
UC Irvine
UC Irvine Previously Published Works

Title
Bayesian analysis of the impact of rainfall data product on simulated slope failure for North 
Carolina locations

Permalink
https://escholarship.org/uc/item/3m94t2vc

Journal
Computational Geosciences, 23(3)

ISSN
1420-0597

Authors
Yatheendradas, Soni
Kirschbaum, Dalia
Nearing, Grey
et al.

Publication Date
2019-06-01

DOI
10.1007/s10596-018-9804-y
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3m94t2vc
https://escholarship.org/uc/item/3m94t2vc#author
https://escholarship.org
http://www.cdlib.org/


Bayesian analysis of the impact of rainfall data product on 
simulated slope failure for North Carolina locations

Soni Yatheendradas1,2,*, Dalia Kirschbaum2, Grey Nearing3, Jasper A. Vrugt4,5, Rex L. 
Baum6, Rick Wooten7, Ning Lu8, Jonathan W. Godt6

1Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, 
USA

2Hydrological Sciences Laboratory, NASA GSFC, Greenbelt, MD 20771, USA

3Department of Geological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA

4Department of Civil and Environmental Engineering, Henry Samueli School of Engineering, 
University of California, Irvine, CA 92697, USA

5Department of Earth System Science, University of California, Irvine, CA 92697, USA

6Geologic Hazards Science Center, U.S. Geological Survey, Golden, CO 80401, USA

7Asheville Regional Office, North Carolina Geological Survey, Swannanoa, NC 28778, USA

8Department of Civil & Environmental Engineering, Golden, CO 80401, USA

Abstract

In the past decades, many different approaches have been developed in the literature to quantify 

the load-carrying capacity and geotechnical stability (or the Factor of Safety, Fs) of variably 

saturated hillslopes. Much of this work has focused on a deterministic characterization of hillslope 

stability. Yet, simulated Fs values are subject to considerable uncertainty due to our inability to 

characterize accurately the soil mantle’s properties (hydraulic, geotechnical and geomorphologic) 

and spatiotemporal variability of the moisture content of the hillslope interior. This is particularly 

true at larger spatial scales. Thus, uncertainty-incorporating analyses of physically based models 

of rain-induced landslides are rare in the literature. Such landslide modeling is typically conducted 

at the hillslope scale using gauge-based rainfall forcing data with rather poor spatiotemporal 

coverage. For regional landslide modeling, the specific advantages and/or disadvantages of gauge-

only, radar-merged and satellite-based rainfall products are not clearly established. Here, we 

compare and evaluate the performance of the Transient Rainfall Infiltration and Grid-based 

Regional Slope-stability analysis (TRIGRS) model for three different rainfall products using 112 

observed landslides in the period between 2004 and 2011 from the North Carolina Geological 

Survey database. Our study includes the Tropical Rainfall Measuring Mission (TRMM) Multi-

satellite Precipitation Analysis Version 7 (TMPA V7), the North American Land Data 

Assimilation System Phase 2 (NLDAS-2) analysis, and the reference ‘truth’ Stage IV 

precipitation. TRIGRS model performance was rather inferior with the use of literature values of 

the geotechnical parameters and soil hydraulic properties from ROSETTA using soil textural and 
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bulk density data from SSURGO (Soil Survey Geographic database). The performance of 

TRIGRS improved considerably after Bayesian estimation of the parameters with the DiffeRential 

Evolution Adaptive Metropolis (DREAM) algorithm using Stage IV precipitation data. Hereto, we 

use a likelihood function that combines binary slope failure information from landslide event and 

‘null’ periods using multivariate frequency distribution-based metrics such as the False Discovery 

and False Omission Rates. Our results demonstrate that the Stage IV-inferred TRIGRS parameter 

distributions generalize well to TMPA and NLDAS-2 precipitation data, particularly at sites with 

considerably larger TMPA and NLDAS-2 rainfall amounts during landslide events than null 

periods. TRIGRS model performance is then rather similar for all three rainfall products. At higher 

elevations, however, the TMPA and NLDAS-2 precipitation volumes are insufficient and their 

performance with the Stage IV-derived parameter distributions indicate their inability to accurately 

characterize hillslope stability.

Keywords

slope stability; physically based model; sensitivity; satellite-based rain; calibration; 5 (Probability 
Geosciences); 7 (Hydrology)

1. INTRODUCTION

Landslides triggered by intense or prolonged rainfall impact nearly all countries and can 

cause extensive damage (e.g., [1, 2]). Modeling the physical response and interactions of the 

surface and subsurface to precipitation is central to understanding and improving landslide 

hazard assessment and for better anticipating the timing and location of landslides. However, 

current slope-stability models have primarily been limited to local or hillslope-scale 

investigations and study domains. This is due to limitations in the availability and quality of 

in situ data needed to parameterize and spatially upscale these complex models with 

nonlinear hydrogeotechnical relationships that effectively resolve surface and subsurface 

behavior (e.g., [4]). Proximate rain gauge precipitation is typically relied on as the forcing 

source by such modeling studies and has also reinforced the local scales of application in 

such studies (e.g., [3]).

Spatially distributed rain data, including from satellite, ground radar or other products with 

quasi-global or regional spatial coverage, provide the opportunity to apply a slope-stability 

model framework over larger areas. Such application scales typically involve spatially 

distributed model runs everywhere in the region with potentially one or more of the lateral 

flow connectivity components activated (e.g., overland flow, surface layer flow, subsurface 

layer flow). Understanding and diagnosing the model behavior for a successful application 

involves multiple analyses. For example, sensitivity analyses of physically based slope 

stability modeling outputs to deterministic rainfall input sources is done in our study.

The logical progression of such analyses that enables a systematic buildup of knowledge is 

to start with simple model configurations (vertical 1-dimensional or 1D) before 

incorporating components like lateral flow components. This enables a clearer 

understanding of the behavior change between such configurations. For example, in 

hydrology, initial ‘point’ 1D calibrations were conducted for sites with flux towers and soil 
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moisture probes only (and not everywhere in the region). If landslide databases were 

comprehensive enough to not have missing observations, one can potentially conduct 

reliable analyses everywhere in a region, including at ‘null’ locations and periods. However, 

considering the missing observations bias existing in all databases so that a site without 

observed failure is not reliably null in reality, this study focuses on 1D simulation of reliable 

landslide-observed sites only.

Few studies have examined the sensitivity of slope stability models to satellite-based or 

other precipitation sources. Studies such as those of [5] have successfully applied satellite 

rain directly within a spatially distributed and laterally connected physically based model, 

but their results involved a large number of false alarms within the modeling framework (i.e., 

the model predicted unstable pixels without observed landslides). Our work considers the 

Stage IV multi-sensor product available over the continental United States as the ‘truth’ rain 

data [6]. We then explore the general sensitivity of stochastic landslide predictions to 

deterministic rainfall products including the Tropical Rainfall Measuring Mission (TRMM) 

Multisatellite Precipitation Analysis Product (TMPA) [7, 8] and the North American Land 

Data Assimilation System Phase 2 (NLDAS-2) analysis [9, 10].

Ensemble-based (or uncertainty-incorporating) analysis in dynamic slope-stability modeling 

has typically been conducted on single or few slopes [11, 12] or synthetic ones (e.g., [13]), 

and rarely on multiple real natural slopes or at the regional/watershed scale [14, 15]. Many 

of these studies have used rainfall forcing that is synthetically constructed from long-term 

rainfall characteristics (e.g., intensity, duration) [11, 14, 15]. To approach slope-stability 

modeling over larger regions, a large-sample approach is critical. For example, in hydrologic 

research, recent work has considered a large number of catchments [16]. This moves away 

from the earlier ‘depth’ focus of intensive investigation at a few heavily instrumented 

locations or catchments towards the ‘breadth’ offered by a large sample in order to balance 

both. Such a balancing approach provides the necessary detail and robustness required for 

process understanding across larger spatial domains to facilitate better transferability of 

model parameters across regions. Our study models local slope stability at multiple locations 

across North Carolina to better resolve the effect of regional heterogeneity in precipitation 

and landscape properties.

The overarching question addressed in this study is: How do modeled landslide responses 

change with rain data source? We attempt to answer this question using the Transient 

Rainfall Infiltration and Grid-based Regional Slope-stability (TRIGRS) model [4]. We 

evaluate the performance of TRIGRS for three different rainfall products: Stage IV, TRMM, 

and NLDAS-2 using default (a priori) and calibrated (e.g., a posteriori) values of the model 

parameters. Note, the default parameterization (also referred to as uncalibrated parameter 

values in this study) may depend upon (among others) field expertise, earlier publications, 

and/or pedotransfer functions. Thus, the default or uncalibrated parameter values may 

express some form and/or level of calibration.

When the default model parameterization is inadequate, calibration may be necessary to 

improve model performance and enhance the consistency and reliability of the simulated 

output (e.g., [12]). Parameters of slope-stability models such as TRIGRS are typically 
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calibrated manually. An alternative to this is exhaustive sampling, an example of which is 

the study of [74] who used Generalized Likelihood Uncertainty Estimation (GLUE: [75]) to 

derive so-called behavioral parameter values and quantify model predictive uncertainty. In 

that paper, the prior range of each of the four areal-constant TRIGRS model parameters was 

discretized into 10 equidistant values. From this ensemble of 10,000 parameter vectors, the 

authors then focused their attention to those 25 samples which most accurately described the 

observed data, while minimizing the distance to the perfect classification (D2PC: [76, 77]) 

on the receiver operating characteristic (ROC) simulated by each parameter vector ([78]).

Our study uses Bayesian inference coupled with Markov chain Monte Carlo (MCMC) 

simulation to quantify parameter and predictive uncertainty of a physically based landslide 

model. This demands CPU-intensive numerical simulation of hillslope stability for many 

different parameter values and places a premium on computational resources and MCMC 

search efficiency. This may explain the lack of landslide model calibration studies published 

in the literature (e.g., [12]). Thus, our research addresses the following question: Does 

TRIGRS model calibration substantially improve slope failure simulation with respect to the 

default parameterization? The answer to this question should be of interest to modelers 

and/or practitioners, and provokes a follow-up question: What changes in the model 

parameter distributions lead to successful slope-stability simulations? Lastly, we investigate 

the effect of elevation on TRIGRS model performance. This research may be summarized 

with a third and final question: How does elevation affect modeled slope failure for each of 

the three rainfall products used herein?

