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Figure 1: Progressive visualization of scattered data using discrete radial Hermite interpolation applied to Macaque Cranium data set: (a) 11,963,
(b) 18,463, and (c) 32,963 samples.

ABSTRACT

Visualization of scattered data over a volumetric spatial domain is
often done by reconstructing a trivariate function on some grid us-
ing scattered data interpolation methods and visualizing the func-
tion using standard visualization techniques. Scattered data recon-
struction algorithms are often computationally expensive and diffi-
cult to implement. In order to visualize streaming scattered data,
where visualization needs to take place in real time while new data
is constantly streaming in, efficient approaches to scattered data re-
construction are required. We present a general framework for scat-
tered data interpolation operating on discrete domains. Since com-
mon visualization methods require an underlying grid, it suffices
to compute the scattered data reconstruction over the same grid.
The key idea for speeding up the reconstruction is a re-factorization
of the algorithm. The re-factorized version is designed such that
it easily maps to graphics hardware architectures exploiting their
performance and parallelism. Moreover, it naturally extends to ap-
plications for streaming data. As a proof of concept, we have im-
plemented inverse-distance-weighted interpolation, natural neigh-
bor interpolation, and radial Hermite interpolation using our gen-
eral framework. We apply the framework to two kinds of streaming
data: progressive scattered data and real-time sensor data with mov-
ing sensors delivering asynchronous measurements. To account for
the scattered spatial and temporal distribution of streaming sensor
data, we use a four-dimensional extension of our framework, which
elegantly handles representation of time-varying data and leads to
reconstructions that are smooth in both space and time.

1 INTRODUCTION

Scattered data methods arise naturally in a variety of applications.
When data is gathered by measuring quantities of interest at loca-
tions in the real world, there is usually no predefined or implied
connectivity between individual measurement sites, and the sites
are not arranged on a grid. Even when dealing with numerically
simulated data, where connectivity is usually required by the com-
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putational method, it might be changed or lost when data is post-
processed, e. g., by creating multiresolution hiearchies or transmit-
ting data in a progressive or streaming format. Without connec-
tivity, a (scattered) data set can be considered as an unordered set
of sample sites inside some domain with associated sample values.
When it is understood that the sample values are the values of some
underlying field function (temperature, humidity, etc.) at the sam-
ple sites, the process ofscattered data reconstructionrecreates this
underlying function such that it can be evaluated everywhere in-
side the domain, not just at the sample sites. This reconstruction
is essential to further analyze the data, for example by extracting
contour surfaces or rendering it directly as a volume.

An important emerging application area for scattered data meth-
ods are wireless sensor networks, where small independent sensors
measure environmental functions at their location, and asynchro-
nously send their measurements to a base station using an ad-hoc
wireless network. Sensors are typically not placed in pre-planned
locations, and some sensors can change position over time by drift-
ing with water or wind, or moving on their own. Sensor networks
create new challenges for scattered data methods. Traditionally,
scattered data reconstruction has been treated as a pre-processing
step at the beginning of a visualization pipeline, and the efficiency
of reconstruction methods has therefore not been much of a con-
cern. Sensor network applications such as environmental monitor-
ing or emergency response, on the other hand, require monitoring
of “live” streaming sensor data, which implies that all reconstruc-
tion and visualization must be performed in real time. As most
reconstruction methods are computationally expensive and difficult
to implement efficiently, new methods need to be developed, or ex-
isting methods need to be reformulated for real-time streaming de-
mands.

A very common usage pattern for scattered data reconstruction
is to evaluate a reconstructed function on a regular grid, and to per-
form all subsequent analysis/visualization using that grid. It turns
out that a large subset of existing scattered data methods, those
based onpartition-of-unity interpolation, can be re-factorized in
such a way that it becomes possible to exploit computational co-
herency, and the high floating-point performance of modern pro-
grammable GPUs, to reduce the cost of reconstruction to the point



of real-time processing. Furthermore, these re-factorizations are
also amenable to efficiently handle streaming data by only com-
puting local updates to an existing reconstruction whenever new
data arrives. We also found that our re-factorization scheme can
handle true time-varying data, where asynchronous data from mov-
ing sensors is interpolated in both space and time, by treating it
as static(n+ 1)-dimensional data, to create smoothly varying re-
constructions that are easily visualized or analyzed. Furthermore,
when treating samples as individual points in space-time, dynamic
insertion/removal of sensors and moving sensors are handled im-
plicitly. We describe our re-factorization in detail in Section 3, and
our approaches to reconstructing streaming or time-varying data in
Sections 3.2 and 3.3, respectively.

