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BCS-like disorder-driven instabilities and ultraviolet effects in
nodal-line semimetals

Siyu Zhu, Sergey Syzranov
Physics Department, University of California, Santa Cruz, California 95064, USA

Abstract

We study the effects of quenched disorder on electrons in a 3D nodal-line semimetal. Disorder
leads to significant renormalisations of the quasiparticle properties due to ultraviolet processes,
i.e. processes of scattering in a large band of momenta, of the width exceeding the inverse mean
free path. As a result, observables such as the density of states and conductivity exhibit singular
behaviour in a broad range of disorder strengths, excluding a small vicinity of the singular point.
We find that, for example, the density of quasiparticle states diverges as a function of the disorder
strength g as ρ(g, E) ∝ |gc(E) − g|−2|E| for g smaller than the critical value gc(E) and crosses
over to a constant for g very close to gc(E), where E is the quasiparticle energy. For certain
disorder symmetries, a 3D disordered nodal-line semimetal can be mapped to a 2D metal with
attractive interactions. The described disorder-driven instabilities in such a nodal-line semimetal
are mapped to Cooper and exciton-condensation instabilities in a 2D metal. For other disorder
symmetries, the respective instabilities are similar but not exactly dual. We discuss experimental
conditions favourable for the observation of the described effects.

1. Introducion

Thermodynamics and transport in conducting materials are usually studied by considering only
quasiparticle states and collective modes near the Fermi surface. Scattering through the states
far from the Fermi surface, hereinafter referred to as ultraviolet (UV) processes 1, is believed
to only renormalise quasiparticle parameters (e.g. mass, density of states, and elastic scattering
time) near the Fermi surface (see Fig. 1), without causing qualitatively new effects. The effective
renormalised parameters are measured in experiment. The system may then be described, in the
spirit of the Fermi-liquid theory, by effective low-energy models near the Fermi surface or the
surface of a given energy E, using, e.g., the kinetic equation [2] or non-linear sigma-models [3, 4].

This picture, however, is not applicable if the Fermi surface shrinks, e.g., to a point or a line
(as shown in Fig. 2) in momentum space. Such a scenario can occur in nodal semimetals, where
the conduction and valence bands touch in momentum space, as exemplified by Dirac/Weyl and
nodal-line semimetals [5, 6, 7]. The Fermi surface also shrinks to a point in a single-band system,
e.g. a dilute quantum gas or a lightly-doped semiconductor, if the chemical potential lies at the
band edge.

1To our knowledge, the term “ultraviolet processes” was first introduced by I.L. Aleiner and K.B. Efetov in Ref. [1]
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In this case, all (quasi-)particle scattering processes are effectively UV and may give rise to
qualitatively new effects. For example, it has been demonstrated in Ref. [1] that UV processes in
graphene with point scatterers cause large logarithmic corrections ∝ log(E0/|µ|) to the conductivity
(see also Ref. [8]), distinct from the conventional weak-localisation corrections [9], where E0 is
the bandwidth (the UV cutoff for energies). In the limit of small µ, such corrections come from all
length and energy scales available for the quasiparticles in the band.

UV disorder-driven processes have also been predicted to lead, for example, to non-monotonic
dependences of conductivity on disorder strength [10] in 3D Weyl semimetals and unconven-
tional Lifshitz tails [11, 12, 13][14, 15] in high-dimensional semiconductors [14] and systems
with power-law hopping [16, 17, 18, 19]. Furthermore, UV effects can lead to novel unconven-
tional phase transitions. 3D Weyl/Dirac semimetals, high-dimensional semiconductors and certain
systems of ultracold particles [20, 21, 22, 23] have been predicted [24, 25, 14], under some approx-
imations, to display disorder-driven transitions at µ = 0 distinct from the conventional Anderson
metal-insulator transitions. Such UV transitions would lie in different universality classes and
display, e.g., singular behaviour of the density of states at the transition, which never happens
for the conventional Anderson transitions (at µ , 0). Exponentially rare UV non-perturbative ef-
fects (rare-region effects) may broaden UV disorder-driven criticalities and convert them to sharp
crossovers, as discussed recently in the context of 3D Weyl semimetals [12, 11, 26][13, 27, 28, 29].
However, such crossovers may nevertheless appear as phase transitions in experiment, and, in
some systems, allow for a parametric separation of the UV criticality and rare-region effects [30].
Interacting nodal semimetals also display phase unconventional phase transitions, e.g., supercon-
ductive instabilities [31, 32] that are distinct from those in systems with large Fermi surfaces.

Figure 1: Ultraviolet and low-energy processes of quasiparticle scattering occur, respectively, far and close to the
Fermi surface in a conducting material.

Recently, it has been demonstrated in Ref. [33] that a broad class of interacting disorder-free
systems allows for a mapping to disordered non-interacting systems to all orders of the perturba-
tion theory. This allows one to predict novel interaction-driven (disorder-driven) phase transitions
dual to the previously known disorder-driven (interaction-driven) phase transitions and further ex-
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pands the class of known UV phase transitions. In the case of UV disorder-driven transitions
converted to crossovers by non-perturbative UV rare-region effects, the dual interaction-driven
phase transitions may be genuine phase transitions [33].

UV disorder-driven phenomena have been studied most extensively in the context of 2D (see,
for example, Refs. [34, 1, 8, 35]) and 3D [24, 25, 36, 37, 38, 14, 39] Dirac and Weyl materials,
systems with long-range power-law hopping [16, 17, 18, 19] and high-dimensional semiconduc-
tors [11, 14]. Another, less explored class of semimetals exhibiting UV disorder-driven effects is
nodal-line semimetals, in which the density of states vanishes along a line in momentum space and
not at a point as in nodal-point semimetals [5, 7]. Such band structures and their manifestations
in transport and thermodynamics have been observed, for example, in ZrS iS [40], ZrS iS e [41],
PbTaS e2 [42], TlTaS e2 [43], NbAs2 [44] and TbS bTe [45] and have been theoretically pre-
dicted in numerous other materials. Nodal-line semimetals have been numerically predicted, in
Ref. [46], to display non-Anderson disorder-driven criticality between weak-disorder and strong-
disorder phases, despite the UV renormalisations leading to marginal relevance of weak disor-
der [47] similar to that for 2D Dirac particles [1, 8, 24], for which critical behaviour is not ex-
pected.

