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Optimization of American English, Spanish, and Mandarin Chinese over time for
efficient communication

John K Pate (johnpate@buffalo.edu)
Department of Linguistics, 609 Baldy Hall

Buffalo, NY 14260 USA

Abstract

Frequent words tend to be short, and many researchers have
proposed that this relationship reflects a tendency towards ef-
ficient communication. Recent work has sought to formalize
this observation in the context of information theory, which es-
tablishes a limit on communicative efficiency called the chan-
nel capacity. In this paper, I first show that the compositional
structure of natural language prevents natural language com-
munication from getting close to the channel capacity, but that
a different limit, which incorporates probability in context,
may be achievable. Next, I present two corpus studies in three
typologically-diverse languages that provide evidence that lan-
guages change over time towards the achievable limit. These
results suggest that natural language optimizes for efficiency
over time, and does so in a way that is appopriate for compo-
sitional codes.

Keywords: Communicative efficiency; Uniform Information
Density; Smooth Signal Hypothesis; Noisy channel

Introduction
Natural language researchers have long been interested in
the prospect that natural language is organized for efficient
communication: frequent words tend to be shorter than rare
words, allowing talkers to produce shorter word-forms on av-
erage. More recent work (Plotkin & Nowak, 2000; Genzel &
Charniak, 2002; Aylett & Turk, 2004; Levy & Jaeger, 2007;
Jaeger, 2010; Piantadosi, Tily, & Gibson, 2011; Seyfarth,
2014) has sought to formalize this work in the context of in-
formation theory by proposing that natural language commu-
nicates information close to a limit called the channel capac-
ity, although it has left open the question of how closely the
limit is approached.

In this paper, I first show that it is not possible for a com-
positional code like natural language to transmit information
close to the channel capacity. Specifically, average signal
lengths must exceed the entropy of the distribution over mes-
sages by at least the Kullback-Leibler divergence of the true
probability distribution over messages from a fully-factorized
probability distribution in which every component of the mes-
sage is statistically independent. Natural language commu-
nication must then underperform the channel capacity by at
least this Kulback-Leibler divergence.

However, in light of recent work (Piantadosi et al., 2011)
that showed a stronger relationship between a word’s length
and its average probability in context than its unigram proba-
bility, I investigate the possibility that language changes over
time so that the optimal length of a word, as computed from
its average probability in context, better matches its actual
length. I present two corpus studies over 350 years in Amer-
ican English, Spanish, and Mandarin Chinese that compare

actual word lengths to optimal word lengths in context and in
isolation. The first ‘backward-looking’ study computes opti-
mal word lengths using modern-day language data, and finds
that the mismatch between optimal and actual word lengths
is smaller for older words. Moreover, the mismatch drops
more rapidly, as a function of word age, when the optimal
word length is computed relative to a context-sensitive tri-
gram model than when it is relative to a unigram model.

The second ‘forward-looking’ study divides the 350-year
period into 25-year partitions, uses language data from each
partition to compute optimal word lengths for each partition,
and trains a regression model to predict whether the word-
form appears in the next 25-year partition as a function of the
mismatch between the word’s actual length and its optimal
length. This study finds that words with larger mismatches
are less likely to ‘survive’ to the next partition, and moreover
finds a stronger effect of mismatch relative to the context-
sensitive trigram model than relative to the unigram model.
Together, these two studies provide evidence that natural lan-
guage lexicons change over time in a way that reflects com-
municative efficiency pressures on a compositional code.

I start by presenting previous work on information-
theoretic approaches to language production, along with the
minimal technical background necessary for this paper. I then
show why natural language does not approach information-
theoretic bounds, and use this result to suggest a new bound
for compositional codes that may be achievable by consid-
ering probability in context. Finally, I present two corpus
studies that find evidence that three typologically-diverse lan-
guages have changed to approach this new bound.

Background
Linguists have proposed that language is adapted for commu-
nication in a general sense for decades. Zipf (1949) proposed
the ‘Principle of Least Effort’ to explain the observation that
frequent words tend to be short: frequent words tend to be
short so that talkers usually only have to say short words.
Lindblom (1990) proposed Hyper- & Hypo-articulation the-
ory to explain the observation that vowels in careful speech
tend to be less centralized in formant space: talkers provide
more distinct vowels when they believe errors are more likely.

