and search the structure of increas-

ingly complex hypothesis spaces. Instead, for practical model selection, a mixture of two

objectives, the fitting error and the model complexity, are minimized together, as previ-

ously illustrated in equation (3.1). For example, given free model parameters p1, . . . , pn,

the complexity measure of the model can be formulated as the L2 norm ∑
n
i=1(pi)

2.
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The strategy is commonly employed in supervised training, such as training a neural

network (NN). First, it is assumed that the NN’s capacity (e.g. number of trainable

parameters) is proportional to the complexity of the hypothesis space. To ensure a large

enough formulation of hypotheses, a NN is usually specified with the highest capacity

you can afford in terms of training. Then using large amounts of training samples,

gradient-based optimizers adjust the NN’s parameters to assign a fitting model. As a

co-objective, a complexity measure (e.g. L2 Norm of weights) for the current NN is

used to guide (i.e. regularize) the model selection process to encourage smaller “effective

capacity” (e.g. non-zero weights) models. In this example, the fitting error captures

the differences between training labels and predictions, the complexity measure is the

estimated complexity of the NN model based on its current trainable parameters, and α

in equation (3.1) is the coefficient to control the extent of regularization.

5.2 Unsupervised Learning in WMPR

In general, the training objective in equation (3.1) can be used for all learning tasks

when there is a suitable way to define and calculate the fitting error. When the definition

of fitting error is not certain, this uncertainty presents another level of challenge for

implementing SRM.

For the WMPR problem, the learning objectives are inherently unsupervised, as ex-

plained in Section 4 where several requirements are stated for solving the problem in view

of DSML. The first requirement for a DSML solution is to have the ability that helps a

user discover a set of pattern classes in a given batch of wafer maps.

Consider a scenario where N wafer maps are given. A naive way to think about the

complexity of a hypothesis space is to use the number of classes to define the complexity.

For example, without doing anything, every wafer map is in its own class. Hence, we
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have N classes. Similarly, without doing everything, we can say all wafer maps are in

the same class, leading to only one class. A tool can be designed to ask a user to supply

a pre-defined number of classes k and the algorithm finds what it thinks is the best

partitioning of wafer maps to fit the k-class assumption. This is the idea behind the

popular k-means clustering. This clustering is largely criticised by practitioners because

it is not easy to choose the right k. Often, a practitioner tries a few selections of k and

find none of the results as desirable. Then, the practitioner gets stuck.

Other more sophisticated algorithms try to improve k-means by removing the need to

ask the user to choose k in advance (by replacing it with some other parameter such as

choosing the minimal number of samples in a cluster, etc. which might be more intuitive

for a user to decide). In view of DSML, this does not solve the problem. The issue is

that, if a clustering result is not desirable to a user, when facing a more complicated

algorithm, it would be harder for the user to know how to fix it.

5.3 Lower-Bound and Upper-Bound Clustering

Ideally, we would like to adopt SRM in our clustering approach to meet the first

requirement in our DSML solution for WMPR. Because we have to ensure the clustering

result makes sense to the user, we have to make the clustering process transparent to the

user. Because whether the result makes sense to the user or not depends on the user’s

subjective perspective, we have to find a way to take that perspective into account. While

accomplishing all these goals, we also must have a solution that is easy to use and provides

added value to the user. With all these considerations from a DSML perspective in mind,

we then need to articulate the requirements for the underlying learning algorithm.

Given N wafer maps, as mentioned above, the two extreme partitions are treating

them as N classes and treating them as one class. We can call the first as a lower-bound
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clustering and the second as a upper-bound clustering. It is trivial to say the user desires

a clustering that is between these two. And if our DSML solution does not do anything

further (other than just presenting the wafer maps to the user), we are basically asking

the user to find the clusters themselves. While this thinking is trivial, it can be taken as

our starting point to further think about what we want our DSML solution to do.

Suppose we have an algorithm L to determine that given two wafer maps, they must

belong to the same pattern class and it is very unlikely for a user to argue about this

decision. Then, we can apply L to improve our lower-bound clustering. Similarly, suppose

have an algorithm U to determine that given two wafer maps, they cannot be in the same

pattern class and it is very unlikely for a user to argue about that decision. Then, we can

apply U to improve our upper-bound clustering. Finally, suppose we have an algorithm

F that can identify wafer maps and determine that they have no pattern. Similarly,

it is very unlikely for a user to argue about those decisions. Then, we can simplify

the clustering problem up front. With these three algorithms, we can have a DSML

solution that dramatically reduces the complexity of the search for an acceptable pattern

classification. Once the search space is largely reduced, the solution can present the

result and make recommendation in a summary window to a user. The user then can

decide what the final pattern classification should be.

5.4 In View Of SRM

The strategy to find a better lower-bound and a better upper-bound clustering can

be viewed from the SRM perspective. In view of SRM, there is a target hypothesis space

whose complexity is the smallest that can perfectly fit the data. As mentioned before,

in WMPR we do not know what this “perfectly fit” means for a learning algorithm. We

only know that it means “perfectly fit from a user’s perspective”. Hence, we cannot use
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an algorithm to find the target hypothesis space. This target hypothesis space remains

in the user’s mind, and our goal for the DSML solution is to help the user to articulate

it. In this articulation process, the solution can help to make it easier for the user, i.e.

by reducing the search space. In a sense, the solution enables the user to approximate

an SRM-driven learning by themselves. Figure 5.1 illustrates this “Approximate-SRM”

thinking by showing 3 hypothesis spaces, the lower-bound hypothesis space SL, the target

hypothesis space ST , and the upper-bound hypothesis space SU .

Figure 5.2: Approximating SRM learning by defining a lower-bound and upper-bound
hypothesis space, facilitating an expert’s decision of a target hypothesis space.

Behaving similarly to the example hypothesis space S1 shown in Figure 5.1, our goal

is to provide a lower-bound SL. SL is considered as a lower-bound because no two wafer

maps that have been put into the same pattern class will be separated in future analysis

by the DSML solution. In this lower-bound space, the pattern classes on many wafer

maps can still be undecided. That is why it is a hypothesis space with many possible

answers. Itself is not an answer.

Similarly, SU is considered as a upper-bound because no two wafer maps that have

not been put into the same pattern class shall be in the same class in future analysis by
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the DSML solution. In this upper-bound space, the pattern classes on many wafer maps

can still be changed, i.e. a wafer map can be removed from a class. That is why it is a

hypothesis space with many possible answers. Itself is not an answer.

The target ST stays in between SL and SU . Unlike SRM which relies a learning

algorithm to decide ST , in DSML, this decision should ultimately be left to the user. In

this search, the role of DSML is to assist the user and not to make a final decision for

them.

As summarized by Figure 5.2, by following the specified 3 hypothesis spaces structure,

we can aim to enable SRM-like learning for a user. The structure above enables a user

to reach a pattern class definition that is understandable and acceptable to them. To

implement such a search scheme, we need novel methods to attain four capabilities in

our DSML solution:

1. The capability to obtain a lower-bound model

2. The capability to obtain an upper-bound model

3. The capability to facilitate the search for the target model

4. The capability to filter out wafer maps with no pattern

Note that these four capabilities are only for meeting the first DSML requirement

discussed in Section 4.5. There are other requirements to be considered. In the following

chapters, we will discuss various methods developed in our research in view of these

capabilities and requirements.
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Chapter 6

Lower-Bound Model as a Checker

“Science without religion is lame, religion without science is blind.”

— Albert Einstein

In this chapter, we focus on two capabilities raised in Section 5.4 for our WMPR

DSML solution. The first capability is to derive a lower-bound model from a WMPR

dataset, and the second is to filter out wafer maps with no patterns. In the following

sections, we will discuss implementations of these two capabilities. With these two capa-

bilities fulfilled, we attempt to deploy an initial DSML software solution to observe their

effects. Specifically, we show that our lower-bound model can work as a checker for our

deployed WMPR software.

6.1 Lower-Bound Model: Tensor-Based Methods

With the goal of attaining a lower-bound clustering model, we developed recognition

methods based on properties of tensor decomposition (i.e. tensor-based), specifically

Tucker Decomposition [71][72].
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6.1.1 Tucker Decomposition

In essence, Tucker Decomposition is the high-dimensional generalization of matrix

Singular Value Decomposition (SVD) [73]. In SVD, a given matrix Xn×m is decomposed

into Un×rΣr×r(V T )r×m, where Σr×r is a diagonal matrix. Similarly in Tucker decomposi-

tion, a 3-dimensional tensor A of size R1 ×R2 ×R3 can be decomposed into 3+ 1 compo-

nents: a core tensor G of size r1 × r2 × r3, and 3 orthogonal projection matrices U1, U2, U3

each of size Ri × ri for i = 1,2,3, respectively. The goal is to achieve A ≈ G
3

∏
i=1

×iUi. The

choice of the ranks r1, r2, r3 determines how accurately the decomposition can represent

the tensor A.

Figure 6.1: Image compression by lowering the SVD rank.

A popular application to employ tensor decomposition is image compression. Suppose

we have an image matrix X240×200 to be compressed. Using SVD, the maximum choice

for the rank r during decomposition is 200 =min(200,240). To compression this image,

a smaller r can be chosen to store the image as three matrices U240×rΣr×r(V T )r×200.

Figure 6.1 illustrates the effects of compressing a 240×200-pixel image by varying the

rank. As we can see from the figure, when we select r = 50, the compressed image

is visually indistinguishable from the original. The original grey-scale image requires

240× 200 = 48,000 values to store, where as the compressed version requires (240× 50) +

(50 × 50) + (50 × 200) = 24,500 values to store, roughly 50% less.

Likewise, for WMPR, Figure 6.2 shows similar effects of compressing a wafer image.

A wafer image is encoded as a matrix where a +1 entry (yellow) corresponds to failing,
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−1 entry (purple) corresponds to passing, and a 0 entry (green) means that location has

no die. The wafer image is 48 × 48 and hence the maximum rank is 48. As seen, with

rank = 10, the edge pattern can be mostly restored, and when rank = 25, the wafer image

itself can be mostly restored.

Figure 6.2: Wafer image compression by lowering the SVD rank.

6.1.2 Projection matrices

During decomposition, a projection matrix along a dimension can be interpreted as

the set of basis vectors along that dimension. For example, in SVD, the original matrix

X can be decomposed into X = UΣV T , where U comprises the eigenvectors of XXT ,

V comprises the eigenvectors of XTX, and Σ is a diagonal matrix. This is to say,

U comprises the basis vectors along the vertical dimension and V comprises the basis

vectors along the horizontal dimension. To see the intuition, consider the example shown

in Figure 6.3.

Suppose SVD is applied to the two wafer imagesWa andWb. We obtainWa = UaΣaV T
a

andWb = UbΣbV T
b , i.e. the calculations which can restore their original images. The image

UbΣaV T
a is obtained by using the left projection matrix Ub from image Wb and applying

this projection to image Wa. If we view Wb by scanning vertically the rows of pixels

from the top to bottom, we see that the yellow dots appear mostly in the middle rows.

This feature is effectively maintained in the image of UbΣaV T
a . Similarly, for UaΣaV T

b , we

see yellow dots appear mostly in the middle, but horizontally. Then, UbΣaV T
b makes the

59



Lower-Bound Model as a Checker Chapter 6

Figure 6.3: Example to illustrate the effects from projection matrices.

image look similar toWb. Likewise, in UaΣbV T
b , the edge feature on the top is maintained.

In UbΣbV T
a , the yellow dots are spread out because if we scan Wa horizontally by viewing

the columns of pixels, we can see a spread of yellow too. Finally, UaΣbV T
a makes the

image look similar to Wa.

6.1.3 Adding the third dimension

Tucker Decomposition, instead of SVD, is used when there are more than two di-

mensions. To apply Tucker Decomposition in the WMC context, multiple wafer images

(i.e. training samples) are stacked to create the third dimension as illustrated in Figure

6.4. For wafer images of size 48 × 48, the size of the third dimension n is the number of

wafers. The resulting model from Tucker decomposition has four components: the three

projection matrices U1, U2, U3 and the core matrix G. In this example, we use a single

rank r and let r = r1 = r2. Following the discussion from Section 6.1.2, U1 and U2 capture

the features along the first two dimensions. The matrix U3 captures the features along

the third, which can be interpreted as capturing features from wafer-to-wafer variations.
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Figure 6.4: Stacking multiple wafers to use Tucker decomposition.

6.1.4 Reconstruction with similar wafer patterns

Suppose the training wafer images used in applying Tucker Decomposition are all

similar. Specifically, there is no significant wafer-to-wafer variation in terms of their

wafer patterns, where U3 is less interesting to us. Figure 6.5 shows an example of using

Figure 6.5: Similar wafer images and the projected core matrices.

four similar wafer images W1,W2,W3,W4. On the very left, SVD is performed on wafer

W1 and its resulting Σ matrix is shown. For ease of visualization, only the upper-left
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10 × 10 portion of the Σ diagonal matrix is shown below the original image, where an

entry with a darker color means the (absolute) value in that entry is larger. Note that

all the non-diagonal entries in Σ have zero value.

On the right, Tucker Decomposition is performed on a 3D tensor composed by the

four wafer images, like previously demonstrated in Figure 6.4. After decomposition, U3

is ignored, and U1, U2 are used to calculate a projected core matrix Gi for image Wi,

respectively. Each Gi is obtain such that Wi = U1Gi(U2)
T . It is interesting to observe

that each Gi looks similar to Σ, where the diagonal entries have a darker color and the

entry [0,0] is the darkest. However, each Gi is no longer strictly diagonal (i.e. non-

diagonal entries can have a non-zero value).