The re-factorization of scattered data reconstruction methods led
to a natural separation of the methods into a setup phase that is
done once for an entire data set, a per-sample update phase that is
done whenever a streaming data set changes (by addition/removal
of samples, or change of sample location/value), a per-sample phase
during reconstruction, and a per-voxel phase during evaluation of
the reconstruction on a regular grid. The setup and update phases
are generally performed on the host computer’s CPU, using spa-
tial data structures such as kd-trees to quickly locate samples and
locally update reconstructions; the per-sample reconstruction phase
consists mostly of sending data from the application’s address space
into the GPU, and the per-voxel reconstruction phase is entirely
done on the GPU using vertex and fragment programs. Modern
programmable GPUs provide parallelism and high computational
performance through streamlined designs, and we found that this
hybrid approach leads to efficent implementations for both static
and streaming scattered data, and the separation of the reconstruc-
tion algorithm into distinct phases leads to a general framework that
can be easily adapted for different reconstruction methods. We dis-
cuss the effectiveness and generic character of our approach using
several example reconstruction methods in Section 4, and investi-
gate our implementation of the radial Hermite method in detail in
Section 4.3.

2 RELATED WORK

Since scattered data interpolation has been an area of research for a
long time, many different approaches exist. The most common ones
can be categorized into methods based on triangulation, inverse dis-
tances, radial basis functions, and natural neighbors. For details, we
can refer to many surveys on this topic [1, 2, 5, 7, 13, 15].

Triangulation-based methods are fast, allow for higher-order in-
terpolation, and, due to their local nature, are suitable for large data
sets [17]. However, they require the computation of a triangulation
in a preprocessing step, which becomes a very expensive operation
in higher dimensions (e. g., tetrahedrization when operating on a
volumetric domain). Sometimes, this drawback can be considered
as minor, since the triangulation only has to be computed once (even
if data values change over time). In the context of streaming data,
however, new samples arise, old ones may vanish, and other sam-
ples may change their positions. Each of these changes requires a
retriangulation. Thus, to make triangulation-based approaches ap-
plicable to streaming data, an efficient local retriangulation method
would need to be developed.

Inverse distance methods are widely used due to their simplic-
ity, but many suffer from their well-known artifacts imposed by
the fact that each sample point has a radially symmetric influence
regardless of the nature of the underlying data [20]. Being the sim-
plest scattered data interpolation scheme, we use inverse-distance-
weighted methods to evaluate what frame rates can be achieved for
scattered data reconstruction for up to four dimensions using our
general framework.

Scattered data interpolation based on radial basis functions like

Hardy’s multiquadric interpolation method [8] allow for smooth in-
terpolations. As the scheme requires solving a linear equation in
the size of the number of samples, only localized versions are ap-
plicable to larger data sets, i. e., data sets containing more than 100
samples. Moreover, linear equation solving is an expensive oper-
ation that does not map easily to the parallel workflow of graph-
ics hardware. Although our general framework does also apply to
interpolation schemes based on radial basis functions, we did not
evaluate this option, as solving the linear equations would have be-
come a major bottleneck.

Natural neighbor interpolation is a local approach based on
Voronoi tessellation and, thus, works well for both sparse data
and dense data with many sample points. Like triangulation-based
methods, they suffer from an expensive preprocessing step for do-
main tessellation. However, unlike triangulation-based methods,
there exist approaches for efficient implementations of Voronoi tes-
sellations [10] that even scale to higher dimensions. We described
our approach to implementing Sibson’s natural neighbor interpola-
tion [21] in detail in a recent paper [19].

Recently, a radial Hermite interpolation for scattered Hermite
data has been introduced by Nielson [16]. Scattered Hermite data
is scattered data enriched with normal vectors. The interpolation
scheme interpolates both sample values and normals at the sample
sites. We show that our framework is also applicable to scattered
Hermite data, and use radial Hermite reconstruction as an illustra-
tive example for progressive data reconstruction.

The concept of progressive data representation was introduced
by Hoppe [11] for triangular meshes, and was adapted to progres-
sive point set surfaces by Fleishman et al. [6], and to progressive
representation of volume data by Staadt and Gross [22]. Research
on progressive representation [6, 11, 22] focuses on how to gen-
erate the “best” progressive hierarchy in terms of minimization of
some error measure defined at each point in time during progressive
visualization. Determining “optimal” progressive representations
for scattered data is beyond the scope of this paper; our interest is
to efficiently reconstruct and visualize scattered data in a progres-
sive representation. As far as we are concerned, the progressive
representation may be the result of a sophisticated data analysis or
merely the order in which the data was originally generated.