The remainder of this paper is organized as follows. Section 2 describes the study data: the 

landslide events, rainfall, monitoring locations and soil properties. Section 3 introduces the 

models and methodologies used in this study for characterizing uncertainty in landslide 

simulations and sensitivity to the rainfall forcing data source. Results are presented in 

Section 4, and this is followed by Section 5, which is a discussion of our main findings and 

conclusions.

2. DATA: LANDSLIDES, RAINFALL, SOILS AND MONITORING LOCATIONS

2.1 The NCGS landslide geodatabase

The North Carolina Geological Survey (NCGS) landslide/slope movement geodatabase 

version dated April 16, 2015, has landslide data from 1916 to the present; however, just 

about 12% of these landslides are dated post-2000. In addition to the geographic location 

and approximate timing of the landslides, the geodatabase also includes information on 

estimated soil depth and properties for some landslides; however, these values can further 

vary within the initiation zone of an individual landslide. We did not consider landslides 

where field notes indicated that the slope was anthropogenically altered or disturbed (e.g., 

cut slope, road cut, embankment), had slope movement material classified as rock, or were 

not field-visited/verified. Fig. 1 shows the 112 landslides which satisfy listed requirements 

for the present study, out of which 94 (84%) were triggered by Hurricanes Frances and Ivan 

that occurred only 1 week apart in September 2004 [17], with the remaining events 

happening in July 2011.
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The landslides have associated spatial location uncertainty radii based on their source (50 ft 

for lidar-based field verification, 40 ft radius for GPS, and 400 ft for 7.5’ quad), and we 

assigned a 20 ft locational uncertainty corresponding to the LiDAR resolution for 

orthophotography source. This uncertainty was used to buffer the locations and intersect 

with soil polygons from the Soil Survey Geographic database (SSURGO: [18]) version 

2.3.2, allowing a possibility of potentially multiple SSURGO soils per landslide location. 

We obtained a total of 180 ‘sites’ or combinations of landslides and associated possible 

SSURGO soils that were then subject to physically based slope-stability simulations. Each 

site is then actually a polygon but modeled as a single pixel domain with the 

geomorphologic uncertainties of elevation and slope included among the model parameter 

uncertainties considered in this study.

2.2 Rainfall data

The Stage IV rain analysis [6, 19] is provided by NCAR/EOL under sponsorship of the 

National Science Foundation and is based on the multi-sensor ‘Stage III’ analyses (on local 

4 km polar-stereographic grids) produced by the 12 River Forecast Centers (RFCs) in the 

continental United States (CONUS). The Stage III data are already a combination of gauge 

observations and radar-calculated reflectivity and includes a manual Quality Control 

process. The National Centers for Environmental Prediction (NCEP) mosaic the Stage III 

analysis into the Stage IV product that spans the CONUS spatial domain.

For our satellite precipitation product, we resort to version 7.0 of the Tropical Rainfall 

Measurement Mission Multi-Satellite Precipitation Analysis, or TMPA V7 [8, 20]. TMPA, 

also referred to as V7, merges passive microwave, active radar, and infrared observations 

from multiple different satellites to create a quasi-global (±50° latitude) precipitation dataset 

with 3-hourly rainfall estimates on a grid with spatial resolution of 0.25 degrees. We assume 

the 3-hourly rain rates to hold constant over their associated 3-hour windows and derive the 

hourly rainfall estimates for this study by simply assigning or averaging over the modeled 1-

hourly time intervals as relevant. In practice, there may be variability within the sampling 

time window due to the overpass frequency of the constellation of satellites used to develop 

this product; however, nearest neighbor interpolation provides the most reliable estimates for 

hourly intervals. The V7 product is available with a latency of about two months and 

includes a monthly rain gauge-based bias correction with temporal coverage from 1998-

present.

As third and last precipitation product, we use the example ‘File A’ forcing dataset from 

Phase 2 of NASA’s North American Land Data Assimilation System (NLDAS-2: [9, 10]). 

This rainfall product exhibits a spatial resolution of 0.125 degrees and disaggregates to 

hourly data the daily CPC-Unified gauge-only analysis [21, 22] (before 2012) or the 

operational CPC product (after 2012). Both these CPC products use a statistical topographic 

correction based on the PRISM climatology by [23]. Temporal disaggregation depends on 

the availability of the following rainfall data sources listed in order of decreasing 

importance: (i) hourly WSR-88D Stage-II Doppler radar-based precipitation estimates from 

1996-present, (ii) half-hourly 8-km CMORPH hourly precipitation analyses [24] from 2002-

present, (iii) CPC CONUS/Mexico gauge-based Hourly Precipitation Data (HPD: [25]), and 
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(iv) 3-hourly North American Regional Reanalysis Regional Climate Data Assimilation 

System precipitation (NARR/R-CDAS: [26]). Note that this NLDAS-2 rainfall product 

exhibits a coarser spatial resolution than the Stage IV precipitation data.

2.3 Monitoring locations

Fig. 1 shows the four in situ monitoring locations where hydraulic and geotechnical 

properties including shear strength were estimated through laboratory testing. The hydraulic 

properties exhibit hysteresis and were therefore derived during wetting and drying 

conditions from laboratory experiments conducted on the soil specimens. Soil properties 

available at these locations and used in this study are the porosity, Φm( − ), specific gravity, 

GS,m (−), cohesion for effective stress, cm′  (Pa), the friction angle for effective stress, ϕm′ (°), 
the reciprocal of the air-entry pressure head, αm (m−1), the saturated and residual soil 

moisture contents, θs,m and θr,m (m3/m3), respectively, and Ks,m (m/s), the saturated soil 

hydraulic conductivity, where the subscript ‘m’ signifies monitoring location. The porosity 

and specific gravity were used to compute the void ratio, em (−), and unit weight of soil, 

γs,m (kg/m2s2) required by TRIGRS for landslide simulation:

em = Φm/ 1 − Φm (1)

γs,m = γw GS,m + em / 1 + em , (2)

where γw (kg/m2s2) signifies the unit weight of water.

2.4 SSURGO soils data

We use SSURGO version 2.3.2 [18] for the soil hydraulic parameters, since its level of 

spatial discretization over North Carolina assigns unique soils among the monitoring 

locations when compared against other soil maps like STATSGO and FAO. SSURGO has 

map units that are delineated polygons and correspond to soil materials that are either 

consociations named for the dominant soil taxon with other similar soils and dissimilar 

inclusions present, or they can be complexes and associations that have dissimilar soil 

components with possibly a dominant soil component. Miscellaneous land types or areas of 

water may also be included. SSURGO Map units are denoted by ‘Musyms’ (Map Unit 

Symbols).

We note that Musyms with identical first two letters differ only in their slope range values. 

For example, the Musym values of EdB, EdC, EdD, EdE and EdF have the first two letters 

‘Ed’ denoting a map unit of stony Edneyville-Chestnut complex, while the last letter denotes 

different contiguous slope ranges where the slopes increase when going from EdB (2 to 8 

percent slopes) to EdF (50 to 95 percent slopes). We group the sites according to these first 

two letters of Musym that we then use and refer to as Musym soils to denote such relevant 

soil groups (e.g., Ed), unless explicitly stated otherwise. Table 1 lists the Musym soils and 

their descriptive names/components for our landslide sites and monitoring locations. Note 

that these descriptive names/components correspond to the dominant soil(s) at the study sites 

considered, since they can spatially vary within a specific Musym soil.
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This study uses SSURGO-based available information on the percentages of sand, silt, clay, 

and bulk densities at each landslide site’s vertical soil profile. The Musym soils at the 

monitoring locations ‘Poplar Cove 2,’ ‘Mooney Gap 4,’ ‘Mooney Gap 1,’ and ‘Bent Creek 

1,’ respectively, are Ed (Edneyville-Chestnut complex, stony), Cu (Cullasaja-Tuckasegee 

complex, stony), Cp (Cleveland-Chestnut-Rock outcrop complex, windswept) and Pw (Plott 

fine sandy loam, stony).

3. METHODOLOGY AND MODELS

3.1 The TRIGRS slope-stability model

We use version 2.1 of the event-based TRIGRS model [4, 27, 73] to analyze, explore and 

evaluate the usefulness of the different rainfall data products in characterizing hillslope 

stability for our test sites in North Carolina. This model, developed by the USGS, solves 

numerically for the stability of the hillslope using a single integrated measure of its load-

carrying capacity. This measure, coined the Factor of Safety (Fs ), depends strongly on 

precipitation and the hydraulic and geotechnical properties of the hillslope interior (e.g., soil 

mantle and underlying bedrock). Infiltrating water elevates pore pressures within the soil 

mantle, which in turn reduces the shear strength. TRIGRS-simulated traces of Fs summarize 

hillslope stability during the rainfall event and/or subsequent dry period and can be used to 

pinpoint the timing and initiation of shallow, rainfall-induced landslides. Slope failure occurs 

when the Fs value becomes less than unity.

TRIGRS solves for the pore water pressure in the variably saturated hillslope using a 

linearized version of the one-dimensional Richards’ equation [28]. This approach assumes 

an isotropic and homogeneous soil mantle. The load-carrying capacity of the hillslope is 

then characterized using one-dimensional, infinite-slope stability analysis [29]. In Taylor’s 

analysis, slope stability is characterized by the ratio of resisting basal Coulomb friction to 

gravitationally induced downslope basal driving stress. This unitless ratio is Fs and depends 

on time, t (days), and the depth, Z (m), of the soil mantle as follows

Fs(Z, t) = tan ϕ′
tan(δ) + c′ − χ(Z, t)ψ(Z, t)γwtan ϕ′

γsZsin(δ)cos(δ) , (3)

where ϕ′ (°) denotes the soil friction angle for effective stress, c′ (Pa) signifies the soil 

cohesion for effective stress, χ (−) is the degree of saturation, ψ(Z,t) (m) characterizes the 

soil water pressure head at depth Z, γw and γs are the unit weights of water and soil in 

kg/m2s2, respectively, and δ (°) represents the slope angle. The degree of saturation, χ, is 

computed as follows [30]:

χ(Z, t) = θ(Z, t) − θr
θs − θr

, (4)

where θ(Z, t) (m3/m3) signifies the volumetric moisture content in the soil mantle at time t 
and depth Z. Note, that the product χ(Z, t)ψ(Z, t)γw in the numerator of Equation (3) equates 

to the suction stress, σs, in units of Pascal.
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We execute TRIGRS in a mode commensurate with hydrologic modeling and simulate one-

dimensional soil moisture flow and storage in a variably saturated finite soil domain 

bounded below by bedrock. We compute the Factor of Safety in Eq. 3. for each depth, Z, in 

the soil mantle and use the minimum value in the profile as our measure of hillslope stability 

at time t. Thus, for each site in our region, we simulate traces of Fs during multiple different 

durations, classified as null or landslide periods.