Figure 6.6: Reconstruction using the upper-left 5 × 5 entries of Gi.

Recall Figure 6.2 demonstrates how a wafer image can be reconstructed by using

lower ranks under SVD. The same idea can be applied by using the Gi matrices from

Figure 6.5. To illustrate, in Figure 6.6, the top row of “Tucker” images are reconstructed

based on the upper-left 5×5 entries of each Gi, respectively. For comparison, the bottom

row of reconstructed images are obtained using “SVD” with rank r = 5. Observe that for

all four wafers, the edge pattern can be restored and the differences between using SVD

and using Gi with U1, U2 are not significant. Because each Gi is not a diagonal matrix,
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it would be interesting to see how the reconstruction works if we only use the diagonal

entries from each Gi. Figure 6.7 shows these results, where the edge pattern becomes

even more apparent in each case and all “random noise” from each wafer seem to be

removed.

Figure 6.7: Reconstruction using the first 5 diagonal entries of Gi.

6.1.5 Reconstruction with dissimilar wafer patterns

In Figure 6.5, decomposition results from four visually similar wafer images are pre-

sented. In Figure 6.8, we continue the exploration by reusing wafer images W1,W3 from

Figure 6.5, in addition to two new images W5,W6 which contain a different pattern. The

very left of Figure 6.8 shows SVD’s diagonal matrix for W6. Due to Tucker Decomposi-

tion producing different projection matrices for W1,W3 (from those used in Figure 6.5),

the newly produced core matrices G′1,G
′
3 are shown. Additionally, G5,G6 are obtained

for W5,W6. It is interesting to observe that the diagonal trend seen on the G matrices

in Figure 6.5 is much less apparent on the G matrices in Figure 6.8. This is especially

true for G5 and G6 where the non-diagonal entries have large values.

Wafer images in Figure 6.9 and Figure 6.10 are obtained in the same way as those

shown previously in Figure 6.6 and Figure 6.7. As seen in Figure 6.9, each of the wafer

patterns can be mostly restored. However, this is not the case if we only use the diagonal

entries as shown in Figure 6.10. Comparing Figure 6.10 to Figure 6.7, we see that if

the projection matrices are based on dissimilar wafers, then the non-diagonal entries in
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Figure 6.8: Dissimilar wafer images and the projected core matrices.

Figure 6.9: Reconstruction using the upper-left 5 × 5 entries of Gi.

the resulting G matrices become important for restoring the pattern. In other words,

the non-diagonal entries which have large values cannot be ignored. This observation

suggests that the “diagonality” might be an important property to indicate the extent

of similarity among wafer images.

6.1.6 Comparing a wafer image with its reconstruction

As seen from Figure 6.3, we can obtain projection matrices Ua and Va from wafer Wa

and Σb from wafer Wb, to attempt to reconstruct Wb by UaΣbV T
a . In other words, given a
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Figure 6.10: Fail to reconstruct by using only the first 5 diagonal entries of Gi.

training image Wa and image Wb to be classified, it seems we can use the reconstruction

result W ′
b to decide how similar Wb is to the training image Wa. If Wb is similar to the

training image, we expect the difference between Wb and its reconstruction W ′
b to be

small. Otherwise, we expect their difference to be large.

We can extend this idea to use multiple images. Given a set of training wafer images

W1, ...,Wn, we first apply Tucker Decomposition to obtain the two projection matrices

U1, U2. Then given an image Wj to be classified, we can apply SVD on Wj to obtain

Σj. Combining with the projection matrices from Tucker Decomposition, we can use

U1ΣjUT
2 to obtain W ′

j The difference between Wj and W ′
j can then be used to judge how

similar Wj is to the training images. Figure 6.11 provides an example to support this

Figure 6.11: An edge model transforms a center image into an edge image.

initial idea. The five training images are all similar, each containing an edge pattern.

The input image contains a small-center pattern, different from the training images. The

reconstruction produces an image that exhibits an edge pattern.

However, Figure 6.12 shows this idea might not work. In this case, the five training
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Figure 6.12: A center model fails to reconstruct a training image.

images are similar to the input image to be classified. The reconstructed image looks

quite different from the input image. This is because in order to restore the image using

the two projection matrices U1, U2, several diagonal entries in the projected core matrix

would need to have negative values. On the other hand, SVD’s entries are all non-

negative, resulting in the image not being properly restored. Hence, we cannot simply

use the diagonal matrix from SVD in the reconstruction.

6.1.7 Using the projected core matrix

For a given imageWj, the alternative is to use the projected core matrix Gj calculated

based on U1, U2. However, we cannot use the entirety of Gj, since we always get back to

the original image Wj. To overcome this issue: (1) We can use only an upper-left portion

of Gj, similar to the examples presented in Figure 6.6 and 6.9. (2) We can use only the

diagonal entries of Gj and ignore all non-diagonal values.

6.1.7.1 Method (1)

Suppose a model M is built based on a set of training wafer images. M essentially

comprises the two projection matrices U1, U2. We calculate Gj where Wj = U1Gj(U2)
T .

Then, using only the upper-left r × r entries to obtain Gr
j , we calculate W

′
j = U1Gr

j(U2)
T .

Finally, the difference between Wj and W ′
j is used to decide if Wj is similar to the training

samples. Note, this alternative is essentially the idea that would have been suggested
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by [74] if the approach was applied to our context. Let us explicitly define a difference

measure DIFF (Wj,W ′
j). For example, DIFF (Wj,W ′

j) can be based on summing up

the squares of values in Wj −W ′
j . Then, we can let the recognition error measure of the

model M (for a chosen r) be ErrM,r(Wj) =DIFF (Wj,W ′
j).

To illustrate how the error measure might be used, Figure 6.13 shows five images

(labeled W1 to W5) for building a model M . Figure 6.14 then shows four groups of

images, each with five images for a total of 20 images (labeled W6 to W25). If we use M

and the error measure to recognize the 20 images W6 to W25, we expect W6 to W10 to

be recognized as in-class and W11 to W25 as out-of-class. This is because W6 to W10 all

exhibit an edge pattern similar to images W1 to W5 used when building the model.

Figure 6.13: The five training wafer images.

Figure 6.14: The 20 wafer images to be recognized.

For each Wj, we calculate ErrM,r(Wj) for j = 1, ...,25. Figure 6.15 plots the ErrM,r

values. For every wafer, three values are plotted by using r = 2,5,25. Among the three

values, the smallest value (in black color) is based on r = 25 and the largest (in blue
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color) is based on r = 2. The middle (in red color) is based on r = 5. For W6 to W10,

Figure 6.15: Difficulty to set a threshold to achieve correct classification.

they should be recognized as in-class and hence we need to set a threshold such that all

error values of W6 to W10 are below or on the threshold. Note that we expect the error

value from a wafer image similar to the training samples to be small (including W1 to

W5 themselves).

In this figure, we observe that it is impossible to set a threshold to include W6 as

in-class while leaving W11 to W25 to be out-of-class. For example, consider using the error

values with r = 5 (shown in red). The horizontal red dashed line shows the minimum

threshold to classifyW6 as in-class. But with this threshold, all the “small-center” images

W11 to W15, W16, and all the “random” images W21 to W25 would also be classified as

in-class (i.e. below the red dashed line). Similarly, the black and blue dashed lines are

the minimum thresholds to classify W6 as in-class for r = 2 and r = 25, respectively. As

seen, with these thresholds, many of the images from W11 to W25 are also classified as

in-class. Suppose we are willing to accept mis-classification of W6 as out-of-class in order

to lower the threshold. This lower threshold for r = 5 is shown as the solid red horizontal

line. Even with this threshold, we see that W11,W12 and all of the random images W21

to W25 are still below the line.

68



Lower-Bound Model as a Checker Chapter 6

Figure 6.16: Method (1): the difference between Wj and W ′
j for j = 6,11,22.

In Figure 6.16, W6,W11,W22 are selected (marked as red dashed circles in Figure 6.15)

to show the original images and their reconstructed images (for r = 5). Observe that

through the reconstruction, both the edge pattern on W6 and the small-center pattern

on W11 are somewhat kept. On the other hand, most of the random yellow dots have

disappeared. Sometimes, a yellow dot is replaced with a green dot. If the effect of the

reconstruction is basically to somewhat keep the pattern (regardless of having an edge

pattern) and replace most of the yellow dots with green or purple dots, then there is

no clear reason why the current ErrM,r has the ability to differentiate in-class images

(with an edge pattern) from out-of-class images (without an edge pattern). In summary,

Figure 6.15 shows that it would be difficult to make the recognition work by using Gr
j in

the reconstruction.

6.1.7.2 Method (2)

In this method, we can investigate the effects of only using the diagonal entries of

Gj. Specifically, we can define a new error measure, ErrM(Wj) =DIFF (Wj,W ′
J) where

W ′
j is reconstructed by using only the diagonal entries of Gj. Figure 6.17 shows the

error values based on ErrM(Wj) for all 25 wafer images. In this plot, the error values

are sorted. All the “edge” wafer images are shown with a “×” marker. The y-axis is

in natural-log scale. We can observe from this figure, a threshold can be set to classify

all the “edge” and all the “random” wafer images as in-class. This can be seen as an
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Figure 6.17: Sorted error values calculated based on only the diagonal entries.

improvement from the result in Figure 6.15, because now we can treat “random” wafer

image as a special case and try to find a way to exclude them.

Figure 6.18: Method (2): the difference between Wj and W ′
j for j = 6,11,22.

Similar to Figure 6.16 for W6,W11,W22, Figure 6.18 shows the original images and

their reconstructed images using only the diagonal entries. It is interesting to see that an

edge pattern appears in all of the reconstructed images. This effect is similar to what was

shown in Figure 6.3 previously. Specifically, the original W11 wafer has a center pattern

and the reconstructed W ′
11 has an edge pattern. Hence, the difference function DIFF

would be measuring the difference between the two patterns, which is more intuitive in

terms of what we desire the difference measure to be.
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6.1.8 Measuring diagonality on Gj

Using only the diagonal entries in Gj hints that the values in the diagonal entries

are more important than the values in the non-diagonal entries. This is somewhat in-

dicated by the example in Figure 6.5 previously, where if the model is built on a set

of “edge” wafer images, for a given “edge” wafer image, the projected core matrix Gj

would have large values in the diagonal entries and small values in the non-diagonal en-

tries. Figure 6.19 plots the projected core matrices for W3,W6,W11,W12,W16, and W22

Figure 6.19: The upper-left 10 × 10 entries of various Gj matrices.

in a similar fashion compared to Figure 6.5. Observe that W3 and W6 are “edge” wafer

images and their projected core matrices exhibit the diagonality property. In contrast,

W11,W12,W16,W22 do not have an edge pattern, and their projected core matrices do not

exhibit the diagonality property.

If the diagonality property is the underlying effect for results seen in Figure 6.17,

instead of measuring on Wj −W ′
j , a better alternative can be to measure the diagonality

property directly. Where this diagonality measure can be used as the distance/similarity

measure between a given wafer image and the set of training images used to build the

model M . Specifically, given a model M , a wafer image W , and its projected core matrix

G, the measure of diagonality ∆ can be defined as:

∆M→W =
Σ∀i≠jG[i, j]

2

Σ∀iG[i, i]2
(6.1)
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Figure 6.20: Errors calculated based on the diagonality measure.

In Figure 6.19, this ∆ value is also shown for each of the six wafer images. It is

interesting to note that W6 and W11 were the two images causing difficulty in Figure 6.15

previously. Now W11 has a ∆ value of 0.849, which is much bigger than the ∆ value of

W6 at 0.474. Then, the top plot in Figure 6.20 shows the ∆ values for all W1 to W25,

which are also sorted and presented in natural log scale. The result is similar to that

shown in Figure 6.17, and is slight better since the in-class region is smaller than the

out-of-class region. However, all the “random” images are still classified as in-class. In

order to filter them out, we use a 2nd model and call it a baseline model, Mbase. In this

experiment, Mbase is simply based on a wafer with no fails, i.e. no yellow dots at all.

The bottom plot in Figure 6.20 shows the ∆ values for W1 to W25 based on Mbase. It is

interesting to observe that in this plot, a threshold can be set to classify all “random”

wafer images as in-class and leave all others as out-of-class.
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6.1.9 Measuring diagonality on Gj excluding entry [0,0]

Observe in Figure 6.19 that the [0,0] entry in most of the projected core matrices

have the largest values. In Equation 6.1, this large entry effectively makes the ∆ value

smaller. However, if our goal is to differentiate, say W3,W6 from W11,W12,W22, it seems

that using the large values in the [0,0] entry of G11,G12,G22 is not desirable. This

motivates us to try a 2nd distance measure by removing the entry [0,0] from the Gj

matrix in the ∆ calculation:

∆′M→W =
Σ∀i≠jG[i, j]

2

Σ∀i,i≠0G[i, i]2
(6.2)

Figure 6.21 then shows the sorted ∆′ values for W1 to W25. It is interesting to observe

that now a threshold can be set to classify all the “edge” wafer images below and all the

other images above. This is the most desirable outcome among all the recognition results

discussed so far.

Figure 6.21: Errors calculated based by removing entry [0,0].