In this paper, we study disorder-driven UV effects in nodal-line semimetals. We develop an
approach that allows us to describe UV effects exactly in the limit of a large ratio of the size of
the nodal line to the UV momentum cutoff. We demonstrate that the UV disorder-driven effects
lead to a sharp crossover in the density of states and other observables in a nodal-line semimetal.
In a large interval of disorder strengths and energies, the density of states, for example, displays a
singular behaviour given by

ρ(E, g0) ∝
[
gc(E) − g0

]−2
|E|, (1)

where E is the quasiparticle energy measured from the nodal line; g0 is the bare disorder strength
and gc(E) is a known function of energy, which we obtain in this paper. In a small vicinity of the
critical point [gc(E) ≈ g0], the density of states as a function of energy crosses over to a constant.

The described disorder-driven singularities in 3D nodal-line semimetals are similar to the
Cooper [48, 49] and exciton-condensation [50, 51] instabilities in interacting disorder-free 2D
metals. Furthermore, for certain disorder symmetries, there exists an exact duality mapping [33]
between the model of a disordered nodal semimetal considered in this paper and the models of
interacting metals exhibiting Cooper and excitonic instabilities.

The paper is organised as follows. We describe the model of a nodal-line semimetal in the
presence of quenched disorder in Sec. 2. The effect of disorder on the quasiparticle properties in
such a semimetal is described in Sec. 3. The behaviour of the quasiparticle density of states is
described in Sec. 4. In Sec. 5, we discuss a duality mapping between 3D disordered nodal-line
semimetals and interaction-driven phase transitions in 2D metals. We conclude in Sec. 6.
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2. Model

Figure 2: The Fermi surface in a disorder-free nodal-line semimetal for various values of the chemical potential. At
zero chemical potential, the Fermi surface shrinks to a line.

We consider a nodal-line semimetal with a circular nodal line, shown in Fig. 2. The Hamilto-
nian of quasiparticles near the nodal line is given by

Ĥ = v (|p| − p0) σ̂x + vkσ̂z +
∑

i

V̂(r − ri), (2)

where p = (px, py) is the 2D vector of the quasiparticle momentum in the xy plane, in which the
nodal line (|p| = p0) lies (see Fig. 2); k is the momentum component along the z axis; σ̂x and σ̂z

are Pauli matrices corresponding to a spin-1/2 degree of freedom (pseudospin) in the subspace of
the two bands in the nodal-line semimetal; v is the quasiparticle velocity in the directions perpen-
dicular to the nodal line. The last term in Eq. (2) accounts for impurities with random locations
ri. The perturbation V̂ created by one impurity may have a structure in the pseudospin space. The
main focus of this paper is the case of potential disorder, i.e. impurities that do not couple to the
pseudospin degree of freedom.

Ultraviolet cutoff. We assume that all quasiparticles are confined to a tube of radius K ≪ p0

around the nodal line in momentum space (see Fig. 2). The processes of scattering beyond that
tube may be suppressed due to sufficiently fast (faster than linear) growth of the quasiparticle
energies away from the tube. Also, processes of scattering through states far from the nodal line
may be assumed to only renormalise the quasiparticle parameters within the tube without causing
qualitatively new effects.

The ultraviolet momenta are defined in what follows as the momenta p and k that are con-
fined to the nodal tube of radius K, on the one hand, and that are sufficiently far from the Fermi
momentum kF = |µ|/v, further than the inverse mean free path ℓ, on the other hand:

ℓ−1 ≪ |kF − k|,
∣∣∣∣kF −

∣∣∣p0 − |p|
∣∣∣∣∣∣∣ < K. (3)

3. Renormalisation of quasiparticle properties by disorder

3.1. Types of scattering processes
The disorder potential is assumed, for simplicity, to have Gaussian statistics. The properties

of disorder-averaged quantities are then determined by the “impurity line”, pair-wise correlators
4



of the random part of the Hamiltonian (2), which are mimicked by the diagram in Figs. 3a. Both
the incoming and outgoing momenta in the impurity line have to be close to the nodal line in
momentum space, taking into account the smallness of the UV cutoff K ≪ p0 measured from the
nodal line (see Fig. 4).

Momentum conservation law p1 + p2 = p′1 + p′2 for the transverse quasiparticle momenta (i.e.
momenta in the plane of the nodal line) and the confinement of those momenta to the vicinity of
the nodal line restrict possible types of scattering processes. As a result, there are three possible
types of impurity lines corresponding to: 1) p1 ≈ −p2, p′1 ≈ −p′2 (“Cooper channel”), 2) p1 ≈ p′2,
p2 ≈ p′1 (“excitonic channel”) and 3) p1 ≈ p′1, p2 ≈ p′2, where p1, p2, p′1 and p′2 are the transverse
momenta of the quasiparticles, i.e. momenta in the plane of the nodal line (the xy plane in Fig. 2).
The respective impurity lines imply no constraints on the longitudinal momenta (i.e. momenta
along the z axis). These impurity lines 1)-3) are shown, respectively, in Figs. 3b-d.

Figure 3: Pair-wise correlators of the random potential (“impurity lines”) for a disordered nodal-line semimetal. The
transverse quasiparticle momenta (momenta in the plane of the nodal line) are shown. (a) A generic impurity line.
(b)-(d) Possible scattering of quasiparticles near the nodal line, where the momenta p1 and p2 are close to the nodal
line (|p1| ≈ |p2| ≈ k0), and the momentum q is significantly smaller than the radius of the nodal line (|q| ≪ p0).

Figure 4: The hierarchy of momenta near the nodal line. pF is the Fermi momentum measured from the nodal
line. The UV processes come from the momenta between pF and K and lead to a significant renormalisation of the
quasiparticle properties in the layer of momenta of the width ℓ−1 around the Fermi surface. Quasiparticles in this layer
of momenta can be described by low-energy theories (kinetic equation, nonlinear sigma-models, Fermi-liquid theory,
etc.), which use the UV-renormalised quasiparticle parameters as input.