Plotkin and Nowak (2000) proposed an explicit model of
word formation over the course of language change in an
information-theoretic framework, and showed, analytically
and via simulation, that it approached information-theoretic
bounds as the vocabulary size increases. However, their
model considered words in isolation, but natural language ut-
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terances consist of sequences of words. This paper will show
that codes with the compositional structure that characterizes
natural language cannot approach these information-theoretic
bounds, and focus on optimizing sentence lengths.

Subsequent work has mainly consisted of corpus studies
that show that synchronic samples of natural language ex-
hibit the correlations on would expect, under an information-
theoretic account, between different measures of word length
or distinctiveness and word probability, both overall and in
context (Aylett & Turk, 2004; Frank & Jaeger, 2008; Bell,
Brenier, Gregory, Girand, & Jurafsky, 2009). Piantadosi et
al. (2011) revisited Zipfian distributions, and compared both
log word probability and average log word probability in con-
text, operationalized as a trigram model, with word lengths,
operationalized as the length of the word’s spelling in letters.
They found that, of the two probability measures, average log
probability in context exhibited a stronger correlation with
word lengths. At first glance, this result would seem to con-
tradict an information-theoretic approach: the optimal length
of a word in isolation simply is its negative log probability,
with an appropriate choice of base for the logarithm. How-
ever, I soon show that average probability in context is a more
appropriate measure for optimizing sentence lengths.

In this paper, I return to Plotkin and Nowak’s (2000) pro-
posal that language adapts towards these bounds over time,
using a corpus-based methodology and an emphasis on the
relationship between words and their sentential contexts.

Information theory
In the information-theoretic framing of language, a talker has
a message m that is a sequence of message characters mi from
some alphabet of message characters M . For example, M
may be the set of lexical entries or, as in CCG, a set of (syn-
tactic category, semantic category) pairs. The message cannot
be transmitted directly, so the talker encodes it into a signal s
that is a sequence of signal characters si from some alphabet
of signal characters S .1 For example, S may be the inventory
of syllables or phonemes of the language.

An efficient code has two properties. First, it is short: the
number of signal characters per message character, on aver-
age, is low. Second, it is robust: the probability that the lis-
tener fails to identify the correct message is low. The length
of the shortest possible code depends only on the probability
distribution over messages P(mmm), and is given by the entropy
of that distribution:

H(mmm) = ∑
m∈mmm

P(m) logb

(
1

P(m)

)
(1)

where mmm=M + is the set of all messages (i.e. all sequences of
message characters). The log term is called the Shannon in-
formation of m, and the entropy is just the expected Shannon
information under the probability distribution P(m). If we set

1All the results follow straightforwardly for structured messages
as long as there is a deterministic linearization, such as reverse Pol-
ish notation for tree-structured messages.

b to be the size of the signal alphabet |S |, then the Shannon
information of m is the optimal signal length in signal char-
acters for message m. Adjusting signal lengths to match the
Shannon entropy, called source coding eliminates redundancy
in the code, and achieves property 1: short codes.

Listeners may encounter noise in real-world situations, due
to slips of the tongue on the part of the talker, distraction or
cognitive overload on the part of the listener, dialect differ-
ences, environmental noise, or other sources of noise. Noise
can be countered by adding redundancy to the signal. For
example, a word may differ from all other words by several
phonemes, allowing the listener to recover the intended word
even if some phonemes are mis-perceived or masked by en-
vironmental noise. While the resulting code is more robust,
it is also longer, and we might worry that signals will have to
become arbitrarily long to drive the error rate toward zero.

The Noisy Channel theorem shows that an arbitrarily low
error rate can be achieved with signals that are not arbitrar-
ily long, as long as they do not exceed the channel capac-
ity (Shannon, 1948). The channel capacity depends on both
H(mmm) and the uncertainty about the intended signal, given
the received signal. Adding redundancy, such as pronounc-
ing words more slowly, that anticipates likely noise is called
channel coding, and makes signals robust but still short.