6.1.10 Performing tensor-based recognition

To summarize, we have define two distance functions, ∆ and ∆′ such that they mea-

sure the similarity between two wafer images based on the diagonality property demon-
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strated throughout the previous sections. Given a wafer matrix WA, we first build a

tensor model TA using the method demonstrated in Figure 6.5 and 6.8. Specifically,

a TA model contains the projection matrices of wafer WA, such that when TA is ap-

plied to another wafer matrix WB, the result is a core matrix MA→B. If WB is similar

to WA, MA→B would have relatively large absolute values in the diagonal entries and

close-to-zero values in non-diagonal entries. Otherwise, MA→B would have large values

in non-diagonal entries. Hence, this method utilizes this diagonality property to define a

directional distance measure ∆ from WA to WB as:

∆A→B =
Σ∀i≠jMA→B[i, j]

2

Σ∀iMA→B[i, i]2
(6.3)

Note, Equation 6.3 is effectively the same as Equation 6.1, except the core matrix G′ is

now replaced with a more explicit M which can indicate the directional calculation. Now

for ∆′, as indicated by Figure 6.5 and 6.8, the large value in entry [0,0] can effectively

make the ∆ value small. Recall the property we are looking for is that all non-diagonal

entries should have close-to-zero values. Hence, we can try a modified ∆ calculation by

ignoring the entry [0,0] as an alternative similarly measure. This modified calculation

is our ∆′:

∆′A→B =
Σ∀i≠jMA→B[i, j]

2

Σ∀i,i≠0MA→B[i, i]2
(6.4)

The value ∆A→B is based on WA and is not directly comparable to another value

∆C→B based on another WC . Our solution to the problem is to use a baseline wafer

Wbase such as a wafer without a failing die. This baseline image serves as a reference

point for all wafer plots. Then, ∆A→B is “normalized” as a new directional distance:

δA→B =
∆A→B

∆A→B +∆base→B

(6.5)
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The distance between WA and WB is then calculated as the average of δA→B and δB→A.

Figure 6.22 uses a wafer A and its distances to three wafers B,C,D as an example to

illustrate these distance calculations.

Figure 6.22: Illustration of the similarity metric (Each M matrix is actually bigger
and only the top left portion is shown).

Notice that wafer A and wafer B are similar. The matrix MA→B has large values on

the diagonal entries and almost zero on the non-diagonal entries, thus ∆A→B is 0.23. The

matrix MB→A on the bottom shows a similar property with ∆B→A = 0.19. On the other

hand, MA→C and MA→D do not have the property because they are not similar to wafer

A. Their ∆ values are larger, i.e. 1.75 and 1.62, respectively. The resulting distances are

in red. We see that the distance between A and B is 0.317, smaller than the other two

distances 0.6385 and 0.6015.

To perform recognition with many M models, given an input wafer Wa, it would be

recognized by a model M only if it is closer to that M than to any of the baseline models

(i.e. having the smallest distance value among all). In other words, Wa will be assigned

to a cluster of similar wafers identified by M . To generalize this, if we have a set of

recognition models M1, . . . ,Mn and a set of baseline models, a wafer would be considered
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recognized by the model Mi if that wafer has the smallest distance to Mi. Because we

have two distance measures, ∆ and ∆′, for each type of wafer images, we can effectively

have two recognition models based on the two measures. Suppose Mi,M ′
i are the two

models for recognizing the same type of image. Suppose in application their recognized

sets are Si, S′i. By taking an intersection Si ∩ S′i, this improves the robustness of the

tensor-based recognition. To be demonstrated in the later sections, their intersection

Si ∩ S′i is used as the recognized set from the tensor-based model for that type of wafer

images. In other words, Si ∩ S′i is a lower-bound model derived for that type of wafer

images.

6.2 Filtering Wafers with No Pattern

Having discussed how to derive an lower-bound model in the previous section, we

can now focus on the other capability mentioned at the start of this chapter: filtering

out wafers with no patterns. For the rest of this section, let us suppose this filtering

capability is implemented as a step in a DSML software methodology. Let us further

suppose “Jay” is the name of the DSML software provider.

The purpose of this filtering step is to filter out all wafers that do not contain a

pattern, i.e. showing only random fails. It is important to keep in mind that the goal is

not to filter out all random-failing wafers. Instead, the goal is to filter out random-failing

wafers if their randomness can be decided rather easily. It is perfectly acceptable if some

random-failing wafers slip through the filtering and get passed to the subsequent steps.

As we will demonstrate in the next section, they increase the burden of the training step

(because of the calculation of pairwise distances), but should not affect the end outcome

much. Therefore, the purpose of the filtering step is more for reducing the cost than

for improving the recognition. One key assumption here is that Jay does not have any
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actual wafer images with random fails to train a recognizer. As a result, Jay needs to

create some samples to help train a “no pattern” recognizer to perform the filtering. To

be demonstrated in later sections, Jay will be using Generative Adversarial Networks

(GANs) [31] as an approach to build recognizers for the to-be-deployed DSML software.

6.2.1 Generating artificial samples

It is straightforward to generate in-class samples containing random fails. Following

an assumed yield distribution, a yield can be randomly picked and after that, the location

of a fail can be randomly picked. In this generation, Jay assumes the average yield is 95%.

A more interesting issue is how to generate out-of-class samples. There are three types

of non-randomness Jay considers: (1) regularity, (2) concentration, and (3) catastrophe.

For catastrophe, it is easy to generate the samples by enforcing a low yield, e.g. 5%. For

the other two, Jay needs to use a rule for the generation. Regularity means the locations

of the fails show a regular pattern in a particular direction. For example, horizontally

there exists a constant D such that the distances between many pairs of failing dies

are all D. Therefore, to generate a sample, Jay can randomly pick a direction and then

randomly pick a D. Typically, a wafer would always contain some random fails. Hence,

in the generation a regularity wafer will be stacked with a random wafer to obtain a

sample. In the generation, four directions are considered: horizontally, vertically, and

along the two 45-degree lines.

Concentration means there is a cluster of fails. There can be two types: one con-

centrating around a center point and the other spread across a line or an edge. In the

generation, Jay can randomly pick a type and like the regularity, stack a generated wafer

with a random wafer to obtain a sample. Figure 6.23 shows some examples of the gener-

ated in-class and out-of-class samples. Because out-of-class samples are not used in the
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Figure 6.23: Jay’s generated in-class and out-of-class samples.

training and only used in the validation, the list does not need to be complete. We only

need some out-of-class examples to guide the training of a “no pattern” recognizer.

6.2.2 Rule checking on the filtered set

Jay knows that a GANs recognizer cannot be 100% accurate. Because it is important

to not filter out a wafer where there is a chance that later steps might discover a pattern

on it, the recognized set of random wafers by the GANs model needs to go through

another checking process. This checking process applies two rules. The first rule looks

for a regularity and the second rule looks for a concentration. Their specifics are described

below.

[Rule 1]: For every fail on a wafer, calculate the distance value d as the distance to its

nearest fail location along a given directional line (there are four possible directional lines

as mentioned above). Let the number of fails with distance value dj be fj (frequency).

Find the largest frequency number FRmax and let its distance be dmost. If FRmax > th1

and dmost > 1, then the wafer is considered non-random. The threshold th1 depends on

the number of dies per wafer. The default value is 15.
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[Rule 2]: Treat each fail as a vertex. Along the four possible direction lines, if there is

also a fail then create an edge between these two fails. Given the graph, find the largest

connected component. If CCmax > th2, where CCmax is the size of this largest connected

component, then the wafer is considered non-random. The threshold th2 also depends

on the number of dies per wafer. The default value is 20.

Figure 6.24: FRmax and CCmax on four types of wafers (10 each).

To see the effects of the rules on actual wafers, Figure 6.24 shows the FRmax and

CCmax values across four types of wafers (10 wafers each, with one example image shown):

random fails, grid pattern, concentrated cluster, and edge pattern. As seen, using both

FRmax and CCmax can easily separate a random wafer from a non-random one.

6.3 Initial Deployment of a DSML Solution

Now that we have attained a way to derive lower-bound models using tensor-based

methods, and a methodology to train a recognizer for filtering out “no pattern” wafers,

we can attempt to deploy a DSML solution and observe the impacts of these capabilities’

in deployment. Suppose during this deployment, “Jay” is the DSML solutions provider
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and “Nik” is the DSML expert. Figure 6.25 illustrates the workflow employed by such a

DSML software.

Figure 6.25: Workflow employed by the DSML software.

As discussed in Section 6.2, the first step is going through a Filtering Random box

where the task is to filter out wafer images showing sparse random fails. The purpose is

to facilitate execution of the subsequent steps. After the filtering, each remaining wafer

goes through a recognition box. Initially, if there is no recognizer available, this step is

skipped and all wafers are unclassified. Otherwise, if a wafer image is recognized by a

recognizer, then the wafer image is reported in the corresponding class. The recognition

is checked with a Checking box, which is a focus of this deployment. Failing this Check-

ing box results in a notification sent to Jay. After the recognition box, unrecognized

wafers are evaluated to see if a new recognizer can be learned. The learning goes through

three boxes: (1) Grouping by Similarity, where multiple primitive concepts are identi-

fied; (2)Training Sample Extraction, where five training samples are extracted for each

concept; and (3) GANs-Based Modeling, where a recognizer is learned for each identified

concept.
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6.3.1 Grouping by similarity

This step implements a clustering scheme in order to facilitate the training procedure

of a GANs-based recognizer, which will be detailed in the next section. Our choice of

the clustering algorithm is the Hierarchical DBSCAN (HDBSCAN) [75] with a minimum

cluster size specified at 5. This means that if the number of similar wafer images is

less than 5, it is deemed insufficient to learn a new class in terms of a GANs-based

recognizer. The most subtle part in the cluster scheme is the definition of the distance

function Dist() that measures a distance between two images. Recall Section 6.1.10

which summarized the intuition behind the δ distance metric (Equation 6.5) derived

from tensor-based methods. For implementing Dist() between two wafers A and B, we

use the average of δA→B and δB→A.

6.3.2 GANs-based modeling

Output from the Group by Similarity box is a set of clusters where each cluster

contains at least 5 wafers. Next, in the Training Sample Extraction, for each cluster,

the best 5 samples are identified for learning a model. This evaluation is based on the

learnability measure proposed in our other work [76], where the best 5 samples have the

highest learnability value.

For each cluster, the 5 training wafers are then given to the GANs-based Modeling

box. In a Generative Adversarial Network (GAN) [31], there are two neural networks:

the generatorG and the discriminatorD. The GANs modeling follows the same approach

and training strategy presented in our initial GANs related work [77]. The generator’s

input is a randomly generated 100-dimension latent vector v⃗. The training is iterative,

where in each iteration, the generator tries to improve its neural network model for

generating samples closer to the training samples. The discriminator tries to improve its
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Figure 6.26: Discriminator neural network used in GANs modeling.

model for separating the generated samples from the training samples.

In the initial version of the software, the discriminator has a simple architecture as

shown in Figure 6.26 (as compared to the complex architecture employed in [77]). Among

several considerations behind this choice, the most important reason is due to the fact that

training GANs can be tricky [78][79]. For instance, balancing the convergence between

G and D can be quite a challenge, and often D might win easily. In general, D handles a

learning task that is easier than G. Therefore, if we design both D and G with the same

capacity, it is likely that D would win in the early iterations of the training, making G

harder to converge. The choice makes the capacity of D smaller than the capacity of G.

This idea is inspired by the regularization ideas proposed in [80][81]. In our context, we

desire to reduce the capacity of D to make the training more robust while still ensuring

sufficient capacity to handle the complexity involved in the recognition task.

GANs, however, are mostly for obtaining a good generator to be used in an applica-

tion. Our usage is different - we are interested in using the discriminator as a recognizer.

This objective makes our GANs training even trickier, for instance, training with more

iterations does not imply that a better discriminator model can be found.

To evaluate the discriminator for our purpose, we need a model evaluation scheme

independent of the GANs training. In our case, the discriminator model in each training
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iteration is evaluated based on a separability measure proposed in [76]. The training

samples are used as the in-class sample set Sin. To calculate separability, we need an

out-of-class sample set Sout. In our implementation, the out-of-class samples are wafers

in other clusters based on the clustering result from the Grouping by Similarity box.

Separability is a value between 0 and 1 [76], telling how well a D model separates the

samples between the two sets. A larger value means more separation. There can be two

types of separability, average separability as used in [76] and strict separability that is

used in our implementation. Strict separability follows the same calculation method as

average separability, except that it uses the worst-case separability value instead of the

average (between in- and out-of-class samples).

Figure 6.27: Illustration of a GANs training process over 2K iterations.

To illustrate the training process, Figure 6.27 shows the results from 2K iterations of

training a concept recognizer (took about 5 minutes to run on a machine with 2 nVidia

980Ti GPUs each with 6Gb VRAM). The training samples started with 5 wafer images

showing clusters of fails on the center (one training sample is shown on the top left).

Then, each is rotated 12 times to obtain in total 60 samples.

Both average and strict separability values are plotted. It can be seen that average
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separability is always much higher. Most of the strict separability values are zero because

as long as the D model cannot separate any pair of the in-class and out-of-class samples,

this value is zero.

On the bottom, the samples generated from the generator G are shown. It is interest-

ing to see that with more iterations, the generated samples become closer to the training

samples. In contrast, we see that while the average separability is generally higher in the

400-1200 range and lower after that, the value can fluctuate significantly.

The strict separability has three “bumps” and otherwise is zero everywhere. Keep

in mind that samples in Sout are used only in calculating the separability, and not used

in the training of D. Hence, D is not optimized in terms of the separability measure at

all. The generated samples, on the other hand, have nothing to do with the out-of-class

samples in use. This is why more iteration does not mean a better D in our context, and

we use the separability measure to select the best D model as our recognizer.