The original TRIGRS code creates many different output files (one separate file for each 

timestep and model output) which demands significant computational time and resources for 

multi-core distributed simulation as used in the present study. Hence, we recoded TRIGRS 

to write the simulated outputs of all timesteps into a single file. TRIGRS has 12 adjustable 

model parameters and corresponding distributions (see the first 12 parameters in Table 2, 

explained more in following Section 3.3).

3.2 Likelihood function for performance evaluation

The accuracy and reliability of the simulated output of the TRIGRS model can be 

determined by comparison against measured data. Since hillslope interiors are difficult to 

access, characterize, and monitor in situ, field experimentation is often impractical, time-

consuming, labor-intensive and expensive. Observations of hillslope stability are, therefore, 

often limited to binary data on whether slope failure and/or mass movement was observed or 

not during the period of interest. Such categorical information, or soft data, from 

geotechnical experts and/or field experimentalists is not always easy to use for model 

evaluation and/or parameter estimation. As a consequence, geotechnical studies often resort 

to spatiotemporal variations in the simulated Factor of Safety, Fs, to obtain time-varying 

probabilities of slope failure during landslide events (e.g., [12, 15]). The so-obtained 

probabilities may be of practical value and/or use but as they depend only on simulated 

output they cannot be used to quantify TRIGRS model performance for individual ‘point’ 

sites nor help determine behavioral (posterior) values of its slope-stability parameters. This 

necessitates the use of slope stability observations and a likelihood function that measures in 

a probabilistic sense the accuracy of the TRIGRS-simulated output. Unfortunately, the 

formulation of such likelihood function is not particularly easy in the present context with 

binary data on landslide occurrence. Maximum likelihood estimation procedures for 

categorical variables developed in probability theory and statistics, will not suffice in the 

present situation with innate underlying ordering of the null and landslide periods. Indeed, 

we desire that the TRIGRS model predicts accurately slope failure probability and timing. 

Thus, we must first postulate a function that adequately characterizes the likelihood of 

simulated landslide occurrences over our spatiotemporal domain of interest. Insofar as 

possible, this function should satisfy first-order statistical principles.

For each of the sites in our database, the likelihood function quantifies TRIGRS model 

performance for several different rainfall periods which are either classified in our database 

as a null (no mass movement) or landslide period (slope failure). For slope failure sites, the 

null periods always precede the landslide period. Due to limitations in the inventory, it is 

possible that for some failure sites the database has erroneously classified a rainfall event as 

a null period, and thus, slope failure and mass movement did take place in one or more of 
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the storm events leading up the landslide period. However, the probability of slope failure 

having occurred during those null periods at a slope failure site and being unnoticed during 

the recording into the database of the landslide period at that site is likely very low. Hence, 

we consider the so-called null periods to be free of landslide activity. Therefore, the binary 

classification used herein should adequately portray the stability of our hillslopes during 

each of the successive rainfall events and provide robust TRIGRS parameter estimates and 

modeling results.

Our likelihood function combines binary information of slope failure occurrence or non-

occurrence from both the landslide event period and earlier ‘null’ periods. This function 

merges into one statistical measure of model performance the False Omission Rate, Rfo (−), 

the ratio of wrongly simulated stable slopes or non-failures to the total number of simulated 

stable slopes, and the False Discovery Rate, Rfd (−), the ratio of wrongly simulated failures 

to total number of simulated failures. These two unitless metrics are computed as follows

Rfo = nFN/ nFN + nTN (5)

Rfd = nFP/ nFP + nTP , (6)

and are based on a 2×2 contingency table or confusion matrix where nFN, nTN, nFP, and nTP 

denote the long-term number of false negatives, true negatives, false positives and true 

positives, respectively. Here long term denotes the scenario in which TRIGRS might have 

been run for an infinitely or sufficiently long simulation duration comprising of both null 

and/or landslide periods. The values of Rfo and Rfd range between 0 (perfect performance) 

and 1 (poor performance), thus lower values of both metrics are preferred. Thus, if for some 

site, TRIGRS had simulated a stable slope during a period in which a landslide was 

observed, then that period is classified as a false negative, and a value of unity is added to 

the long-term nFN of this site. Now, the total number of simulated instances with a stable 

slope is equivalent to nFN + nTN. The likelihood of simulating a stable slope for that period 

is the long-term value of nFN/(nFN + nTN), which, by definition, is equal to Rfo in Eq. (5). If, 

instead, TRIGRS simulated slope failure during a landslide period then this is considered 

one occurrence of the true positive nTP. The likelihood of simulating slope failure for that 

same period is the long-term nTP/(nFP + nTP), or (1 — Rfd), with Rfd computed in Eq. 6.

If x is the vector of TRIGRS parameter values and y our vector of observations (i.e., slope 

stability for null periods and slope failure for landslide periods), then our likelihood 

function, L(x ∣ y), aggregates into one statistical measure of model performance the False 

Omission and False Discovery Rates, Rfo and Rfd, from Eq. 5 and 6 respectively, for the null 

and landslide events periods as follows:

L(x ∣ y) = 1 − Rfo
Nn, sRfd

Nn,f
1

Nn 1 − Rfd
Nl,fRfo

Nl, s
1

Nl , (7)

where Nn (Nl) denotes the number of actual number of null (landslide) periods that we 

simulate, Nn,f and Nl,f count the number of simulated slope failures during these null and 
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landslide periods, respectively, Nn,s = Nn − Nn,f and Nl,s = Nl − Nl,f. Thus, Nn,s and Nl,s 

count the number of stable slopes simulated during the null and landslide periods, 

respectively.

The exponents, 1/Nn and 1/Nl, which act on the two terms in the square braces give a similar 

weight in the likelihood function to the null and landslide period groupings, respectively. 

This weighting addresses the class imbalance problem [86] frequently encountered in 

classification problems in machine learning and parameter estimation. In the absence of such 

weighting, imbalance between class frequencies will result in a low sensitivity of the 

likelihood function to the infrequent class (landslide periods in our study) and favor heavily 

the fitting of the frequent class (null periods in our study). Thus, our exponents 1/Nn and 1/

Nl promote inference of parameter values that balance the performance of TRIGRS during 

the null and landslide periods. The Nn > Nl in our study reflects the general long-term 

inequality of null instances being much more preponderant than landslide periods. For each 

slope failure in our database, we consider five null periods, Nn = 5, and Nl = 1. We leave for 

future studies the investigation of the effect of Nn on the behavioral parameter values and 

simulation results.

The use of Eq. 7 has one important drawback. Parameter vectors which consistently simulate 

slope failure (or non-failure) for all null and landslide periods are undesirable since they 

provide no information for the search algorithm to discriminate between the two groupings. 

Such ‘nonbehavioral’ solutions are unproductive and should be discarded early on to 

promote convergence of the DREAM(zs) algorithm to the appropriate behavioral solution 

space. In our study, we therefore assign these aberrant parameter vectors a likelihood of 

zero. The modified likelihood function, Lm(x ∣ y), now reads as follows:

Lm(x ∣ y) =
0 if Nn,f + Nl,f = 0 or Nn,f + Nl,f = Nn + 1
L(x ∣ y) otherwise.

(8)

This modified likelihood as an improvement over Eq. 7 may prove futile for some sites. If 

the prior parameter space is largely made up of nonbehavioral solutions, then it may be 

difficult to determine a suitable search direction as the likelihood (and the gradient thereof) 

will be zero. This complicates unnecessarily the search for behavioral solutions. We will 

revisit this issue in the remainder of this paper.

The NCGS geodatabase does not report specific (instantaneous) time values for each 

landslide event, but rather provides a failure time range on the order of days. For our study 

area, this failure period can be as short as a day (e.g., September 17, 2004) to as long as 12 

days (e.g., September 6–17, 2004). Therefore, a TRIGRS simulation is deemed successful if 

slope failure is modeled within the recorded time period of each landslide event. For a null 

period, however, we consider slope failure to be simulated if it occurs at any time within the 

null period. For each site and rainfall data source used in this study, the start and end time of 

each TRIGRS simulation was determined manually for each null and landslide period. 

Simulations for each site are initiated at the onset of rainfall and terminated at the end of 

each storm event when precipitation has ceased. If we denote with tb and te the beginning 

and end date of the storm (rainfall) event in days, then for some of the sites the 
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corresponding simulation period, Δt = te − tb, may not be long enough to warrant an accurate 

description of hillslope stability. Indeed, pore water pressures may continue to rise into the 

dry hours after completion of a storm event. If deemed appropriate, we, therefore, changed 

the simulation end time to te + 0.25Δt. This extension of the simulation period with 0.25Δt 
days should give sufficient opportunity for the rainfall to infiltrate into the soil mantle and to 

accurately portray failure simulation in the dry days immediately following a storm event. 

For some of the sites, the so-obtained time interval of simulation did not encapsulate the 

period of recorded slope failure in the NCGS database. In those cases, the length of the 

simulation period was enhanced further by moving forward tb and/or pushing back to a later 

time te.

3.3 Uncalibrated parameter distributions

In general, the information in the NCGS database corresponds with the thicker exposures of 

the soil in the initiation zone (IZ) for each landslide. As the soil depth (and properties) 

within this IZ may not be constant, this begs characterization of parameter and/or model 

output uncertainty. Table 2 details information about the a priori (or uncalibrated) parameter 

distributions used in the present study and described in the following subsections.