Recent advances in the performance and programmability of
GPUs have made them increasingly attractive targets for the im-
plementation of complex and computationally demanding scientific
and visualization applications such as scattered data interpolation.
Harris describes the characteristics of tasks that map well to mod-
ern GPUs, including simple control, ample data parallelism, and
high arithmetic intensity [9]. Efficient implementations on GPUs
can yield substantial performance gains over CPU implementations
because of the GPU’s superior arithmetic capability [3]; technol-
ogy trends indicate this gap will only increase in the future [18]. As
GPU-based applications are more tightly coupled to data visualiza-
tion in systems such as Scout [14], the need for effective and effi-
cient data visualization algorithms will continue to increase. Jang
et al. [12] describe a method to reconstruct radial basis functions on
GPUs, and two approaches to GPU-based natural neighbor interpo-
lation have been described by Fan el al. [4] and Park et al. [19].

3 RE-FACTORIZATION OF RECONSTRUCTION FORMULA

The scattered data reconstruction problem as described in Section 1
is defined as follows: Given a set of samplesS=

{
si = (pi , fi)

∣∣
pi ∈ Rn, fi ∈ R

}
, i. e., a set ofn-dimensional sample sitespi with

associated sample valuesfi , define a functionf :Rn → R such that
∀si = (pi , fi) ∈ S : f (pi) = fi . In general, all scattered data re-
construction methods can be expressed using linear combinations
of the sample values, i. e.,f (p) = ∑n

i=1 fi ·d(p,pi), whered is an
appropriately chosen weight function. Depending on the recon-



struction method, weight functionsd(p,pi) can either be defined
algebraically, as done in Shepard’s method, or they can be defined
algorithmically, as done in Sibson’s method.

A common subclass of interpolation methods uses apartition-of-
unityapproach, where the weighted sum of sample values is divided
by the sum of all weights in a final step. In other words, methods in
this class are characterized by the formula

f (p) =
∑n

i=1 fi ·d(p,pi)
∑n

i=1d(p,pi)
(1)

with an arbitrary weight functiond. Weight functions are usually
constructed such that they approach infinity asp approachespi (to
ensure interpolation), and approach zero asp moves away frompi
(to ensure locality of influence). Even radial basis function meth-
ods such as Hardy’s can be considered part of this class, although
the normalization is performed implicitly when calculating interpo-
lation weights using a set of linear equations.

3.1 Reconstruction on Regular Grids

As standard visualization techniques such as slices, isosurfaces, and
volume rendering typically cannot be applied to scattered data di-
rectly, a very common approach is to evaluate the reconstruction
function of a scattered data set on a Cartesian grid, and visualize
the resulting gridded data. The algorithm for this resampling step
is as follows:

1. for each grid pointp:

(a) f .c(p) = 0, f .d(p) = 0
(b) for each samplesi = (pi , fi):

i. f .c(p)+= fi ·d(p,pi)
ii. f .d(p)+=d(p,pi)

(c) f (p) = f .c(p)/ f .d(p)

The approach of scattered data reconstruction over a grid is illus-
trated in Figure 2(a). The weighted contribution of all samples
is accumulated for each grid point, and then divided by the sum
of weights to calculate the final reconstructed value. If there are
N grid points andn samples, this algorithm evaluates the weight
functionN ·n times. In the case of partition-of-unity methods, the
above algorithm can potentially be sped up considerably by exploit-
ing coherency in weight function evaluation when it is re-factorized
inside-out:

1. for each grid pointp:

(a) f .c(p) = 0, f .d(p) = 0

2. for each samplesi = (pi , fi):

(a) for each grid pointp:
i. f .c(p)+= fi ·d(p,pi)

ii. f .d(p)+=d(p,pi)

3. for each grid pointp:

(a) f (p) = f .c(p)/ f .d(p)

The re-factorized approach to scattered data reconstruction over a
grid is illustrated in Figure 2(b). The weighted contribution of each
sample is distributed to (and accumulated at) all grid points inside
the weight function’s support. After all samples’ contributions have
been distributed, the final reconstructed value at each grid point is
calculated by dividing by the sum of accumulated weights. This
approach exploits coherency in two ways: First, the weight func-
tions for each sample are evaluated in sequence and on a regu-
lar grid, which can lead to efficient implementations, for exam-
ple using forward differencing; second, weight functions used in
most reconstruction methods have only local support, and the grid

points contained in that support can be found more easily. Fur-
thermore, the per-sample processing order leads more naturally to
GPU-based implementations exploiting their parallelism and high
floating-point performance.

(a)

s1

s2

s3

(b)

s1

s2

s3

Figure 2: Re-factorization of scattered data reconstruction:
(a) When operating on a grid, we iterate over all grid points and accu-
mulate weighted contributions of values fi for all samples si = (pi , fi).
(b) When re-factorizing the reconstruction, we iterate over all sam-
ples si = (pi , fi) and accumulate weighted contributions of each sam-
ple value fi for all grid points. A sample’s contribution is often
restricted to a local region.