The confinement of the quasiparticle momenta to the vicinity of the nodal line leads to the
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suppression of diagrams with crossed impurity lines by the small parameter

K/p0 ≪ 1, (4)

for quasiparticles with sufficiently weak elastic scattering rates, ℓ−1 ≪ K. This suppression is
similar to the suppression of the diagrams with crossed impurity lines in conventional metals by the
large Ioffe-Regel parameter pFℓ ≫ 1 [49]. Such diagrams in conventional metals are dominated
by the corresponding vicinity of the Fermi surface (|p− pF | ≲ 1/ℓ) or are not qualitatively affected
by the UV processes, which are thus neglected. As we show below, the contributions of the
UV momenta (ℓ−1 ≪ |p − p0| ≪ K) in nodal-line semimetals can lead to sharp dependencies
of observables (density of states, conductivity, specific heat, etc.) on the disorder strength and
chemical potential, which may appear as phase transitions in experiment.

For quasiparticles with large scattering rates (ℓ−1 ≳ K), the band of the UV momenta (shown in
Fig. 4) does not exist, and the associated UV effects are absent. For such quasiparticles, diagrams
with crossed impurity lines are suppressed by large effective Ioffe-Regel parameter p0ℓ ≫ 1,
similarly to the case of a conventional metal [49].

3.2. Ultraviolet renormalisation of disorder
The scattering of low-energy quasiparticles, i.e. quasiparticles close to the nodal line, is renor-

malised by the processes of scattering through momentum states far from the nodal line. The
dominant processes that contribute to the renormalisation of the impurity lines in Figs. 3b and
3c are shown, respectively, in Figs. 5a and 5b. The other processes are suppressed by the small
parameter (4).

The impurity line renormalised by the processes in Figs. 3b (Cooper channel) is given by

gc = g01 ⊗ 1 + g2
0

∫
dp

(2π)2

dk
(2π)

G0 (k,p) ⊗G0 (−k,−p) + . . . , (5)

where g0 is the bare value of the impurity line; ⊗ stands for the product of the two subspaces
corresponding to the two ends of the impurity line, and G0(k,p) =

[
E − v (|p| − p0) σ̂x − vkσ̂z

]−1.
The integration in Eq. (5) is carried out over all momenta between the UV cutoff K and a char-
acteristic ultraviolet scale that is determined by the quasiparticle energy E or the quasiparticle
scattering rate and that will be discussed below. The momentum k belongs to the ultraviolet range
(cf. Fig. 4) and significantly exceeds the characteristic momenta of the quasiparticles near the
Fermi surface whose properties are being renormalised. The disorder strength ge in the “excitonic
channel” (corresponding to the scattering process in Figs. 3c) is renormalised similarly.

Because the UV renormalisation processes we consider come from momenta sufficiently far
from the Fermi surface, the analytic properties of the Green’s functions G0 near the poles in Eq. (5)
are not important. In most materials, such UV processes would only renormalise the properties of
the quasiparticles near the Fermi surface, without leading to qualitatively new phenomena.

We show, however, that the UV renormalisations in a nodal-line semimetal considered here
result in a singular behaviour of the disorder strength near a critical value (with the singularity
broadened in a small vicinity of that value). This leads to a strong dependence of physical observ-
ables, such as conductivity and the density of states, as we presented in this paper. The singularities
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Figure 5: Diagrams for the renormalisation of the properties of low-energy quasiparticles. a) The “Cooper channel”
of disorder scattering, which corresponds to the process in Fig. 3b. b) The “exciton instability channel” corresponding
to the process in Fig. 3c. c-d) The dominant contributions to the self-energy from the respective scattering channels.

corresponding to Figs. 5a and 5b are similar, respectively, to the Cooper instability [48, 49] and
the exciton-condensation instability [50, 51] in interacting systems.

We first consider sufficiently high energies E of the quasiparticles, at which the self-energies of
the quasiparticle Green’s function can be neglected in comparison with the energy E. Performing
the summation of the ladder diagrams in Figs. 5a and 5b (see Appendix A for details) gives the
renormalised values of the disorder couplings (“impurity lines”) in the “Cooper” and “excitonic”
channels:

gc ≈g01 ⊗ 1 + 2g0

(
p0g0
4πv2 ln vK

|E|

)2

1 −
(

p0g0
2πv2 ln vK

|E|

)2

(
1 ⊗ 1 + σ̂y ⊗ σ̂y

)
+ g0

p0g0
4πv2 ln vK

|E|

1 −
(

p0g0
2πv2 ln vK

|E|

)2 (σ̂x ⊗ σ̂x − σ̂z ⊗ σ̂z) ; (6)

ge ≈g01 ⊗ 1 + 2g0

(
p0g0
4πv2 ln vK

|E|

)2

1 −
(

p0g0
2πv2 ln vK

|E|

)2

(
1 ⊗ 1 + σ̂y ⊗ σ̂y

)
+ g0

p0g0
4πv2 ln vK

|E|

1 −
(

p0g0
2πv2 ln vK

|E|

)2 (σ̂x ⊗ σ̂x + σ̂z ⊗ σ̂z) , (7)

where g0 is the bare disorder strength (values of the “impurity line”) in Figs. 3b and 3c; the matrices
1, σ̂x, σ̂y and σ̂z act in the pseudospin space of the nodal semimetal; p0 is the radius of the nodal
ring (cf. Fig. 2) and v is the quasiparticle velocity near the nodal line. Hereinafter, we assume, for
simplicity, that the bare disorder strength g0 is the same in both channels, which corresponds to
short-range-correlated quenched disorder.

UV renormalisations of disorder correlators can alternatively be studied using a renormalisa-
tion group (RG) approach, by repeatedly integrating out shells of highest momenta and renor-
malising quasiparticle properties at lower momenta. Perturbative one-loop RG flow equations for
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random quenched perturbations in a nodal-line semimetal of various symmetries have been derived
in Ref. [47].

3.3. Self-energy and scattering rate
The leading contributions of the discussed singular disorder coupling in the “Cooper” and

“excitonic” channels to the quasiparticle self-energy are shown in Figs. 5c and 5d. Due to the
intersection of propagators in Figs. 5c, its value is suppressed relative to the value of diagram 5d.
The summation of these diagrams gives the (retarded) self-energy (see Appendix B for details)

ΣR (E, g0) = −
p0g0

2πv2

ln vK
|E|

1 − p0g0
2πv2 ln vK

|E|

E − i
p0g0

4v2

|E|
1 − p0g0

2πv2 ln vK
|E|

. (8)

The imaginary part of the self-energy ImΣR = (2τ)−1, given by the last term of Eq. (8), determines
the elastic scattering rate 1/τ as

1
τ
=

p0g0

2v2

|E|
1 − p0g0

2πv2 ln vK
|E|

. (9)

3.4. Singularity in the disorder strength and mobility edge
In what follows, we consider sufficiently weak disorder, which correspond to a small dimen-

sionless disorder strength
p0g0

2πv2 ≪ 1. (10)

The parameter (10) is on the order of the inverse Ioffe-Regel parameter (|E|τ)−1 at the UV-cutoff
energy. The smallness of this parameter ensures the absence of localisation of the quasiparticles
near the UV energy cutoff.