Notice in the figure that the highest separability happens well before the generator

reaches the point of generating quality images close to the training samples. This is

because once the generator starts to learn well, the discriminator (whose job is to separate

the generated samples from the training samples) starts to over-fit the training samples.

Once this over-fitting takes place, the discriminator model essentially loses its ability to

separate the training samples from those unseen samples in the out-of-class set Sout.

6.4 Applying Tensor Methods as a Checker

6.4.1 Result from the first 50 lots

At first, the software flow depicted in Figure 6.25 is run on the first 50 lots. Figure

6.28 illustrates the result for each box. In this run, 9 recognizers are learned. Table 6.1
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Figure 6.28: Workflow illustration for the first 50 lots.

then summarizes the recognition results by these recognizers.

Notice in Table 6.1, the number of wafers recognized in each concept is generally

larger than the corresponding cluster size shown in Figure 6.28, except for Concept 5.

As explained in our prior work [82], clustering is not very robust and hence, can only be

used as a starting point. Clustering result can be sensitive to the distance calculation

and the hyper-parameter setting in the clustering algorithm.

Table 6.1: Result From The first 50 lots

Concept 1 2 3 4 5 6 7 8 9 Total
Recognized Wafers** 16 21 21 14 34 10 12 39 31 178*

False Positives† 0 0 0 0 1 0 0 14 11 26
Checking

√ √ √ √ √ √ √ √ √
-

√
: model passing the Checking box

*Collectively 178 wafers are recognized in total
because a few wafers are recognized in two or more concepts
**After the recognition, there remains 180 unclassified wafers
† known only after manual inspection

Figure 6.29 provides a typical example from each concept to illustrate what they look

like. Notice that Concepts 1-4 all look similar, i.e. containing some “Grid” patterns.

They are separated as four by the “Grouping by Similarity” box. Recall that this box

implements clustering using distances based on the Tensor method. As discussed in [76],

a Tensor model is more specific and hence, ends up separating Concepts 1-4 as different
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Figure 6.29: Typical example wafer image from each concept.

concepts.

For each concept we manually inspect each recognized wafer image and identify those

possibly false positives. The information is also included in the table. In practice, Jay

would not know this information. Nik might not know either if he does not do the

specific inspection. Note that the impact of these false positives would depend on how

the classification results are utilized in an analytic workflow.

We see that Concept 8 and Concept 9 have significantly more false positives than

others. Some false positives from Concepts 5, 8, and 9 are shown in Figure 6.30. For

a learning model, achieving 100% accuracy is difficult, if not impossible. Hence, under-

standably a recognizer can have false positives. However, too many false positives can

trigger Nik to perceive the results as unreasonable when he or his software script tries to

utilize them.

In that regard, the numbers of false positives for Concepts 8 and 9 seem high. Figure

6.31 shows 11 false positives from Concept 8, and 5 false positives from Concept 9. These

false positives are all recognized by two or more recognizers (recognizer for Concept i is

denoted as Ci).
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Figure 6.30: False positive examples.

Figure 6.31: Other false positives for Concepts 8 and 9.

Observe that 4 wafers are recognized by both C8 and C9. There is one wafer recog-

nized by C1, C2 (and C8) and one wafer by C2, C3 (and C8). Note that these two wafers

are not counted as false positives (in C1-C3) because we could not say for certain which

one grid class they should belong to and not another. These results show that not only

C8 and C9 have unusually large numbers of false positives, a big part of it (12 in total)

can be attributed to wafers recognized in other concepts as well. This shows that there is

some potential deficiency in the C8 and C9 recognizers. For each concept, the recognition

goes through the Checking box (discussed in detail later) as shown in Figure 6.28. Table

6.1 shows no recognition failing this Checking and hence, the potential deficiencies in

recognizers C8 and C9 are not known to Jay. Nik might not know either if the result is

consumed by his software script and not by him.
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6.4.2 Result from the remaining 287 lots

The software continues its run on the remaining 287 lots. Figure 6.32 illustrates the

results through the workflow. The difference between Figure 6.28 and Figure 6.32 is that,

now in Figure 6.32 we have 9 recognizers already in the Recognition box.

Figure 6.32: Workflow illustration for the remaining 287 lots.

Table 6.2 summarizes the results from the Recognition box. This time, recognition

for Concept 8 and Concept 9 fails the Checking box, courtesy of the lower-bound tensor-

based models. As a result, Jay is notified with the specific issue by the software.

Table 6.2: Result From The remaining 287 lots

Concept 1 2 3 4 5 6 7 8 9 10 11
Recognized Wafers* 14 46 29 25 76 70 13 139 118 19 113
False Positives** 0 1 0 2 2 0 2 29 39 0 1

Checking
√ √ √ √ √ √ √

× ×
√ √

×: model failing the Checking box
*Collectively, in total 477 wafers are recognized by C1-C9, which means
after C1-C9 recognition, there remains 701 unclassified wafers
**53 of them due to multiple recognition, and among them
35 multiple-recognized wafers are due to C8 and C9

In Table 6.2, Concepts 2, 4, 7, and 11 have false positives, whereas no false positives

for these Concepts were found in Table 6.1. Figure 6.33 shows what these new types

of false positives look like. Notice that after the recognition, two more concepts are
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identified with the two newly learned recognizers. These two new concepts are indicated

at the bottom of Figure 6.33.

Figure 6.33: Additional false positive examples.

6.4.3 Implementation of the Checking Box

Following the Tensor modeling method discussed in Section 6.1.10, for each concept

class, the five samples used to train a GANs model are also used to build a corresponding

Tensor model. As a result, for each Concept i, the software maintains a GANs recognizer

Ci and a corresponding Tensor model TCi
. Let SCi

be the set of wafers recognized by

Ci, and let STCi
be the set of wafers classified by TCi as in-class to Concept i. The

general idea for the Checking box is that it implements a containment check to see if

STCi
⊆ SCi

. This containment check is considered failing if more than one wafer that is in

STCi
but not recognized to be in SCi

. Note that with this check, one escape is acceptable

because we cannot guarantee that the containment property is strictly true even for a

very good GANs recognizer. The reasoning behind the containment check is based on

the observation that generally a Tensor model is more specific than its corresponding

GANs model [76].
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Recall Equations 6.3 and 6.4 from Section 6.1.10 for the similarity metrics ∆ and ∆′

respectively. Let S and S′ be the set of wafers in a concept bin based on ∆ and ∆′,

respectively. The set S ∩ S′ is used by the containment check.

Table 6.3: Containment Set Generation - First 50 lots

Concept 1 2 3 4 5 6 7 8 9
1st Binning, S 21 19 8 12 33 5 9 13 25
2nd Binning, S′ 17 19 8 12 11 5 10 9 19

Intersection Set S ∩ S′ 17 17 8 12 9 5 9 9 15

Table 6.3 shows the sizes of each concept bin after the two independent binning

processes for wafers from the first 50 lots. Similarly, Table 6.4 shows those sizes for

wafers from the remaining 287 lots.

Table 6.4: Containment Set Generation - Remaining 287 lots

Concept 1 2 3 4 5 6 7 8 9 10 11
1st Binning, S 22 69 4 0 34 22 5 97 25 23 43
2nd Binning, S′ 18 58 4 1 15 41 3 48 22 22 37

Intersection Set S ∩ S′ 17 27 3 0 14 21 2 47 10 12 20

Taking the intersection improves the robustness of the containment check. In other

words, we desire to minimize the chance for including a wafer in a concept bin when it

should not be. For example, Figure 6.34 shows examples binned into a Concept i by the

1st binning but not by the 2nd binning, i.e. for those cases where there is a difference

between the 1st binning number and the intersection number. Comparing to Figure 6.29

before, we see that those wafers are really marginal. The effect of taking the intersection

removes those marginal wafers and hence, makes the containment check more robust.

6.4.4 Containment check result

Table 6.2 earlier shows that the containment check fails for Concept 8 and Concept

9. Table 6.5 provides more detail after seeing the result from Table 6.4. The GANs
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Figure 6.34: Examples in 1st binning set S but not in 2nd binning set S′

recognizers C8 and C9 fail because they have more than one escapes from the containment

check set. Figure 6.35 shows the 7 escapes from C8 during the containment check.

Table 6.5: Containment Check In The remaining 287 lots

Concept 1 2 3 4 5 6 7 8 9 10 11
Checking Set Size 17 27 3 0 14 21 2 47 10 12 20

# of Escapes 1 0 0 - 0 1 0 7 6 0 0
Checking Result

√ √ √ √ √ √ √
× ×

√ √

×: model failing the containment check

Observe that none cannot be said that it should not belong to Concept 8. Hence, there

is some deficiency when the software builds the recognizer C8.

Figure 6.35: The 7 escapes by the GANs recognizer C8 for Concept 8.

6.4.5 Improving the deployed software solution

Jay is notified of the issues regarding Concept 8 & 9 in the deployed solution. Due

to confidential information about the production, Nik cannot send Jay raw wafer data

to help Jay improve the deployed software. Instead Nik employs tensor-based methods

and sends Jay transformed training data extracted for Concept 8 & 9, which effectively
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provides Jay with data for harder learning problems than the original. For more details

regarding this transformation, please see [83].

Upon receiving the data, Jay makes the first empirical improvement by modifying

the GANs architecture, adding in another CNN layer and reduced the size of a fully-

connected layer. Figure 6.36 shows the improved separability for Concept 8’s training by

using the new architecture. In additional, Jay also sees from each training run in Figure

Figure 6.36: Improved separability seen in Concept 8 training.

6.36, there seems to be some variability due to the statistical nature of the training

process. Specifically, Jay is concerned about the stability of the training. This motivated

Jay to adopt ensemble learning, where the best 50 recognizers, in terms of separability,

out of 100 trained are kept to perform recognition collectively. For more information on

the ensemble learning considerations, please refer to [83].

6.4.6 Results from re-deploying the improved software

Table 6.6 summarizes the new results on Concept 8 and Concept 9. With the improved

software, the large numbers of false positives shown in Table 6.2 for both concepts are

no longer there and also, both pass the containment check.

For Concept 9, there is still one false positive and one escape from the containment

check. They are actually different wafers and Figure 6.37 shows what they look like.
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Table 6.6: Re-deployment results on the 287 Lots

Concept 8 9
Recognized Wafers 145 77

False Positive 0 1
Checking Wafers 47 10
Missing Wafer 0 1

Containment Check
√ √

√
: model passing the containment check

Figure 6.37: The false positive and escape for Concept 9 in Table 6.

For the false positive, observe that it does have concentrating failures on the top edge,

causing confusion to the recognizer looking for an edge failing pattern. For the escape,

the edge failing pattern is marginal and hence, is missed by the committee of the 50

Concept 9 recognizers.

The software is also run on a 2nd product line with 7052 wafers coming from 295

lots. Note that due to die size differences, recognizers learned from one product line

are not reused in another product line. For example, the die size of the 2nd product is

much larger than the die size of the 1st product. Hence, the run begins with a fresh

start. For simplicity, we only report results by giving all wafers at once to the software.

After the Filtering Random box, there are 1905 wafers remaining. The clustering step

finds 3 clusters with sizes, 27, 64, and 5, respectively. Call them Concepts X, Y, and

Z, where Figure 6.38 shows two examples of their five training wafers to illustrate what

they look like. The table in Figure 6.39 summarizes the results from the recognition and

containment check. Notice that even though many wafers are not filtered out by the
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Figure 6.38: Example wafers from Concepts X, Y, and Z.

Filtering Random box, much fewer wafers are considered to be non-random after going

through the entire workflow. For those unclassified wafers, we did manually inspect

them to confirm that they indeed contain no obvious pattern, justifying the report by

the software that wafers from this product line are mostly with random fails. Finally,

Figure 6.39 also shows what the false positives look like, to confirm there is no systematic

surprise in the result.

Figure 6.39: Summary table, the false positive and the escape.

6.5 Summary

In this chapter, we demonstrate two capabilities raised in Section 5.4. One capability

is being able to filter out wafer maps without a pattern. Specifically, we describe a

methodology to generate in-class and out-of-class samples to facilitate the training of a

”none” pattern recognizer. In addition, we stress using rules to check the filtered out

wafers to ensure they indeed have no pattern, where two examples rules are demonstrated.
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The primary focus of this chapter remains on the second capability, which is ob-

taining a lower-bound clustering model of wafer samples. This capability was enabled

by the development of tensor-based recognizers, which leveraged properties of tensor

decomposition. We show that tensor-based recognizers are able to cluster very similar

wafer samples as the same wafer type, where this cluster can be used as a containment

check to ensure the robustness of a deployed DSML solution. By being able to utilize

the containment property of tensor-based results with respect to GANs-based results, we

can infer tensor-based methods can produce lower-bound models. In addition, the use

of tensor-based methods facilitated the 5 training samples requirement for the deployed

GANs-based DSML solution.
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Chapter 7

Per-Sample-Based Recognizers

“Nothing in life is to be feared, it is only to

be understood. Now is the time to understand

more, so that we may fear less.”