3.2 Reconstruction of Streaming Data

Another major benefit of the re-factorization of the reconstruction
algorithm is that it generalizes to streaming scattered data. We con-
sider two different kinds of streaming scattered data:

• Progressive scattered data, where a fixed data set is stored at
a remote location, and sent to a local graphics workstation for
visualization. We want to generate preliminary visualizations
of the data set as soon as the first samples arrive and refine the
visualization incrementally over time.

• Time-varying sensor data, where spatially scattered sensors
report asynchronous streams of time-varying sample values.
Here, we want to update the visualization whenever a new
sample value arrives from any of the sensors, or, in the case
of moving sensors, when a sensor changes position.

For both progressive scattered data and time-varying sensor data,
all changes to a data set’s reconstruction due to incremental updates
can be expressed by two basic operations:

• A new sample(pi , fi) arrives and is inserted into the recon-
struction.

• A sample(pi , fi) becomes invalid and is removed from the
reconstruction.

Two common cases, that of a sample changing its associated value
and that of a sample moving to a new position, can be expressed
by first removing the old sample and then inserting the new one.
However, coherency between these two operations often makes it
more efficient to represent them explicitly:

• A sample(pi , fi) changes its value to(pi , f ′i ).• A sample(pi , fi) changes its position and value to(p′i , f ′i ).

The special case where a sample only changes position but not its
value is uncommon and does not lead to optimizations, and is there-
fore not treated separately. For many scattered data reconstruction
methods, the two basic and two additional operations can be ex-
pressed very efficiently with only changing the gridded reconstruc-
tion locally.

For both types of streaming data, our basic reconstruction algo-
rithm is modified as follows:

1. Calculate initial reconstruction based on the set of immedi-
ately available samples.

2. For each newly arriving samplesi :



(a) Update any data structures created in the data set set-
up phase, e. g., insert the sample into a kd-tree used for
neighbor look-up.

(b) If existing samples’ contributions change due to the
insertion, e. g., deposition radii are adjusted, subtract
the contribution of affected samples from the recon-
struction, and add their contribution using the adjusted
weight function.

(c) Add the new sample’s contribution to the reconstruc-
tion.

(d) If immediate visualization is required, re-normalize the
reconstruction in changed areas by dividing by the sum
of deposited weights.

Due to the locality of most reconstruction methods, inserting a new
sample only involves updating a constant number of already exist-
ing samples, and then inserting the new sample. Therefore, creating
the final reconstruction of a data set using the progressive method
has the same complexity as the original methods. For several meth-
ods (such as Shepard’s global method), no existing samples have to
be adjusted, and there is no performance difference between direct
and progressive reconstruction.

In the case of time-varying sensor data, where new measure-
ments are inserted into the current reconstruction as soon as they
arrive, we can optimize the common case of a sample changing
its value by merely subtracting its old contribution from the recon-
struction, and then adding its new contribution (or adding the dif-
ference between the new and the old contribution). This does not
require us to adjust the contributions of other samples, and leads to
a very efficient implementation. As the adapted algorithm shows,
re-factorized reconstruction offers a useful framework for handling
streaming scattered data. We show the necessary steps in more de-
tail in Section 4.3, where we discuss our implementation of the ra-
dial Hermite method.

3.3 Time Interpolation of Time-varying Data

The approach to time-varying scattered data described in the last
section suffers from one serious drawback: Whenever a sample
changes its associated value, the reconstruction function changes
its value discontinuously. This fact makes it difficult to visually
and analytically observe the behavior of a measured phenomenon.
A better approach would interpolate sample values over spaceand
time. Although space and time are usually treated and interpolated
separately, a promising approach is to represent time-varyingn-
dimensional scattered data as static(n+ 1)-dimensional scattered
data, where sample values do not change over time, but are asso-
ciated with fixed sample positions in space-time. For example, if
a single sensor located at positionp generates valuesf1, f2, . . . , fk
at timest1, t2, . . . , tk, respectively, these changing values would be
represented ask static and unrelated sample valuesf1, f2, . . . , fk at
the space-time positions(p, t1), . . . ,(p, tk), respectively. Since we
no longer explicitly represent individual sensors, but represent in-
dividual measurements instead by associating them with a single
point in space and time, changing sample values, moving, and even
dynamically disappearing and reappearing sensors are handled ele-
gantly. For example, in Figure 3, we consider two moving sensors
in a 2D domain that asynchronously generate measurements. The
paths of the two sensors in space-time are denoted by the thin lines;
the generated samples are shown as black dots. To reconstruct the
data at timet0, we intersect space-time with the planet = t0. The
deposition spheres around close samples intersect the plane to form
circles, which are used in our deposition scheme.

