
Frontiers of Biogeography
the scientific journal of

the International Biogeography Society
ReseaRch aRticle

© the authors, CC-BY 4.0 license  1

Frontiers of Biogeography 2022, 14.2, e53589

e-ISSN: 1948-6596 https://escholarship.org/uc/fb doi:10.21425/F5FBG53589

a

Operationalizing expert knowledge in species’ range estimates using 
diverse data types

Cory Merow1, Peter J. Galante2 , Jamie M. Kass3 , Matthew E. Aiello-Lammens4 ,  

Cecina Babich Morrow2 , Beth E. Gerstner5 , Valentina Grisales-Betancur,6  

Alex C. Moore2 , Elkin A. Noguera-Urbano7 , Gonzalo E. Pinilla-Buitrago8,9 ,  

Jorge Velásquez-Tibatá10, Robert P. Anderson8,9,11  and Mary E. Blair2 

1Eversource Energy Center and Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT, USA. 
2Center for Biodiversity and Conservation, American Museum of Natural History, New York, NY, USA.
3Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami‐gun, Okinawa, Japan.
4Department of Environmental Studies and Science, Pace University, Pleasantville, NY, USA.
5Department of Fisheries & Wildlife and Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA.
6Universidad EAFIT, Medellín, Antioquia, Colombia.
7Instituto de Investigación de Recursos Biológicos, Alexander von Humboldt, Bogotá, D.C., Colombia.
8Department of Biology, City College of New York, City University of New York, New York, NY, USA.
9Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY, USA.
10International Alliances Program, National Audubon Society, Bogotá, Colombia.
11Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, New York, NY, USA.

Correspondence: Cory Merow, cory.merow@gmail.com

Highlights

• Species distribution models (SDMs) are widely used 
to estimate species’ distributions; however, there are 
drawbacks when data are sparse, with implications 
for rare and threatened species.

• Expert knowledge—which we define broadly to include 
understanding of species’ habitat use, dispersal barriers, 
biotic interactions, and other factors that limit their 
distributions—is a mostly untapped resource for post‐
processing statistically modeled range predictions to 
increase spatial and temporal accuracy.

• We formalize a framework to incorporate expert knowledge 
to reproducibly generate species’ realized distribution 
estimates. Additionally, we operationalize a workflow with 
a new R package, maskRangeR.

• maskRangeR facilitates improved transparency and 
reproducibility of integrating diverse expert knowledge 
into refined estimates of species’ ranges at high spatial 
and temporal resolutions to better describe geographic 
distributions for poorly sampled species, estimate 
biodiversity, and inform conservation decisions.

Abstract
Estimates of species’ ranges can inform many aspects of biodiversity 
research and conservation‐management decisions. Many practical 
applications need high‐precision range estimates that are sufficiently 
reliable to use as input data in downstream applications. One solution 
has involved expert‐generated maps that reflect on‐the‐ground field 
information and implicitly capture various processes that may limit 
a species’ geographic distribution. However, expert maps are often 
subjective and rarely reproducible. In contrast, species distribution 
models (SDMs) typically have finer resolution and are reproducible 
because of explicit links to data. Yet, SDMs can have higher uncertainty 
when data are sparse, which is an issue for most species. Also, SDMs 
often capture only a subset of the factors that determine species 
distributions (e.g., climate) and hence can require significant post‐
processing to better estimate species’ current realized distributions. 
Here, we demonstrate how expert knowledge, diverse data types, and 
SDMs can be used together in a transparent and reproducible modeling 
workflow. Specifically, we show how expert knowledge regarding 
species’ habitat use, elevation, biotic interactions, and environmental 
tolerances can be used to make and refine range estimates using 
SDMs and various data sources, including high‐resolution remotely 
sensed products. This range‐refinement approach is primed to use 
various data sources, including many with continuously improving 
spatial or temporal resolution. To facilitate such analyses, we compile 
a comprehensive suite of tools in a new R package, maskRangeR, and 
provide worked examples. These tools can facilitate a wide variety 
of basic and applied research that requires high‐resolution maps of 
species’ current ranges, including quantifications of biodiversity and 
its change over time.

Keywords: biotic interactions, dispersal barriers, ecological niche models, expert map, land cover, land use, realized 
distribution, reproducibility, species distribution models
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Introduction
Many important biological and biogeographical 

applications require reliable information on species’ 
current geographic distributions (Whittaker et al. 2005). 
Ideally, data regarding species ranges would cover the 
entire geographic extent of the realized distribution at a 
fine spatial resolution and include a temporal resolution 
useful for detecting changes. However, the majority 
of species are known from very few localities (e.g., 
(Soberón et al. 2000)), a common problem termed the 
‘Wallacean shortfall’ that can make constructing data‐
intensive species distribution models (SDMs) prohibitive 
for many species (Di Marco et al. 2017). This highlights 
the need for tools that can improve spatial and temporal 
characterizations of species’ distributions. Such advances 
will enable more comprehensive and precise biodiversity 
assessments, particularly for conservation planning. For 
example, as low‐data species are concentrated in some 
of the most biodiverse places in the world, the ability to 
improve taxonomic coverage of distribution knowledge 
and increase its spatial and temporal resolution is 
critical to understanding, predicting, and conserving 
biodiversity globally (Heberling et al. 2021, Jetz et al. 
2019, Jung et al. 2020).

Expert knowledge may be essential to estimate 
distributions for species with only limited occurrence and 
ecological data available. We define expert knowledge 
broadly to include information regarding species’ 
habitat use, dispersal barriers/accessible areas, biotic 
interactions, and other factors limiting their ranges. Expert 
knowledge could be reflected in something as simple as 
a hand‐drawn map of accessible areas to reflect known 
dispersal barriers. Or it could be reflected in remotely 
sensed land use/land cover data that identify obligate 
habitat types (e.g., forests), or in conjunction with a 
threshold that indicates minimum/maximum suitable 
values of such a layer (e.g., minimum percent of forest 
cover). Alternatively, expert knowledge might constitute 
a known physiological threshold (e.g., thermal or freeze 
tolerance) based on lab experiments that can be used in 
conjunction with environmental layers to identify suitable 
locations. Such information is a largely untapped resource 
for post‐processing statistically modeled range predictions 
to increase spatial and temporal accuracy.

Expert knowledge can include information on the 
focal species’ environmental constraints: elevational 
limits, associated habitat types and land use/land 
cover, necessary levels of habitat quality, tolerance 
for anthropogenic influence, required distance from 
resources, key competitors or other biotic interactors, 
dispersal limitations, and historical contingencies 
(Anderson 2012, Araújo and Peterson 2012, Ocampo‐
Peñuela and Pimm 2014, Barve et al. 2011, Anderson 
and Raza 2010). Expert knowledge for a single 
species is often based on informal observations of 
field biologists that have not been entered into any 
database. Consequently, such information is a useful 
complement to the large online data aggregators that 
provide spatially precise observations from natural 
history museums and citizen scientist networks 
(Anderson et al. 2020). For data‐limited species, we 
address the use of expert knowledge for determining: 

a) which abiotic, biotic, and/or spatial variables are 
important for estimating species’ distributions either 
in the absence of—or ideally in conjunction with—a 
statistical model; and b), which values of those 
variables indicate that a given area is suitable and/or 
occupied. Here, we employ such information in a 
variety of approaches to refine SDMs.

Whether species distributions are initially estimated 
using expert‐drawn maps, delimiting polygons (e.g., 
convex hulls), SDMs (Ocampo‐Peñuela et al. 2016, 
Brooks et al. 2019, Peterson et al. 2018), or some 
combination of these (Merow et al. 2016, Merow et al. 
2017), all benefit from some form of post‐processing to 
improve the estimation of currently occupied locations. 
Indeed, recent work has shown that overestimation of 
range size from SDMs remains a problem in conservation 
applications (Velazco et al. 2020). The process of refining 
species range maps with expert‐derived filters can be 
interpreted as moving from potential distributions 
towards realized distributions. Information derived 
from expert knowledge is often useful for determining 
unsuitable and unoccupied locations, and thus can 
help refine estimates (Velásquez‐Tibatá et al. 2019, 
Calixto‐Pérez et al. 2018, Skroblin et al. 2021). Generally, 
the initial maps (especially SDM predictions) are best 
interpreted as potential distributions, since other factors 
restrict species’ distributions besides abiotic conditions. 
Such factors include dispersal limitations, historical 
contingencies, competitive interactions, social dynamics, 
and human modification of habitat. Realized distributions 
constitute those locations that are actually occupied 
by the species and are usually smaller than potential 
distributions. Importantly, relevant expert knowledge 
is typically related to non‐climatic factors, making it 
complementary to SDMs commonly fit with climatic 
variables (Guisan and Zimmermann 2000, Guisan and 
Thuiller 2005, Elith and Leathwick 2009). Beginning with 
an expert‐drawn map or SDM, we can use a series of 
filters to refine estimates of realized distributions based 
on expert knowledge (Anderson and Martínez‐Meyer 
2004), enabling the calculation of range sizes and other 
useful metrics of biodiversity and its change.

An example of documented, reproducible expert 
knowledge in action is a recent innovation by the 
Colombia Biodiversity Observation Network (BON) 
through the tool BioModelos (Velásquez‐Tibatá et al. 
2019). The BioModelos user community of scientists 
employs expert opinion to clean occurrence data and 
then refine resulting SDM predictions by identifying 
regions where the model either over‐ or underpredicts 
the realized distribution. This template, developed on 
a national scale, is primed to be applied more broadly 
using the principles and tools we develop below. 
We build upon these efforts in partnership with the 
Colombia BON by operationalizing tools to refine range 
maps in various transparent and reproducible ways. 
These tools can form the basis for supporting many 
applied conservation and management uses, including 
biodiversity assessments, reintroduction plans, land‐use 
planning, and assessing progress toward global targets 
and biodiversity offset manuals (Velásquez‐Tibatá et al. 
2019, Araújo et al. 2019, Khoury et al. 2019).
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Here, we formalize a conceptual framework and 
workflow to integrate expert knowledge into estimates 
of species’ current distributions and develop code 
to make this process transparent and reproducible 
according to modern open science standards 
(Wolkovich et al. 2012). We focus on methods that 
begin with range predictions from either expert‐drawn 
maps or SDMs, and then employ expert knowledge 
to refine these predictions using a series of filters 
(or geographic ‘masks’) to better estimate current 
realized distributions. Our approach aims to define 
methods for operationalizing expert knowledge, often 
by harnessing available in situ and ex situ biological 

and environmental data regarding factors identified 
as important by experts. We provide an R package, 
maskRangeR, that automates processes within this 
workflow, thus improving the transparency and 
reproducibility of integrating such knowledge into 
refined estimates of species’ ranges at high spatial 
and temporal resolutions.