3.3.1 Hydraulic parameters—TRIGRS does not characterize explicitly the complex 

stratigraphy of hillslope interiors other than an impermeable or leaky lower boundary with 

constant representative values for the parameters of the soil mantle. We use SSURGO to 

derive estimates of the texture, bulk density and soil depth at each site in our study domain. 

If SSURGO estimates of the soil depth are smaller than measured depths to bedrock at a 

failure site, we use the entire SSURGO soil profile to obtain representative values of the 

TRIGRS soil properties. Instead, if the soil depth estimates derived from SSURGO exceed 

the bedrock depth, a slicing procedure is used that maps the relevant SSURGO soil 

properties to the soil mantle at our failure site.

To determine the relevant soil thickness slice, we consider the controls on the hydrological 

response to be near the failure depth that is usually near-coincident with the bedrock/soil 

interface. This means that the timing of pore water pressure rise and associated failure will 

be largely controlled by the hydrological properties of the SSURGO layer (horizon) 

immediately overlying the bedrock. SSURGO layers further above will have some (lesser) 

influence on the response with their effect attenuating with distance. This also reflects the 

topmost layer being much more permeable than anything below and making a negligible 

contribution to the time delay between rainfall and pore pressure rise at the depth of failure. 

Hence, we consider the representative SSURGO soil thickness slice (possibly spanning 

multiple layers) to be immediately above the level of the bedrock/soil interface. For a failure 

site where the SSURGO Musym soil has multiple areal components, each component will 

have its own soil thickness slice. Therefore, for failure sites, the representative soil textural 

percentages and bulk density are calculated by weighted averaging with the relevant layer 

thicknesses as the weights. The overall representative values of the textural percentages and 

bulk density for the Musym soil are then obtained by averaging over those components with 

the areas as the weights.
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The soil textural (percentages of sand, silt and clay) and bulk density of the hillslope interior 

are input to ROSETTA [31, 32] to obtain uncalibrated distributions for the hydraulic 

parameters θr (residual soil moisture content), θs (saturated soil moisture content), α 
(inverse of the air-entry value), and Ks (saturated soil hydraulic conductivity). Percentages of 

sand, silt, and clay are a minimum input requirement for ROSETTA and hydraulic 

parameters are further constrained when bulk density and porosity data are also available. 

ROSETTA provides lognormal distributions for Ks (e.g., [14, 33, 34]) and α (e.g., [12]), and 

normal distributions for θr and θs. We do not assign a lognormal distribution to the hydraulic 

diffusivity (e.g., [14, 33]), but rather follow the TRIGRS equations and compute the 

diffusivity as a ratio of Ks and the specific storage, Ss. Based on field measurements in 

active landslides [4, 35, 36], we assign a uniform distribution to Ss with lower and upper 

bounds of 0.005 and 0.5 m−1, respectively. The result is an intrinsic correlation between the 

computed diffusivities and sampled Ks values, which does not have to be specified a priori 

by the user (e.g., [37]).

If we ignore correlation among the hydraulic parameters of the soil mantle, then this may 

result in unrealistically large prior probabilities and undesirable or physically unrealistic soil 

water retention and hydraulic conductivity functions [38]. We use the Monte Carlo approach 

of [38, 12] to derive the correlation (covariance) matrices of the hydraulic parameters. For 

each site, we create 250 different realizations of sand, silt and clay percentages by drawing 

at random from a three-variate normal distribution. The means of this distribution are the 

SSURGO-derived percentages of sand, silt and clay, while the covariance matrix has values 

of 0.25 on the main diagonal and off-diagonal elements of −0.125. Each realization is 

normalized so that the fractions of sand, silt and clay add up to 100%. This ensemble of soil 

texture realizations is then used as input to ROSETTA and produces a matrix of 250 × 4 

having corresponding values of the hydraulic parameters θr, θs, α, and Ks of the soil mantle. 

Log-transformed values are used for α and Ks. This matrix is then used to compute pairwise 

correlation coefficients of θr, θs, α, and Ks.

If the Musym soil of the failure site coincides with that of the monitoring location (i.e., Ed, 
Cu, Cp, or Pw), the uncalibrated distributions of θr, θs, α, and Ks derived from ROSETTA 

are refined further using soil hydraulic data from the monitoring location. We present here a 

recipe of this procedure for some property x at some measurement site. Per ROSETTA, x is 

supposed to be μ0-mean normally distributed with variance σ0
2. At this location we have 

available n different “observations” of x stored in the vector, x = x1, …, xn . If we treat each 

observation to be the mean of another distribution with variance σ0
2, then we can refine our 

ROSETTA-derived estimates of μ0 and σ0
2 for soil property x at the measurement site as 

follows, μ0, new =
μ0
σ0

2 +
∑i = 1

n xi
σ0

2 / 1
σ0

2 + n
σ0

2 and σ0, new
2 = 1/ 1

σ0
2 + n

σ0
2 . This simplifies to 

μ0, new = μ0 + ∑i = 1
n xi /(1 + n) and σ0, new

2 = σ0
2/(1 + n). Among the n observations of each 

site, we include values of the hydraulic parameters of the soil mantle derived during wetting 

and drying experiments. Section 3.3.6 below details our treatment of the multivariate 

dependencies among the hydraulic parameters of the hillslope.
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3.3.2 Geotechnical parameters—Whereas pedotransfer functions can be used to 

derive probability distributions of the hydraulic parameters of the hillslope interior based on 

(among others) stipulated variations in the texture of the soil mantle (see previous section), it 

is not particularly easy to a priori determine suitable values of the geotechnical parameters, 

let alone their underlying multivariate probability distribution. We use the following 

approach to determine the a priori (or uncalibrated) distributions of the geotechnical 

parameters. First, we use the textural information (percentages of sand, silt, and clay) from 

SSURGO to classify soil type (e.g., sandy loam, silt) using the textural triangle [39]. Then, 

for each soil type, we assign ranges and distributions of the geotechnical parameters. For the 

unit weight of soil, γs, we use the ranges listed in the NAVFAC DM 7.01 manual [40] and 

found online at http://www.geotechnicalinfo.com. For the effective cohesion, c′, and 

effective friction angle, ϕ′, we use the ranges reported online at http://www.geotechdata.info 

(see Table 3 for the ranges for the soil textural classes at the landslide failure sites). We use 

normal distributions to describe the uncertainty of γs (e.g., [14, 33]), c′ and ϕ′ (e.g., [41–

44]). We further assume that c′ and ϕ′ are independent [45–49]. This latter assumption is 

practical and convenient but may not always be appropriate [50]. If the Musym soil of the 

failure site coincides with that of the monitoring location, then we use available data on γs, c
′ and ϕ′ at that location to refine the geotechnical parameter distributions using the merging 

procedure outlined in the previous section. Thus, our approach links the geotechnical 

parameters to the properties of the soil mantle, and honors spatial variations in soil type 

across our study region. This should be an improvement over the use of spatially constant 

geotechnical properties over all soil types (e.g., [15]).

3.3.3 Geomorphologic parameters—We assume that the slope, δ, and the depth to 

bedrock, Zmax (e.g., [14,33]), are well described with a normal distribution. Multiple 

measurements of the undulating ground slope with a handheld clinometer or Brunton 

compass were averaged to obtain the value of the slope, δ, recorded in the NCGS database. 

The undulation of up to 3° (± 6° around the mean slope) was used to construct the 95% 

ranges. For sites without reported slope measurements in the NCGS database, we use the 20 

ft horizontal resolution LiDAR digital elevation models (DEMs) made available with 

elevations rounded to the nearest foot (https://services.nconemap.gov/). The Root Mean 

Square Error (RMSE) of the so-derived spatially coincident LiDAR slopes was found to be 

4.31°. This RMSE was derived by comparing the LiDAR slopes against sites reported in the 

NCGS database. We assume this RMSE to be an unbiased estimator of the standard 

deviation of the LiDAR-derived slopes. Thus, for sites where the NSGC database does not 

provide slope values, we construct the 95% ranges of δ by centering ± 8.62° (or twice of 

4.31°) on the LiDAR-derived coincident slopes.

Values of Zmax were derived from listed failure depths, or Zr values, in the NCGS database. 

Based on field measurement guidelines for failure sites with coincident available Zr values, 

we set the standard deviation to 0.5 ft or 1 ft respectively for Zr values below or above 10 ft. 

To obtain Zmax distributions at sites where failure depth measurements are not readily 

available, we resort to a simple regression function of Zr against slope from the data at sites 

with available Zr measurements. This is consistent with previous studies where terrain and 

bedrock properties and/or climatology have been used as predictors of the regolith depth 
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[51–56]. However, such statistical regression functions of one region (e.g., North Carolina) 

often lack the underlying physical rigor to make them applicable in other regions. For sites 

with no Zr measurements but with available δ values in the database, we obtained the 

following cubic regression equation [52]:

Zr = (1.4127 − 0.0061δ)3, (9)

with standard deviation of Zr of about 3.948 m. For all other locations without reported 

values of Zr and δ in the database, we use a cubic equation with coefficients derived from 

fitting against the LiDAR-derived δ values:

Zr = (1.7409 − 0.0142δ)3 (10)

The standard deviation of the so-derived values of Zr amounts to 3.942 m.

Based on field expertise, we obtain the mean of the Zmax distribution by adding an 

allowance to Zr. This allowance is taken as the minimum of 1 foot and 10% of Zr (the former 

was the field-reported maximum of the observed differences between Zmax and Zr for sites 

in North Carolina). The standard deviation of Zmax is derived by multiplying the standard 

deviation of Zr with Zmax/Zr.

3.3.4 Initial conditions—The range of valid initial depths to the water table, dinit, are 

those that do not give slope failure at the start of the slope-stability simulation but potentially 

can at a later time during the failure-observed event simulation depending on the rain. For 

any dinit value, the pressure head (ψ) increases with depth (Z) for Z > dinit until a maximum 

at depth Zmax so that the tendency for slope failure tends to be highest and Fs tends to be 

lowest at or near Zmax. Considering an increase in dinit, the Fs at Zmax increases from a 

minimum when dinit = 0 so that the Fs = 1 failure threshold is reached for some dinit > 0, and 

we use this threshold dinit (i.e., dinit, FS = 1) as the lower bound for the valid range of dinit 

mentioned above. This valid range can potentially be a very small fraction of the depth to 

bedrock, Zmax. Hence, for any combination of the δ, c′, ϕ′ and parameters, the dinit, FS = 1

value is calculated further below from Eq. 3, constituting an extrinsic uncalibrated parameter 

dependency in this study.