In other words, we represent time-varying 3D scattered data as
static 4D scattered data in space-time. This allows us to extract 3D
reconstructions for arbitrary time pointst0 by intersecting the (not
explicitly calculated) 4D reconstruction functionf (x,y,z, t) with

Figure 3: Time interpolation in a 2D domain. The thin lines are the
space-time paths of two moving sensors that generate measurements
at random times (black dots). Data is reconstructed for time t0 by
only considering the plane t = t0. The intersections of the weight
function supports (sphere) of near samples with the plane are de-
posited into the 2D reconstruction using our normal algorithm.

the time-orthogonal hyperplanet = t0. We can use our existing
implementation for 3D reconstruction using our hybrid CPU/GPU
approach for the time-varying case by observing that depositing the
4D weighted contribution of a samplesi in space-time and then
intersecting with thet = t0 hyperplane is equivalent to deposit-
ing the intersection of the weighted contribution witht = t0 in 3D
space. For example, in the case of our modified version of Shep-
ard’s reconstruction method [20], we deposit hyperspheres of ra-
diusr i around a samplesi = (xi ,yi ,zi , ti), where the deposited value
is the value of Shepard’s weight function in four dimensions. The
intersection of such a hypersphere with the hyperplanet = t0 is a

3D sphere centered at(xi ,yi ,zi , t0) with radiusr ′i =
√

r2
i − (ti − t0)2.

Since projecting this intersection into 3D space means to merely
drop the time component, we can deposit just as in the 3D case, as
long as we use the full 4D formulation of Shepard’s weight function
for each grid point.

To analyze the behavior of this approach to time-varying recon-
struction, let us first consider the case where a complete data set
is reconstructed for a time pointt0. As the data set contains sam-
ples with times beforeand aftert0, the algorithm can “look into the
future,” and ift0 is slowly moved forward in time, samples in the fu-
ture smoothly “fade into” existence in the reconstruction, whereas
samples passed byt0 smoothly fade out. This smooth variation in
both space and time is better suited to detect, either visually or an-
alytically, the changing behavior of an observed data set.

In the case of real-time monitoring, it is not possible to look into
the future; therefore, whenever a new sample arrives and is inserted
into the reconstruction, it will always appear exactly at timet0,
where it has maximal influence on the reconstruction. Thus, ar-
rival of new samples will cause discontinuous changes. “Older”
samples will still fade out smoothly. This fundamental drawback of
real-time monitoring can be overcome in two ways: If the applica-
tion only requires “near real time” monitoring, the reconstruction
time t0 could always be fixed behind real time by a set amount,
which allows the algorithm to look into the future by that amount
and smoothly fade in new samples. If this is not an option, another
approach is to insert new samples in real time, and to allow a user
to rewind the live data stream when a noteworthy change happens,
and replay a section in “TiVo mode,” which allows looking into the



future because the point of view lies in the past.

4 APPLYING THE GENERAL FRAMEWORK

To demonstrate the versatility of our framework, we briefly describe
how to apply it to several different scattered data reconstruction
methods. We will describe the radial Hermite interpolation method
in more detail in Section 4.3, as it is a good example for a method
that requires non-trivial changes to handle streaming data.

4.1 Inverse-distance-weighted Interpolation

The best results in terms of real-time requirements are to be ex-
pected when using the simplest scattered data approach. Shep-
ard [20] introduced the idea of using radial distance functions for
scattered data interpolation, i. e., he used weight functions of the
form

d(p,pi) =
|p−pi |µ

∑n
j=1 |p−p j |µ . (2)

Most commonly, quadratic weights (µ = 2) are used (also for our
implementation).

Traditionally, a scattered data reconstruction over a Cartesian
grid would iterate over the grid points and compute the interpolated
value at each grid point by iterating over the samples and adding
up their weighted values. Using our new framework, we exchange
inner and outer loop. Thus, we iterate over all samples and compute
the contribution of each sample to each grid point by iterating over
all grid points. The contribution is defined by the inverse distance
weights in Equation (2). We add both the weighted sample values
and the weights themselves for each grid point. The reconstructed
interpolation value at each grid point is the ratio of the sum of the
weighted sample points over the sum of the weights as defined in
Equation (1).

A local version of Shepard’s method restricts the influence of
each sample to a local region around the sample site. Using our
framework for the implementation of a local version, the inner
loop does not iterate over all grid points but only over the grid
points within a certain distance to the sample site. Using radial dis-
tances, the contribution of a sample is restricted to ann-dimensional
sphere.