Operationalizing expert knowledge
Our approach incorporates expert knowledge 

as either a complement or alternative to statistical 
models (Fig. 1). We advocate that statistical models 

Figure 1. An overview of the steps in the maskRangeR workflow. 1) Input map: For example, choose a map from a previously built 
species distribution model (SDM) prediction as an initial range estimate. 2) Expert information: Gather information (such as habitat 
associations) on the species’ distribution to inform Steps 3 and 4. 3) Filtering layers: Obtain/generate environmental layers of abiotic 
or biotic factors that influence the species’ distribution but were not considered in building the SDM, as well as (optionally) occurrence 
records for associating with the environmental layers. 4) Generate a mask: Determine thresholds for those layers (not the SDM) defining 
suitable or occupied habitat using either expert opinion, environmental values at known localities, or both. 5) Mask: Generate a binary 
filter by indicating values of layers above/below (as appropriate) the threshold in Step 3. 6) Sensitivity Analysis: Sensitivity of Steps 2‐5 
should be examined with respect to each expert decision to either synthesize across competing plausible scenarios or to determine 
the most plausible scenario and assess its dependence on key assumptions. After the sensitivity analysis, any previous step can be 
repeated with additional layers, thresholds, and masks as needed. The output from one procedure (Steps 1‐5) can be used as the input 
for another. Images shown are for the first use case described in the text (the olinguito; Bassaricyon neblina).
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are preferable when sufficient occurrence data are 
available, as they should reconstruct expert‐derived 
relationships if the data support them. For example, 
forest cover may be a limiting factor for a species’ 
distribution; therefore, a measure of it should ideally 
be incorporated as an SDM predictor variable along 
with aspects of climate when the desired final result 
is a map of the species’ current range. However, 
when sufficient occurrence data are not available to 
appropriately characterize a limiting factor, expert 
knowledge can be crucial for identifying the bounds 
of the species’ tolerances for such variables. Below, 
we describe common scenarios in which sufficient 
occurrence data are lacking or statistical models would 
be inappropriate or excessively complex, and in each 
case outline how expert knowledge can instead be 
combined with existing data to refine range estimates.

We partition the process into a series of ‘expert 
filters’ applied to an initial range estimate, which we 
term an ‘input map’ (see Methods, below). These filters 
define various attributes of suitable environmental 
conditions, habitat requirements, and other limiting 
factors (e.g., dispersal barriers); when combined 
together, they result in what we term an ‘expert‐refined 
map.’ For example, one filter may define a reasonable 
geographic domain (thereby filtering out the rest of 
the globe from consideration), a second may define 
suitable elevational limits, and a third may define 
minimum forest‐cover requirements. Any locations 
that pass through all three filters are considered 
amenable for the species and are collectively denoted 
as the expert‐refined map. In this way, using a series 
of filters can be considered analogous to the strictest 
implementation of ensemble modeling (Thuiller et al. 
2009), where complete agreement is required between 
all component models (i.e., the filters) to denote a 
location as suitable/occupied.

This range‐refinement approach is primed to use 
various data sources, including many with continuously 
improving spatial or temporal resolution. Products 
derived from remote sensing are increasingly 
available at high spatial resolutions. They can provide 
environmental information key to improving species’ 
distribution knowledge and quantifying how species’ 
distributions respond to environmental change over 
space and time. For example, new environmental data 
are coming online (e.g., soil moisture from NASA’s 
SMAP project1), while others are increasingly resolved 
at finer resolution (e.g., forest structure based on 
NASA’s GEDI mission2). Habitat characterization (e.g., 
classification, metrics, and continuous fields/fraction 
cover) is particularly critical because it tends to vary 
more rapidly over a fine spatial resolution than the 
climatic data often used to characterize distributions. 
Habitat information may help improve rare species’ 
predictions, as their distributions are more likely to be 
limited by habitat type than by climate (Brooks et al. 
2019). Expert knowledge of how these data sources 
can inform species’ distributions is critical for improving 

1  https://smap.jpl.nasa.gov/

2  https://gedi.umd.edu/

range estimates, particularly for poorly sampled species 
for which statistical models are not viable.

Below, we present three use cases that represent 
common scenarios for such a workflow, and for 
each of them demonstrate how expert knowledge 
can be operationalized to refine or define range 
predictions. Although we provide a specific worked 
example for each of the use cases using an SDM or an 
expert‐drawn map, either could be used as the input 
map. The first use case refines an SDM prediction 
based on environmental tolerances characterized 
through remote‐sensing data (e.g., forest cover). The 
second refines expert‐drawn maps using inferred 
environmental tolerances via a sequential filtering 
approach. The third removes biotically unsuitable 
areas (i.e., within the range of a competitor) from SDM 
predictions of congeneric, parapatric species. While 
the masking procedures for all three use cases have 
been used in various specific circumstances to generate 
or refine maps (Peterson et al. 2018, Brooks et al. 
2019, Anderson and Martínez‐Meyer 2004, Kass et al. 
2021), we offer a generalized operational framework 
to conform these processes to modern open science 
standards.

Materials and Methods
Distribution maps can be generated or refined by 

a variety of mechanisms depending on the level of 
detail of the expert’s knowledge and data available. 
Each of the following examples refines an initial 
range estimate using expert knowledge (without 
statistical inference) to determine which biotic or 
abiotic variables limit a species’ distribution and/or 
what ranges of these variables constitute suitable 
conditions. In the literature, the term ‘expert map’ 
generally refers to a map composed of polygons that 
have been drawn by hand or with GIS software; for 
clarity, we refer to these with the term ‘expert-drawn 
map’ (e.g., one option of the input into the filtering 
steps). As mentioned above, we generalize the concept 
of harnessing expert information by terming the output 
an ‘expert-refined map’: a map that incorporates any 
type of expert knowledge, as in post‐processing via the 
three use cases described below. This generalization 
anticipates the many types of expert knowledge that 
are challenging or impossible to incorporate into a 
statistical model or to readily draw on a map.

Step 1: An input map
The first step consists of selecting or building a 

preliminary input map to refine in subsequent steps. 
We focus on two cases where input maps are most 
readily available: expert‐drawn maps and SDMs. 
However, this approach can generally be applied to 
range maps derived from any type of previous model 
which is (ideally) independent of the information used 
for expert filtering (including convex hulls (Busby 
1991), phenological models (Chapman et al. 2014), or 
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demographic models (Merow et al. 2014, Merow et al. 
2017), among others).

For many rare and endangered species, there may 
be limited observations available to use as inputs for an 
SDM. Rather, IUCN openly serves expert‐drawn polygon 
maps for most vertebrate species and other taxa as they 
become available3. In these cases, expert maps may be 
the only estimates of a species’ range. However, these 
are often not reproducible, are difficult to update as 
new data become available, and have a precision that 
is too coarse to be meaningful for many conservation 
activities (Ocampo‐Peñuela et al. 2016, Hurlbert and 
Jetz 2007, Rotenberry and Balasubramaniam 2020, 
Di Marco et al. 2017). Nevertheless, expert‐drawn 
maps are still valuable, as they often reflect a range 
of processes, including habitat selection, dispersal 
limitation, and biotic interactions that must be 
considered to estimate a species’ realized distribution. 
Expert maps are often successful at delimiting areas 
beyond polygon boundaries as outside the species’ 
distribution, but because they are typically drawn at 
a coarse spatial resolution, they tend to suffer from 
inferred false presences within polygon boundaries 
(e.g., (Mainali et al. 2020)). Hence, they are prime 
candidates for further refinement based on high‐
resolution data filters guided by expert knowledge.

In the absence of an expert‐drawn map (particularly 
for a very poorly sampled or rare species), one might 
coarsely define a relevant geographic domain where 
the focal species is hypothesized to occur. This domain 
might constitute a biome (within a conscripted 
geographic region) or an ecoregion to impose rough 
boundaries based on the types of communities in 
which the species is expected to occur, a political 
unit where interest lies in refining range knowledge, 
or a buffered area around known occurrences. In 
such cases, our expert‐based workflow describes a 
formalized protocol for generating a map based strictly 
on expert knowledge and harnessing relevant available 
data (i.e., without statistical inference).

SDMs constitute the third common type of input 
map. They can inform a wide range of applications for 
biodiversity and conservation, including prioritizing 
target species and high‐diversity areas as well as 
guiding surveys, reintroductions, and monitoring 
efforts (e.g., Raxworthy et al. 2003). However, 
many challenges remain to maximize SDM utility 
for conservation and other applications (reviewed 
in (Urbina‐Cardona et al. 2019, Villero et al. 2017)), 
including issues of small sample sizes, sampling 
bias, and interpolation/extrapolation to unsampled 
locations. Nevertheless, SDMs may be available as 
part of published studies from large data aggregators 
such as the Botanical Information and Ecology Network 
(BIEN; > 300,000 plant species4), or from users building 
their own SDMs with the intention of further refining 
them with expert knowledge. SDMs excel at predicting 
species’ potential distributions and hence are ripe 

3  https://www.iucnredlist.org/resources/spatial-data-download
4  https://biendata.org

for refinement via expert knowledge to make better 
estimates of realized distributions.

Generally, SDMs are preferable to expert‐drawn 
maps as an input in our workflow. They directly use 
observations in a reproducible and largely objective 
way and often reflect the experience of many people 
(data collectors), in contrast to expert‐drawn maps that 
often involve the subjective discretion of a single or 
few individuals. However, occurrence data may exhibit 
sampling bias, which can have considerable effects on 
inferred ranges (Phillips et al. 2009, Yackulic et al. 2013). 
In contrast, the implicit assumption associated with 
expert maps is that bias related to variation in knowledge 
across the region is low. Further, sufficient sample sizes 
for fitting SDMs may not be available, leaving expert 
maps as a better option. Nevertheless, if SDMs are 
feasible, they can provide additional information on 
variation in suitability (whereas expert maps are typically 
binary), make predictions to unsampled areas, and be 
used to quantify uncertainty in range estimates.

Step 2: Expert knowledge and estimating thresholds
Expert knowledge can often be represented as a 

conceptual model for binary classification, usually 
relating to a single variable (e.g., forest cover, 
occurrence of competing species, dispersal) that 
indicates species’ presence or absence. For example, 
a montane species may be known to occur only above 
3000 m elevation, an invasive species may occur only 
in locations with anthropogenic disturbance, a plant 
may require serpentine soil, or a forest specialist may 
occur only in locations above a critical threshold of 
forest cover. Hence, generating a binary filter consists 
of identifying relevant filtering layers in Step 3 below 
and selecting a suitable threshold that can be used 
to omit portions of the study region that are either 
unsuitable or unoccupied. In GIS terminology, the 
operation of applying such binary filters to a map is 
referred to as ‘masking’—thus, implementing these 
expert mapping tools corresponds to generating a 
collection of masking layers.