The expressions for the renormalised disorder strengths (6) and (7) and the self-energy (8) have
a singularity at the energy

Ec ≈ vK exp
(
−

2πv2

p0g0

)
. (11)

We emphasise that this scale is smaller than the UV energy cutoff vK for the weak disorder strength
under consideration [cf. Eq. (10)]. In the opposite limit of strong disorder, p0g0

2πv2 ≳ 1, the quasipar-
ticle DoS is strongly broadened by disorder, and the behaviours of the density of states, scattering
rate and other observables are non-singular.

Due to the rapid growth of the renormalised disorder strength and the quasiparticle scattering
rate near the energy Ec, this energy scale also plays the role of the mobility edge. When the energy
E approaches Ec, the corrections to the self-energy Eq. (8) to the Green’s function become large
and the renormalised disorder strength is described by Eqs. (6) and (7) with the replacement

E → Ẽ = max
[
|E| ,

∣∣∣ReΣR(E, g0)
∣∣∣] sgn E. (12)

In the case of a sufficiently large parameter vK/ |E|, however, the difference between E and Ẽ may
be neglected in the argument of the logarithm in Eqs. (6)-(9).
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3.5. Infrared cutoff
Quasiparticle properties are significantly affected by the UV renormalisations only for suffi-

ciently large energies, |E| ≫ 1/τ (cf. also Fig. 4). At low energies, |E| ≲ 1/τ, the quasiparticle
density of states is significantly broadened by disorder and may be assumed to have the same or-
der of magnitude. The density of states and the transport properties of the quasiparticles in this
regime require descriptions by means of “low-energy” methods, such as the kinetic equation or a
non-linear sigma-model, that utilise the UV-renormalised quasiparticle parameters as input.

Due to the rapid growth of the scattering rate 1/τ near the energy Ec given by Eq. (11), the
crossover between the regimes of UV and low-energy transport occurs in a small vicinity of that
energy. According to Eqs. (9) and (10), the crossover condition |E| ∼ 1/τ is reached when

1 −
p0g0

2πv2 ln
vK
|Ẽ|
∼

p0g0

2v2 . (13)

4. Scaling of the density of states

In this section, we investigate the behaviour of the disorder-averaged density of states (DoS).
The DoS is an observable that reflects the discussed disorder-driven singularities and is readily
observed in, e.g., ARPES experiments. The disorder-averaged DoS is given by

ρ(E) = −
1
π

Im
∫

dp
(2π)2

dk
2π

GR
E (k,p) , (14)

where GR
E (k,p) is the disorder-averaged retarded Green’s function at energy E.

After performing the UV renormalisation of the disorder strength and quasiparticle properties,
the DoS can be reduced to [13]

ρ(E) = λρclean(λE) (15)

for energies |E| above the IR cutoff, where ρclean =
p0 |E|
4πv2 is the DoS in a disorder-free system, and

λ =
[
E − ReΣR(E, g0)

]
/E (16)

is the UV “energy renormalisation”. Equation (15) can be understood as follows. The diagram for
the DoS is shown in Fig. 6a and consists of the propagator and the DoS vertex renormalised by
the scattering through the UV momenta. The bare DoS vertex is given by ρ = 1 in the momentum
representation. The renormalisation of this vertex, described by the diagrams in Figs. 6c, matches
the renormalisation of the energy term in the Green’s function, corresponding to the real part of
the self-energy shown in Figs. 6b, which leads to a prefactor of λ in Eq. (15).

Utilising Eqs. (8) and (15), we obtain the DoS above the energy Ec [excluding a small vicinity
of that energy given by Eq. (13)]:

ρhigh =
1(

1 − p0g0
2πv2 ln vK

|E|

)2

p0

4πv2 |E| . (17)

9



Figure 6: Diagrams for the renormalisation of the density of states. a) The renormalised density of states. b) The
quasiparticle self-energy. c) The renormalisation of the density-of-states vertex by disorder (the bare vertex is given by
ρ0 = 1 in momentum representation). Integration in diagrams b and c is carried out with respect to the UV momenta.
The renormalisation of the DoS vertex is given by the same constant λ as the renormalisation of the energy term in
the quasiparticle Green’s function.

Equation (17) describes the DoS at energies and disorder strengths satisfying the condition 1 −
p0g0 ln

(
vK/|Ẽ|

)
/2πv2 ≫ p0g0/2v2, i.e. before the crossover condition (13) is reached. At lower

energies, the DoS has a constant order of magnitude due to the broadening by disorder. The value
of such a low-energy DoS can be estimated using the conditions p0g0

2πv2 ln(vK/|Ẽ|) ≈ 1 and Eq. (13),
which gives

ρlow ∼
v2

πp0g2
0

Ec ≈
v3

πp0g2
0

K exp
(
−

2πv2

p0g0

)
(18)

Equations (17) and (18) are our main results for the DoS. The DoS displays a strong depen-
dence on the disorder strength g0 and displays a singular behaviour summarised by Eq. (1) in a
broad range of energies and disorder strengths, excluding a small region around the singularity:

ρ(E, g0) ∝
[
gc(E) − g0

]−2
|E|, (19)

where the critical disorder strength is given by gc(E) ≈ 2πv2/
[
p0 ln

(
vK
|E|

)]
. Very close to the critical

point, the singular behaviour (19) of the DoS is replaced by a constant dependence of the DoS on
energy given by Eq. (18) [with the replacement g0 → gc(E)].

5. Duality between the BCS instability in a metal and disorder-driven singularity in a nodal-
line semimetal

It has recently been demonstrated in Ref. [33] that a d-dimensional interacting disorder-free
system with a suppressed DoS at the chemical potential can be mapped to a d + 1-dimensional
system of non-interacting particles with quenched disorder. The mapping holds at all levels of
the perturbation theory, with the respective dual elements of the diagrammatic technique shown
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in Fig. 7. In this mapping, the disordered system has an additional (pseudo-)spin structure corre-
sponding to the Pauli matrices in Fig. 7.