For our purposes, the crucial observation is that it is not
possible to get arbitrarily close to the channel capacity if it is
not possible to obtain a source code that is arbitrarily close
to the entropy of the distribution over messages. The next
section shows that, for compositional codes like natural lan-
guage, optimal source coding is not possible.2

Compositional codes and optimality
This section shows that optimal source coding is not possi-
ble for a compositional code like natural language. If a code
is optimal and compositional, then it follows that the com-
ponents of every message are statistically independent. How-
ever, this is not true for natural language, since, e.g., transitive
verbs tend to appear with at least two noun phrases.

By ‘compositional,’ I mean only that natural language mes-
sages consist of components that are realized the same way
across different messages, and that the length of the signal
for a message is the total length of the signal for each com-
ponent of that message. Setting lm to be the length of the
signal for message m and lmi to be the length of the signal for
component mi, compositionality provides:

lm =
|m|

∑
i=1

lmi (2)

For example, if a message is a sequence of lexical entries, and
a signal is a sequence of phones, then Equation 2 says that
the length of a sentence in phones is the sum of the lengths

2I here consider only discrete signals and messages. The contin-
uous case requires either a limit on the power of the signal or for
source and channel coding to be considered simultaneously.

902



of the phonological forms of the lexical entries in that sen-
tence.3 Equation 2 is not trivial. Arithmetic codes, for exam-
ple, encode each message as a number between 0 and 1 that
is determined by the conditional probability of each message
character given the previous message characters; an individ-
ual message character is not directly expressed in any part of
the signal, and lmi is not even defined.

Now assume that the length of the sentence lm for each
message m is optimal. Because the optimal signal length for a
message m is − logb(P(m)), the probability distribution over
messages Pmmm can be recovered from lm by exponentiating:

Pmmm(m) = b−lm (3)

Since only sentence lengths are assumed to be optimal, com-
ponent signal lengths lmi may not be negative log probabil-
ities. They do, however, assume an implicit distribution for
which they are least sub-optimal (MacKay, 2003, Ch. 5):

Qm(mi) =
b−lmi

z
; z = ∑

mi∈M
b−lmi (4)

Equations 2, 3, and 4 imply that each message component
is statistically independent:

Pmmm(m) = b−lm = b∑
|m|
i=1−lmi = b∑

|m|
i=1 logb(zQm(mi)) (5)

= z|m|
|m|

∏
i=1

Qm(mi)
def
= Qmmm(m) (6)

There does not seem to be any notion of message in natu-
ral language that allows for statistically independent message
components. For example, messages may be high-level event
representations, but such messages that include transfer tend
to include at least three entities (a giver, a receiver, and a
thing being transferred), and such messages that include edi-
ble entities tend to include entities that can eat. Alternatively,
messages may be syntactic analyses, but such messages with
a determiner tend to have at least one noun, and such mes-
sages with a complementizer tend to have at least two main
verbs. While other framings are possible, they do not appear
to satisfy the independence assumption above. Thus, natural
language is not information-theoretically optimal.

More specifically, the average signal length of the best
compositional source code must exceed the entropy of the
true distribution over messages Pmmm by at least the Kullback-
Leibler divergence of the fully factorized distribution Qmmm
from the true distribution:

H(Pmmm)+KL(Pmmm||Qmmm) (7)

Intuitively, language uses at least an extra KL(Pmmm||Qmmm) sig-
nal characters per message character because it incorrectly
assumes the message characters are statistically independent.

3Composition operations that involve copying, such as Suffixauf-
nahme in Old Georgian (Michaelis & Kracht, 1996), present an in-
teresting wrinkle. If they can be handled by introducing an integer
coefficient for each lmi , the ultimate independence result of this sec-
tion still holds. In any case, they make the signal longer, so they
should not present a more efficient bound than Equation 7.

Optimizing towards the new bound
While the bound in Equation 7 shows that natural language
does not approach the channel capacity, natural languages
may still adapt over time for communicative efficiency to-
wards the less efficient bound. In fact, the findings of
Piantadosi et al. (2011) suggest that languages adapt to mini-
mize KL(Pmmm||Qmmm). Piantadosi et al. examined how a word’s
length (in orthographic letters) relates to its unigram prob-
ability and its probability in context (operationalized as a
smoothed trigram model). Across all eleven languages they
examined, word lengths had a stronger relationship with av-
erage probability in context than unigram probability.