— Marie Curie

In the last chapter, we demonstrate tensor-based methods can obtain lower-bound

models for the WMPR dataset. However, we cannot also expand to an upper-bound

model based on the tensor-based methods. We also described a methodology to train

a “none” pattern recognizer in the previous chapter. But this methodology is hard to

generalize, as we would need to considered many types of unseen failures when generating

samples for this recognizer. Furthermore, the above capabilities are just two out of the

total four mentioned in Section 5.4. If we wanted to enable all four capabilities, what is

the essential approach? Looking at the GANs-based models from the previous chapter,

when building a recognizer, it has a requirement of needing at least 5 training samples.

Ultimately, if we take this to the extreme, we need to be able to build a recognizer

based on a single wafer sample. This allows us the maximum flexibility to accomplish
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our requirements discussed in Section 5.4. In this chapter, we will demonstrate how to

realize this per-sample-based recognizer. In the following chapter, we discuss how to

leverage this flexibility and provide some initial application examples.

7.1 The Learning Problem

The learning problem can be stated as the following: We are given a single sample s

exhibiting a feature of interest. The goal is to build a model Ms such that given future

samples s1, . . . , sn, ∀si, 1 ≤ i ≤ n, Ms(si) would return “yes” if si exhibits the same feature

as s.

Figure 7.1: The goal is to learning a recognizer with one training sample.

In machine learning, a closely-related problem is one-shot learning [84] which also

intends to learn with one training sample. One-shot learning is a form of transfer learning

[85]. To apply one-shot learning, we start with a model M() which is already learned to

classify wafer plots into different categories based on their feature. The single training

sample s is given to represent a new category. Then, the model M() is enhanced based

on the new sample.

In our work, the requirement is different though. For each category, we intend to

build a recognizer independent of other recognizers. Hence, the learning has to “start

from scratch”. A practical implication of independent models is being able to facilitate

debugging and maintenance of the recognition software. If there is a deficiency in recog-

nition of one category of plots, we can simply focus on that particular recognizer without
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concerning other recognizers.

In the above problem statement, the exact meaning of the word “feature” is to be

defined by a learning algorithm. Typically, si and s are treated as having the same

feature if they are similar. However, different algorithms might measure this similarity

differently.

A learning algorithm of this sort essentially comprises two elements. The first can

be thought of as a projection method that maps each sample to a score. For example, a

score indicates how close a given sample si is to be considered as the same category of the

training sample s. For the most part, this projection method is the learning algorithm.

However, just obtaining the scores is not enough. To decide a sample si should be treated

as in-class or out-of-class, a threshold would also be needed. In practice, threshold can

be decided by extensive experiment. However, this is only feasible if sufficient data are

available. If not, the problem can become challenging.

7.2 Threshold Decision Problem

With only one training sample, it is not surprising that threshold selection is a chal-

lenge. Take the wafer plot shown in Figure 7.1 as an example. To accomplish the first

element, i.e. the projection method, we can simply choose a similarity measure that

computes a similarity score between two wafer plots. For example, suppose each plot is

represented as a 48× 48 matrix. Each entry contains one of the three values −1 (purple),

0 (green), and +1 (yellow).

Given two wafer plot matrices W1,W2, a simple way is to use their square distance,

∥W1 −W2 ∥
2, i.e. subtracting each entry individually and take the sum of their square.

Another way is to focus on the yellow entries (“+1” entries) where the feature is defined.

First we replace every “−1” with “0” to make the matrix binary. Let U be the number
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of “1” entries in W1 ∨W2. U captures the size of the union set of the yellow dots. Then,

let I be the number of “1” entries in W1 ∧W2. I captures the size of the intersection set

of the yellow dots. We let the similarity score be I
U . We use IoU(W1,W2) to denote this

score.

In our dataset, there are six plots with the “ring” feature. These six plots are shown

in Figure 7.2. We treat them as the in-class samples. Then, if any other plot is considered

by a recognizer as in-class, it is treated as a false positive.

Figure 7.2: The six plots with “ring”, before and after denoising.

Before applying IoU(), each wafer plot goes through a denoising step which removes

random and scatter yellow dots while maintaining the feature. This is typical in image

processing. Figure 7.2 shows the images before and after the denoising step. In the rest

of the paper, all wafer plots shown have been denoised.

Let W be the first wafer plot shown in Figure 7.2. Suppose it is the one training

sample given to us. First, we have IoU(W,W ) = 1. For any other Wi, unless Wi = W

exactly, we have IoU(W,Wi) < 1. The minimum IoU score is 0.

Suppose we have 25 other wafers to help in finding a threshold. Figure 7.3-(a) shows

the IoU values for the 25 wafers. The values are shown along the y-axis. Note that for

ease of visualization, the blue dots are spread out along the x-axis direction which has

no physical meaning.

Suppose we know all blue dots are out-of-class samples. There can be two (reasonable)
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Figure 7.3: Model building: Selecting a threshold.

options to set the threshold. Threshold T1= 0.0653 is set by the blue dot with the highest

score. Another option is to set the threshold at the middle point, i.e. T2=
1+0.0653

2 =

0.53265. Note that setting a threshold close to the red dot is not an option in this plot

because we would not know how close is “close”.

Suppose we apply the model to check on future 125 wafers where none is in-class.

Figure 7.3-(b) shows the result. If T1 is taken, it will result in 15 false positives. If T2 is

taken, it will have no false positive. But result in Figure 7.4 below shows that taking T2

will miss all the in-class plots.

Suppose the second wafer plot in Figure 7.2 is also available to us. Figure 7.4-(a)

shows its IoU score. This score, 0.1823, now can be our third threshold option, T3. The

figure shows that if a different set of 125 wafer plots is considered, T3 would result in 12

false positives.
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Figure 7.4: What if we add a second training sample.

Figure 7.4-(b) shows the IoU scores for the remaining four in-class plots. Observe

that even with T3, the model would have treated two in-class plots as out-of-class (below

the threshold line). If threshold T2 = 0.53265 from Figure 7.3 is used, the model would

have missed all in-class plots.

The above example illustrates the challenge for deciding a threshold when limited

data is available. Unless the data show where the highest blue dot (out-of-class) or the

lowest red dot (in-class) might be, there seems no effective way to optimize a model

against false positive or false negative.

In the above example, we assume there are out-of-class samples to help decide the

threshold. Even this assumption is considered unrealistic in our work. Suppose our

software is deployed already. Then, the learning depicted in Figure 7.1 needs to be

carried out online. Without acquiring labels for other samples through other means,
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the software would not know if they are in-class or out-of-class, i.e. the learning cannot

simply treat unlabeled samples as out-of-class.

7.3 Manifestation Learning

Suppose a sample s is given to represent a concept in domain A . The idea of Mani-

festation Learning is that, we would try to recognize the concept by using a pre-trained

recognizer Mb for a different concept in a different domain B. The recognizer Mb is

trained with a dataset originated from the alternative domain, where there are plenty of

training samples available.

Figure 7.5: The basic idea of Manifestation Learning.

Figure 7.5 illustrates the idea. Given an instance to be recognized for a concept

in A , we simply manifest the instance into a concept in B domain and use Mb for

the recognition. To realize this idea, at the minimum, it requires building a mapping

function that maps every instance in A to an instance in B. Note, like one-shot learning,

manifestation learning can also be thought of as a special form of transfer learning [85].

7.3.1 The Manifestation Space

Recent advances in the AutoEncoder (AE) approach [64], in particular the Variational

AutoEncoder (VAE) [32], provide a means for realizing the proposed idea. An AE has

three essential components: an encoder function, a probabilistic decoder model, and a

coded latent space.

102



Per-Sample-Based Recognizers Chapter 7

Figure 7.6: Setup for Manifestation Learning.

Figure 7.6 illustrates our setup to realize the manifestation learning idea. Given a

dataset for learning about a concept in B (which contains many in-class and out-of-class

samples), an encoder and a decoder are trained. The encoder and decoder in the setup

are both neural network models. For an input sample x, the encoder maps x onto a point

in the latent space. This point essentially can be seen as a code z⃗ for x. For example, if

the latent space is defined with 16 dimensions, z⃗ is a vector of size 16. Then, the decoder

reconstructs the input x from the code z⃗. A main training objective is to minimize the

reconstruction error.

After the training, each sample in the dataset is mapped to a code in the latent space.

In manifestation learning, one sample s for a concept in A is given. This sample is used

in training an encoder and a decoder separately. This manifestation encoder maps s

to a selected code in the latent space. This selected code corresponds to a particular

sample from a selected concept in B. The decoder then reconstructs the sample from

the code. The training objective for the decoder is also to minimize the reconstruction
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error. However, the training objective for the encoder is different from before, i.e. now

the objective is to map s to a selected code.

For a selected concept in B, its recognizer is built in the latent space where each

sample is represented as a vector. The recognizer can be built using a traditional learning

technique such as SVM [17]. More importantly, there are sufficient data for learning the

model. Detail will be discussed later in Section 7.4. In Figure 7.6, we call the latent

space as a Manifestation Space. This is to differentiate our use of the space from that of

traditional AE and VAE.

7.3.2 VAE implementation

VAE replaces the deterministic encoder function in AE with a posterior model q(z⃗∣x).

The effect is that, instead of learning a code for a sample as a vector in the latent space,

VAE learns codes represented as probabilistic distributions in the space. When each

sample is represented as a probability distribution, effectively the latent space becomes

continuous. This enables information to be learned between two sample points and allows

samples to be drawn randomly from the latent space.

Note that our VAE implementation did not follow the original VAE [32] which uses

KL divergence to regularize learning of the latent space. As indicated in a number of

works [86][87], this can lead to an uninformative latent code and also the tendency to

over-fit samples, especially on a small dataset. We use the InfoVAE proposed in [88] which

uses Maximum Mean Discrepancy (MMD) [89] to measure divergence and regularize the

latent space.
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Figure 7.7: Convolutional Neural Networks for VAE.

7.3.3 The neural network architecture

Figure 7.7 illustrates the architecture of the neural networks for implementing VAE.

Convolutional neural networks (CNN) are used to implement the encoder and decoder.

The encoder comprises four convolutional layers denoted as “CNN()”. The decoder

comprises four transposed convolutional layers denoted as “T.CNN()”. The input image

is a 48 × 48 × 1 tensor, i.e. a 48 × 48 image with one channel. Unlike a RGB image with

three channels, our image has one channel with three possible values, −1, 0, and +1.

The first CNN layer essentially converts the input image into a 24 × 24 image with

128 channels, i.e. a 24 × 24 × 128 tensor. Each 24 × 24 matrix is the result of applying

a filter on the original input image. Each filter uses a 4 × 4 kernel (window) to “scan”

the input image. The stride length is 2, i.e. during scanning the window moves every 2

pixels. The effect is to reduce the original image size by half.
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Another way to understand the CNN layer’s operation is by thinking in terms of a

convolutional matrix [90], which is defined by the kernel and the stride length. In the

example, the convolutional matrix can be denoted as C576×2304 where 576 = 24 ∗ 24 and

2304 = 48∗48. The 48×48 input image matrix is flatten into a column vector v⃗2304. Then

the convolution layer computes the product C576×2304 ∗ v⃗2304. This product is a vector of

576 values which can then be reshaped into a 24 × 24 matrix.

Similarly, the other three CNN layers below the first CNN layer further reduces the

image size, from 24×24 to 12×12, then to 6×6, and then to 3×3. The number of channels

is equal to the number of filters used in each layer. Each filter is a i × i × k tensor where

i× i is the kernel size and k is the number of channels from the previous layer. After four

CNN layers, the result is a 16-channel 3× 3 image, i.e. a 3× 3× 16 tensor. This tensor is

flatten into a vector of size 144. The last layer of the encoder is a fully connected (FC)

layer that connects 144 inputs to 32 outputs.

The latent space has 16 dimensions. If it were AE, another FC layer would have been

used, to reduce the size from 32 to 16. In training, each sample would be mapped into

a vector of size 16 in the latent space. In VAE, two 16-dimensional vectors are used,

denoted as µ and lnσ2. In each training cycle, a multivariate constant ϵ is randomly

drawn from the distribution Z(0,1), the 16-dimensional Gaussian distribution with mean

0 and standard deviation 1. Then, µ+ϵ∗e
lnσ2

2 is used as the resulting vector in the latent

space (Note that e
lnσ2

2 = σ). Effectively, each sample would correspond to a probability

distribution in the latent space. This distribution is assumed to be Gaussian, represented

by its mean vector µ and the vector lnσ2. Note that the reason to use lnσ2 instead of

its standard deviation σ directly is a trick to enable the training [32].

The decoder takes a 16-dimensional vector from the latent space and produces a

48 × 48 image. First, it uses a 16-to-32 FC layer, followed by a 32-to-144 FC layer to

expand the 16-dimensional vector to a vector of size 144. The vector is then reshaped
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into an 12 × 12 image with 1 channel. A transposed convolutional layer is similar to a

convolutional layer except that instead of using a convolutional matrix, a T.CNN uses

the transpose of a convolutional matrix.

For example, in CNN suppose we multiply a convolutional matrix C144×576 to the

flatten vector of a 24 × 24 matrix. This gives a vector of size 144, equivalent to a 12 × 12

matrix. In T.CNN we would multiply (C144×576)
T to the flatten vector of a 12×12 matrix.

This gives a vector of size 576, equivalent to a 24 × 24 matrix. The last T.CNN layer

produces a 48 × 48 image with 16 channels. A FC layer is then used to convert the 16

channels into 1 channel. In VAE training, the reconstruction error, i.e. the difference

between the input image and the output image, is minimized.

7.3.4 An example of Manifestation Space

TensorFlow [91] is used to implement the neural networks shown in Figure 7.7. One

of the datasets we experimented was from the MNIST handwritten digit database [22].