Figure 7: The correspondence between the diagrammatic elements of an interacting disorder-free system and an
equivalent higher-dimensional disordered non-interacting system [33]. The interacting system is described by means
of the Matsubara diagrammatic technique. The disordered non-interacting system is described by the disorder-
averaging diagrammatic technique [49] for particles with a (pseudo-)spin degree of freedom, which corresponds to the
Pauli matrices σx and σz. ξp is the quasiparticle dispersion in the interacting system; ω is the Matsubara frequency; k
is the momentum in the extra dimension of the disordered system.

According to the duality transformation developed in Ref. [33], a 2D BCS model is equivalent
to a 3D non-interacting disordered system with the Hamiltonian given by

Ĥ = v (|p| − p0) σ̂x + vkσ̂z + u(ρ)σ̂x, (20)

11



where ξp = v (|p| − p0) is the quasiparticle dispersion near the Fermi surface in the 2D BCS model;
p0 is the respective Fermi momentum and u(ρ) is a short-range-correlated random potential. This
model of a disordered nodal-line semimetal is rather similar to the nodal-line semimetal described
by the Hamiltonian (2). The only difference is the symmetry of disorder; while we consider scalar
disorder in Eq. (2), the impurity-induced perturbations in the Hamiltonian (20) are proportional to
σ̂x. As we have demonstrated in Sec. (3.2), UV renormalisation of the potential disorder leads to
the generation of other types of disorder, including that in the Hamiltonian (20).

This shows not only qualitative similarity between the disorder-driven instabilities studied here
and the BCS/excitonic instabilities in conventional metals but also establishes quantitative con-
nection between them, with the exact duality achieved for certain disorder symmetries (V̂ ∝ σ̂x).
Performing the summation of the Cooper and exciton ladders for the model described by the
Hamiltonian (20), we obtain renormalised disorder propagators (see Appendix C for details):

g̃c =
g0

2

p0g0
2πv2 ln vK

|E|

1 − p0g0
2πv2 ln vK

|E|

(σ̂x ⊗ σ̂x − σ̂z ⊗ σ̂z) , (21)

g̃e =
g0

2

p0g0
2πv2 ln vK

|E|

1 − p0g0
2πv2 ln vK

|E|

(σ̂x ⊗ σ̂x + σ̂z ⊗ σ̂z) . (22)

The singularities of the renormalised couplings (21) and (22) in the disordered nodal-line semimetal
under consideration are dual to the singularities of the renormalised couplings near Cooper and
exciton-condensation instabilities in interacting metals. The latter interaction-driven singularities
manifest themselves, e.g., in the correlators of quasiparticle densities, which are dual to the corre-
lators of the pseudospin density along the x axis.

The duality mapping in Ref. [33] has been derived for a vanishing energy E of the particles
in the disordered system. In this case, the low-energy (infrared) cutoff for the quasiparticles that
contribute to the UV scattering processes is determined by the system size Lz along one of the
directions (see Fig. 7). For the singularities described by Eqs. (21) and (22), we replaced the
respective cutoff by the quasiparticle energy E.

For short system lengths Lz ≪ v/|E|, the energy v/Lz serves as the infrared energy cutoff and
replaces energy E in Eqs. (21)-(22), |E| → v/Lz. In that regime, the DoS (and possibly other
observables, e.g., conductivity) exhibit singularities as a function of Lz. Such a transition as a
function of the length Lz is dual, in the sense of the duality mapping of Ref. [33], to the BCS
temperature-driven transition.

6. Discussion and outlook

We have studied the effects of quenched disorder on the density of states and quasiparticle
properties in a nodal-line semimetal. Significant renormalisations of the quasiparticle properties
come from the ultraviolet scales, i.e. processes of scattering through a large band of momenta
whose width exceeds the inverse mean free path 1/ℓ. This leads to a singular behaviour of multiple
observables as a function of the disorder strength. We found that the density of states depends on
the disorder strength g0 and the quasiparticle energy E as

ρ(E, g0) ∝
[
gc(E) − g0

]−2
|E| (23)
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for g0 exceeding the critical threshold gc(E), excluding a small vicinity of the threshold. In that
vicinity, the singular behaviour (23) crosses over to a constant as a function of g0. The behaviour
of the quantity ρ(E)/E as a function of energy E is summarised in Fig. 8. Based on the scaling of
the elastic scattering time τ and the density of states, we expect the conductivity of a disordered
nodal-line semimetal to show a singular behaviour of the form

σ ∝ τρ(E) ∝
[
gc(E) − g0

]−1 /g0, (24)

although we leave a detailed microscopic investigation of the conductivity for future studies.

Figure 8: The behaviour of the density of states as a function of energy.

For certain disorder symmetries, a 3D disordered nodal-line semimetal considered in this pa-
per can be mapped to a model of a disorder-free 2D metal with attractive interactions using the
duality mapping developed in Ref. [33]. In such semimetals, disorder-driven instabilities are sim-
ilar to the Cooper and exciton-condensation instabilities. The respective singular contributions to
the disorder strength get generated, as a result of renormalisation of the properties of low-energy
quasiparticles, for generic symmetries of disorder. Thus, although we have focused on two partic-
ular types of impurity symmetries in a nodal-line semimetal [cf. the Hamiltonians (2) and (20)],
we still expect the predicted critical behaviour of observables to persist for arbitrary disorder.
However, we will present a microscopic derivation of the density of states and conductivity for a
generic disorder symmetry elsewhere.

In this paper, we considered a model of a nodal-line semimetal in which all states on the nodal
line have the same energy. In realistic nodal-line semimetals, the energy of the nodal-line states
may vary along the line. Our results apply if corrugations of the nodal line are significantly smaller
than the energy scale Ec at which the singularities are observed. For stronger corrugations of the
impurity line, we expect the critical scaling of observables as a function of the disorder strength
g0 to persist, although we leave a detailed microscopic investigation of such semimetals for future
studies.