I propose the following interpretation of their result. Mes-
sage characters are lexical entries, signal characters are ortho-
graphic letters, and probability in context is Pmmm. While Qmmm is
determined by word lengths, Pmmm is determined by a stochas-
tic grammar and lexicon together with typical real-world sit-
uations. Their results suggest that, as a speech community
gains experience with the use of lexical entries in real-world
situations, the grammar, including the lexicon, adapts so that
Pmmm is better approximated by Qmmm. This adaptation could be
achieved by adjusting the grammar, narrowing or broadening
word meanings, or deleting lexical entries whose length often
differs substantially from their optimal in-context length.

The next two sections present corpus studies that look at
adaptation of this sort over centuries in three languages.

Corpus studies
I now present two corpus studies that find evidence of opti-
mization relative to probability in context over time for En-
glish, Spanish, and Mandarin Chinese. The first ‘backwards-
looking’ study relates a word’s mismatch with its optimal
length to its age. If the lexicon evolves over time for effi-
cient communication, the lengths of oldest words should most
closely match their optimal lengths. Moreover, to the extent
that efficiency pressures respect sentence length, there should
be a stronger relationship between a word’s age and its mis-
match with optimal lengths under a trigram model than be-
tween a word’s age and its mismatch under a unigram model.

The ‘forwards-looking’ study uses a sequence of language
models, estimated in 25-year partitions, to predict whether
a word appears in the next partition based on how well its
length matches its optimal length under each language model.
If language change reflects efficiency pressures, words with
many extra characters should be less likely to remain in use;
and if efficiency pressures respect sentence lengths, the effect
of mismatches under trigram models should be stronger.

Corpus study 1 – Looking backwards
In this study, I used a large dataset containing texts from about
1990 to about 2010 for each of the three languages to compute
synchronic unigram and trigram language models for each
language. The language models are used to compute optimal
lengths for each word in and out of context by subtracting the
optimal lengths from the actual lengths to quantify extra char-
acters. I used Google books, a dataset of scanned books, to
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Table 1: Study 1 dataset sizes

Language Model Regression
Dataset Tokens Unigrams Trigrams
English 71,531,906 81,742 24,965,851
Spanish 279,744,284 545,708 74,144,973
Chinese 26,800,660 3,182 13,642,166

Figure 1: Heatmaps of actual length minus optimal word
length for trigram (left) and unigram (right) models, as a func-
tion of the word’s earliest appearance in Google books. The
blue line is a GAM fit.

estimate when each word of the synchronic time slice first ap-
peared, and perform a regression of the extra character mea-
sure against year of first appearance, probability model type,
and their interaction, to identify how word length inefficiency
varies as a function of word recency and probability model
type. A positive coefficient for year of appearance will indi-
cate that more recent words are longer than they should be,
and a negative coefficient for the interaction will indicate a
stronger relationship between year of appearance and ineffi-
ciency relative to a trigram model than between year of ap-
pearance and inefficiency in isolation.

Data I approximated a word’s year of first appearance as
the first year that it appeared in the Google Books unigram
records in each language (Michel et al., 2010).

To estimate the American English language models, I used
the spoken portion of the Corpus of Contemporary Amer-
ican English (CoCA) (Davies, 2008), which contains news
broadcasts from 1990 to 2012. To estimate the Spanish and

Chinese language models, I used ‘story’ documents from the
3rd edition of the Spanish Gigaword dataset of newswire text
from 1993 to 2010 (Ângelo Mendonça, Jaquette, Graff, &
DiPersio, 2011) and the Tagged Chinese Gigaword version
2.0 dataset of newswire text from 1991 to 2004 (Ren Huang,
2009), respectively. While written Chinese does not separate
words with whitespace, this dataset is segmented into words.

For each language, I discarded punctuation and words that
contained a symbol that was not part of the usual character set
for that language, estimated unsmoothed trigram and unigram
probabilities. The datasets for regression were obtained by
discarding words that did not appear in Google Books after
1650, producing datasets with sizes as reported in Table 1.