We consider two approaches to generating 
thresholds that delimit suitable/occupied locations 
from unsuitable/unoccupied ones. We refer to the 
first approach as ‘expert-driven thresholding’, in which 
an expert has a priori knowledge of requirements for 
a given filter to distinguish suitable conditions from 
unsuitable ones. For example, the elevation limits 
often found in field guides for montane species can be 
combined with a digital elevation model to refine which 
locations are above or below the expert’s threshold 
(Ocampo‐Peñuela et al. 2016). Similarly, the expert 
may estimate that a grid cell must contain at least 
50% forest to be suitable for a forest‐obligate species.

A second approach, ‘data-driven thresholding’, 
helps an expert determine an appropriate threshold 
by overlaying observed presence data on filter layers 
(Gavrutenko et al. 2021). This approach involves 
first extracting values of the filter layer at presence 
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locations, then either choosing a threshold (based on 
expert opinion) or suitable quantile from these values 
such that the level of omission is acceptable for the 
given application. An expert may have knowledge of 
habitat requirements but only possess a rough estimate 
of the quality of habitat required to distinguish suitable 
from unsuitable areas, e.g., the critical threshold of the 
percentage of forest cover in a particular area (grid cell) 
necessary to qualify as suitable. In this case, known 
presence locations of the species can be used to guide 
the expert’s estimate of this threshold by using forest 
cover data available in those pixels (time‐matched to 
correspond to the species’ observation). Reliability of 
the data‐driven thresholding will depend in part on 
how well occurrences match environmental data, in 
terms of resolution (georeferencing error vs. spatial 
resolution) and timing.

Step 3: Filtering layers

In this step, we focus on obtaining relevant layers 
(Table 1) for filtering out unsuitable or unoccupied 
portions of the initial map from Step 1. Filtering layers 
can be either binary or continuous, and this choice 
determines how they can be used with the input map, 
which we discuss further in Step 5: Masking Methods.

Common data sources on environmental conditions 
for post‐processing an input map include land use/land 
cover (Hurtt et al. 2011), elevation (Robinson et al. 
2014) and its heterogeneity (Amatulli et al. 2018) 
(https://www.earthenv.org/), habitat type (Tuanmu 
and Jetz 2014) and its heterogeneity (Tuanmu and 
Jetz 2015), soil type (soilgrids.org), and ecoregion 
(Dinerstein et al. 2017). Such information is often 
available on a continuous scale of measurement 
(e.g., describing the proportion of a grid cell classified 
in a given category, such as forest cover, which 
can be interpreted to represent habitat quality). 
Alternatively, at low spatial resolution such layers 

Table 1. Examples of useful large‐extent data sources for masking.

Data type Summary Spatial 
Resolution

Temporal 
Resolution Citation

Ecoregion 846 terrestrial ecoregions updated from 
(Olson et al. 2001)

Various Present (Dinerstein et al. 
2017)

Elevation Based on a variety of fused data sets to 
provide near global coverage

90 m Present (Robinson et al. 
2014)

Land Use/ 
Landcover

Fractional land use change used in the 
IPCC assessment

0.5 degrees Annual (Chini et al. 
2014)

Forest Cover Forest extent, loss, and gain 30 m Annual (Hansen et al. 
2013)

Habitat 
Heterogeneity

14 metrics quantifying spatial 
heterogeneity of global habitat based 
on the textural features of the Enhanced 
Vegetation Index

1 km, 5 km, 
25 km

Present (Tuanmu and 
Jetz 2015)

Cloud Cover Mean cloud frequency with near global 
coverage

1 km Present (Wilson and 
Jetz 2016)

MODIS Active 
Fire/Burned Area

Timing and spatial distribution of fires 
and their characteristics

1 km/500 m 8 days (Giglio et al. 
2016, 

Giglio et al. 
2018)

SoilGrids Physical and chemical soil properties 
estimated for each horizon

250 m Present (Hengl et al. 
2017)

Human Footprint Globally standardized measure of the 
cumulative human footprint based on 
infrastructure, land cover and human 
access into natural areas

1 km Annual (Venter et al. 
2016)

Human 
modification

13 anthropogenic stressors and their 
estimated impacts

1 km Present (Kennedy et al. 
2019)

Freshwater 
metrics

Near‐global, spatially continuous, and 
freshwater‐specific environmental 
variables

1 km Present (Domisch et al. 
2015)

Surface water History of annual water detection (1984 
‐ 2019)

30 m Present (Pekel et al. 
2016)
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may simply indicate a majority classification for a cell, 
which can be interpreted as a binary map indicating 
whether or not a given class (e.g. soil type or land 
use) is present (Tuanmu and Jetz 2014). Aggregated 
anthropogenic factors, such as measures of human 
footprint (Venter et al. 2016) or human modification 
(Kennedy et al. 2019), can also be useful for omitting 
regions that would otherwise be inferred as suitable 
based on environmental conditions.

Biotic interactions often further restrict species 
distributions markedly within the environmental 
conditions that are suitable (Wisz et al. 2013). 
Therefore, knowledge of key interactions between 
species is relevant, and the distributions of interacting 
species can help to further refine range estimates 
of the focal species (Gutiérrez et al. 2014, Anderson 
2017, Freeman and Mason 2015). For example, if 
a species has obligate pollinators, dispersers, or 
other mutualisms, one can use range estimates of 
these mutualistic species as a filter (retaining only 
the areas where the needed interactor exists). As 
another example, an expert may have knowledge of 
parapatric boundaries between closely related species 
(e.g., competitors) based on an observed lack of co‐
occurrence, different habitat requirements, or other 
factors leading to mutual exclusion. Based on this 
expert expectation of parapatry, one can partition a 
region with overlapping range estimates for two or 
more species into spatially distinct ranges for each 
species (Anderson et al. 2002). This can be particularly 
helpful near range boundaries, where the climatic 
conditions might be mutually suitable, yet the species 
do not co‐occur. Rules for partitioning geographic space 
among species in such circumstances are described 
below with a recently developed spatial approach 
based on support vector machines (Kass et al. 2021).

Step 4: Generate a mask from a filter layer and 
threshold

A mask is generated by converting a continuous 
layer identified in Step 3 to a binary layer by identifying 
values above/below the threshold identified in Step 
2. Alternatively, in the absence of knowledge of the 
specific factor driving occurrence in particular locations 
(e.g., Steps 2 and 3 are not possible), experts often 
refine the input map by drawing polygons to include/
exclude regions from a species’ range estimate based 
on their knowledge (e.g., for areas with high hunting 
pressure). This will often be done at a comparatively 
coarse spatial resolution. For example, BioModelos 
applies this approach to advance distribution 
knowledge in Colombia by providing graphical tools 
to experts, who then make modifications to existing 
maps (Velásquez‐Tibatá et al. 2019).

Step 5: Masking methods
We consider three use cases for different 

combinations of input maps and ways to apply the 
thresholds for filter layers:

1. Binary input map and binary filter. In the simplest 
case, using a binary filter to mask a binary input map 

results in a binary expert‐refined range estimate. 
For example, an expert‐drawn map could be masked 
by elevational limits obtained from a field guide. 
Alternatively, a binary (thresholded) SDM could be 
masked by currently forested areas.

2. Continuous input map and binary filter. Using 
a binary filter to mask a continuous input map 
(e.g., describing probability of presence or relative 
abundance) results in a continuous, expert‐refined 
range estimate. For example, a continuous input 
map, such as an SDM prediction, could be masked 
with a binary filter generated from the expert‐
defined lower limit of the species’ tolerance for a 
human footprint layer.

3. Binary input map and continuous filter. Binary 
range estimates (e.g., expert‐drawn maps or 
thresholded SDM predictions) can be refined 
based on continuous filters that describe either 
the proportion of a cell that is suitable/occupied or 
the corresponding habitat quality. For example, if a 
species is an obligate forest‐dweller, a continuous 
filter describing the proportion of forest in a cell 
can be interpreted as the proportion of the cell 
that is suitable. Operationally, it is simplest to use 
the input binary map as a mask on the continuous 
filter to compute the expert‐refined map.

It is usually not advisable to combine both a 
continuous input map and a continuous filter in their 
raw form (rather, one or the other should be converted 
to binary as in Cases 2 and 3 above). Typically, input 
maps or filter layers with continuous values represent 
probabilities or proportions, but it is often unclear how 
these values interact within a cell (i.e., the probabilities 
are not independent and their joint distribution is 
unknown). Careful applications of fundamental rules 
of probability must be considered in order to use these 
continuous values effectively; however, the information 
needed to know how to apply these rules is often 
lacking. For example, if the probability of presence 
in a cell is 0.6 and the proportion of forest is 0.5, we 
cannot simply assume that the probability of presence 
should be reduced to 0.6 * 0.5 = 0.3 using the logic that 
only half the cell is actually viable. If the species is an 
obligate forest‐dweller (i.e., the occurrence probability 
is not independent of forest cover), this would imply 
that the occurrence probability of 0.6 applies only to 
the forested portion of the cell. Yet another possibility 
is that the occupied proportion may be between these 
values, due to the species’ exclusive preference for 
forest. Mathematically, the assumption here is that the 
probability of presence and the proportion of forest 
are independent, which is biologically unrealistic. 
While special cases surely exist that clearly define the 
relationships between continuous layers, we do not 
consider them further here.

A few special cases of masking techniques can 
extend the utility of our proposed framework. Thus 
far we have considered a single snapshot of a species’ 
range. However, time‐series of filters may be available in 
some cases, which can allow one to estimate temporal 
trends in suitable areas. For example, land use/land 



Merow et al. Operationalizing expert knowledge in SDMs

Frontiers of Biogeography 2022, 14.2, e53589 © the authors, CC-BY 4.0 license  8

cover products such as forest cover (Hansen et al. 
2013) can be available at an annual resolution. In the 
examples below, we demonstrate a case where a binary 
input map was estimated from a SDM and annual forest 
cover layers were then used to estimate changes in 
range size over the last two decades.

Step 6: Sensitivity analysis
While many of the approaches presented above 

have appeared as applications in various studies, 
sensitivity of expert refinements and characterizing 
uncertainty in predictions has largely been ignored. 
In our expert‐refined mapping framework, sensitivity 
analyses to modeling decisions involve up to four 
types of comparisons, following the steps outlined 
above. First, one can compare outputs using different 
combinations of biotic or abiotic filter layers. Second, 
one can compare different masking approaches: e.g., 
an expert‐determined threshold compared with a data‐
driven one. Third, one can compare different plausible 
values of thresholds used to create a binary mask 
(Fig. 2). Fourth, one could compare maps developed by 
different experts and either average them or use them 
as a platform to achieve consensus, as in BioModelos 
(Velásquez‐Tibatá et al. 2019). These analyses can be 
used to make decisions that are relatively insensitive 
to perturbations for creating a single model, or 
to consider an ensemble of plausible models that 
characterize uncertainty. Furthermore, reporting this 
uncertainty (e.g., via maps or in estimates of range 
size) helps to convey the level of confidence in the 
final expert‐refined map.