4.2 Natural Neighbor Interpolation

Natural neighbor interpolation is based on a Voronoi tesselation of
then-dimensional domain. Only the natural neighbors influence the
interpolation (local interpolation scheme), and the weights in Equa-
tion (1) are determined by the size of the Voronoi regions. Over
a regular grid, the weights can be computed by counting the grid
points that fall into the respective region. In [19], we showed that
when using the idea of re-factorization the computation of Sibson’s
approach to natural neighbor interpolation reduces to drawing an
n-dimensional sphere around each grid point, whose radius is the
distances from the grid point to the closest site. Moreover, the com-
putation of the Voronoi diagram becomes obsolete and is replaced
by merekd-tree look-ups. Our discretization and re-factorization
of Sibson’s natural neighbor interpolation method is described in
detail in a [19].

4.3 Radial Hermite Interpolation

If we know or can precompute gradient information at the sites in a
scattered data set, the data is defined byS=

{
si = (pi , fi ,ni)

∣∣ pi ∈
Rn, fi ∈ R,ni ∈ Rn

}
, wherepi and fi are as before andni denotes

the sample’s gradient. Scattered data of this form is referred to as
scattered Hermite data. To properly reconstruct scattered Hermite

data, both sample values and sample gradients need to be interpo-
lated. Thus, we are searching for a functionf :Rn → R such that
∀si = (pi , fi ,ni) ∈ S: f (pi) = fi ∧∇ f (pi) = ni .

Nielson [16] proposes an approach to scattered Hermite data in-
terpolation using radial Hermite operators, and applies it to point
cloud fitting. In this context, an implicit surface is represented by
scattered Hermite data, where sample valuesfi are ignored, and the
normal vectors define a local signed distance field for the implicit
surface. Nielson’s Hermite interpolant is defined as

f (p) =
∑n

i=1〈p−pi ,ni〉 ·d(p,pi)
∑n

i=1d(p,pi)
.

The weightsd(p,pi) could be chosen as in Equation (2), leading
to an inverse-distance-weighted interpolation of scattered Hermite
data, but Nielson suggested to use another radial function instead.
His radial Hermite interpolation weights are calculated as

d(p,pi) =
(

(r i −|p−pi |)+
|p−pi |

)µ
,

wherer i is the radius of influence for each sample, the exponent
µ > 1 plays the same role as in Shepard’s method, and(x)+ :=
max(x,0), i. e., equal tox for positive values and equal to zero oth-
erwise. Nielson chooses the radius of influence for each samplesi
by finding thek nearest neighbors of sitepi , and settingr i to the
distance to the farthest neighbor. We implemented this method in
the per-data set set-up phase of our algorithm, by first creating a kd-
tree containing all sites, and then finding up thek nearest neighbors
for each sample.

We apply our re-factorization approach the same way as for
Shepard’s method. The only differences are the use of different
weightsd(p,pi), and the fact thatfi is replaced by the dot product
〈p−pi ,ni〉. Thus, Step 2 of our framework becomes

2. for each samplesi = (pi , fi ,ni):

(a) for each grid pointp:
i. f .c(p)+=〈p−pi ,ni〉 ·d(p,pi)

ii. f .d(p)+=d(p,pi)

Since this scheme describes a local and radial method, the inner
loop, again, only considers grid points within ann-dimensional
sphere of radiusr i centered at each sitepi . The deposition of
weighted contributions for each sample is performed entirely on
the GPU by processing eachz-slice of the volume that intersects
the sample’s influence sphere, and rendering a square that contains
the intersection of the influence sphere with the slice. Each square
is rendered using a fragment program that takes as input the sample
sitepi , the sample normalni , and the world position of the pixelp
(all values are passed to the fragment program as texture coordi-
nates). The fragment program then calculates the radial Hermite
weight function, and the dot product of the normal vector and the
distance vector fromp to pi . It finally deposits the counter and
denominator of the sample’s contribution in the image buffer repre-
senting thez-slice, which is inserted into the 3D texture represent-
ing the reconstruction at the appropriate position.

As mentioned in Section 3.2, reconstruction algorithms have be
be adapted to allow reconstruction of progressive or time-varying
sensor data. Radial Hermite interpolation serves as a good example
to illustrate this adaptation process, as it requires non-trivial opera-
tions when inserting/removing samples.