These particular languages were chosen because they ap-
peared in Google Books, allowing us to obtain an estimate of
word age, and because they use words in very different ways.
Spanish has relatively rich derivational and inflectional mor-
phology, with agreement for person and number for verbs and
number and gender for adjectives. While English also has rel-
atively rich derivational morphology, it has little inflectional
morphology with few agreement constraints. Mandarin Chi-
nese occupies a morphological extreme, with no inflectional
morphology or agreement.

Method For each word token in CoCA and Gigaword
datasets, I computed the optimal length of the word under its
unigram probability and probability in context, operational-
ized as its trigram probability. The numbers of ‘extra’ letters
relative to each model euni and etri are then the actual length
minus the optimal length:

euni(w) = l(w)− (− logb(P(w)))

etri(wi|wi−2,wi−1) = l(wi)− (− logb(P(wi|wi−2,wi−1)))

where b is the size of the signal alphabet. English and Spanish
both have a mostly alphabetic orthography, with roughly one
letter per sound, so I simply set b to the number of distinct let-
ters in these datasets. For English b = 27 (a-z plus hyphen),
and for Spanish, b = 33 (with some additional accented let-
ters). Chinese orthography has one character per syllable, and
so similarly provides a good indication of word length, but
the alphabet size is more complicated. The strict phonotac-
tics of spoken Chinese lead to a syllabic inventory of about
1,500 syllables, but our Chinese dataset contained 6,780 dis-
tinct characters (many characters are homophonous). I set
b= 1,518, the number of distinct syllables in the CEDict pro-
nouncing dictionary, to reflect the size of the ‘syllable alpha-
bet’ for spoken Chinese (CC-CEDICT , 2016).4

I performed linear regressions of extra letters against the
word’s year of first appearance, probability model type, and
an interaction between the word’s first appearance and proba-
bility model type. To make the regressions easier to interpret,
I subtracted 1650 from the year of first appearance, so that the
oldest words had a year of first appearance of zero.

4I obtained similar results when using b = 6,780, the number of
distinct characters.
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Table 2: Coefficients of one linear regression each for American English, Mandarin, and Spanish, of extra letters (English,
Spanish) or extra characters (Mandarin) against first appearance, a main effect of probability model type (with unigram coded
as 1), and an interaction between first appearance and probability model. All coefficients are significant (p < 0.01).

Am. English Spanish Mandarin
Intercept 3.289 4.408 1.067
Year of first appearance (since 1650) 0.006481 0.007399 0.00214
Which language model -0.491 -2.506 -1.288
Years of first appearance (since 1650) ×Which language model -0.001465 -0.001438 -0.000349

Results Figure 1 presents hexagram-binned heatmaps with
a Generalized Additive Model fit for each language of extra
letters against year of first appearance, separated by language
model. All cases show a broad trend where older words have
fewer extra letters. The trend is roughly linear except for the
latest decades; information-theoretic pressures may be differ-
ent for recently-coined words.

Table 2 presents coefficients from the three regressions of
extra characters against a word’s year of first appearance, the
probability model used, and their interaction. Each intercept
expresses the number of predicted extra letters or characters
under the trigram model for words that first appeared in 1650.
Adding the ‘Which Language Model’ coefficient to the inter-
cept obtains the predicted extra letters or characters under the
unigram model for words that first appeared in 1650.

The ‘Year of first appearance’ coefficient expresses how
many extra characters we expect a word to have for each year
that it is younger than the oldest words. For all three lan-
guages, this coefficient is positive, indicating that younger
words tend to be longer, than older words, relative to their
ideal length under the trigram model. Dividing this coeffi-
cient into 1 obtains how old we expect a word to be before
an additional letter or character has been ‘optimized’ away.
American English optimizes one letter every 154 years, Span-
ish optimizes one letter every 135 years, and Mandarin Chi-
nese optimizes one character every 467 years.5

Finally, the interaction between year of first appearance
and model type expresses the effect of a word’s year of ap-
pearance under the unigram model minus the effect of a
word’s year of appearance under the trigram model. The
coefficients are negative but smaller in absolute magnitude
than ‘Year of first appearance,’ which indicates that first ap-
pearance still has a lengthening effect relative to the unigram
model, but a weaker one. American English optimizes an ex-
tra letter relative to the unigram model only every 199 years,
Spanish optimizes an extra letter only every 168 years, and
Mandarin optimizes an extra character only every 558 years.