It may be particularly informative to compare maps 
from different expert‐ or data‐driven threshold values, 
as expert knowledge or estimation of the precise 
quantitative threshold is often approximate. As a 
first step, one can visually inspect maps for ecological 
realism (Guevara et al. 2018). Additionally, it can be 
useful to plot summary statistics of the range, such as 
measures of range size or range geometry, as a function 
of different threshold values (Fig. 2). Ideally, one can 
select a threshold value from within the plausible 
range where changes in threshold do not result in large 
changes to areal predictions, indicating low sensitivity 
to that decision (defined as the first derivative of a plot 
of the range metric vs. the threshold). Whether one 
selects a threshold from the upper, middle, or lower 
value of such a low‐sensitivity region will depend on the 
relative importance of omission versus commission in a 
given study, as well as on the biological interpretation 
of the filter involved.

Step 7: Repeat
Steps 2‐6 can be repeated with as many filters as 

are available, and the resulting expert‐refined maps 
will only include areas that have passed through all 
the filters.

Use Case examples
Each of the following is a summary of a worked 

example, with further details and associated R code 
available in the vignette of the newly developed 
maskRangeR package (Appendix S1). Each example 
uses key functions from maskRangeR to complete 
the analyses, which are detailed in the vignette, 
accessible at https://cmerow.github.io/maskRangeR/
maskRangeR_Tutorial.html. Note that package 
plans, updates, and training materials are available 
on the package website (  https://cmerow.github.io/
maskRangeR/).

Example 1: Masking by forest cover (Fig. 3a‐c). 
Determining thresholds for masking SDM 
predictions using recent records represents a 
simple methodology that can be used for the many 
species with limited recent records. Time‐series of 
filters may be available in some cases, which can 
allow one to estimate temporal trends in suitable 
areas. For example, land use/land cover products 
such as forest cover (Hansen et al. 2013) can be 
available at an annual resolution. The olinguito 
(Bassaricyon neblina) is a recently described 
carnivoran discovered from previously misidentified 
museum specimens (Helgen et al., 2013). It lives 
in Northern Andean cloud forests in Colombia and 
Ecuador; according to experts, it likely has strict 
tolerances for forest cover (Helgen et al. 2013). 
The species’ range was updated and estimated 
via an SDM (Gerstner et al. 2018) but without 
consideration of recent deforestation. Remotely 
sensed percent forest cover data now can be used 
to perform simple data‐driven masking based 
on information corresponding to recent records 
(Gavrutenko et al. 2021), with percent forest cover 

Figure 2. Areal range estimates based on masking the species 
distribution model for the olinguito (Bassaricyon neblina) at regular 
threshold intervals between 50‐100% forest cover. While expert 
knowledge can be used to determine the appropriate threshold, 
it is important to note the considerable variation in range size that 
is associated with different thresholds. For more, see ‘Example 1: 
Masking by forest cover’ under ‘Use Case examples’.
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extracted (e.g. MODIS Vegetation Continuous Fields 
(Daac 2018); (250 m) from the years matching the 
most recent occurrence records: 2006‐2016). There 
are only limited occurrence records available for this 
species (N = 30) (and this is common for species of 
conservation concern (Di Marco et al. 2017)). Half 

of these are from museum specimens, with 80% 
of those from years where high‐resolution forest 
cover estimates are not available. Only N = 18 recent 
(post‐2000) occurrences can be matched to the 
corresponding year of MODIS forest cover data to 
calculate a forest‐cover threshold appropriate for 

Figure 3: Use-case examples. (a‐c) SDM predictions can be refined based on available forest habitat. Panel a shows the binary SDM 
prediction in Colombia and Ecuador for the olinguito (gray), and panel b shows suitable forest cover levels (blue). Panel c shows the 
same olinguito SDM prediction within areas with suitable forest cover (red, the expert‐refined map) after areas with insufficient forest 
cover are removed through masking (gray). (d‐f) The use of multiple masks can considerably refine coarsely estimated ranges. The 
initial map for the swamp forest crab in Singapore (d) can be processed by intersecting three masks (e) to compose the ‘full’ mask (blue, 
amenable based on all three), which is used to generate the expert‐refined map (f). (g‐i) Support Vector Machine (SVM) masks can be 
used to resolve overlapping SDM predictions of parapatric species. (g) Initial SDM prediction made with bioclimatic predictor variables 
and occurrence localities for Bradypus tridactylus, one of three parapatric sloth species in South America. The SVM (h) classifier layer 
was created using occurrence localities and SDMs (spatial‐environmental SVM) for each of the three species. (i) Expert‐refined SDM 
of B. tridactylus masked by the SVM classifier to remove areas more likely to be part of the ranges of its parapatric relatives.
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the species (here determined as 77% forest cover 
in a cell). This threshold can then be used to mask 
the SDM output for the most recent year of MODIS 
data for an upper estimate of the current species’ 
range. Such a methodology should also prove 
useful for processing expert range maps or other 
pre‐existing range estimates that do not take into 
account human modifications of the environment.

Example 2: Masking by multiple expert inferred 
tolerances (Fig. 3d‐f). Some species may not have 
sufficient occurrence records with which to define 
environmental associations using an SDM. In 
these cases, for a given geographic area, multiple 
environmental layers can be thresholded to the 
estimated tolerances for the species based on 
expert knowledge, providing a series of masks. 
The swamp forest crab (Parathelphusa reticulata), 
a freshwater crab endemic to Singapore’s last 
remaining patch of freshwater swamp forest, is 
currently listed as Critically Endangered by the IUCN 
and is documented by only a single occurrence 
record. Here, we perform an expert‐driven species 
range estimate using three masks. We identified 
areas of overlap between canopy cover, mean 
annual temperature, and elevation that are 
considered by experts (Chua et al. 2015) as within 
the bounds of tolerance for this species, and then 
used these areas to constrain a relevant geographic 
region (also described by expert opinion) to an area 
of suitable environmental conditions.

Example 3: Masking by biotic factors (Fig. 3g‐i). In 
addition to abiotic factors, species’ distributions 
are also affected by biotic interactions, especially 
when species distributions are mutually exclusive 
(Wisz et al. 2012, Anderson 2017). For example, 
closely related species commonly show parapatric 
distributions (abutting but non‐overlapping 
ranges); yet, including biotic interactors as 
predictors should be avoided in standard SDMs if 
both species affect each other; Anderson 2017). 
While it is straightforward to mask a focal species’ 
distribution by the known range of a competing 
species that fully excludes it, the solution is less 
clear when the distributions of both species—
and their effects on each other—are imperfectly 
known (which is likely the case for poorly sampled 
species) (Anderson et al. 2002, Kass et al. 2021). 
Some studies have addressed this by identifying the 
species with the highest suitability value predicted 
by an SDM fit with abiotic variables (Anderson 
and Martìnez‐Meyer 2004, Gutiérrez et al. 2014). 
However, high abiotic suitability predictions for 
one species can be made far from the contact zone 
between both species. Such areas may be abiotically 
suitable but nonetheless unoccupied due to biotic 
and/or dispersal limitations. Therefore, considering 
the spatial positions of occurrence records, in 
addition to the SDM predictions, can help remedy 
this issue. Kass et al. (2021) used support vector 
machines (SVMs) (Drake et al. 2006) to classify grid 
cells by the species most likely to be present based 

on either the spatial patterns of the records alone 
(spatial), or those in addition to SDM predictions 
(which they termed spatial‐environmental). These 
approaches can be used to delimit ranges for two or 
more parapatric species by using the classification 
output as filters on the focal species’ respective 
input maps.

The three‐toed sloths (Bradypus spp.) comprise four 
species distributed across Central and South America. 
With the exception of the microendemic B. pygmaeus, 
the other three species range across mainland Central 
and South America: B. variegatus is widely distributed 
from eastern Honduras to northern Argentina, B. 
tridactylus is found in the Guianan shield region, and 
B. torquatus occurs only in the Brazilian Atlantic Forest 
(Anderson and Handley 2001). Bradypus variegatus 
and B. tridactylus exhibit parapatry (with a few sites of 
inferred contact), which is likely caused by competition 
for resources and/or suitable habitat (de Moraes‐
Barros et al. 2010). On the other hand, B. variegatus 
and B. torquatus show overlapping ranges in some 
portions of the Brazilian Atlantic Forest, where they 
exhibit more localized geographic separations (Hirsch 
and Chiarello 2012). Using support vector machines 
(Drake et al. 2006), we delimited the distributions of 
these three species by masking out regions classified 
as more likely to be within the range of one or more 
congeners based on spatial and (optionally) also non‐
spatial predictors. This methodology fits SVMs with 
two kinds of data: spatial, based on the occurrence 
coordinates of each species, or spatial‐environmental, 
based on a combination of the coordinates and the 
predicted suitabilities from SDMs (Kass et al. 2021). 
The SVM classifications are then used to mask the 
SDM predictions of each species to those regions 
not predicted to be occupied by the other congeners.

The maskRangeR package
To facilitate the use of our proposed framework for 

expert refinement of range maps, we developed the R 
package maskRangeR (website: https://cmerow.github.
io/maskRangeR/; download from CRAN at https://
cran.r‐project.org/web/packages/maskRangeR/index.
html or the development version at https://github.
com/cmerow/maskRangeR). This package fills key gaps 
in existing tools needed for the workflow presented 
above, and additionally provides a convenient and 
unified approach to the variety of masking strategies 
discussed. The package also includes tools to visualize 
the consequences of various expert decisions as 
part of sensitivity analyses. Notably, in developing 
maskRangeR we leveraged a number of existing, 
high‐quality tools for components of our workflow 
and focused on (1) adding tools missing from existing 
R packages and (2) providing all of these tools in a 
unified framework, accompanied by an extensive 
vignette with worked examples aimed at practitioners 
(Appendix S1).

A workflow with maskRangeR follows the steps 
described in Methods and Materials using all the core 
maskRangeR functions as follows:
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● Step 1: The user provides an input map in raster 
format.

● Step 2: Users can define their own thresholds a 
priori or use maskRangeR’s annotate() function to 
extract environmental values from timestamped 
occurrence locations and a time series of 
environmental layers. For static (single) layers, 
the raster package’s extract() function is sufficient 
(Hijmans 2021). The user then chooses a threshold 
based on the distribution of these extracted values.