Now, Eq. 3 is actually an addition of the following 3 terms Ff, Fc and Fw:

Ff = tan ϕ′
tan(δ) (11)

Fc = c′
γsZmaxsin(δ)cos(δ) (12)

FW = − χψγwtan ϕ′
γsZmaxsin(δ)cos(δ) (13)
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This means that the upper bound on Fs will always be at the maximum magnitude of the 

negative suction stress (and maximum positive value Fw,max of Fw) near the basal boundary 

Z = Zmax during conditions when the soil profile is dry. To obtain Fw,max, we note that the 

online charts for the monitoring sites in North Carolina show suctions ranging from −5 to 

−80 kPa. These suctions correspond to soil water pressure head values between −0.5 and 

−8.2 m. For each ψ value in this range, we use the following equation [4]:

θ = θr + θs − θr exp(αψ), (14)

to calculate the corresponding volumetric moisture content of the soil profile. Note that the 

exponent in the above equation should actually use the entity ψ* rather than ψ, where = ψ* 

− ψ0 [4]. Yet, as we use ψ0 = 0, it suffices to use ψ in the exponent of Eq. 14. This exponent 

must be smaller than zero to ensure that θr < θ < θs. Thus, for the general case of a nonzero 

ψ0, we must subject ψ* to another constraint so that its value cannot exceed zero.

Now that the value of the volumetric moisture content is known, we next use Eq. 4 to 

compute the degree of saturation of the soil profile. As the moisture content and saturation 

degree of the profile decrease with increasing magnitude of the soil water pressure head, it is 

difficult to determine a priori which value of ψ ∈ [−8.2, −0.5] maximizes the value of FW in 

Eq. 13. Therefore, we discretize the interval of the soil water pressure head in equidistant 

steps of 0.1 m and determine which product of χψ in the numerator of Eq. 13 maximizes 

the value of FW, that is, Fw,max. We then combine Eq. 3 and Eqs. 11–13 to yield the 

following identity:

Fs,upper = Fc + Ff + Fw, max (15)

We derive the lower bound of Fs using the following built-in TRIGRS equation in the 

saturated soil zone:

ψ = βℎ = β Zmax − dinit (16)

where the β factor converts the height of water, h, above depth Zmax to its corresponding 

pressure head value. If dinit = 0, and thus the entire soil profile is saturated with water, then 

the maximum value of ψ is found at Z = Zmax and equates to ψmax = βZmax. The Fs value at 

the bottom of the soil profile acts as our constraint at the lower boundary of the soil column:

Fs, Zmax, d = 0 = tan ϕ′
tan(δ) + c′ − βzmax γwtan ϕ′

γsZmaxsin(δ)cos(δ) (17)

Also, an extra condition (and TRIGRS equation) applies in addition to Eqs. 3 and 11–13:

Ff + Fw ≥ 0 (18)

It reflects the reduction of shear stress originating from the soil mass term Ff by some 

amount originating from the pore pressure term Fw. This latter entity cannot be larger than 
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Ff (e.g., [57]). Thus, Ff + Fw is set to zero if it becomes smaller than zero, resulting in Fs = 

Fc. This way Fc acts as a lower bound constraint on Fs. The actual lower bound that we then 

implement is:

Fs,lower = max Fs, Zmax, d = 0, Fc (19)

When the Fs bounds in Eqs. 15 and 19 are on either side of the failure threshold of Fs = 1, 

we obtained the following lower bound on the valid dinit range from Eqs. 3 and 16 and x = 1:

dinit, Fs = 1 = Zmax − 1
βγwtan ϕ′ c′ − 1 − tan ϕ′

tan(δ) γsZmaxsin(δ)cos(δ) (20)

However, when Fs = 1 lies outside the Fs bounds range so that either Fs,lower ≥ 1 indicating a 

slope that is permanently stable or Fs,upper = Fc + Fs < 1 indicating a slope that is always 

unstable, the corresponding value of the initial dinit does not matter. In such cases, our 

results become independent of the dinit range considered (we then arbitrarily consider a 

lower bound at dinit = 0).

TRIGRS also necessitates definition of a steady pre-storm infiltration rate, IZLT, which 

determines the initial moisture content of our soil profile. For each site, we treat IZLT as an 

unknown parameter with uniform prior distribution bounded between zero and half of the 

maximum rainfall rate over the null and landslide failure event periods. This prior 

distribution thus takes into consideration site-specific variations in rainfall rates. Since the 

null events are selected from the three-month seasonal period before the landslide event, this 

method of assigning an uncalibrated distribution to IZLT is similar to the TRIGRS 

applicators’ method of assigning it based on the mean rainfall over that seasonal period [4].

3.3.5 Hyperparameters—We assign a uniform distribution bounded between 0 and 1 

for the hyperparameters, namely the False Omission Rate, Rfo, and the False Discovery 

Rate, Rfd, in Eqs. 5 and 6, respectively. These two statistics are related to the following 

contingency table metric of accuracy (Ac):

Ac = nTN + nTP
nFN + nTN + nFP + nTP

(21)

where nFN, nTN, nFP and nTP are defined in Eqs. 5–6. The Ac value can range between 0 

(poor performance) and 1 (perfect performance) so that higher values signify a better model 

performance. To explain Ac in terms of Rfo and Rfd, we specifically consider its complement 

(1-Ac) for which lower values are better:

1 − Ac = nFN + nFP
nFN + nTN + nFP + nTP

(22)

Note that the sum of the numerators of the ratios in Eqs. 5–6 results in the numerator of Eq. 

22. The same holds for the sum of the denominators of these two equations. The metric 1 − 
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Ac is thus simply a ratio of the sum of the numerators to the sum of the denominators of the 

individual Rfo and Rfd metrics. This metric must therefore be mathematically bounded by 

the minimum and maximum values of the two individual ratios:

min Rfo, Rfd ≤ 1 − Ac ≤ max Rfo, Rfd (23)

3.3.6 Sampling uncalibrated correlated parameter sets using copulas—
Copulas enable a separate modeling of the marginals and the dependence (joint) structure of 

a multivariate distribution. They are multivariate-correlated probability distributions for 

which the marginal cumulative distribution functions (CDFs) of the probabilities are 

uniform. This means that sampling from a multivariate distribution (like a standard normal 

one in our study) will provide vectors of CDFs, where each vector is a grouping over 

TRIGRS parameters as an example, of the sampled values from the respective marginal 

CDFs. For any TRIGRS parameter, these sampled marginal CDF values are invertible to 

provide the corresponding values of that parameter. Finally, we regroup these extracted 

parameter values over TRIGRS parameters to get the required vectors of sampled 

parameters.

This study assigned explicit correlations between only some parameter distributions, 

specifically for hydraulic parameters θr, θs, α, and Ks as mentioned in Section 3.3.1 further 

above. Note that the relevant elements of the specified correlation matrix of the copula need 

to be calculated from TRIGRS parameter values sampled from marginals that have the same 

distribution shape as the standard multivariate distribution used during the copula sampling 

phase. So, for this study using standard multivariate normal copula, the θr and θs do already 

come from normal distributions, and we log-transformed the values for α and Ks that come 

from lognormal distributions before calculating the relevant pairwise correlations.

We also have the information on applicable bounds on the TRIGRS parameter distributions 

(see Table 2). However these bounds can only be implemented through sampling of 

truncated distributions (for example, multivariate truncated standard normal copula will be 

relevant to our study). Sampling from such multivariate truncated distributions is 

considerably more difficult, and exact sampling is only feasible for truncation of the normal 

distribution to a polytope region [79, https://en.wikipedia.org/wiki/

Truncated_normal_distribution]. For more general cases, a general methodology exists 

within a Gibbs sampling framework [80–81]. However, we did not implement any such 

truncation methodology in our study for our copula sampling. Theoretically, this can affect 

sampling from marginal distributions that have either bound close to the distribution mean 

instead of at the tails, since a large number of parameter values sampled from the unbounded 

distribution need to be discarded. However, not bounding the correlated parameters will have 

negligible impact on this study’s results since θr, θs, α and Ks have bounds covering a wide 

valid-value range of 4σ per Table 2.

For the uncorrelated TRIGRS parameters, we were still able to sample from corresponding 

truncated marginal distributions by obtaining the bounded marginal CDF values from the 

unbounded marginal CDF values that were sampled from the copula (denoted by CDFs 
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where subscript ‘s’ denotes sampled). This is done by first calculating CDF values at the 

lower and upper bounds (CDFl,u and CDFu,u, respectively) in the unbounded distribution. 

Next, the CDFs values having a 0–1 range are linearly mapped into the CDFl,u — CDFu,u 

range to obtain the corresponding bounded CDF values:

CDFb = 1 − CDFs CDFl, u + CDFsCDFu, u (24)

3.4 Stochastic TRIGRS calibration using the DREAM(zs) algorithm

The Stage IV rainfall estimates are typically considered to exhibit the highest CONUS-wide 

skill and finest spatial resolution compared to V7 and NLDAS-2; this product was 

considered as our ‘true’ forcing and used for calibration of the TRIGRS parameters. The 

resulting posterior parameter values were then forced separately with the V7 and NLDAS-2 

rain time series to evaluate the sensitivity of simulated model output to each precipitation 

data product. We purposely do not calibrate TRIGRS with the V7 and NLDAS-2 rainfall 

products to avoid corruption of the model parameters by forcing data measurement errors.

The a priori distributions for our model calibration are the uncalibrated parameter 

distributions from Section 3.3. We infer the posterior distribution of the TRIGRS model 

parameters using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. 