According to the definition of the radiir i , whenever a new sam-
plesi is inserted (or removed), the influence radii of all neighboring
samples need to be adjusted. More precisely, when removingsi ,
the radiir j of all samplessj who havesi as one of theirk nearest
neighbors have to be recalculated. This is equivalent to updating
all samplessj whose influence spheres contain the site ofsi . We



use an adapted kd-tree that stores each sample as a sphere to effi-
ciently find all affectedsj . First, we subtract the contributions of
all found sj from the reconstruction; then, after inserting (or re-
moving)si from the kd-tree, we recalculate the radii of all foundsj
by doing another nearest neighbor look-up. Afterwards, we add
the (changed) contribution of allsj back into the reconstruction,
and finally add (or subtract) the contribution of samplesi . Since
only a constant number of existing samples is affected by inser-
tion/removal, and adapting an affected sample’s radius does not in
turn affect other samples, the asymptotic complexity of progressive
reconstruction is the same as that of the original algorithm.

5 IMPLEMENTATION

We utilize GPU for optimal performance by doing both the recon-
struction and the rendering in the GPU. To take full advantage of
the framework described, we use the latest programmable graph-
ics hardware. Although having floating point precision is desired,
we are limited to current generation of cards that only support 16-
bit blending. 16-bits are sufficient for most cases for doing Radial
Hermite or Shepards reconstruction but they do pose problems for
doing natural neighbor reconstruction for small and sparse data sets.

We use openGL libraries along with NVIDIA’s Cg language for
vertex and fragment programming to test our refactorization. We
test our results on a Pentium 4, 3.2GHz machine with 2GBs of
memory, equipped with an NVIDIA’s GeForce 6800GT graphics
card with 256MB of video memory.

For reconstruction of both Radial Hermite and Shepard’s method
using re-factorization in 3D, we reconstruct the volume by consid-
ering a slice at a time. For each slicek, we consider all sites that
have an influence onk. Since the cross-section of influence onk for
these two particular methods is a circle, we render a quad that cov-
ers the circle. Along with the quad, we pass site location, site value,
and an associated normal in the Radial Hermite case, to the frag-
ment program. For each fragment, the program tests if it lies in the
circle of influence using vertex attributes such as the texture coor-
dinates and color. If the fragment lies in the circle, it computes and
outputs values of contribution to the frame buffer, which is accumu-
lated in the graphics hardware using blending. For Radial Hermite
reconstruction, the values outputted is described in Section 4.3. For
variation of Shepard’s implementation, output values are similar to
the Radial Hermite, only that the dot product is replaced by the site
value. Once all the values have been accumulated, it is normalized
in the subsequent pass in the GPU before it is rendered.

For streaming implementation, we only update the regions that
are affected. With each point streaming in, the region of influence is
determined by inserting the point into the kd-tree and doing a local
search.

Alternatively, the re-factorized reconstruction step can be en-
tirely computed utilizing the CPU. In certain cases, reconstruction
on the CPU is not significantly slower than its computation on the
GPU. However, the transfer of the reconstructed data from the CPU
to the GPU for rendering purposes becomes a bottleneck when us-
ing large volumetric grids.

6 RESULTS AND DISCUSSION

In order to test the effectiveness of the re-factorized implementa-
tions of the various interpolation schemes, we present results for
three representative application scenarios. First, we analyze recon-
struction of a 3D dataset using both radial Hermite and Shepard’s
interpolation. Second, we use radial Hermite and Shepard’s inter-
polation on a streaming version of the same dataset. Third, we
demonstrate four-dimensional modified Shepard’s interpolation on
a time-varying streaming sensor data set.

Shepard’s Hermite
Data size 35,000 350,000 35,000 350,000
1283 grid 0.344 s 0.328 s 1.031 s 1.091 s
2563 grid 1.250 s 2.870 s 1.420 s 3.230 s

Table 1: Times to reconstruct a 35,000- and 350,000-sample data
set on two different-size Cartesian grids using Shepard’s and radial
Hermite interpolation.

Radial Hermite and Shepard’s Interpolation. We gen-
erated two scattered Hermite data sets from a polygonal surface
model of a Macaque Cranium. The generated data sets consist of
35,000 and 350,000 samples, respectively, with randomly distrib-
uted sample sites and sample values representing the distance to
the polygonal surface model. We have applied radial Hermite in-
terpolation interpreting the data as scattered Hermite data and mod-
ified Shepard’s interpolation interpreting the data as regular scat-
tered data (without normal information). We perform the recon-
struction over Cartesian grids of size1283 and 2563. Figures 4
and 5(d) show a direct volume rendering of the reconstructed data
field over a grid of size2563 using radial Hermite interpolation and
35,000 samples. Computation times for reconstruction were on the
order of a second, with larger samples, larger grids, and more com-
plex interpolation methods incurring larger computation times. Our
timing results are detailed in Table 1.

Figure 4: Isosurface rendering of reconstructed Macaque Cranium
using 35,000 samples, radial Hermite interpolation and a 2563 Carte-
sian grid.