● Step 3: The user can provide filtering layers in raster 
format. Users can take advantage of data‐download 
functionality from other R packages such as dismo 
(Hijmans et al. 2010) for elevation or WorldClim 
climate layers (Hijmans et al. 2005), forestChange 
for forest change indices (Lara and Gutierrez‐Velez 
2019), or MODIStsp for forest cover (Busetto and 
Ranghetti 2016). A wide variety of layers are openly 
available if users can download and process them in 
R (e.g., alternative bioclimatic layers from CHELSA 
(Karger et al. 2016). The function focalCompare() 
makes it easy to aggregate these layers with 
moving‐window choices (using raster::focal()), so 
that users can compare the results of different 
decisions. This can be useful when aligning layers 
originally at different resolutions.

● Step 4 and 5: maskRangeR provides a number of 
functions to perform different types of masking. 
The core function, maskRanger(), generates binary 
masks by thresholding filter layers, and then applies 
them to the input map. The function lotsOfMasks() 
readily implements multiple masks at once, while 
continuousMask() uses a continuous filter to mask 
a binary input map. Finally, rangeSVM() runs an 
iterative cross‐validation procedure to fit a support 
vector machine with optimal complexity, and 
rangeSVM_predict() uses this model to output 
masks for delimiting the ranges of multiple species 
that biotically constrain each other’s ranges.

● Step 6: Sensitivity analysis can be performed 
with thresholdSensitivity(), which generates plots 
showing how range size depends on threshold 
choice.

Discussion
By refining range maps based on expert knowledge, 

we illustrate how to improve spatial and/or temporal 
precision by incorporating different types of information 
that would often be omitted from species distribution 
models. This results in a transparent and reproducible 
workflow and illustrates the complementarity of expert 
knowledge and SDMs. With these improvements to 
range estimates, we can better describe geographic 
distributions for poorly sampled species, estimate 
biodiversity, and inform conservation decisions. 
While formal frameworks exist for elicitation of expert 
knowledge (McBride et al. 2012), as well as formal 
methods to incorporate this knowledge into SDMs 
(Choy et al. 2009, Merow et al. 2017), our focus here is 

to offer a highly practical workflow to elicit and utilize 
expert knowledge for species’ range estimates for a 
wide range of situations and applications.

Although practicality has driven the development 
of our workflow, it is useful to note that our approach 
is also consistent with theoretical constructs of 
the ecological niche that help to define a species’ 
geographic distribution (Soberón 2007). In particular, 
Drake (2014) argued that the niche is better 
represented by hulls which delimit niche boundaries 
rather than the probabilities associated with species 
distribution (niche) models. Drake (2014) emphasized 
that “the niche is the range of environments in 
which the species can persist” and that this range 
is the “interval between two extremes”. As such it 
is well represented by thresholds and manifests as 
a binary map in geographic space. The binary filters 
we generate here can be interpreted as convex hulls 
in environmental space, or the intervals between 
extremes (thresholds), and a collection of such filters 
represents a niche hypervolume, at least along the 
dimensions considered by the filters. Hence, our 
filtering approach is fully consistent with at least one 
interpretation of the niche concept.

Expert‐refined range maps have the potential to 
advance the spatial and temporal resolution of range 
estimates in multiple ways. In the spatial domain, our 
masking workflow may allow larger sample sizes when 
fitting coarse‐grain SDMs to be used as input maps, 
because spatially imprecise data can be included 
for a coarse‐grain SDM (which might otherwise be 
discarded for a fine grain SDM (Moudrý and Šímová 
2012, Mitchell et al. 2017, Naimi et al. 2014)). Improved 
spatial resolution could be achieved with a fine‐
resolution filter applied to such a coarse‐grain input 
map, allowing for the use of all available data. In the 
temporal domain, it is uncommon for range estimates 
to be updated frequently (e.g., every year), but this is 
feasible when filtering layers are available as a time 
series. Such filter layers might include annual climate 
layers, as are now available from CHELSA or ERA5, or 
remote sensing layers describing land use/land cover. 
Range estimates with higher temporal resolution are 
valuable for examining the timing of various threats 
to species persistence (Trisos et al. 2020).

Our presentation has thus far assumed that the 
expert‐driven filters are a better representation of 
reality than the input map, though this may not always 
be the case. For example, an experts’ expectation of 
absence due to dispersal limitation may be informed by 
biased sampling; in this case, an unmasked SDM that 
adequately accounts for sampling bias (Phillips et al. 
2009, Warton et al. 2013) may better reflect the 
species’ true distribution. As another example, 
when using remotely sensed layers for masking (e.g., 
forest cover), extremely fine‐scale variation may be 
undetectable from available satellite resolution, leading 
to a mask that inappropriately filters out suitable yet 
small locations. In practice, researchers are unlikely 
to know a priori whether one data source is more 
reliable than the other; hence, such disagreements 
should be characterized as uncertainty in range 
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estimates. Perhaps the most conservative option is for 
downstream analyses (such as range size estimates) to 
consider all range estimates supported by at least one 
data source. Alternatively, one could use an ensemble 
approach, where each candidate range estimate 
contributes one ‘vote’ toward determining whether 
a cell is likely occupied. The number of votes a cell 
receives can be interpreted as the degree of evidence 
supporting the range estimate at that location. The 
BioModelos network takes this ensemble approach 
one step further and allows multiple experts to weigh 
in, each casting votes that contribute to an ensemble 
range estimate (Velásquez‐Tibatá et al. 2019).

A relevant question is: Why would one choose to 
use data‐driven masking rather than including the 
presence records in a statistical model with the filter 
layer as a covariate? We consider a variety of scenarios, 
although other applications will undoubtedly emerge:

1. Additional map updates: If maps originate from a 
previous study, either expert‐drawn or based on an 
SDM, one could refine them based on additional 
information beyond what was originally used. 
Relatedly, it may not be necessary to refit statistical 
models if an expert already knows that the species 
is fundamentally restricted to particular features 
of the study region (e.g. land use/land cover).

2. Finer resolution filter: If the filtering layer 
represents variation at a finer resolution than the 
precision of the occurrence observations, one 
could use a filter to obtain a higher‐resolution 
range estimate. For example, presence data could 
be accurate to within a few hundred meters while 
habitat type is available at 30 m resolution.

3. Change over time: Although there may be sufficient 
data to build a single, static SDM, sparse sampling 
over time may limit the ability to infer change in a 
distribution. In Example 1, this is demonstrated with 
annually varying forest cover data used to filter a 
static SDM. Relatedly, temporal mismatch between 
covariates may preclude using them in a single 
model. For example, commonly used WorldClim 
data represents the mean conditions between 
1970‐2000 (Fick and Hijmans 2017) whereas data 
derived from MODIS satellites, such as fire products 
(Table 1), are available only after 2000.

4. Low number of records with filter data: Filter 
layer values may be available only at a subset 
of the presences used to make the input model. 
For example, in Example 1 we considered a case 
where forest‐cover filter layers were available 
only beginning in the year 2001, after which 9 
observations of the species were recorded.

5. Failure to meet assumptions of SDM: If an expert 
has good evidence that two species distributions 
are mutually exclusive (e.g., due to competition), 
using the distribution of one as a predictor variable 
for the other does not meet SDM assumptions (it is 
not a scenopoetic variable, sensu (Soberón 2007, 
Anderson 2017)). Instead, masking one estimated 

potential distribution by the other may be an 
effective option as in Example 3 (Kass et al. 2021).

Ongoing uptake of tools from maskRangeR 
by Colombia’s Biodiversity Observation network 
BioModelos (http://biomodelos.humboldt.org.co; 
see Introduction), exemplifies how this workflow can 
inform conservation (Velásquez‐Tibatá et al. 2019). 
Importantly, a series of formal end‐user consultation 
workshops with Colombian conservation practitioners 
and other biodiversity experts informed maskRangeR’s 
development, which was expanded through use 
cases (see the Vignette, Appendix S1) to be broadly 
applicable. maskRangeR now provides the capability 
for real‐time model updates by the BioModelos 
community. A next step in the collaboration will 
be integrating maskRangeR as new modules in the 
Wallace ecological modeling application (Kass et al. 
2018), a modular, R‐based software for reproducible 
modeling of species niches and distributions. Adding 
maskRangeR functionalities to Wallace should facilitate 
its use by conservation practitioners and researchers.

Acknowledgments

All authors acknowledge funding from NASA Grant 
No. 80NSSC18K0406. CM, JMK, GEPB, MAL, and RPA 
acknowledge funding from NSF grant DBI‐1661510. 
CM acknowledges funding from NSF Grant DBI‐
1913673. JMK acknowledges funding from the Japan 
Society for the Promotion of Science Postdoctoral 
Fellowships for Foreign Researchers program. CBM 
acknowledges funding from the Helen Gurley Brown 
Revocable Trust. BEG was supported by NASA FINESST 
Award 80NSSC19K133. VGB was supported by the 
National Association of Business of Colombia (ANDI) 
scholarship. We thank N. Horning, A. Paz, B.A. Johnson, 
N. Gazit, and all participants of our software end‐
user consultation workshops in Bogotá, Colombia for 
their input on the development of this package, and 
especially O. Rojas‐Soto and L.A. Peña Peniche for their 
assistance with beta‐testing. We also acknowledge 
workshop support from the Alexander von Humboldt 
Biological Resources Research Institute and the Center 
for Biodiversity and Conservation at the American 
Museum of Natural History.

Data Accessibility Statement
All code and vignette data are available at https://

github.com/cmerow/maskRangeR and stable updates 
to the maskRangeR package will be maintained on CRAN 
(https://CRAN.R‐project.org/package=maskRangeR)

Supplementary Material
The following materials are available as part of the 
online article at https://escholarship.org/uc/fb
Appendix S1. Vignette of maskRangeR package

https://github.com/cmerow/maskRangeR
https://github.com/cmerow/maskRangeR


Merow et al. Operationalizing expert knowledge in SDMs

Frontiers of Biogeography 2022, 14.2, e53589 © the authors, CC-BY 4.0 license  13

References

Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, 
B., Ranipeta, A., Malczyk, J. & Jetz, W. (2018) 
A suite of global, cross-scale topographic 
variables for environmental and biodiversity 
modeling. Scientific Data, 5, 180040. https://
doi.org/10.1038/sdata.2018.40

Anderson, R.P. (2012) Harnessing the world’s 
biodiversity data: promise and peril in 
ecological niche modeling of species 
distributions. Annals of the New York 
Academy of Sciences, 1260, 66–80. https://
doi.org/10.1111/j.1749-6632.2011.06440.x

Anderson, R.P. (2017) When and how should 
biotic interations be considered in models 
of species niches and distributions? Journal 
of Biogeography, 44, 8–17. https://doi.
org/10.1111/jbi.12825

Anderson, R.P., Araújo, M.B., Guisan, A., Lobo, 
J.M., Martínez-Meyer, E., Peterson, A.T. & 
Soberón, J.M. (2020) Optimizing biodiversity 
informatics to improve information flow, data 
quality, and utility for science and society. 
Frontiers of Biogeography, 12. https://doi.
org/10.21425/F5FBG47839

Anderson, R.P. & Handley, C.O. (2001) A new species 
of three-toed sloth (Mammalia: Xenarthra) 
from Panama, with a review of the genus 
Bradypus. Proceedings-Biological Society of 
Washington, 114, 1–33.