Benchmark experiments (e.g., [58–62]) have demonstrated the ability of the DREAM 

algorithm to sample efficiently complex target distributions involving high-parameter 

dimensionality, multi-modality, and variably correlated, twisted and truncated parameters. In 

fact, practical experience suggests that DREAM often provides better solutions in high-

dimensional parameter spaces than commonly used optimization algorithms [e.g., 87, 88]. In 

this paper, we implement the DREAM(zs) algorithm, a member of the DREAM family of 

algorithms, which uses parallel direction and snooker sampling from an archive of past 

states to evolve the different Markov chains to a stationary distribution [63]. This algorithm 

has the advantage of requiring only a few chains, independent of the number of model 

parameters. What is more, the use of diminishing adaptation (for convergence proof) allows 

for multi-core distributed evaluation of the candidate points in a manner which does not 

violate reversibility of the sampled chains.

The original DREAM(zs) is coded in MATLAB and necessitates the use a separate 

MATLAB license for each computational node in a distributed computing environment. This 

may be financially costly, and, hence, does not promote evaluation of the sampled chains of 

the large number of sites in our study assigned to multiple nodes. We therefore created a 

separate Python implementation of the DREAM(zs) algorithm. This Python code is a pared-

down implementation of the MATLAB toolbox and monitors the convergence of the 

sampled chains using the univariate, R [64], and multivariate, Rd [65], diagnostics. We 

execute the Python code of the DREAM(ZS) algorithm with three different Markov chains 

using default values for the algorithmic variables. The initial size of the external archive was 

set to 280 (or 20 times the number of parameters in Table 2).

For each site, we judged the convergence of the DREAM(zs) algorithm using the R and Rd
diagnostics and verified whether the sampled posterior distribution contains at least one 
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behavioral parameter vector which correctly simulates slope failure during a landslide period 

and slope stability during at least one of the null periods. Otherwise the TRIGRS simulation 

and associated parameter vector will be assigned a zero likelihood, commensurate with Eq. 

8. For each of the 180 sites, we used a maximum total of 80,000 generations, which equates 

to a 80,000 × 3 = 240,000 TRIGRS model evaluations. For a handful of sites, however, this 

rather liberal computational budget was insufficient to find a sample with likelihood larger 

than zero.

To help locate behavioral solutions, we could have used a larger number of Markov chains 

with the DREAM(zs) algorithm. This is easy to do in practice, yet a more productive 

approach could have been to adapt Eq. 8 and differentiate among the likelihood values of the 

nonbehavioral solutions. This would introduce a gradient in the likelihood surface and help 

guide the DREAM(zs) algorithm to the behavioral solution set. We refer interested readers to 

the work of [89] who demonstrate that such more discriminatory likelihood function speeds 

up tremendously the efficiency of MCMC simulation within the context of Approximate 

Bayesian Computation. Nevertheless, we do not follow this alternative approach herein. 

Instead, we draw at random 90, 000 samples from the prior parameter distribution. For each 

site and sample from the prior distribution, we then execute TRIGRS and compute the 

likelihood function of Eq. 8. This rather simplistic approach led to at least one behavioral 

solution for three of the so-called outlier sites. These behavioral solutions are then combined 

with those derived from the DREAM(zs) algorithm and used as initial archive for a 

subsequent trial with this algorithm. This second time, we focus our attention only on those 

168 sites with at least one behavioral solution (e.g., non-zero likelihood) and use a total of 

40,000 generations to approximate the target distribution. Note, that for almost all sites, this 

second trial resulted in a similar approximation of the posterior distribution as the first run 

with DREAM(zs) algorithm. Samples after convergence are used to summarize the posterior 

distribution of the TRIGRS parameters.

3.5 Graphical analysis of results

At any site, we consider distributions of the binary simulated slope failure response over the 

null periods separately from those for the landslide failure period. The means of these 

distributions of binary response for the null periods and the landslide period, respectively, 

are ideally close to zero and to one. The landslide response distribution (i.e., during the 

landslide period) at a site simply is an ensemble in which each value is the individual binary 

response of a parameter set. However, since each site has multiple null events, we consider 

its null response distribution to be an ensemble in which each value corresponding to a 

parameter set is a simple average of the individual responses generated by that parameter set 

for the null periods. We consider the distribution characteristics of the mean and the spread 

of one standard deviation on either side of the mean for the relevant responses across the 

parameter sets. We further group the sites by SSURGO Musym soils, landslide event years 

and overall for display in Figs. 3 and 4, by elevation in Fig. 8, and by slope in Fig. 9 (to be 

detailed in Section 4).

For dynamic simulations of a spatially distributed model over a regional domain, 

computation of the performance metrics related to the contingency table (and in line with 
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probability calculations by first principles) should involve counting over both the spatially 

and temporally discretized elements. However, the calculation of measures typically done in 

literature for such involves collapsing the time axis so that the measures reported involve 

counting only over the spatially discretized elements. The results of both approaches 

unavoidably depend on the assumed spatiotemporal discretization. Spatially, our study 

considers only the ‘point’ locations of slope failure and not the null locations, and we have 

considered null periods at the landslide locations instead. In our parameter uncertainty 

context where the ensemble of parameter sets (instead of a single set) is considered for 

calculating the relevant measures, the False Positive Rate (FPR; also called False Alarm 

Rate) is then the ratio of number of occurrences of simulated failure during observed null 

periods to that of all observed null periods. As it turns out, this is mathematically identical to 

the simulated mean of the null period response distribution mentioned above. Hence, FPR is 

mentioned on the y-axis labels of the first subplot in Figures 3, 4, 8, and 9. Similarly, the 

False Negative Rate (FNR; also called Miss Rate) is the ratio of number of occurrences of 

simulated stable slope during observed landslide periods to that of all observed landslide 

periods. The complement of FNR (i.e., True Positive Rate, or TPR=1-FNR) is 

mathematically identical to the mean of the landslide period response distribution mentioned 

above, and therefore 1-FNR is mentioned on the y-axis labels of the second subplot in 

Figures 3, 4, 8, and 9. An accuracy calculation (Eq. 21) would also be along the same lines: 

fraction of correctly simulated null and landslide periods to total number of null and 

landslide periods for the entire ensemble of parameter sets.

In Figs. 5–7 (to be further explained in Section 4), we plotted the parameter distributions in 

the same way as the binary response distributions mentioned above, but with the responses 

replaced by the parameter values or their normalized versions. Parameter normalizing for 

both the calibrated and uncalibrated values at each site to obtain minimum and maximum 

possible values of 0 and 1 is done by linearly scaling between the minimum and the 

maximum values of the uncalibrated distributions. Across all sites, any normalized 

parameter has the same shape of the uncalibrated distribution and the same multiple of the 

standard deviation defining the bounds of that distribution. Hence, the means and standard 

deviation ranges around the means of the normalized uncalibrated distributions for any 

parameter are the same across sites so that we simply denote them by horizontal black lines 

(solid and dashed respectively). Hyperparameters like Rfo and Rfd already range between 0 

and 1 so that normalization does not change the original values (Fig. 5).

4. RESULTS

4.1 Rainfall pattern and modeled slope failure

Fig. 2 shows the rain time series averaged across sites for the TMPA V7, Stage IV, and 

NLDAS-2 data sources over the landslide and assumed null periods for landslides occurring 

in September 2004 and July 2011. For the 2004 events (Fig. 2a), the rain data from all 

sources show more rainfall volume during the landslide periods and less during the null 

periods. However, for the 2011 events (Fig. 2b), while Stage IV again provides this expected 

pattern of relative rainfall volumes between the landslide and null periods, the rain estimates 

from other sources of TMPA V7 and NLDAS-2 fail to do so and actually show a reverse 
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pattern. The effect of such limitations in the rain accuracy of TMPA V7 and NLDAS-2 on 

the modeled responses are discussed below.

4.2 Uncalibrated TRIGRS performance and calibration relevance

We first evaluate the uncalibrated TRIGRS performance at any site by looking at the 

percentage of favorable parameter sets as defined in Section 3.4, out of a large fixed sample 

of 90,600 forming the uncalibrated distribution. That is, we consider only the parameter sets 

that simulate slope failure during the landslide period but simulate failure for only some and 

not all the null periods (to avoid parameter sets having a likelihood of 0 per Eq. 8). This 

percentage varies widely from 0% to almost 19%, where 22 sites show 0% and the rest 

mostly show less than 4%, while 10 sites do have high percentages of almost 19%. The 

mostly low percentages are near those seen in applications of hydrology and hydrologic 

hazard (e.g., <1% by [66] for semiarid flashflood modeling). The rest of the parameter sets 

(i.e., not the favorable parameter sets) simulate almost all sites as always being stable. The 

presence of 0% favorable parameter sets indicates the importance of a stochastic calibration 

procedure that allows directed sampling to converge to possibly tiny favorable regions in the 

parameter space.

The near-zero percentages reported above for most sites indicate the extremely intensive 

sampling required to delineate favorable portion/s in that space. This also explains why we 

used two subsequent DREAM(zs) trials for some of the sites as detailed in Section 3.4. The 

culprit is Eq. 8 which assigns a zero likelihood to all nonbehavioral solutions—no matter 

how far removed each solution is from the behavioral region. Such box-car type likelihood 

function introduces a zero gradient in large parts of the parameter space and makes it 

unnecessarily difficult for any search algorithm to locate the behavioral solution space. This 

is particularly true if the behavioral solution space occupies only a very small portion of the 

prior parameter distribution. Readers are referred to [89] for a remedy to Eq. 8. This 

approach would have made obsolete the two-step sampling approach used herein. 

Nevertheless, adding favorable initial parameter sets from a fixed intensive sampling at the 

start of the second DREAM(zs) run cycle enabled being in the non-zero likelihood regions of 

the parameter space where a gradient existed; hence, the direction of improvement in the 

likelihood function was followed. Note, that the likelihood function of Eq. 7 does not suffer 

the problems of Eq. 8, yet unavoidably results in a large cohort of parameter vectors that 

consistently simulated unstable slopes for all landslide and null periods (or at least for the 

landslide period and most of the null periods).

Next, regarding the characteristics of the uncalibrated response distributions, we also look at 

the groupings in Fig. 3 (refer Section 3.5 on how to interpret this Figure). Fig. 3 does not 

show any significant difference between the rain data sources, indicating that using alternate 

sources like V7 or NLDAS-2 negligibly changes the output response when using 

uncalibrated distributions in TRIGRS. Note that the only difference in the uncalibrated 

parameter set distributions between the sources is in the value of the pre-storm steady 

infiltration rate parameter (IZLT).