Experimental observation. In nodal-line semimetals, quenched disorder may be dominated
by charged impurities. The potential of a charged impurity in a nodal-line semimetal has two
characteristic lengths that significantly exceed the inverse characteristic momentum p−1

0 of the
nodal line [52]. Because the critical scaling of conductivity (24) requires short-range-correlated
disorder, observing it in transport measurements requires the presence of uncharged defects, such
as neutral impurities or vacancies.
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Observing the scaling of the density of states (23), however, is possible even if quenched
disorder comes from charged impurities because the singularity in the density of states ρ(E) can
be probed at energies E away form the Fermi level EF . Charged impurities are strongly screened
and have a short screening radius for sufficiently large energies EF . The density of states ρ(E) can
then probed at E , EF in ARPES and STM experiments.
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Appendix A. Cooper and excitonic channels for the renormalised disorder strength

In this section, we provide details of evaluating the diagrams in Figs. 5. As discussed in the
main text, the UV renormalisations come from the momenta far away from the Fermi surface, and
the analytical properties of the Green’s functions near the poles are not important for the respective
contributions. In what follows, we consider, for simplicity, retarded Green’s functions of the form
G(k,p) = (E+ i

2τ )+ξpσ̂x+ξkσ̂z

(E+ i
2τ )

2
−ξ2p−ξ

2
k

. In the case of short-range correlated, on which we focus in the main

text, the bare couplings g0 in the Cooper and excitonic channels match.

Appendix A.1. Cooper ladder
The one impurity-line-diagram in Figs. 5a corresponds to gc1 = g0 (1 ⊗ 1). Furthermore, the

two-impurity-line diagram, which describes one step of the Cooper ladder, is given by

gc2 =g2
0

∫
dp

(2π)2

dk
2π

G (k,p) ⊗G (−k,p)

=g2
0

∫
dp

(2π)2

dk
2π

(
E + i

2τ

)
+ ξpσ̂x + ξkσ̂z(

E + i
2τ

)2
− ξ2

p − ξ
2
k

⊗

(
E + i

2τ

)
+ ξpσ̂x − ξkσ̂z(

E + i
2τ

)2
− ξ2

p − ξ
2
k

≈g2
0

∫
dp

(2π)2

dk
2π


ξ2

pσ̂x ⊗ σ̂x − ξ
2
k σ̂z ⊗ σ̂z[

ξ2
p + ξ

2
k −

(
E + i

2τ

)2
]2

 =
g2

0 p0

4π2v2

∫
dξpdξk


ξ2

pσ̂x ⊗ σ̂x − ξ
2
k σ̂z ⊗ σ̂z[

ξ2
p + ξ

2
k −

(
E + i

2τ

)2
]2

 ,
(A.1)

where we have introduced ξp = v (|p| − p0) and ξk = vk, the contribution ∝
(
E + i

2τ

)2
are neglected

due to the smallness of E and 1/τ in comparison with ξk and ξp, which are on the order of the UV
energy scales.

Introducing polar coordinates r and θ via the relations ξp = rcosθ and ξk = rsinθ gives

gc2 =
g2

0 p0

4π2v2

∫ vK

0

r2 · rdr[
r2 −

(
E + i

2τ

)2
]2

∫ 2π

0
cos2 θdθ (σ̂x ⊗ σ̂x − σ̂z ⊗ σ̂z)

≈
g2

0 p0

4πv2

{
ln

vK
max (|E| , 1/τ)

+
i
2

[
π

2
+ arctan

(
|E| τ −

1
4 |E| τ

)]
sgn E

}
(σ̂x ⊗ σ̂x − σ̂z ⊗ σ̂z) .

(A.2)

In the limit |E| ≫ 1/τ,

gc2 =
g2

0 p0

4πv2

(
ln

vK
|E|
+
πi sgn E

2

)
(σ̂x ⊗ σ̂x − σ̂z ⊗ σ̂z) ≈

1
2

S g2
0 (σ̂x ⊗ σ̂x − σ̂z ⊗ σ̂z) , (A.3)

where we introduce

S =
p0

2πv2

(
ln

vK
|E|
+
πi sgn E

2

)
. (A.4)
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Keeping only the real part of gc2 , which matters for the UV renormalisations, gives

gc2 ≈
1
2

S
′

g2
0 (σ̂x ⊗ σ̂x − σ̂z ⊗ σ̂z) ,

S
′

=
p0

2πv2 ln
vK
|E|
. (A.5)

The three-impurity-line diagram in Figs. 5a can be expressed as

gc3 =g3
0

∫
dp

(2π)2

dp1

(2π)2

dk
2π

dk1

2π
G (k,p) G (k1,p1) ⊗G (−k,p) G (−k1,p1)

=g3
0

∫
dp

(2π)2

dp1

(2π)2

dk
2π

dk1

2π

(
E + i

2τ

)
+ ξpσ̂x + ξkσ̂z(

E + i
2τ

)2
− ξ2

p − ξ
2
k

(
E + i

2τ

)
+ ξp1σ̂x + ξk1σ̂z(

E + i
2τ

)2
− ξ2

p1
− ξ2

k1

⊗

(
E + i

2τ

)
+ ξpσ̂x − ξkσ̂z(

E + i
2τ

)2
− ξ2

p − ξ
2
k

(
E + i

2τ

)
+ ξp1σ̂x − ξk1σ̂z(

E + i
2τ

)2
− ξ2

p1
− ξ2

k1

≈g3
0

( p0

4πv2

)2 ∫
dξpdξp1dξkdξk1


(
C0

2 +C2
2

)
ξ2

pξ
2
p1
1 ⊗ 1 +C1

2ξ
2
p1
ξ2

k σ̂y ⊗ σ̂y[
ξ2

p + ξ
2
k −

(
E + i

2τ

)2
]2 [
ξ2

p1
+ ξ2

k1
−

(
E + i

2τ

)2
]2


≈2g0

(
1
2

S
′

g0

)2 (
1 ⊗ 1 + σ̂y ⊗ σ̂y

)
, (A.6)

where Ck
n =

n!
k!(n−k)! is the binomial coefficient. The four-impurity-line diagram in Figs. 5a is given

by

gc4 =g4
0

∫
dp

(2π)2

dp1

(2π)2

dp2

(2π)2

dk
2π

dk1

2π
dk2

2π
G (k,p) G (k1,p1) G (k2,p2) ⊗G (−k,p) G (−k1,p1) G (−k2,p2)