These results show that words that first appeared in
books recently tend to be further from their information-
theoretically optimal lengths than words that first appeared
in books several decades ago, and so provide evidence of op-
timization of the lexicon towards efficiency bounds.

5As the CEDict pronouncing dictionary has an average length
of about 3.1 non-tone pinyin letters, or 2.8 phonemes, per character
type, the optimization rate of Mandarin is similar to the others.

Moreover, the extra characters relative to the trigram model
decreased faster than the extra characters relative to the uni-
gram model. This is a remarkable finding, since it is much
harder to optimize for the trigram model – there are many
trigram contexts but only one unigram ‘context,’ and, un-
der this operationalization of ‘word,’ a word has only one
length. However, as previously discussed, there are good
reasons to optimize towards a context-sensitive probability
model. Communicative efficiency ultimately depends on sen-
tence lengths, not word lengths directly, so considering con-
text can make sentences shorter even if it does not minimize
the typical length of individual words.

Corpus study 2 – Looking forwards
This corpus study looks for evidence that a word is less likely
to remain in use if it has more extra characters. For each
language, I divided the 350 years of Google Books data de-
scribed above into 14 partitions of 25 years each, and esti-
mated a unigram and a trigram language model for each of the
first 13 partitions to compute extra characters for each word
and trigram in each partition under each probability model.
To guard against OCR errors in Google Books, I computed
extra characters only for words that also appeared in the lan-
guage model datasets from Study 1. I then performed a logis-
tic regression that predicted whether each word that appeared
in partition n also appeared in partition n+ 1 using the extra
characters measure, probability model type, and an interac-
tion between extra characters and the probability model type.

Results Table 3 presents strikingly consistent regression re-
sults across the three languages. The large intercepts indicate
that most words carry over from one partition to the next. As
the unigram model is again coded as 1, the negative main ef-
fect of extra characters indicates that words with more extra
letters relative to a given partition’s trigram model are less
likely to persist in the next 25-year partition. Moreover, the
positive coefficient of the interaction indicates that the effect
of extra letters relative to the unigram model is weaker: the
coefficients suggest the effect of unigram mismatch is about
half the effect of trigram mismatch in English, two-thirds in
Spanish, and about one-third in Mandarin.

Conclusion
This paper has answered an important question about nat-
ural language communication, whether talkers approach
information-theoretic limits on efficiency, in the negative. Be-
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Table 3: Coefficients of a logistic regression each for American English, Mandarin, and Spanish, of appearance in the next 25-
year partition against extra letters or characters, a main effect of probability model type (unigram coded as 1), and an interaction
between extra characters and probability model. All coefficients are significant (p < 0.01).

Am. English Spanish Mandarin
Intercept 11.772 7.477 10.415
Extra letters or characters -0.316 -0.320 -2.360
Which language model -1.015 -0.852 -2.415
Extra characters ×Which language model 0.165 0.101 1.713

cause language is compositional and natural language mes-
sages are highly interdependent, natural language cannot ap-
proach information-theoretic limits on efficiency. I have used
this result to propose a new bound that appreciates probabil-
ity in context, and interpreted a previous result as evidence
that languages optimize for this more appropriate bound.

I then performed two corpus studies that examined how
the mismatch between a word’s actual length and its optimal
length relates to its preservation over the course of language
change. The first ‘backwards-looking’ study found, using op-
timal lengths computed using fairly homogenous modern-day
corpus data, that present-day words more closely match their
optimal lengths if the word has been in use for a long time.
Moreover, this first study found that the mismatch according
to probability in context decreased more rapidly as words age.
The second ‘forwards-looking’ study found that if a word’s
length more closely matches its optimal length under a lan-
guage model computed in one 25-year partition, it is more
likely to be retained in the next 25-year partition. Moreover,
extra letters relative to probability in context was a stronger
predictor than extra letters relative to a unigram model. To-
gether, these results indicate that natural language lexicons
develop over time towards an information-theoretic efficiency
bound that is appropriate for compositional codes.
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