Anderson, R.P. & Martínez-Meyer, E. (2004) 
Modeling species’ geographic distributions 
for preliminary conservation assessments: 
an implementation with the spiny pocket 
mice (Heteromys) of Ecuador. Biological 
Conservation, 116, 167–179.

Anderson, R.P. & Raza, A. (2010) The effect of the 
extent of the study region on GIS models 
of species geographic distributions and 
estimates of niche evolution: preliminary tests 
with montane rodents (genus Nephelomys) 
in Venezuela. Journal of Biogeography, 37, 
1378–1393. https://doi.org/10.1111/j.1365-
2699.2010.02290.x

Anderson, R.P., Peterson, A. T. & Gómez-Laverde, 
M. (2002) Using niche-based GIS modeling 
to test geographic predictions of competitive 
exclusion and competitive release in South 
American pocket mice. Oikos, 98, 3–16.

Araújo, M.B., Anderson, R.P., Barbosa, A. M., et al. 
(2019) Standards for distribution models in 

biodiversity assessments. Science Advances, 
5, eaat4858. https://doi.org/10.1126/sciadv.
aat4858

Araújo, M.B. & Peterson, A.T. (2012) Uses and misuses 
of bioclimatic envelope modelling. Ecology, 93, 
1527–1539. https://doi.org/10.1890/11-
1930.1

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-
Noriega, A., Maher, S.P., Peterson, A.T., Soberón, 
J. & Villalobos, F. (2011) The crucial role of the 
accessible area in ecological niche modeling 
and species distribution modeling. Ecological 
Modelling, 222, 1810–1819. https://doi.
org/10.1016/j.ecolmodel.2011.02.011

Brooks, T.M., Pimm, S.L., Akçakaya, H.R., et al. (2019) 
Measuring Terrestrial Area of Habitat (AOH) 
and Its Utility for the IUCN Red List. Trends in 
Ecology and Evolution, 34, 977–986. https://
doi.org/10.1016/j.tree.2019.06.009

Busby, J.R. (1991) BIOCLIM - a bioclimatic 
analysis and prediction system. In: Nature 
conservation: cost effective biological surveys 
and data analysis (ed by C.R. Margules and 
M.P. Austin), pp. 64-68. CSIRO, Canberra.

Busetto, L. & Ranghetti, L. (2016) MODIStsp: 
an R package for preprocessing of MODIS 
Land Products time series. Computers and 
Geosciences, 97, 40–48.

Calixto-Pérez, E., Alarcón-Guerrero, J., Ramos-
Fernández, G., et al. (2018) Integrating expert 
knowledge and ecological niche models to 
estimate Mexican primates’ distribution. 
Primates, 59, 451–467.

Chapman, D.S., Haynes, T., Beal, S., Essl, F. & Bullock, 
J.M. (2014) Phenology predicts the native and 
invasive range limits of common ragweed. 
Global Change Biology, 20, 192–202. https://
doi.org/10.1111/gcb.12380

Chini, L.P., Hurtt, G.C. & Frolking, S. (2014) 
Harmonized global land use for years 1500-
2100, V1. ORNL DAAC. Available at: https://
daac.ornl.gov/VEGETATION/guides/Land_
Use_Harmonization_V1.html

Choy, S.L., O’Leary, R. & Mengersen, K. (2009) 
Elicitation by design in ecology: using 
expert opinion to inform priors for bayesian 
statistical models. Ecology, 90, 265–277. 
https://doi.org/10.1890/07-1886.1

Chua, K.W.J., Ng, D.J.J., Zeng, Y. & Yeo, D.C.J. 
(2015) Habitat characteristics of tropical 
rainforest freshwater crabs (Decapoda: 

https://doi.org/10.1038/sdata.2018.40
https://doi.org/10.1038/sdata.2018.40
https://doi.org/10.1111/j.1749-6632.2011.06440.x
https://doi.org/10.1111/j.1749-6632.2011.06440.x
https://doi.org/10.1111/jbi.12825
https://doi.org/10.1111/jbi.12825
https://doi.org/10.21425/F5FBG47839
https://doi.org/10.21425/F5FBG47839
https://doi.org/10.1111/j.1365-2699.2010.02290.x
https://doi.org/10.1111/j.1365-2699.2010.02290.x
https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.1890/11-1930.1
https://doi.org/10.1890/11-1930.1
https://doi.org/10.1016/j.ecolmodel.2011.02.011
https://doi.org/10.1016/j.ecolmodel.2011.02.011
https://doi.org/10.1016/j.tree.2019.06.009
https://doi.org/10.1016/j.tree.2019.06.009
https://doi.org/10.1111/gcb.12380
https://doi.org/10.1111/gcb.12380
https://daac.ornl.gov/VEGETATION/guides/Land_Use_Harmonization_V1.html
https://daac.ornl.gov/VEGETATION/guides/Land_Use_Harmonization_V1.html
https://daac.ornl.gov/VEGETATION/guides/Land_Use_Harmonization_V1.html


Merow et al. Operationalizing expert knowledge in SDMs

Frontiers of Biogeography 2022, 14.2, e53589 © the authors, CC-BY 4.0 license  14

Brachyura: Potamidae, Gecarcinucidae) 
in Singapore. Journal of Crustacean 
Biology,  35,  533–539.  https://doi .
org/10.1163/1937240X-00002346

Daac, O. (2018) MODIS and VIIRS land products 
global subsetting and visualization tool. ORNL 
DAAC, Oak Ridge, Tennessee, USA. Available 
at: https://daac.ornl.gov/cgi-bin/dsviewer.
pl?ds_id=1379

Di Marco, M., Watson, J.E.M., Possingham, H.P. & 
Venter, O. (2017) Limitations and trade-
offs in the use of species distribution maps 
for protected area planning. Journal of 
Applied Ecology, 54, 402–411. https://doi.
org/10.1111/1365-2664.12771

Dinerstein, E., Olson, D., Joshi, A., et al. (2017) An 
ecoregion-based approach to protecting half 
the terrestrial realm. BioScience, 67, 534–545. 
https://doi.org/10.1093/biosci/bix014

Domisch, S., Amatulli, G. & Jetz, W. (2015) Near-
global freshwater-specific environmental 
variables for biodiversity analyses in 1 km 
resolution. Scientific Data, 2, 150073. https://
doi.org/10.1038/sdata.2015.73

Drake, John M. (2015) Range bagging: a new 
method for ecological niche modelling from 
presence-only data. Journal of the Royal 
Society Interface, 12, 20150086–89. https://
doi.org/10.1098/rsif.2015.0086

Drake, J.M., Randin, C. & Guisan, A. (2006) Modelling 
ecological niches with support vector 
machines. Journal of Applied Ecology, 43, 
424–432. https://doi.org/10.1111/j.1365-
2664.2006.01141.x

Elith, J. & Leathwick, J.R. (2009) Species distribution 
models: ecological explanation and prediction 
across space and time. Annual Review of 
Ecology, Evolution, and Systematics, 40, 
677–697. https://doi.org/10.1146/annurev.
ecolsys.110308.120159

Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 
1-km spatial resolution climate surfaces for 
global land areas. International Journal of 
Climatology, 37, 4302–4315. https://doi.
org/10.1002/joc.5086

Freeman, B.G. & Mason, N.A. (2015) The geographic 
distribution of a tropical montane bird 
is limited by a tree: acorn woodpeckers 
(Melanerpes formicivorus) and colombian 
oaks (Quercus humboldtii) in the Northern 

Andes. PLoS ONE, 10, e0128675. https://doi.
org/10.1371/journal.pone.0128675

Gavrutenko, M., Gerstner, B.E., Kass, J.M., Goodman, 
S.M. & Anderson, R.P. (2021) Temporal 
matching of occurrence localities and forest 
cover data helps improve range estimates 
and predict climate change vulnerabilities. 
Global Ecology and Conservation, 27, e01569. 
https://doi.org/10.1016/j.gecco.2021.
e01569

Gerstner, B.E., Kass, J.M., Kays, R., Helgen, K.M. & 
Anderson, R.P. (2018) Revised distributional 
estimates for the recently discovered olinguito 
(Bassaricyon neblina), with comments on 
natural and taxonomic history. Journal of 
Mammalogy, 99, 321–332. https://doi.
org/10.1093/jmammal/gyy012

Giglio, L., Boschetti, L., Roy, D.P., Humber, M.L. 
& Justice, C.O. (2018) The Collection 6 
MODIS burned area mapping algorithm and 
product. Remote Sensing of the Environment, 
217, 72–85. https://doi.org/10.1016/j.
rse.2018.08.005

Giglio, L., Schroeder, W. & Justice, C.O. (2016) The 
collection 6 MODIS active fire detection 
algorithm and fire products. Remote Sensing 
of the Environment, 178, 31–41. https://doi.
org/10.1016/j.rse.2016.02.054

Guevara, L., Gerstner, B.E., Kass, J.M. & Anderson, 
R.P. (2018) Toward ecologically realistic 
predictions of species distributions: a cross-
time example from tropical montane cloud 
forests. Global Change Biology, 24, 1511–
1522. https://doi.org/10.1111/gcb.13992

Guisan, A. & Thuiller, W. (2005) Predicting species 
distribution: offering more than simple habitat 
models. Ecology Letters, 8, 993–1009. https://
doi.org/ 10.1111/J.1461-0248.2005.00792.X

Guisan, A. & Zimmermann, N.E. (2000) Predictive 
habitat distribution models in ecology. 
Ecological Modelling, 135, 147–186. https://
doi.org/10.1016/S0304-3800(00)00354-9

Gutiérrez, E.E., Boria, R.A. & Anderson, R.P. (2014) 
Can biotic interactions cause allopatry? Niche 
models, competition, and distributions of 
South American mouse opossums. Ecography, 
37, 741–753. https://doi.org/10.1111/
ecog.00620