The dataset comprises samples for individual digits “0” to “9”. In our study, for each

digit we had >5000 samples. Figure 7.8 shows ten examples for digits “0”, “1”, and “2”.

Figure 7.8: Examples of “0”, “1”, and “2” from the MNIST dataset.

We took 5000 samples for each of the three digits to form a dataset of 15K images.

We trained a VAE model with these 15K images. We were interested in how the samples

distributed in the latent space. The latent space has 16 dimensions. Hence, we used the
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t-SNE technique [92] to project the latent space onto a 2D space for ease of viewing.

Figure 7.9 shows the result. For clarity, only 100 samples from each class are randomly

selected to be shown. It is interesting to observe that samples from each digit exhibit a

cluster in the latent space.

Figure 7.9: A Manifestation Space example.

Recall that in VAE, each sample in the latent space corresponds to a probability

distribution. Hence, it is important to note that the points shown in Figure 7.9 is the

result by randomly drawing an ϵ (see Figure 7.7) for each sample. As a result, if we tried

to re-generate the plot in Figure 7.9 with another run, the exact location of a sample’s

point could change due to the random drawing. However, exhibition of the three clusters

would always be there.

It is also important to note that during VAE training, the images were used without

their label. Hence, the training is unsupervised. Therefore, the clustering property shown
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in Figure 7.9 is the result of the VAE training. Note that this property might not be

there if a different dataset or a different learning setup is used. Later in Section 7.4 we

will discuss this property in more detail.

Suppose we want to map a wafer plot to a sampled point in the latent space. As

shown in Figure 7.6, we train a separate encoder and decoder (Encoder A and Decoder

A in the figure). As shown in Figure 7.9, this is done for three wafer plots: the first

“ring” wafer plot shown in Figure 7.2, a generic no-fail (“blank”) plot, and a generic

all-fail (”full”) plot. Each plot is mapped to the “center” of a digit cluster. In Figure 7.9,

the centers are marked by a red star “⋆”.

To check how well the manifestation decoder works, Figure 7.9 also shows the sequence

of images produced by two walks. The first walk moves from digit “1” to digit “0”.

Observe that the resulting images gradually change from “ring” to “blank”. The second

walk moves from digit “1” to digit “2”. Also observe that the resulting images gradually

change from “ring” to “full”.

In the two walks, observe that the first three plots all exhibit the “ring” feature.

They can all be treated as examples of concept A , i.e. concept “ring”. In the latent

space, those “ring” plots correspond to points closer to the center of the digit “1” cluster.

If we could define a region around the digit “1” cluster, in Manifestation Learning this

region could also be used to define a region for concept A . Then, recognizing concept

A becomes simply to check if an input image, after going through the manifestation

encoder, results in a point inside the concept region or not.

7.3.5 Another example of Manifestation Space

Before we discuss how to model a concept region in a manifestation space, in this

section we show another example of manifestation space. This example shows some

109



Per-Sample-Based Recognizers Chapter 7

generality of the Manifestation Learning idea.

Figure 7.10: A sentence-based manifestation space.

Figure 7.10 shows a manifestation space learned based on 60 paper titles from past

International Test Conference (ITC), where 29 titles are categorized as “Machine Learn-

ing” and 31 titles are categorized as “Automotive” (two tracks of ITC in recent years).

We use the VAE approach proposed in [93] to train a VAE model, where the CNNs in

Figure 7.7 are replaced with LSTMs [94].

Then, we take two plots for training the manifestation encoder and decoder, which

follow the network architecture shown in Figure 7.7. The first plot (on the top) is the

same correlation plot shown as Figure 3-(a) in our previous paper [77]. The x-axis is the

average e-test value and the y-axis is the number of fails. Each yellow dot represents a

wafer lot. It is a correlation plot example used in [77] to show that, as the e-test value

becomes larger, it tends to result in more fails. The second plot is a manually-created,
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generic counter example showing no correlation between x and y.

The manifestation encoder is trained to map the correlation plot to the center of

the “Machine Learning” cluster. The no-correlation plot is mapped to the center of the

“Automotive” cluster. As before, by walking a path from “Machine Learning” to “Auto-

motive” in the manifestation space, we can generate various plots using the manifestation

decoder. In addition, we can generate various paper titles using the VAE’s decoder. Note

that in the figure, none of the generated titles is the same as the original titles used in

training the VAE.

It is interesting to observe that the top three titles are about “Machine Learning”.

The bottom three are about “Automotive”. The middle one is a hybrid. Also observe

that the top three plots all show a similar correlation trend. Suppose we have a model

that can recognize a paper title of “Machine Learning” category. Then, this model could

also be used to recognize plots with a correlation trend.

7.4 The Concept Region

To model a concept region in a manifestation space, we need to decide on the following

four aspects:

• (Dataset): We need to choose a labeled dataset that comprises multiple classes of

samples, where for each class there are sufficient samples for the VAE training.

• (Learning Setup): To learn a model in the manifestation space, we need to choose

to employ a supervised learning or an unsupervised learning setup.

• (Algorithm): Based on the learning setup, we choose a particular learning algorithm.

• (Target Class): Through experiment, we choose a particular class as our target class

for modeling the concept.
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7.4.1 Dataset selection

To choose a dataset, we considered various options. Because our goal is to capture

a concept based on a wafer plot, it would seem intuitive to consider using a dataset

comprising multiple classes of wafer plots. For example, the work in [83] shows 11 classes

of wafer plots found in the dataset with 8300 wafers. After investigating the possibility,

we decided not to use the dataset because the numbers of wafer plots across the 11

classes differ significantly. Some have much fewer samples while the largest class has over

a hundred. The imbalance and insufficiency in terms of the number of samples are of the

major concern.

One crucial property considered for a manifestation space is that multiple classes

of samples exhibit clustering as that shown in Figure 7.9. This is important because

it enables us to model a target class region more easily. We also considered using the

CIFAR-10 dataset [95]. However, while we could train a VAE model with a good recon-

struction accuracy, we found it more difficult to observe the desired clustering property

in the latent space. This was true even with using only two classes of samples.

For example, Figure 7.11 shows the latent space with 100 samples each from two

classes of CIFAR-10: cat and automobile. The training is based on 5000 samples in

each class. The reconstruction accuracy is 96.002%. The dimension of the latent space

is set at 1024 to achieve the accuracy. As seen, points from the two classes show no

clustering. Figure 7.10 shows another option based on a sentence-based manifestation

space. While it is interesting, we found that training with the sentence-based VAE [93]

could be much trickier than training a CNN-based VAE. After all the experiments, we

settled with the MNIST handwritten digit dataset [22]. The dataset we used comprises

10 classes of image samples. Each class has 5000 samples. The dataset is balanced and

also has a sufficiently large number of samples from each class.
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Figure 7.11: Latent space shows no clustering with CIFAR-10 samples.

Similar to Figure 7.9, Figure 7.12 shows the 2D projection plot of the latent space.

Again, the figure shows 100 samples for each digit. As seen, samples of the same digit

are clustered. In terms of the clustering property, this was the best result observed in all

of our experiments. Hence, we chose this space as our manifestation space.

7.4.2 Learning setup and the algorithm

Each sample in the MNIST dataset is labeled by its digit. From the manifestation

space, we can obtain a dataset where each sample is represented as a vector of size 16.

Each vector has a label and hence intuitively, to learn a concept region for a target class,

say digit “1”, we can treat it as a supervised binary classification problem, i.e. to treat

“1” as one class and the rest of digits as the other class.

After some initial study, we decided not to follow this approach. The main reason is

that we desire our model for a concept region to have no false positive (This property will

be utilized later in Section 7.6). A supervised learning algorithm usually is not designed
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Figure 7.12: Clusters in the manifestation space with MNIST samples.

to ensure no error with respect to a given class. Hence, in our implementation we chose

to treat it as an unsupervised learning problem.

Suppose we want to learn a model to capture the concept region for the digit “1”

in the manifestation space. With an unsupervised setting, when learning the model we

would only use the samples of digit “1”. The learning algorithm we chose was the SVM

one-class algorithm [24], in particular the implementation from the Scikit-Learn package

[96].

To run SVM one-class, user needs to supply value to the parameter called ν (“nu”).

The ν parameter provides an upper bound on the fraction of samples that are classified

as out-of-class by the model. Note that in an actual implementation, this bound is not

strictly followed because of the use of a soft margin, i.e. if a sample falls outside but
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very close to the decision boundary (within a margin), it would not be considered as a

violation of the bound.

For example, Figure 7.13 shows the result by running SVM one-class on the 5000

samples of digit “1”. We set ν = 0.01. This means that the model should classify no more

than 50 samples as outliers. The model comprises two elements: (1) for each sample a

score is calculated, and (2) a threshold is provided to classify samples into in-class (above

the threshold) and out-of-class (below). Note that in SVM this threshold is always set at

the value 0. However, the Scikit-Learn implementation moves this threshold by a positive

bias to facilitate plotting with a log scale.

Figure 7.13: Resulting SVM scores on digit “1” samples.

As seen in Figure 7.13, 74 samples are considered out-of-class, i.e. below the threshold.

In our context, we can interpret this as a recognition model capturing a concept region

that includes 4926 samples of digit “1”.

Next, we apply the digit “1” model to 5000 samples of digit “0”. Figure 7.14 shows the

result. While the model does leave 4977 samples outside the concept region, it includes

23 samples as in-class. These 23 samples are false positives. As mentioned above, we

desire no false positive for a model. Hence, this model would not work.
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Figure 7.14: Applying the SVM model on digit “0” samples.

7.4.3 Target class selection

To search for a model that works, we use all the out-of-class samples as the validation

set. The search is based on changing ν. We would search for a minimal ν value that

results in a model with no false positive, i.e. the model treating all samples in the

validation set as out-of-class. Figure 7.15 shows the result based on the model found

with ν = 0.28 for digit “1”. The model includes 3599 samples of digit “1” as in-class. The

model classifies all samples from other digits as out-of-class.

Figure 7.15: SVM scores by the digit “1” model, across all samples.

In contrast, Figure 7.16 shows the model for digit “0”. In order to achieve no false

positive, the ν is set at 0.5, resulting in excluding half of the samples of digit “0” from
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Figure 7.16: SVM scores by the digit “0” model, across all samples.

the concept region (below the threshold).

Table 7.1: The resulting ν for the ten digit classes

0 1 2 3 4 5 6 7 8 9
0.50 0.28 0.82 0.89 0.88 0.94 0.64 0.88 0.79 0.79

Table 7.1 shows the ν values found across the ten digit classes where the resulting

model has no false positive. The search started from ν =0.01 with an increment of 0.01.

The result shows that samples of digit “1” provide the best model, meaning that the

model captures the largest number of in-class samples in the concept region.

This result is consistent to the fact that the cluster of digit “1” is more separated

from others, which can be somewhat observed in Figure 7.12. Suppose for each cluster we

calculate its “center” which is the average of all the sample vectors in the manifestation

space. For each digit, we calculate the average (Euclidean) distance from its center to

the other 9 centers. Table 7.2 shows such average distance for each digit. As seen, digit

“1” has the largest average distance to others.

More separation of a cluster to other clusters enables building a better model, i.e.

capturing more in-class samples inside the concept region. Because of this observation,
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Table 7.2: Average distance to the other 9 digits

0 1 2 3 4 5 6 7 8 9
5.64 6.16 5.37 5.01 5.27 4.87 5.28 5.35 4.46 4.47

we chose digit “1” as our target class for manifestation. In other words, for a given

concept A to be learned we would map its training sample onto a sample of digit “1” in

the manifestation space.

7.4.4 Manifesting to a digit “1” sample

Refer back to Figure 7.6. To manifest the “ring” wafer plot (concept A ), we use the

plot to train a manifestation encoder and a manifestation decoder. When training the

encoder, we need to select a point in the concept region of digit “1”. In our implemen-

tation, we select the point that has the largest SVM score. We train the encoder to map

the wafer plot to the point. After that, we train the decoder to reconstruct the wafer plot

from the point. After manifestation training, we then check how the resulting recognizer

performs on the other 8299 wafer plots.

Figure 7.17: Initial manifestation that does not work.

Figure 7.17 shows the result for the 8300 wafer plots. Each wafer plot corresponds
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to a point in the manifestation space. The SVM model calculates a score for the point.

The six “ring” plots in Figure 7.2 are shown as six red dots “●”. All others are shown as

grey dots.

What we desire to see is that the six red dots are above the threshold and none of the

grey dots are above it. In contrast, we see that majority of the grey dots are also above

the threshold, an undesirable result. In the enlarged view, however, we do see that the

scores of the six wafer plots are higher. The problem is that the scores for other plots

are also high. Hence, we need to find a way to lower the scores for all the other plots.

7.5 Generic Counter Examples

Figure 7.18 shows three wafer plot examples and the corresponding plots generated by

the manifestation decoder. It is interesting to see that regardless of the input image, the

output image always shows a similar “ring” feature. As explained below, the problem,

though, is not with the decoder, but is with the encoder.

Figure 7.18: Checking the decoder’s output - 3 examples.

The manifestation encoder is trained with only one wafer plot of concept A . Hence,

the encoder lacks information on where to map a wafer image different from concept A .

To improve the encoder’s mapping, we use a generic counter example to differentiate

from concept A .

One generic counter example is the no-fail wafer plot, i.e. the “blank” wafer image.