Fig. 3a shows the null period distributions (whose means coincide with the corresponding 

FPRs or False Positive Rates) for the three rain data sources, and for which the values should 
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be ideally close to zero. Our simplistic quantitative analysis for interpreting whether slope 

failure is simulated by a response distribution involves checking whether the distribution 

means are above or below a threshold value of 0.5, since that is objectively midway between 

0 and 1. The means are seen to be lower than 0.5 throughout and hence closer to zero than to 

one. For all rain sources during year 2004 and overall, the means or FPR values are equal to 

0.07 and the standard deviational uncertainties lie in the 0.25–0.26 range. For year 2011, 

these numbers slightly change to means or FPR values in the 0.04–0.05 range and standard 

deviational uncertainties in the 0.2–0.21 range. These FPR mean values are significantly 

lower than the 0.22 or 22 % achieved by [82] for another physically based model, CHASM 

(Combined Hydrology and Slope Stability Model). They are also lower than the FPR 

achieved by GIS-based models (for example, 0.29 by [83] for the regional model).

Fig. 3b shows the distributions for the landslide period for which the values should ideally 

approach 1; however, all means (that coincide with the corresponding TPRs or True Positive 

Rates) are again lower than 0.5 and almost same as the distributions from the null periods of 

Fig. 3a. This further confirms the observation above that almost all parameter sets of the 

uncalibrated ensemble consistently simulate stable slopes for all periods. The response 

characteristics for all rain sources during landslide periods are similar to those for null 

periods: obviously unacceptable 0.04–0.1 values for the means or TPR values, and 0.2–0.23 

for the standard deviational uncertainties.

If a landslide simulation model always simulates unconditionally stable slopes, the accuracy 

metric (Ac) can be misleading by always being high from reflecting the high percentage of 

stable slope elements among the total number of elements. For example, if our uncalibrated 

TRIGRS had always simulated slopes as unconditionally stable, only true negatives would 

have existed and not true positives: combining this information with our considered 5:1 ratio 

of number of null periods to landslide periods would have given Ac values of 5 6 = 0.83. This 

is close to our obtained value of 0.79–0.80 (not shown). The consideration of such fixed 

ratios of numbers of periods in our study limits the utility of Ac for comparison against other 

studies, and for which we rely more on the FPR and TPR (or FNR) numbers below.

4.3 Performance of TRIGRS calibrated to Stage IV forcing

The calibrated response characteristics are shown in Fig. 4. This section focuses only on 

simulations forced with Stage IV data (green markers). Like Fig. 3a, Fig. 4a is for the null 

periods, again giving distribution means that are lower than 0.5. Calibration caused only 

small changes in the response means or FPRs for Stage IV forcing between Fig. 3a and Fig. 

4a: from 0.07 to 0.06 for 2004, 0.05 to 0.27 for 2011, and 0.07 to 0.09 for overall. Compared 

to the uncalibrated value, the calibrated FPR value for 2011 is now in the ballpark of values 

attained by physically based and empirical GIS-based models (0.22 by [82] for CHASM, 

0.29 by [84] for the regional model). The standard deviational uncertainty reduced from 0.26 

to 0.17 for 2004 and from 0.25 to 0.2 overall, but increased from 0.21 to 0.29 for 2011. Here 

and in general, the overall response characteristics are closer to those for 2004 than for 2011 

since only 22 out of the 168 sites failed in 2011.
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Like Fig. 3b, Fig. 4b is for the landslide periods; however, calibration has now caused 

significant changes between them. The Stage IV response means or TPRs have now changed 

from 0.09 to 0.998 for 2004, 0.06 to 0.83 for 2011 and 0.09 to 0.98 for overall, putting them 

above the 0.5 threshold and close to 1 as desired. Compared to the low uncalibrated TPR 

values reported in Section 4.2, these calibrated TPR values are now better than the numbers 

obtained by other physically based models (e.g., 0.68 by [82] for CHASM, 0.71 by [84] for 

SINMAP). The standard deviational uncertainty reduced from 0.29 to 0.04 for 2004 and 

from 0.28 to 0.15 overall, but increased from 0.23 to 0.37 for 2011. The accuracy values 

(Ac) are now high due to calibration for 2004 (0.95) and overall (0.92), but have actually 

slightly decreased to from 0.8 to 0.75 for 2011 (not shown).

For Stage IV data during 2011 (when compared against 2004 and overall), the reporting 

above of higher response mean values during the null periods and the consistent increase in 

standard deviational uncertainty during both landslide and null periods is an indication of 

possible difficulty in capturing the true rain estimates during 2011. Also, we note from Fig. 

4b that the calibration procedure was unsuccessful for the ‘Ss’ soil (Spivey-Santeetlah-

Nowhere complex, very stony, and Spivey-Santeetlah complex, very stony), since its Stage 

IV mean is below the 0.5 threshold. It is also somewhat close to but above 0.5 for the ‘Ow’ 

soil (Oconaluftee channery loam). The standard deviational uncertainties for these two soils 

are also high.

To recap, the results from this and Section 4.3 answer one of our research questions about 

the relevance of calibration by showing that calibration provides significantly improved 

modeled response over the uncalibrated model. In fact, without calibration, it can be difficult 

to have any useful simulations of slope stability in an uncertainty framework. The rest of the 

figures and analyses in this study consider only the calibrated simulations.

4.4 Sensitivity of calibrated simulations to rain data source

This section focuses only on Fig. 4. Fig. 4a for the null periods shows only minute changes 

for alternate rain sources in the response means or FPRs from the Stage IV values during 

2004 and overall (0.11 for V7 and 0.07–0.1 for NLDAS-2 versus 0.06–0.09 for Stage IV). 

However, the V7 response mean for 2011 at 0.08 shows a noticeable difference from Stage 

IV and NLDAS-2 values at 0.27. Similarly, in the response standard deviational 

uncertainties, there are only minute changes for alternate rain sources from the Stage IV 

values during 2004 and overall (0.23 for V7 and 0.2–0.22 for NLDAS-2 versus 0.17–0.2 for 

Stage IV). However, the V7 standard deviational uncertainty for 2011 at 0.2 shows a 

noticeable difference from Stage IV and NLDAS-2 values at 0.29.

Fig. 4b for the landslide periods shows that Stage IV has the best performance value for the 

Stage IV response means or TPRs (0.998 for 2004, 0.83 for 2011 and 0.98 for overall) since 

this is the only rain source data that was actually used for calibration. For year 2004 and 

overall, the next best performance is that for NLDAS-2 (0.88 for 2004, 0.77 for overall) and 

then V7 (0.8 for 2004, 0.7 for overall): V7 and NLDAS-2 values are much above the 0.5 

threshold and so acceptably resolve the peak rainfall during the landslide period of the 2004 

storms. However, for year 2011, the performances of both NLDAS-2 and V7 are 

unacceptable (0.02 for NLDAS-2, 0.06 for V7): these data sources failed to characterize the 
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rainfall associated with the landslide event period during 2011. Comparisons of the standard 

deviational uncertainties for year 2004 and overall are as expected: Stage IV has 

significantly lower standard deviational uncertainty (0.04 for 2004, 0.15 for overall) than V7 

(0.4 for 2004, 0.46 for overall) and NLDAS-2 (0.32 for 2004, 0.42 for overall). However, for 

2011, the standard deviational uncertainty for Stage IV has jumped to a much higher value at 

0.37 than at 0.24 for V7 and 0.15 for NLDAS-2. For V7 and NLDAS-2 during the landslide 

periods of 2011, the simultaneous consideration of means close to zero and the low standard 

deviations shows that these rain data sources provide very low chance of slope failure at 

these sites.

Both V7 and NLDAS-2 rain data sources could not provide satisfactory performance (i.e., 

calibrated means below 0.5) for four soils including the Ss and Ow soils mentioned in 

Section 4.4, the other two being ‘Hc’ (Heintooga-Chiltoskie complex, stony) and ‘Oc’ 

(Oconaluftee channery loam). Coincidently, only these four soils are present at the sites that 

failed during the 2011 rain event. Additionally, the 2011 rains correspond to all the Ss, Ow 
and Hc soil sites, and to 15 out of 16 Oc soil sites (the sole Oc soil site in 2004 does provide 

a near-perfect calibrated performance for all rain sources). This shows the difficulty faced by 

any slope stability model in simulating failures when the rain data quality is inadequate. 

Finally, while there are many soils where V7 means seems to perform noticeably worse than 

those of Stage IV and NLDAS-2 (some examples are Ac, Bw, Cn, Ct, Uk), the V7 

simulations are not useful (i.e., mean is below 0.5) for two soils (Ew: Evard-Cowee 

complex, stony; and To: Toecane-Tusquitee complex, bouldery). This strongly indicates the 

quality of the V7 data being worse than that of NLDAS-2 for the 2011 rains.

We can now provide the answer to this study’s overarching question of change in modeled 

responses with rain source: the response means for V7 and NLDAS-2 do not show any 

appreciable degradations against Stage IV during periods of good rain data quality (i.e., 

when relative rain volumes between null and landside periods are as expected), so that V7 

and NLDAS-2 can provide successful simulations using the calibrated model. However, the 

responses completely degrade during periods of poor rain data quality for V7 and NLDAS-2 

(i.e., when relative rain volumes between null and landside periods follow the opposite 

pattern) so that slope failures cannot be effectively predicted even with the calibrated model.

4.5 Model parameter distributions

We first check the results of the calibration procedure by using Eq. 23 relating Rfo, Rfd and 

Ac. Fig. 5 shows the means of calibrated distributions (refer Section 3.5 on how to interpret 

this figure) of hyperparameters Rfo and Rfd to mostly be below 0.5 (i.e., except for the ‘So’ 

or Soco-Stecoah complex soil, and almost 0.5 for the ‘To’ or boulder Toecane-Tusquitee 

complex soil and the Ow soil). This indicates that the Rfo and Rfd values are now mostly 

below 0.5: Rfo means are now at 0.36 for 2004, 0.42 for 2011 and 0.37 for overall, while f 

means have now reached 0.37 for 2004, 0.44 for 2011 and 0.38 for overall. Hence, it follows 

that 1 − Ac is also mostly below 0.5 and closer to zero (as desired) than to 1. In other words, 

the calibration procedure has resulted in accuracy (Ac) values closer to 1.