Hansen, M.C., Potapov, P.V., Moore, R., et al. (2013) 
High-resolution global maps of 21st-century 

https://doi.org/10.1163/1937240X-00002346
https://doi.org/10.1163/1937240X-00002346
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1379
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1379
https://doi.org/10.1111/1365-2664.12771
https://doi.org/10.1111/1365-2664.12771
https://doi.org/10.1093/biosci/bix014
https://doi.org/10.1038/sdata.2015.73
https://doi.org/10.1038/sdata.2015.73
https://doi.org/10.1098/rsif.2015.0086
https://doi.org/10.1098/rsif.2015.0086
https://doi.org/10.1111/j.1365-2664.2006.01141.x
https://doi.org/10.1111/j.1365-2664.2006.01141.x
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1002/joc.5086
https://doi.org/10.1002/joc.5086
https://doi.org/10.1371/journal.pone.0128675
https://doi.org/10.1371/journal.pone.0128675
https://doi.org/10.1016/j.gecco.2021.e01569
https://doi.org/10.1016/j.gecco.2021.e01569
https://doi.org/10.1093/jmammal/gyy012
https://doi.org/10.1093/jmammal/gyy012
https://doi.org/10.1016/j.rse.2018.08.005
https://doi.org/10.1016/j.rse.2018.08.005
https://doi.org/10.1016/j.rse.2016.02.054
https://doi.org/10.1016/j.rse.2016.02.054
https://doi.org/10.1111/gcb.13992
https://doi.org/ 10.1111/J.1461-0248.2005.00792.X 
https://doi.org/ 10.1111/J.1461-0248.2005.00792.X 
https://doi.org/10.1016/S0304-3800(00)00354-9
https://doi.org/10.1016/S0304-3800(00)00354-9
https://doi.org/10.1111/ecog.00620
https://doi.org/10.1111/ecog.00620


Merow et al. Operationalizing expert knowledge in SDMs

Frontiers of Biogeography 2022, 14.2, e53589 © the authors, CC-BY 4.0 license  15

forest cover change. Science, 342, 850–853. 
https://doi.org/10.1126/science.1244693

Heberling, J.M., Miller, J.T., Noesgaard, D., Weingart, 
S.B. & Schigel, D. (2021) Data integration 
enables global biodiversity synthesis. 
Proceedings of the National Academy of 
Sciences USA, 118. https://doi.org/10.1073/
pnas.2018093118

Helgen, K.M., Pinto, C.M., Kays, R., Helgen, L.E., 
Tsuchiya, M.T.N., Quinn, A., Wilson, D.E. & 
Maldonado, J.E. (2013) Taxonomic revision of 
the olingos (Bassaricyon), with description of 
a new species, the Olinguito. ZooKeys, 1–83. 
https://doi.org/10.3897/zookeys.324.5827

Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., et al. 
(2017) SoilGrids250m: global gridded soil 
information based on machine learning. PLoS 
ONE, 12, e0169748. https://doi.org/10.1371/
journal.pone.0169748

Hijmans, R.J. (2021) raster: Geographic data analysis 
and modeling.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. 
& Jarvis, A. (2005) Very high resolution 
interpolated climate surfaces for global land 
areas. International Journal of Climatology, 
25, 1965–1978. https://doi.org/10.1002/
joc.1276

Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. 
(2010) Dismo: species distribution modeling; 
2013. R package version 0. 9-1, 1–87.

Hirsch, A. & Chiarello, A.G. (2012) The endangered 
maned sloth Bradypus torquatus of the 
Brazilian Atlantic forest: a review and 
update of geographical distribution and 
habitat preferences. Mammal Review, 42, 
35–54. https://doi.org/10.1111/j.1365-
2907.2011.00188.x

Hurlbert, A.H. & Jetz, W. (2007) Species richness, 
hotspots, and the scale dependence of 
range maps in ecology and conservation. 
Proceedings of the National Academy of 
Sciences USA, 104, 13384–13389. https://
doi.org/10.1073/pnas.0704469104

Hurtt, G.C., Chini, L.P., Frolking, S., et al. (2011) 
Harmonization of land-use scenarios for 
the period 1500–2100: 600 years of global 
gridded annual land-use transitions, wood 
harvest, and resulting secondary lands. 
Climatic Change, 109, 117–161. https://doi.
org/10.1007/s10584-011-0153-2

Jetz, W., McGeoch, M.A., Guralnick, R., et al. (2019) 
Essential biodiversity variables for mapping 
and monitoring species populations. Nature 
Ecology and Evolution. 3, 539-551. https://
doi.org/10.1038/s41559-019-0826-1

Jung, M., Arnell, A., De Lamo, X. & Garcia-Rangel, 
S. (2020) Areas of global importance for 
terrestrial biodiversity, carbon, and water. 
Nature Ecology and Evolution. https://doi.
org/10.1038/s41559-021-01528-7

Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, 
H., Soria-Auza, R.W., Zimmermann, N.E., 
Linder, H.P. & Kessler, M. (2016) CHELSA 
climatologies at high resolution for the earth’s 
land surface areas (Version 1.1). World Data 
Center for climate at DKRZ. https://doi.
org/10.1594/WDCC/CHELSA_v1_1

Kass, J.M., Meenan, S.I., Tinoco, N., Burneo, S.F. & 
Anderson, R.P. (2021) Improving area of 
occupancy estimates for parapatric species 
using distribution models and support 
vector machines. Ecological Applications, 31, 
e02228. https://doi.org/10.1002/eap.2228

Kennedy, C.M., Oakleaf, J.R., Theobald, D.M., Baruch-
Mordo, S. & Kiesecker, J. (2019) Managing the 
middle: a shift in conservation priorities based 
on the global human modification gradient. 
Global Change Biology, 25, 811–826. https://
doi.org/10.1111/gcb.14549

Khoury, C.K., Amariles, D., Soto, J.S., et al. (2019) 
Comprehensiveness of conservation of 
useful  wild plants:  an operational 
indicator for biodiversity and sustainable 
development targets. Ecological Indicators, 
98, 420–429. https://doi.org/10.1016/j.
ecolind.2018.11.016

Lara, W. & Gutierrez-Velez, V. (2019) forestChange: 
computing essential biodiversity variables 
from global forest change data. In: AGU 
Fall Meeting Abstracts, pp. B23F-2606. 
Available at: https://ui.adsabs.harvard.edu/
abs/2019AGUFM.B23F2606L

Mainali, K., Hefley, T., Ries, L. & Fagan, W.F. 
(2020) Matching expert range maps with 
species distribution model predictions. 
Conservation Biology, 34, 1292–1304. 
https://doi.org/10.1111/cobi.13492

McBride, M.F., Garnett, S.T., Szabo, J.K., et al. (2012) 
Structured elicitation of expert judgments for 
threatened species assessment: a case study 
on a continental scale using email. Methods in 

https://doi.org/10.1126/science.1244693
https://doi.org/10.1073/pnas.2018093118
https://doi.org/10.1073/pnas.2018093118
https://doi.org/10.3897/zookeys.324.5827 
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1002/joc.1276
https://doi.org/10.1002/joc.1276
https://doi.org/10.1111/j.1365-2907.2011.00188.x
https://doi.org/10.1111/j.1365-2907.2011.00188.x
https://doi.org/10.1073/pnas.0704469104
https://doi.org/10.1073/pnas.0704469104
https://doi.org/10.1007/s10584-011-0153-2
https://doi.org/10.1007/s10584-011-0153-2
https://doi.org/10.1038/s41559-019-0826-1
https://doi.org/10.1038/s41559-019-0826-1
https://doi.org/10.1038/s41559-021-01528-7
https://doi.org/10.1038/s41559-021-01528-7
https://doi.org/10.1594/WDCC/CHELSA_v1_1
https://doi.org/10.1594/WDCC/CHELSA_v1_1
https://doi.org/10.1002/eap.2228
https://doi.org/10.1016/j.ecolind.2018.11.016
https://doi.org/10.1016/j.ecolind.2018.11.016
https://ui.adsabs.harvard.edu/abs/2019AGUFM.B23F2606L
https://ui.adsabs.harvard.edu/abs/2019AGUFM.B23F2606L
https://doi.org/10.1111/cobi.13492


Merow et al. Operationalizing expert knowledge in SDMs

Frontiers of Biogeography 2022, 14.2, e53589 © the authors, CC-BY 4.0 license  16

Ecology and Evolution, 3, 906–920. https://
doi.org/10.1111/j.2041-210X.2012.00221.x

Merow, C., Bois, S.T., Allen, J.M., Xie, Y. & Silander, 
J.A. (2017) Climate change both facilitates 
and inhibits invasive plant ranges in New 
England. Proceedings of the National Academy 
of Sciences USA, 114, E3276–E3284. https://
doi.org/10.1073/pnas.1609633114

Merow, C., Allen, J.M., Aiello-Lammens, M. & Silander, 
J.A., Jr (2016) Improving niche and range 
estimates with Maxent and point process 
models by integrating spatially explicit 
information: Minxent. Global Ecology and 
Biogeography, 25, 1022–1036. https://doi.
org/10.1111/geb.12453

Merow, C., Wilson, A.M. & Jetz, W. (2017) Integrating 
occurrence data and expert maps for 
improved species range predictions. Global 
Ecology and Biogeography, 26, 243–258. 
https://doi.org/10.1111/geb.12539

Merow, C., Latimer, A.M., Wilson, A.M., McMahon, 
S.M., Rebelo, A.G. & Silander, J.A. (2014) On 
using integral projection models to generate 
demographically driven predictions of 
species’ distributions: development and 
validation using sparse data. Ecography, 
37, 1167–1183. https://doi.org/10.1111/
ecog.00839

Mitchell, P.J., Monk, J. & Laurenson, L. (2017) 
Sensitivity of fine-scale species distribution 
models to locational uncertainty in occurrence 
data across multiple sample sizes. Methods 
in Ecology and Evolution, 8, 12–21. https://
doi.org/10.1111/2041-210X.12645

de Moraes-Barros, N., Giorgi, A.P., Silva, S. & 
Morgante, J.S. (2010) Reevaluation of the 
Geographical Distribution of Bradypus 
tridactylus Linnaeus, 1758 and B. variegatus 
Schinz, 1825. Edentata, 11, 53–61. https://
doi.org/10.1896/020.011.0110

Moudrý, V. & Šímová, P. (2012) Influence of positional 
accuracy, sample size and scale on modelling 
species distributions: a review. International 
Journal of Geographical Information Science, 
26, 2083–2095. https://doi.org/10.1080/13
658816.2012.721553

Naimi, B., Hamm, N.A.S., Groen, T.A., Skidmore, A.K. 
& Toxopeus, A.G. (2014) Where is positional 
uncertainty a problem for species distribution 
modelling? Ecography, 37, 191–203. https://
doi.org/10.1111/j.1600-0587.2013.00205.x

Ocampo-Peñuela, N., Jenkins, C.N., Vijay, V., Li, B.V. 
& Pimm, S.L. (2016) Incorporating explicit 
geospatial data shows more species at risk 
of extinction than the current Red List. 
Science Advances, 2, e1601367. https://doi.
org/10.1126/sciadv.1601367