Interpolation of Streaming Data. Using the same data set,
we test the streaming capabilities of our framework in the context
of progressive visualization. We load the data set incrementally, be-
ginning visualization after receiving 50 samples. The reconstructed
grid is updated sample by sample while data is streaming in, con-
tinuing until all data has been received. Figure 5 shows the progres-
sive visualization using radial Hermite interpolation to reconstruct
the data over a Cartesian grid of size2563, using direct volume
rendering for visualization of the reconstructed field. The figure
shows the visualization after having loaded 1,446, 1,876, 2,036,
and 35,000 samples. A video showing a real-time progressive visu-
alization accompanies the paper.1 Our timing results are detailed in
Table 2.

Interpolation of Time-varying Data. Finally, we demon-
strate the use of our framework on a time-varying, streaming sen-
sor data set (courtesy of the Monterey Bay Aquarium Research In-
stitute [MBARI]) measuring temperature in Monterey Bay. The
data set was generated by four moving sensors, transmitting their

1The video is available at http://www.math-inf.uni-greifswald.de/ lin-
sen/final.avi.
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Figure 5: Progressive visualization of scattered data using a re-factorized implementation of radial Hermite interpolation applied to Macaque
Cranium data set: (a) 1,446 samples, (b) 1,876 samples, (c) 2,036 samples, and (d) 35,000 samples.

Data set Grid size Streaming window size
size 50 100 500 1000

35,000 1283 14.6 12.6 6.7 3.7
2563 1.5 2.0 1.7 1.5

350,000 1283 13.4 12.6 6.1 3.7
2563 1.5 2.0 1.7 1.2

Table 2: Frame rates when using progressive reconstruction. The
streaming window size determines how many samples are inserted
into the reconstruction before the visualization is updated. Frame
rates include inserting samples, reconstructing the volume, and vol-
ume rendering the result in a 512×512 window. The table entries
are averaged over the entire progressive reconstruction process, and
given in frames per second.

data asynchronously to a server. The sensors are mounted onto au-
tonomous devices, “gliders,” that float and dive through the bay.
The devices move on a predefined route but deviate heavily under
the influence of the strong currents in the bay.

We reconstruct the temperature data field over a grid of size
128×128×64×1800using four-dimensional modified Shepard’s
interpolation. We perform Shepard’s interpolation uniformly over
three spatial dimensions and one time dimension. For visualiza-
tion, we directly volume-render time-orthogonal three-dimensional
hyperplanes. Figure 6 shows four visualizations, using two inter-
polation methods, at two consecutive points in time. Figures 6(a)
and (b) show the four-dimensional interpolation using all samples.
Figures 6(c) and (d) show the same frames using four-dimensional
interpolation using no samples with time coordinates higher than
the visualized time slice. In Figures 6(c) and (d), we observe a sud-
den change between the two consecutive frames. The reconstruc-
tion is thus discontinuous in time. Figures 6(a) and (b), on the other
hand, show a slight change indicating a smooth interpolation over
time. Generating all 1,800 frames for the video took 368.97 s when

interpolating from past and future samples, and 346.03 s when in-
terpolating from past samples only.

7 CONCLUSIONS

We have presented a framework for real-time volume visualization
of streaming scattered data. The scattered data reconstruction eval-
uates the reconstructed function on a Cartesian grid. Subsequent
visualization is performed on that grid. We re-factorized the re-
construction step for partition-of-unity interpolations in a way that
allows for exploiting computational coherency and floating-point
performance of modern programmable GPUs. In particular, the
general framework of our re-factorized approach is amenable to ef-
ficiently handle streaming data.

We have addressed two streaming applications: progressive vi-
sualization of a static scattered data set and streaming sensor viual-
ization with moving sensors transmitting samples asynchronously
over time. Our re-factorized reconstruction framework also scales
to higher dimensions, which allows handling time-varying data us-
ing four-dimensional space-time interpolation. Treating samples as
points in space and time implicitly covers the management of sam-
ple insertion, deletion, or movement. We have generated examples
using various interpolation schemes to demonstrate the effective-
ness and efficiency of our approach.
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Figure 6: Visualization of streaming temperature data in Monterey Bay scattered over space and time. We perform four-dimensional natural
neighbor interpolation to reconstruct the scattered data over a 128×128×64×1800grid. These figures show direct volume rendering of a three-
dimensional time-orthogonal hyperplane. (a) and (b) show two consecutive frames when considering all space-time samples for interpolation.
(c) and (d) show the same frames when only considering samples from the past and present, thus exhibiting a visual discontinuity in time. The
video from which these frames were extracted accompanies the paper.
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