Figure 7.19 shows the result by adding this image in training the manifestation model.
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The training now has two wafer images. The blank image is mapped to a point of digit

“0” in the manifestation space. Instead of mapping to the point with the largest SVM

score, it maps to the point with the medium SVM score. The reason “0” is chosen is

because in the manifestation space, the distance between the center of digit “1” and the

center of digit “0” is the largest (e.g. see Figure 7.12). Through experiment, we observed

that the further away the digit we chose for this mapping, the better the result would

be.

Figure 7.19: Add a no-fail wafer image, mapped to digit “0”.

Comparing to Figure 7.17, observe in Figure 7.19 the significant effect by adding the

blank wafer image. The resulting model classifies 21 wafer plots as in-class. Four out

of the 21 plots are among those six containing a “ring”, i.e. those shown in Figure 7.2.

Hence, we consider the other 17 as false positives. The images for five of these 17 false

positives are shown as examples.

To improve the result further, we consider adding a second generic counter example.

This time we add an all-fail wafer plot, i.e. the “full” wafer image. This wafer image is

mapped to digit “2” whose center is the 2nd farthest to the center of digit “1”. Figure 7.20
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shows the effect.

Figure 7.20: Add a no-pass wafer image, mapped to digit “2”.

The model classifies five images as in-class with only 1 false positive left. The four

recognized in-class plots in Figure 7.19 are also kept as in-class. Their images are shown in

Figure 7.20. The image of the one false positive is also shown in Figure 7.20. Effectively,

adding the “full” wafer image removes 16 of the 17 false positives in Figure 7.19.

Figure 7.21: Add a bounding-box wafer image, mapped to digit “7”.
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Figure 7.21 shows the best manifestation setup found in our study. Instead of using

the all-fail wafer image, we use an image with all-fail in a bounding box. The bounding

box is the smallest box containing the “ring” feature. Then, we fill the box with yellow

pixels (excluding the area outside the wafer boundary if any). Because this bounding

box image depends on the wafer plot, we map this image to digit “7” (instead of digit

“2” as that in Figure 7.20). In Figure 7.12, we observe that digit “7” is the closest digit

to digit “1”.

As seen in Figure 7.21, the best model keeps the four in-class plots as in-class while

removing the 1 false positive concerning us in Figure 7.20. We consider this as the most

desirable result as it can recognize wafer plots similar to the given training wafer plot

with no false positive.

7.6 Iterative Recognition

As shown in Figure 7.2, we consider six wafer plots having the same “ring” feature.

The first one is used to train the manifestation model shown in Figure 7.21. The model

recognizes three of the other five plots. This leaves two wafer plots unrecognized, i.e. two

false negatives.

Because our manifestation setup is designed to achieve zero false positive, the false

negative issue can be mitigated rather easily. The idea is that we would simply expand

the recognition by iteratively building additional manifestation models based on those

recognized wafer plots. Suppose in iteration i, a set Si of wafers {W1,W2, . . .} are rec-

ognized where no Wj is recognized in a previous iteration. For each Wj, we build a

manifestation model and apply it in the next iteration to see if there is any new wafer

plot recognized.

This process continues until either (1) we reach a closure recognition set, or (2)
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the recognized plots are “too far” from the original training wafer plot. A closure set

{W1, . . . ,Wk} means that if we build a manifestation model for any Wi in the set, the

recognized wafers are all in the set.

We found that iterative recognition can reach a closure set in a few iterations (e.g.

three iterations) but not always. To avoid too many iterations, we can impose rules to

prevent building a model from some recognized plots.

For example, such rules can be implemented by checking the size and location of a

bounding box from a recognized plot, as comparing to the bounding box from the original

wafer plot. In our implementation, if the size or location of the bounding box differs from

the original bounding box by more than 50%, we would not build a manifestation model

for the recognized plot.

Figure 7.22: Iterative recognition for the “ring” concept.

Figure 7.22 shows the result of this iterative recognition process. The first iteration

shows the same result as shown in Figure 7.21. Then, the two missing in-class plots are

recognized in the 2nd and the 3rd iterations. With iterative recognition, all six wafer plots

shown in Figure 7.2 are included. There is no false positive in the iterative recognition

process, i.e. Figure 7.22 shows all the recognized plots. Furthermore, the process stops

because it reaches a closure set.
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7.6.1 Other classes of wafer plots

To validate the generality of the manifestation setup, we consider two additional

classes of wafer plots: “center” and “edge” which were among the 11 classes of wafer

plots reported in [83]. Figure 7.23 shows the iterative recognition result starting with a

“center” wafer plot.

Again, in each iteration only those newly recognized wafer plots are shown. A mani-

festation model is built and applied based on each recognized plot, except those marked

with a “▲”. Those marked wafer plots were excluded by the rule checking mentioned

before.

For those unmarked plots, if there is no outgoing line, it means all the recognized plots

by the manifestation model are already included in the previous and current iteration(s).

The figure shows all plots recognized in the process. Similarly, Figure 7.24 shows the

Figure 7.23: Iterative recognition for the “center” concept.

result starting with a wafer plot with an “edge” feature. Note that in the work [83],

out of the 8300 wafers, in total there were 80 wafer plots reported as the “center” class
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Figure 7.24: Iterative recognition for the “edge” concept.

and 108 wafer plots reported as the “edge” class. In contrast, Figure 7.23 shows 20

wafer plots and Figure 7.24 shows 38 wafer plots. None of them would be considered

as a false positive from the classification reported in [83]. However, the manifestation

models recognize much fewer wafer plots in each case. This is understandable because

the recognition process starts with one particular wafer plot, and the process only tries

to recognize plots similar to the given wafer plot.

7.7 Summary

In Section 7.2, we begin by discussing a similarity scoring method IoU(). Given

a wafer plot, the method calculates a score for every wafer plot. As discussed in Sec-

tion 7.4.2, in manifestation a SVM score is calculated for every wafer plot. Figure 7.25

shows a comparison for the top ranked plots using these two scoring methods.

For the six “ring” plots, the SVM scoring ranks them as 1,2,3,4,6, and 7. The 1st plot

is the given plot. The model in Figure 7.21 puts the threshold between the 4th and the

5th plots. Hence, the top 4 plots are recognized as in-class. The IoU ranks the six plots
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Figure 7.25: Ranking comparison: SVM scores Vs. IoU scores.

as 1,2,3,6,9, and 11. It is interesting to observe that if we assume the threshold is set to

include all the top 11 plots as in-class, with both rankings, they both can capture all six

“ring” plots as in-class. Also, both have exactly five false positives. The false positive

sets, however, are different by three plots (the three plots highlighted in each ranking).

In view of the IoU()-based method discussed in Section 7.2, we see that the proposed

Manifestation Learning effectively does the following four things:

1. It maintains the trend of an IoU ranking.

2. It fine-tunes the IoU ranking.

3. It automatically decides a threshold.

4. It ensures no false positive to enable implementation of an iterative recognition

process.

It is interesting to note that if we consider IoU as intuitive and interpretable to a person,

we see that Manifestation Learning keeps this intuition to a large extent. Enabled by

our Manifestation Learning approach, let us now look at the implications of being able

to train per-sample-based recognizers in the next chapter.
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Chapter 8

Explainability-First DSML

“It is not enough to have a good mind; the main

thing is to use it well.”

— Rene Descartes

In Chapter 4, we have discussed the requirements for implementing a practical DSML

solution in the context of WMPR. In Section 5.4, we have discussed the capabilities for

meeting the first requirement. In Chapter 7, we present a novel method to enable learning

a recognizer based on one wafer map. In this chapter, we will explain how such learning

can enable an implementation of a practical DSML solution in view of the capabilities

and requirements discussed before.

8.1 Discovering Pattern Classes Based On Graph-

Based Operations

Given wafer maps wi,wj, suppose we have learned their recognizers Ri,Rj. The

benefit of having these two recognizers is that we can now define a primitive called pattern
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equivalence PE(wi,wj) and use it to decide if two wafer maps should be considered to

have the same pattern class. Note that PE does not say that the two wafer maps

are definitely having the same class. It says that they should be considered. We can

implement PE by enforcing that Ri recognizes wj and Rj recognizes wi.

Once the PE primitive is defined, we can convert a given batch of wafer maps into a

graph. In this graph, there is an edge between two wafer maps wi,wj if their PE(wi,wj)

is true. In this way, we obtain a graph as the starting point to discover pattern classes.

Figure 8.1: 2 example sub-graphs as a connected component

On this graph, we can easily discover connected components as sub-graphs. For

example, Figure 8.1 shows two sub-graphs found in a batch of wafer maps. Figure 8.3

shows another sub-graph whose size is larger.

8.2 Lower-Bound and Upper-Bound

Partitioning the graph by its connect components provides us an upper-bound model.

Between any two components, there is no edge. Hence, we know that there is no PE

relationship between any pair of wafer maps across the two components. It is only an

upper-bound model because two wafer maps in the same component can be connected
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Figure 8.2: A larger sub-graphs as a connected component

through a sequence of wafer maps in between. For example, w1 is connected to w100

because PE(w1,w2), PE(w2,w3), . . . , PE(w99,w100) are all true. In this case, we cannot

say that w1 and w100 are likely to have the same pattern class (from a user’s perspective).

On the contrary, the chance is probably low for a user to consider them the same because

their connection is established through so many intermediate wafer maps.

Given a connected component, we can find cliques inside the component. These

cliques serve as the choices to define a lower-bound model. For example, Figure 8.3 shows

a connected component where three cliques of size three are found. The assumption in

our DSML solution is that wafer maps in a clique of size at least three are considered

in the same pattern class. For example, suppose we choose clique A in the figure as our

lower-bound model. Then, through our explainability-first interaction with the user, it

might be decided that wafer map w should be added to the pattern class represented by

clique A. This decision will trigger adding the other two wafer maps because they and

w belong to two other cliques, respectively.
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Figure 8.3: Example to show lower-bound and upper-bound models

8.3 Explainability-First Fine-Tuning

Given an upper-bound model and a lower-bound model, our goal is then to implement

a workflow that facilitates a user to attain a final decision on the set of wafer maps that

should be in the same pattern class. Figure 8.4 illustrates this workflow.

Given a clique C as a lower-bound model, our strategy to extend its coverage of other

wafer maps is the following. We will use a set of features f1, . . . , fn to find a rule that

explains the clique. We desire this rule to be understandable by the user. The learning

problem to get to such a rule is similar to the rule learning problems discussed before

in Section 1.2.1. In essence, we have a dataset where positive samples are those in the

130



Explainability-First DSML Chapter 8

Figure 8.4: WMPR data summarization workflow, where sample-based primitives
enable the extraction of the Upper-Bound and the Lower-Bound models.

clique and negative samples are those not in the connected component containing the

clique. Those wafer maps not in the clique but in the connected component are ignored

in this rule extraction process.

Feature Type Description
Ratioarea,cc CC Ratio of CC’s area to wafer area
Ratioperi,cc CC Ratio of CC’s perimeter to wafer radius
Distmax,cc CC Max. distance between CC’s and wafer center
Distmin,cc CC Min. distance between CC’s and wafer center
Ratiomajor,cc CC Ratio of major axis of CC’s estimated ellipse to wafer radius
Ratiominor,cc CC Ratio of minor axis of CC’s estimated ellipse to wafer radius
Ratioconv,cc CC Ratio of CC’s convex hull defectivity
Ratioecc,cc CC CC’s estimated ellipse eccentricity
Countglobal Statistical Count of defective dies on wafer
Ratioglobal Statistical Ratio of defective dies to all wafer dies
Ratiolocal Statistical Ratio of defective dies in two outer-most rings of wafer
Countlines Statistical Count of lines detected with Hough transform

Table 8.1: Features used to demonstrate the data summarization tool’s feasibility.

In practice, our DSML solution can come with an initial set of features. However,

we do not assume that this initial set is sufficient. The idea is to allow a user to create
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and use their own features. This allows the user to ingest their perspective to the DSML

solution and affect the explanation result. As a start, Table 8.1 lists a set of features

considered in our current implementation of the envisioned DSML solution. Note that

this is still an ongoing effort taken over by other students in our lab.

8.4 Initial Results

Based on the feature set summarized in Table 8.1, in this section we use two examples

to illustrate the effect of the methodology depicted in Figure 8.4. The context is in the

analysis of a sequence of selected wafer maps produced within a month from a production

line. There are 1448 wafer maps in the consideration.

Figure 8.5: Rule = ( Ratioglobal ≥ 0.31088, Distmax,cc ≤ 0.72760,
Ratiomajor,cc ≤ 1.07521, Ratioconv,cc ≤ 0.44943 )

The first example is shown in Figure 8.5. The left shows the clique containing three

wafer maps. After a rule explaining the clique is found, one wafer map in the correspond-

ing connected component is found satisfying the rule. This wafer map is then added to

the pattern class. The rule is stated in the caption of the figure.

The second example is shown in Figure 8.6. Again, the rule found one wafer map and

added the wafer map into the pattern class. Note that the rules for the two examples both

involve four features. Having more features in a rule can be seen as less interpretable for

the user. The examples illustrate how the proposed methodology might be used to find
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Figure 8.6: Rule = ( Countlines ≥ 5.0, Ratiolocal ≤ 0.42366,
Ratioconv,cc ≥ 0.57447, Distmin,cc ≤ 0.0 )

a target model according to a user’s perspective. The rules shown might not be ideal.