=g4
0

∫
dp

(2π)2

dp1

(2π)2

dp2

(2π)2

dk
2π

dk1

2π
dk2

2π(
E + i

2τ

)
+ ξpσ̂x + ξkσ̂z(

E + i
2τ

)2
− ξ2

p − ξ
2
k

(
E + i

2τ

)
+ ξp1σ̂x + ξk1σ̂z(

E + i
2τ

)2
− ξ2

p1
− ξ2

k1

(
E + i

2τ

)
+ ξp2σ̂x + ξk2σ̂z(

E + i
2τ

)2
− ξ2

p2
− ξ2

k2

⊗

(
E + i

2τ

)
+ ξpσ̂x − ξkσ̂z(

E + i
2τ

)2
− ξ2

p − ξ
2
k

(
E + i

2τ

)
+ ξp1σ̂x − ξk1σ̂z(

E + i
2τ

)2
− ξ2

p1
− ξ2

k1

(
E + i

2τ

)
+ ξp2σ̂x − ξk2σ̂z(

E + i
2τ

)2
− ξ2

p2
− ξ2

k2

≈g4
0

( p0

4πv2

)3 ∫
dξpdξp1dξp2dξkdξk1dξk2(

C0
3 +C2

3

)
ξ2

pξ
2
p1
ξ2

p2
σ̂x ⊗ σ̂x −

(
C1

3 +C3
3

)
ξ2

p1
ξ2

kξ
2
p2
σ̂z ⊗ σ̂z[

ξ2
p + ξ

2
k −

(
E + i

2τ

)2
]2 [
ξ2

p1
+ ξ2

k1
−

(
E + i

2τ

)2
]2 [
ξ2

p2
+ ξ2

k2
−

(
E + i

2τ

)2
]2

≈4g0

(
1
2

S
′

g0

)3

(σ̂x ⊗ σ̂x − σ̂z ⊗ σ̂z) . (A.7)
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Similarly, we obtain the values of any diagrams with n (n ≥ 2) impurity lines:

gcn =


1
2g0

(
S
′

g0

)n−1 (
1 ⊗ 1 + σ̂y ⊗ σ̂y

)
, when n is an odd number

1
2g0

(
S
′

g0

)n−1
(σ̂x ⊗ σ̂x − σ̂z ⊗ σ̂z) , when n is an even number.

(A.8)

Then the total value of the Cooper ladder in Figs. 5 is given by

gc ≈g0 (1 ⊗ 1) +
2g0

(
p0g0
4πv2 ln vK

|E|

)2

1 −
(

p0g0
2πv2 ln vK

|E|

)2

(
1 ⊗ 1 + σ̂y ⊗ σ̂y

)
+

g0
p0g0
4πv2 ln vK

|E|

1 −
(

p0g0
2πv2 ln vK

|E|

)2 (σ̂x ⊗ σ̂x − σ̂z ⊗ σ̂z) .

(A.9)

Appendix A.2. “Excitonic” ladder
The “excitonic” ladder in Figs. 5b can be evaluated similarly to the Cooper ladder in Figs. 5a.

The first step of the ladder, i.e. the diagram with two impurity lines, is given by

ge2 =g2
0

∫
dp

(2π)2

dk
2π

G (k,p) ⊗G (k,p)

=g2
0

∫
dp

(2π)2

dk
2π

(
E + i

2τ

)
+ ξpσ̂x + ξkσ̂z(

E + i
2τ

)2
− ξ2

p − ξ
2
k

⊗

(
E + i

2τ

)
+ ξpσ̂x + ξkσ̂z(

E + i
2τ

)2
− ξ2

p − ξ
2
k

≈g2
0

∫
dp

(2π)2

dk
2π


ξ2

pσ̂x ⊗ σ̂x + ξ
2
k σ̂z ⊗ σ̂z[

ξ2
p + ξ

2
k −

(
E + i

2τ

)2
]2

 ≈
1
2

S
′

g2
0 (σ̂x ⊗ σ̂x + σ̂z ⊗ σ̂z) . (A.10)

The value of the diagram with three impurity lines is given by

ge3 =g3
0

∫
dp

(2π)2

dp1

(2π)2

dk
2π

dk1

2π
G (k,p) G (k1,p1) ⊗G (k1,p1) G (k,p)

=g3
0

∫
dp

(2π)2

dp1

(2π)2

dk
2π

dk1

2π

(
E + i

2τ

)
+ ξpσ̂x + ξkσ̂z(

E + i
2τ

)2
− ξ2

p − ξ
2
k

(
E + i

2τ

)
+ ξp1σ̂x + ξk1σ̂z(

E + i
2τ

)2
− ξ2

p1
− ξ2

k1

⊗

(
E + i

2τ

)
+ ξp1σ̂x + ξk1σ̂z(

E + i
2τ

)2
− ξ2

p1
− ξ2

k1

(
E + i

2τ

)
+ ξpσ̂x + ξkσ̂z(

E + i
2τ

)2
− ξ2

p − ξ
2
k

≈g3
0

( p0

4πv2

)2 ∫
dξpdξp1dξkdξk1


(
C0

2 +C2
2

)
ξ2

pξ
2
p1
1 ⊗ 1 +C1

2ξ
2
p1
ξ2

k σ̂y ⊗ σ̂y[
ξ2

p + ξ
2
k −

(
E + i

2τ

)2
]2 [
ξ2

p1
+ ξ2

k1
−

(
E + i

2τ

)2
]2


≈2g0

(
1
2

S
′

g0

)2 (
1 ⊗ 1 + σ̂y ⊗ σ̂y

)
, (A.11)

17



The contribution of the diagram with four impurity lines is given by

ge4 =g4
0

∫
dp

(2π)2

dp1

(2π)2

dp2

(2π)2

dk
2π

dk1

2π
dk2

2π
G (k,p) G (k1,p1) G (k2,p2) ⊗G (k2,p2) G (k1,p1) G (k,p)