Ocampo-Peñuela, N. & Pimm, S.L. (2014) Setting 
practical conservation priorities for birds in the 
Western Andes of Colombia: bird conservation 
priorities in Colombia. Conservation Biology, 
28, 1260–1270. https://doi.org/10.1111/
cobi.12312

Olson, D.M., Dinerstein, E., Wikramanayake, 
E.D., et al. (2001) Terrestrial ecoregions of the 
world: a new map of life on earth. BioScience, 
51, 933–938. https://doi.org/10.1641/0006-
3568(2001)051[0933:TEOTWA]2.0.CO;2

Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, 
A.S. (2016) High-resolution mapping of 
global surface water and its long-term 
changes. Nature, 540, 418–422. https://doi.
org/10.1038/nature20584

Peterson, A.T., A., Navarro-Sigüenza, A.G. & Gordillo, 
A. (2018) Assumption-versus data-based 
approaches to summarizing species’ ranges. 
Conservation Biology, 32, 568–575. https://
doi.org/10.1111/cobi.12801

Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., 
Lehmann, A., Leathwick, J. & Ferrier, S. 
(2009) Sample selection bias and presence-
only distribution models: implications for 
background and pseudo-absence data. 
Ecological Applications, 19, 181–197. https://
doi.org/10.1890/07-2153.1

Robinson, N., Regetz, J. & Guralnick, R.P. (2014) 
EarthEnv-DEM90: a nearly-global, void-free, 
multi-scale smoothed, 90m digital elevation 
model from fused ASTER and SRTM data. 
ISPRS Journal of Photogrammetry and 
Remote Sensing, 87, 57–67. https://doi.
org/10.1016/j.isprsjprs.2013.11.002

Rotenberry, J.T. & Balasubramaniam, P. (2020) 
Connecting species’ geographical distributions 
to environmental variables: range maps versus 
observed points of occurrence. Ecography, 43, 
897–913. https://doi.org/10.1111/ecog.04871

Skroblin, A., Carboon, T., Bidu, G., Chapman, N., Miller, 
M., Taylor, K., Taylor, W., Game, E.T. & Wintle, 
B.A. (2021) Including indigenous knowledge 
in species distribution modeling for increased 
ecological insights. Conservation Biology, 35, 
587–597. https://doi.org/10.1111/cobi.13373

https://doi.org/10.1111/j.2041-210X.2012.00221.x
https://doi.org/10.1111/j.2041-210X.2012.00221.x
https://doi.org/10.1073/pnas.1609633114
https://doi.org/10.1073/pnas.1609633114
https://doi.org/10.1111/geb.12453
https://doi.org/10.1111/geb.12453
https://doi.org/10.1111/geb.12539
https://doi.org/10.1111/ecog.00839
https://doi.org/10.1111/ecog.00839
https://doi.org/10.1111/2041-210X.12645
https://doi.org/10.1111/2041-210X.12645
https://doi.org/10.1896/020.011.0110
https://doi.org/10.1896/020.011.0110
https://doi.org/10.1080/13658816.2012.721553
https://doi.org/10.1080/13658816.2012.721553
https://doi.org/10.1111/j.1600-0587.2013.00205.x 
https://doi.org/10.1111/j.1600-0587.2013.00205.x 
https://doi.org/10.1126/sciadv.1601367
https://doi.org/10.1126/sciadv.1601367
https://doi.org/10.1111/cobi.12312
https://doi.org/10.1111/cobi.12312
https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
https://doi.org/10.1038/nature20584
https://doi.org/10.1038/nature20584
https://doi.org/10.1111/cobi.12801
https://doi.org/10.1111/cobi.12801
https://doi.org/10.1890/07-2153.1
https://doi.org/10.1890/07-2153.1
https://doi.org/10.1016/j.isprsjprs.2013.11.002
https://doi.org/10.1016/j.isprsjprs.2013.11.002
https://doi.org/10.1111/ecog.04871
https://doi.org/10.1111/cobi.13373


Merow et al. Operationalizing expert knowledge in SDMs

Frontiers of Biogeography 2022, 14.2, e53589 © the authors, CC-BY 4.0 license  17

Soberón, J. (2007) Grinnellian and Eltonian niches 
and geographic distributions of species. 
Ecology Letters, 10, 1115–1123. https://
doi.org/10.1111/j.1461-0248.2007.01107.x

Soberón, J.M., Llorente, J.B. & Oñate, L. (2000) 
The use of specimen-label databases for 
conservation purposes: an example using 
Mexican Papilionid and Pierid butterflies. 
Biodiversity and Conservation, 9, 1441–1466. 
https://doi.org/0.1023/A:1008987010383

Thuiller, W., Lafourcade, B., Engler, R. & Araújo, 
M.B. (2009) BIOMOD - a platform for 
ensemble forecasting of species distributions. 
Ecography, 32, 369–373. https://doi.
org/10.1111/j.1600-0587.2008.05742.x

Trisos, C.H., Merow, C. & Pigot, A.L. (2020) The 
projected timing of abrupt ecological 
disruption from climate change. Nature, 580, 
496–501. https://doi.org/10.1038/s41586-
020-2189-9

Tuanmu, M.-N. & Jetz, W. (2014) A global 1-km 
consensus land-cover product for biodiversity 
and ecosystem modelling. Global Ecology and 
Biogeography, 23, 1031–1045. https://doi.
org/10.1111/geb.12182

Tuanmu, M.-N. & Jetz, W. (2015) A global, remote 
sensing-based characterization of terrestrial 
habitat heterogeneity for biodiversity and 
ecosystem modelling. Global Ecology and 
Biogeography, 24, 1329–1339. https://doi.
org/10.1111/geb.12365

Urbina-Cardona, N., Blair, M.E., Londoño, M.C., 
Loyola, R., Velásquez-Tibatá, J. & Morales-
Devia, H. (2019) Species Distribution 
Modeling in Latin America: a 25-Year 
retrospective review. Tropical Conservation 
Science, 12, 1940082919854058. https://doi.
org/10.1177/1940082919854058

Velásquez-Tibatá, J., Olaya-Rodríguez, M.H., López-
Lozano, D., Gutiérrez, C., González, I. & 
Londoño-Murcia, M.C. (2019) BioModelos: 
a collaborative online system to map species 
distributions. PloS ONE, 14, e0214522. https://
doi.org/10.1371/journal.pone.0214522

Velazco, S.J.E., Ribeiro, B.R., Laureto, L.M.O. & De 
Marco Júnior, P. (2020) Overprediction of 
species distribution models in conservation 
planning: a still neglected issue with 
strong effects. Biological Conservation, 
252, 108822. https://doi.org/10.1016/j.
biocon.2020.108822

Venter, O., Sanderson, E.W., Magrach, A., et al. 
(2016) Sixteen years of change in the global 
terrestrial human footprint and implications 
for biodiversity conservation. Nature 
Communications, 7. https://doi.org/10.1038/
ncomms12558

Villero, D., Pla, M., Camps, D., Ruiz-Olmo, J. & Brotons, 
L. (2017) Integrating species distribution 
modelling into decision-making to inform 
conservation actions. Biodiversity and 
Conservation, 26, 251–271. https://doi.
org/10.1007/s10531-016-1243-2

Warton, D.I., Renner, I.W. & Ramp, D. (2013) Model-
based control of observer bias for the analysis 
of presence-only data in ecology. PloS ONE, 8, 
e79168–9. https://doi.org/10.1371/journal.
pone.0079168

Whittaker, R.J., Araújo, M.B. & Jepson, P. (2005) 
Conservation biogeography: assessment 
and prospect. Diversity and Distributions, 
11, 3–23. https://doi.org/10.1111/j.1366-
9516.2005.00143.x

Wilson, A.M. & Jetz, W. (2016) Remotely sensed high-
resolution global cloud dynamics for predicting 
ecosystem and biodiversity distributions. 
PLoS Biology, 14, e1002415. https://doi.
org/10.1371/journal.pbio.1002415

Wisz, M.S., Pottier, J., Kissling, W.D., et al. (2012) 
The role of biotic interactions in shaping 
distributions and realised assemblages of 
species: implications for species distribution 
modelling. Biological Reviews of the Cambridge 
Philosophical Society, 88, 15–30. https://doi.
org/10.1111/j.1469-185X.2012.00235.x

Wolkovich, E.M., Regetz, J. & O’Connor, M.I. (2012) 
Advances in global change research require 
open science by individual researchers. Global 
Change Biology, 18, 2102–2110. https://doi.
org/10.1111/j.1365-2486.2012.02693.x

Yackulic, C.B., Chandler, R., Zipkin, E.F., Royle, J.A., 
Nichols, J.D., Campbell Grant, E.H. & Veran, 
S. (2013) Presence-only modelling using 
MAXENT: when can we trust the inferences? 
Methods in Ecology and Evolution, 4, 236–243. 
https://doi.org/10.1111/2041-210x.12004

Submitted: 22 June 2021.  
First decision: 20 July 2021.  
Accepted: 8 December 2021.

Edited by Janet Franklin.

https://doi.org/10.1111/j.1461-0248.2007.01107.x 
https://doi.org/10.1111/j.1461-0248.2007.01107.x 
https://doi.org/0.1023/A:1008987010383
https://doi.org/10.1111/j.1600-0587.2008.05742.x
https://doi.org/10.1111/j.1600-0587.2008.05742.x
https://doi.org/10.1038/s41586-020-2189-9
https://doi.org/10.1038/s41586-020-2189-9
https://doi.org/10.1111/geb.12182
https://doi.org/10.1111/geb.12182
https://doi.org/10.1111/geb.12365
https://doi.org/10.1111/geb.12365
https://doi.org/10.1177/1940082919854058
https://doi.org/10.1177/1940082919854058
https://doi.org/10.1371/journal.pone.0214522
https://doi.org/10.1371/journal.pone.0214522
https://doi.org/10.1016/j.biocon.2020.108822
https://doi.org/10.1016/j.biocon.2020.108822
https://doi.org/10.1038/ncomms12558
https://doi.org/10.1038/ncomms12558
https://doi.org/10.1007/s10531-016-1243-2
https://doi.org/10.1007/s10531-016-1243-2
https://doi.org/10.1371/journal.pone.0079168
https://doi.org/10.1371/journal.pone.0079168
https://doi.org/10.1111/j.1366-9516.2005.00143.x
https://doi.org/10.1111/j.1366-9516.2005.00143.x
https://doi.org/10.1371/journal.pbio.1002415
https://doi.org/10.1371/journal.pbio.1002415
https://doi.org/10.1111/j.1469-185X.2012.00235.x
https://doi.org/10.1111/j.1469-185X.2012.00235.x
https://doi.org/10.1111/j.1365-2486.2012.02693.x
https://doi.org/10.1111/j.1365-2486.2012.02693.x
https://doi.org/10.1111/2041-210x.12004 