However, getting to the results can help us think of a better set of features, in terms of

more interpretable rules. This is how we expect a user to use the DSML solution. The

solution summarizes the current results and presents possible options (e.g. a lower-bound

and upper-bound pair). Then, the user can gradually learn from the results, create a

new feature to refine results, and iteratively attain the results that are desirable. In this

iterative process, the features created become the knowledge assimilated by the solution,

which can be re-used in the future. In this way, there might be an initial ramp-up cost

to use the software, but this cost shall diminish quickly over time.

8.5 Summary

In view of the four capabilities listed in Section 5.4, the methodology presented in

Figure 8.4 can take care of the first three. It appears the fourth one is unattained.

However, the same methodology can be used to attain the fourth capability. To illustrate

this, Figure 8.7 shows examples of wafer maps that do not belong to any of the low-bound

pattern classes. As seen, these wafer maps exhibit no clear pattern, i.e. their failing die

distributions are random. In other words, without our per-sample-based analysis, those

random wafer maps that cannot be grouped with another wafer map are automatically
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left out. This is another benefit by enabling the per-sample-based analysis approach.

Figure 8.7: Examples of stand-alone wafer maps

In Section 4.5, we list three requirements and two questions in view of implementing

a DSML solution in the context of WMPR. The proposed methodology above provides

the capabilities to address the three requirements. In particular, the methodology does

not intend to define a set of pattern classes automatically. It starts with two bounds,

lower and upper, and allow the user to search for a desirable answer in between the two

bounds. The methodology does not rely on an assumption that there is a golden answer

to the definition of pattern classes. Different users can achieve their own golden answer

using their respective feature set.

Using the proposed methodology as the foundation, other functions can be added to

the software for the convenience of results review by the user. For example, one function

can be to rank pattern classes according to their yield loss. Another function can be to

summarize all current pattern classes in a single screen where one wafer map is selected to

represent a pattern class, e.g. the one with the highest yield loss. Another function can

be to allow a user to merge two pattern classes into a single class manually. For example,

this recommendation might be based on the overlap of features in use to describe the

two pattern classes. Simply put, the proposed methodology and the per-sample-based
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capability provides a foundation that enables many useful functions to be built into the

software, which can greatly enhance the added value brought to the user.

For the last two questions mentioned in Section 4.5, our DSML solution can easily

address them. For example, all found pattern classes can be ranked according to their

yield loss and presented to the user. The user can review from the top one with the

highest yield loss. This facilitates the user to reach an answer to the first question (“Is

there a pattern that represents a potential yield issue?) quickly.

Regarding the second question (“If yes, is the pattern new or has it occurred previ-

ously?”), as mentioned before it essentially demands the capability to perform a similar-

pattern search on a given set of wafers. Implementing this search is straightforward with

our per-sample-based recognition approach. The PE primitive defined earlier can enable

such a search easily.

Overall, we see that the proposed methodology can enable us to implement a DSML

solution in the context of WMPM which has all the capabilities to meet all the require-

ments discussed before. It is important to emphasize, though, this complete solution can

only be possible after we have found a way to enable the per-sample-based analysis, i.e.

learning a recognizer based on one wafer map.
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Conclusion

“If a Bodhisattva has a mark of self, a mark of others, a mark of

living beings, or a mark of life, then he is not a Bodhisattva.”

— The Vajra Prajna Paramita Sutra, translation by

Buddhist Text Translation Society

We start this thesis with an overview of ML’s foundational developments between the

1950s to the 2000s, followed by an examination of deep learning’s explosion starting from

the early 2010s. For deep learning, we discuss its success in the general image classifi-

cation problem and the natural language understanding problem. After introducing the

application of ML in these two general contexts, we also introduce the application of ML

in a domain specific context, semiconductor design and test. Specifically, we illustrate

using application examples in Section 1.2, when applying domain specific machine learn-

ing (DSML), our focus seems to be on everything else but the learning algorithms. This

observation is illustrated through three characteristics of applying DSML, 1) we lack the

“care” samples, 2) we need to be able to answer “No models found”, 3) we need to be

able to check how applicable our model is for the current data.
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Next, in Chapter 2, we dive into the unique aspects of DSML and articulate its

difference between general ML. Specifically, we discuss that all tasks in DSML involve

an iterative process, where the DSML expert is applying tools to be able to achieve a

closure faster for their task at hand. In other words, the DSML experts are involved in

an iterative debugging/improvement process, where they are searching for “surprising”

information for their tasks.

Based on the new information discovered in an iteration, the DSML expert can ac-

tively adjust their assumptions about the underlying problem and establish the scope

of the next iteration. In a sense, when the expert’s assumptions are actively changing

between immediate iterations (“local”), DSML problems approach the definition of Local

No-Free-Lunch. This is all in contrast to general ML, where a set of hypothesis space

assumptions are fixed about the underlying problem at hand, and ML algorithms tries

to find the best generalized model in view of the current data.

Embracing the phenomenon of Local No-Free-Lunch in DSML, we aim to design

data summarization tools to be able to facilliate an expert’s iterative search process.

Specifically, we aim to provide capabilities to address the three characteristics mentioned

above, and also provide another capability to perform an unsupervised per-sample-based

analysis (for the WMPR problem). In addition, we stress the importance of a DSML

solution being able to provide clear added value for an existing company workflow, as

this is crucial for its adoption.

In Chapter 3, we further dive into the challenges associated with applying general

ML in view of DSML problems. From a high level, we can view the task of learning as

a filtering process as depicted in Figure 3.2, where inconsistent hypotheses are filtered

out by the data. When many hypotheses are left in this hypothesis space, the “simplest”

hypothesis is chosen. This approach essentially treats Occam’s razor as a first principle

during learning. However, we show that from the view of Bayesian inference, Occam’s ra-
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zor is justified only when picking between hypothesis spaces, but not between hypotheses

within the same fixed hypothesis space. Specifically, using a monomial learning example,

we illustrate this risk of treating Occam’s razor as the first principle in DSML, where

problems are Local No-Free-Lunch.

That said, Occam’s razor can still be used to guide the selection between hypothesis

space assumptions. Practically, when tackling DSML problems, instead of enumerating

all assumptions, the expert is more focused on obtaining a manageable set of initial

assumptions. With these initial assumptions, the user can utilize their domain knowledge

and iterate towards their solution. This motivates us to realize a software system to assist

the user in attaining these initial assumptions.

Next, in Chapter 4, we introduce the Wafer Map Pattern Recognition (WMPR)

problem as our DSML application context. We start with discuss the existing works which

tackles the WMPR problem from a general ML view (e.g. multi-class classification).

Then, specific issues are raised regarding taking a general ML approach for WMPR,

ultimately emphasizing the risk of being biased by Law of the Instrument, as this rarely

results in practical DSML solutions. By taking a DSML view, we discuss the WMPR

problem’s characteristics, such as the no-pattern class being analogus to “no models

found”. With these problem characteristics, we define the requirements for a WMPR

DSML solution: 1) Defining a set of pattern classes is part of the WMPR problem. 2)

There is no golden answer to the definition. 3) If two sets of classes are presented to

a user as two options, the user can judge which is the preferred one. We also describe

the end goals of an expert when interacting with our DSML solution, where they want

to know 1) If a pattern representing a potential yield issue exists, and 2) If yes, is this

pattern new?

Having established the WMPR problem as our DSML context, we next introduce

Structural Risk Minimization (SRM) in Chapter 5. SRM is a learning principle that
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emphasizes the establishment of a set of hypothesis spaces with an increasing complexity

“structure”. Starting from the search for a hypothesis in the least complex space, and

increasing the complexity as needed, upon seeing enough samples, this ensures the arrival

of the “first-fit” hypothesis space. This learning principle serves as an inspiration for some

design consideration, which will be elaborated below.

Going back to the WMPR problem, we discuss the inherently unsupervised nature

of its requirements. Specifically, taking the requirement of discovering a set of pattern

classes, we can frame it as a clustering problem. From this perspective, we can see

that the expert desires a transparent process of deciding some clustering between two

extremes. Where all wafers can be considered their own cluster, and all wafers can be

considered a single cluster. With this in mind, we aim to 1) develop a lower-bound

cluster model, where no two wafer maps that have been put into the same pattern class

will be separated in future analysis. Similarly, 2) for a upper-bound model, no two wafer

maps that have not been put into the same pattern class shall be in the same class in

future analysis. Ultimately, for a practical DSML solution, we want to develop these two

intuitive models to 3) guide the expert to search for their own “best” model. In addition,

to facilitate the expert’s search, we aim to reduce the search space by 4) develop a way

to filter out wafer maps with no pattern. If we examine our lower-bound, the target

desired by the expert, and the upper-bound, these models naturally can be framed as an

approximate SRM implementation of 3 increasingly complex hypothesis spaces.

Chapter 6 discusses the realization of two capabilities above, the development of a

lower-bound and a way to filter out no-pattern wafer maps. For the lower-bound model,

we employed properties of tensor decomposition, and developed tensor-based recognizers

which can produce wafer clusters that are very similar within the cluster. We show that

this cluster can be used as a checker to ensure more robustness for a deployed Generative

Adversarial Networks (GANs-based) DSML solution. Specifically, tensor-based recog-
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nition results can be used in a containment check against the GANs-based recognition

results, where when the containment fails, a DSML technology provider is notified of

the failure, where they can start implementing improvements for the deployed software.

The feasibility of the containment check implies tensor-based models are lower-bound

models. In addition, to address the second capability, we developed a rule-based method-

ology to generate artificial in-class and out-of-class samples to facilitate the training of

a no-pattern class recognizer. We also stress the importance of implementing rule-based

checkers to ensure that the filtered out wafers indeed does not contain patterns.

With both of these capabilities addressed, we are still missing two more capabilities

mentioned above, the upper-bound model, and enabling the expert’s search. In addi-

tion, tensor-based methods cannot extend to an upper-bound model, and the rule-based

methodology is difficult to generalize to more types of failures. If we wanted to address

all four capabilities at the same time, then we have to consider the extreme case, where

a recognizer can be learned using just a single wafer sample.

Motivated by this, in Chapter 7, we detail the intuition and implementation of our

novel per-sample-based learning approach, Manifestation Learning. With the enable-

ment of per-sampled-based recognizers, in Chapter 8, we describe how they can fulfill

each of the capabilities in a explainability-first DSML software. Specifically, relationship

primitives (e.g. pattern equivalence) can be defined between all wafer samples, where

graph analysis can take place to extract lower-bound models and upper-bound models.

We demonstrate the feasibility of how the expert can using crafted-features (i.e. hypoth-

esis space) to formulate rules and interpret their own grouping definition. We also show

the fourth capability of filtering no-pattern wafer maps is also enabled naturally by the

per-sample-based approach. Lastly, also enabled by the per-sample-based recognizers, we

discuss implementations of different data summarization approaches to fulfill the expert’s

two usage models in this WMPR software mentioned previously.
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9.1 A Philosophical Remark About This Work

In essence, DSML is fundamentally different from ML, for ML is driven by optimiza-

tion while DSML is not. This is because DSML lives in a world that is constrained

by (local) No-Free-Lunch. In a No-Free-Lunch world, optimization is not the ultimate

solution. Continuous optimization can only lead to diverse outcomes that are difficult

to comprehend. When that happens, some outcomes might be perceived as good and

others perceived as bad, depending on one’s own perspective.

We can observe this phenomenon when watching a practitioner trying to apply ML.

For example, they might desire to employ a clustering tool to group wafer maps into

pattern classes. They might try to use tools provided by a ML library such as Sickit-

Learn [96]. They would find many different tools. They applied and saw the pros and

cons of each tool from the result. At the end, they can look at the result and judge which

one is good and which one is bad. However, if they have to do this every time, then those

tools probably put more burden on them than actually helping them.

For example, if an engineer needs to review 500 wafer maps a day, probably it would

be easier to review them directly (following a simple ranking by the yield loss), without

invoking any ML tool. In other words, continuous optimization provides us with different

ML tools that can produce diverse results. When a result makes sense, a person thinks

the tool is useful. When a result does not make sense, a person thinks the tool is not

useful. The tricky part is that, for the same tool, its result may make sense sometime

and does not make sense some other time.

In a world of No-Free-Lunch, continuous optimization only introduces more complex-

ity to the world, not an ultimate solution. In contrast, in our DSML development, the

first thing we learned to accept, is that the world is No-Free-Lunch. Then, all the sub-

sequent works were developed based on that assertion. In other words, in retrospect we
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could say that the most important step in our development was when we decided to take

away our desire to optimize.

Without the desire to optimize, we still would need a driver for the development.

Searching for this driver eventually led us to focus on providing added value to the user,

and at the same time to the understanding that this added value should be perceived

from the user perspective (not ours). This driver then enabled us to see that ultimately

to achieve the goal, we would need a per-sample-based recognition capability.

We therefore learned that the essential driver of DSML is not optimization but com-

passion, the compassion for other people, wanting to provide help to them in their per-

spective. The “help in their perspective” characterizes the meaning of compassion which

is reflected in our proposed methodology to implement a practical DSML solution. We

also learn that in our research and development process, the most important thing in

reaching the goal is to take away the “self”. A true compassion has no self. Otherwise,

it becomes “desire to optimize compassion” which is just another form of continuous

optimization and that eventually, will not work well in a world of No-Free-Lunch.

The lesson we learned seems to be compatible to the first stage in the quote from the

Vajra Prajna Paramita Sutra, stated at the beginning of this chapter: “If a Bodhisattva

has a mark of self, then he is not a Bodhisattva”. There are still much to learn after

realizing the importance of this first stage. It will be quite intriguing to contemplate

what DSML might mean in view of the other three stages.
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