≈g4
0

∫
dp

(2π)2

dp1

(2π)2

dp2

(2π)2

dk
2π

dk1

2π
dk2

2π
ξpσ̂x + ξkσ̂z(

E + i
2τ

)2
− ξ2

p − ξ
2
k

ξp1σ̂x + ξk1σ̂z(
E + i

2τ

)2
− ξ2

p1
− ξ2

k1

ξp2σ̂x + ξk2σ̂z(
E + i

2τ

)2
− ξ2

p2
− ξ2

k2

⊗
ξp2σ̂x + ξk2σ̂z(

E + i
2τ

)2
− ξ2

p2
− ξ2

k2

ξp1σ̂x + ξk1σ̂z(
E + i

2τ

)2
− ξ2

p1
− ξ2

k1

ξpσ̂x + ξkσ̂z(
E + i

2τ

)2
− ξ2

p − ξ
2
k

≈g4
0

∫
dp

(2π)2

dp1

(2π)2

dp2

(2π)2

dk
2π

dk1

2π
dk2

2π(
C0

3 +C2
3

)
ξ2

pξ
2
p1
ξ2

p2
σ̂x ⊗ σ̂x +

(
C1

3 +C3
3

)
ξ2

kξ
2
k1
ξ2

k2
σ̂z ⊗ σ̂z[

ξ2
p + ξ

2
k −

(
E + i

2τ

)2
]2 [
ξ2

p1
+ ξ2

k1
−

(
E + i

2τ

)2
]2 [
ξ2

p2
+ ξ2

k2
−

(
E + i

2τ

)2
]2

≈4g0

(
1
2

S
′

g0

)3

(σ̂x ⊗ σ̂x + σ̂z ⊗ σ̂z) . (A.12)

Similarly, we obtain the value of the diagram with n (n ≥ 2) impurity lines:

gen =


1
2g0

(
S
′

g0

)n−1 (
1 ⊗ 1 + σ̂y ⊗ σ̂y

)
, when n is an odd number

1
2g0

(
S
′

g0

)n−1
(σ̂x ⊗ σ̂x + σ̂z ⊗ σ̂z) , when n is an even number

(A.13)

Then value of the whole “excitonic” ladder in Figs. 5b is given by

ge ≈g0 (1 ⊗ 1) +
2g0

(
p0g0
4πv2 ln vK

|E|

)2

1 −
(

p0g0
2πv2 ln vK

|E|

)2

(
1 ⊗ 1 + σ̂y ⊗ σ̂y

)
+

g0
p0g0
4πv2 ln vK

|E|

1 −
(

p0g0
2πv2 ln vK

|E|

)2 (σ̂x ⊗ σ̂x + σ̂z ⊗ σ̂z) .

(A.14)

Appendix B. Self-energy

In this section, we provide details on the calculation of the UV contributions to the quasiparticle
self-energy. The leading contributions of the Cooper channel to the self-energy, shown in Figs. 5c,
are suppressed compared to the “excitonic” contributions in Figs. 5d by the small parameter (4).

The first-order contribution to the self-energy in Figs. 5d is given by

Ee1 =g0

∫
dp

(2π)2

dk
2π

GR
0 (k,p) ≈ −g0S E. (B.1)
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The next-order contribution is given by

Ee2 =g2
e

∫
dp

(2π)2

dk
2π

dp1

(2π)2

dk1

2π
GR

0 (k1,p1) GR
0 (k,p) GR

0 (k1,p1)

=g2
e

∫
dp

(2π)2

dk
2π

GR
0 (k,p)

∫
dp1

(2π)2

dk1

2π
GR

0 (k1,p1) GR
0 (k1,p1)

≈ − S E
1
2

g0

(
S
′

g0

)
(1 + 1) ≈ −g0S E

(
S
′

g0

)
. (B.2)

Similarly, we find n-th order contribution to the self-energy to be given by

Een = −g0S E
(
S
′

g0

)n−1
. (B.3)

The total qusdiparticle self-energy hence can be shown as

ΣR = −
g0S E

1 − g0S ′
= −

p0g0

2πv2

ln vK
|E|

1 − p0g0
2πv2 ln vK

|E|

E − i
p0g0

4v2

|E|
1 − p0g0

2πv2 ln vK
|E|

. (B.4)

Utilising Eq. (B.4), we obtain the constant λ characterising the renormalisation of the energy term
in the quasiparticle Green’s function [cf. Eq. (16)]:

λ =
1

1 − p0g0
2πv2 ln vK

|E|

. (B.5)

Appendix C. Ladder diagrams for impurity vertices ∝ σ̂x

In this section, we provide the details of evaluating the ladder diagrams in the model of a
nodal-line semimetal described by the Hamiltonian (20), dual to the BCS model. The first step of
the Cooper ladder, i.e. the diagram with two impurity lines, is given by

g̃c2 =g2
0

∫
dp

(2π)2

dk
2π
σ̂xG0 (k,p) σ̂x ⊗ σ̂xG0 (−k,p) σ̂x =

g2
0 p0

4π2v2

∫
dξpdξk

ξ2
pσ̂x ⊗ σ̂x − ξ

2
k σ̂z ⊗ σ̂z(

ξ2
p + ξ

2
k − E2

)2


=

1
2

g0

(
S
′

g0

)
(σ̂x ⊗ σ̂x − σ̂z ⊗ σ̂z) . (C.1)

The value of the diagram with three impurity lines is given by

g̃c3 =g3
0

∫
dp

(2π)2

dp1

(2π)2

dk
2π

dk1

2π
σ̂xG0 (k,p) σ̂xG0 (k1,p1) σ̂x ⊗ σ̂xG0 (−k,p) σ̂xG0 (−k1,p1) σ̂x

≈g3
0

( p0

4πv2

)2 ∫
dξpdξp1dξkdξk1


(
C0

2 +C2
2

)
ξ2

pξ
2
p1
σ̂x ⊗ σ̂x −C1

2ξ
2
p1
ξ2

k σ̂z ⊗ σ̂z(
ξ2

p + ξ
2
k − E2

)2 (
ξ2

p1
+ ξ2

k1
− E2

)2


≈

1
2

g0

(
S
′

g0

)2
(σ̂x ⊗ σ̂x − σ̂z ⊗ σ̂z) , (C.2)
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where the quantity S ′ is given by Eq. (A.5). Similarly, we obtain the value of the diagram with
n ≥ 2 impurity lines:

g̃cn =
1
2

g0

(
S
′

g0

)n−1
(σ̂x ⊗ σ̂x − σ̂z ⊗ σ̂z) . (C.3)

After summing up the contribution from all ladder diagrams, we obtain the renormalised disorder
propagator in ”Cooper” channel which is given by Eq. (21). Similarly, the renormalised propagator
in the “excitonic” channel can be obtained, which is given by Eq. (22).
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