Next, we look at the initial conditions. Fig. 6a shows the distributions for the steady pre-

storm infiltration rate (IZLT), which is the only parameter that differs in value between 
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uncalibrated simulations forced with Stage IV, V7 and NLDAS-2, respectively. For 

uncalibrated distributions, NLDAS-2 (red) means and standard deviation ranges are mostly 

lower than those for Stage IV (green) and V7 (blue). Similarly, Stage IV calibrated 

distributions (black) have also shifted towards lower values when compared to Stage IV 

uncalibrated distributions. In other words, our assumption of upper-bounding the IZLT 

distribution at half of the maximum rainfall rate is an overestimation (refer Section 3.3.4 on 

initial conditions). Fig. 6b shows that the calibrated distributions for the normalized initial 

depth to the water table (dinit) have substantially lower means than those for the Stage IV 

uncalibrated distributions (there is reduction by 0.28 for 2004, 0.37 for 2011, and 0.29 for 

overall). Calibration has also reduced the standard deviational uncertainty in the normalized 

dinit, by 0.07 for 2004, 0.14 for 2011 and 0.08 for overall. This indicates that the soil 

columns clearly are substantially wetter than in our assumed uncalibrated dinit distributions.

Depending on the parameter considered, the Stage IV uncalibrated distribution means can be 

underbiased or overbiased when compared to the calibrated means. For example, Fig. 7a 

shows calibration correcting the example geotechnical parameter of the effective cohesion (c
′) towards lower means (the normalized values have reduced by 0.15 for 2004, 0.08 for 2011 

and 0.14 for overall). Subjectively considering a minimum reduction in normalized means 

by more than 0.05 for overall, the other TRIGRS parameters that are corrected towards 

lower means are the soil friction angle for effective stress (ϕ′: reductions by 0.05 for 2004 

and overall, and 0.02 for 2011), and the specific storage (Ss: reductions by 0.05 for 2004, 

0.08 for 2011 and 0.06 for overall). Similarly considering a minimum increase in normalized 

means by more than 0.05 for overall, the TRIGRS parameters corrected towards higher 

means (not shown) are the geomorphologic parameters of the depth to bedrock (Zmax: 0.11 

for 2004 and overall, and 0.06 for 2011) and the slope (δ: 0.09 for 2004, 0.05 for 2011 and 

0.08 for overall). The remaining parameters do not show noticeable change due to 

calibration by having deviation in the normalized means that is less than our subjective 

threshold of 0.05 for overall. Fig. 7b shows calibration leaving the distribution 

characteristics for such an example hydraulic parameter like the saturated soil moisture 

content (θs) almost unchanged. Other parameter means that were relatively unchanged are 

the hydraulic parameters like the residual soil moisture content (θr), the saturated hydraulic 

conductivity (Ks) and the inverse of the capillary rise (α), and the geotechnical parameter of 

the unit weight of soil (γs). These uncalibrated distributions for these unchanged parameters 

have been derived from SSURGO and ROSETTA for the hydraulic parameters, and 

NAVFAC DM 7.01 manual [40] for γs, indicating the high accuracy of these sources and 

low sensitivity of Fs to γs.

For standard deviational uncertainty of the normalized distributions, we similarly consider a 

subjective threshold change of 0.025 due to calibration so that the corresponding threshold 

change in spread is 0.05 (the spread spanning either side of the mean is twice the standard 

deviation). Considering standard deviational uncertainty of the hydraulic parameters, we find 

that the change is below this threshold, as in the changes reported above for the 

corresponding normalized means (but now Ss also shows negligible change in the standard 

deviational uncertainty). Parameters that exhibit changes more than the standard deviation 

threshold are the geotechnical parameters of c′ (increase by 0.08 for 2004 and overall, and 

0.06 for 2011), ϕ′ (increase by 0.03 for 2004 and overall, and 0.02 for 2011) and γs (a 
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consistent increase by 0.3 for 2004, 2011 and overall), and the geomorphologic parameter of 

Zmax (increase by 0.04 for 2004 and 0.03 for overall but decrease by 0.02 for 2011). The 

mostly slight increase of standard deviation for these parameters shows that calibration has 

corrected their uncalibrated distributions towards flatter ones.

In general, the changes in the normalized means and standard deviations reported above now 

enable us to answer our research question about changes in parameter distributions due to 

calibration: calibration is typically not required for the hydraulic parameters derived from 

SSURGO and ROSETTA. Geotechnical and geomorphologic parameters requiring 

calibration to correct both the mean bias and the standard deviation are c′, ϕ′ and Zmax. 

Additionally, geomorphologic δ requires some correction to the mean and geotechnical γs 

requires some correction to the standard deviation.

4.6 Modeled response for ranges of elevation and slope

To determine the relative sensitivity of model results to differences in elevation or slope, we 

group the characteristics of the calibrated model response distributions by elevation or slope 

ranges. Instead of grouping the elevations for all sites into equal-interval bins as is typically 

done for obtaining the ranges, we group the sites into equal-frequency bins [67] so that the 

range varies among these bins. Such adaptive binning avoids relative undersampling-based 

erroneous statistics for any bin, essentially becoming optimized estimators of information 

for constructing histograms [68–69].

Considering grouping of sites by elevation ranges, Fig. 8a for null periods shows the 

response means or FPRs being desirably below the 0.5 threshold. However, Fig. 8b for 

landslide periods (where desirable performance is above the 0.5 threshold) shows a clear 

trend for V7 and NLDAS-2 rains of modeled response values moving towards zero at the 

highest elevation ranges. In fact, these rain sources mostly give response mean values close 

to zero for the highest elevation bin having a range of 5062–5828 ft, meaning that this range 

mostly contains simulation outputs where slopes are stable for both the null and landslide 

periods. Satellite rainfall estimates can have difficulty resolving orographically enhanced 

rainfall in higher elevations due to the warm rain processes typical in these environments, 

which essentially can cause the satellite to underestimate the rainfall associated with the 

brightness temperatures of these types of storms relative to comparable precipitating systems 

in flat terrain [70–72]. The satellite estimates can be further biased due to the limited gauge 

network within higher elevations and complex topography that is used to calibrate the V7 

research product. Finally, the coarser spatial resolution of the V7 and NLDAS-2 products 

may impact the accurate characterization of local heterogeneities (e.g. higher localized 

rainfall values) in complex terrain.

Delving into the effect of elevation, the highest elevation range of 5062–5828 ft covers 17 

sites. Out of these, a dominant number of 13 sites (or 76 % of the sites) have recorded slope 

failure occurring during the 2011 period of poor rain data quality for V7 and NLDAS-2 

(refer to Section 4.1). The next highest elevation range of 4600–5062 ft has a more balanced 

proportion of 8 out of a total of 18 sites (or 44% of the sites) where slope failures were 

recorded during 2011. This corresponds to the modeled response near 0.5 for V7 and 

NLDAS-2 in this elevation range showing less domination by the 2011 rains (Fig. 8b). 
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Similarly, the third-highest elevation range of 4230–4600 ft containing the remaining 4 of 

the total of 22 sites with 2011 rains has a low proportion of the total 16 sites (4/16 = 25%), 

and this is reflected in the response means for V7 and NLDAS-2 being even closer to 1 than 

higher elevation ranges. This strongly suggests the relationship between higher elevations 

and poorer rain data quality for V7 and NLDAS-2 during the 2011 period. Therefore, we can 

now answer our research question on the connection between elevation and modeled slope 

failure: higher elevations can impact rain data quality for V7 and NLDAS-2, which can 

significantly decrease the success of corresponding landslide simulations within these 

regions.

Fig. 9 showing the responses for different slope bins reflects no clear trend in the response 

means or TPRs (i.e., 1-FNRs) per Fig. 9b. The 34–35° bin where both V7 and NLDAS-2 are 

below the 0.5 threshold has a total of nine sites. Five of these sites (or 56 % of the sites) have 

rains that occurred in 2011. The 26–29° and 29–31° bins each have the V7 rain response 

means just below 0.5 even though the corresponding NLDAS-2 values are above 0.5. These 

two bins each have a total of 13 sites, out of which 5 sites (or 31% of the sites) showed 

failure during the 2011 rains. The 33–34° bin where both V7 and NLDAS-2 show response 

means close to but above 0.5 has 5 sites that showed failure in 2011 out of a total of 16 (or 

31% of the sites). Remaining sites showing failure during rains in 2011 are situated in the 

31–33° bin (3 sites out of total of 17, or 18% of the sites) and the 39–41° bin (1 site out of a 

total of 15, or 7% of the sites).

5. DISCUSSION

The research question addressed in this paper is the extent to which coarser resolution rain 

products like V7 or NLDAS-2 can be used in lieu of finer resolution data like gauge or Stage 

IV within a deterministic slope stability model. The results of this study demonstrate that for 

hillslope scale evaluation of slope stability via deterministic simulation (single parameter 

vector), only a finer resolution product like Stage IV may consistently and accurately resolve 

slope failures. However, the results also show that for particular cases, such as the 2004 

storms that do not have the loss in data quality associated with factors like higher elevations, 

the V7 and NLDAS-2 rainfall estimates show promise in providing comparable results to the 

‘truth’ used to resolve slope failure. The 2011 storm occurred at the higher elevations where 

V7 and NLDAS-2 rainfall data quality was greatly compromised due to orographically 

enhanced rainfall for warm rain processes. This type of rainfall is particularly difficult to 

determine accurately due to underestimation of brightness temperatures, the limited gauge 

network in complex topography and the coarser spatial resolution that does not characterize 

very well local heterogeneities in complex higher-elevation terrain as finer resolution 

products do.

In this study, we investigate this and related research questions using numerical simulation 

with an ensemble of parameter vectors derived from Bayesian inference using as our 

reference the Stage IV rainfall product with relatively fine spatial resolution. We find that the 

results are dependent on the quality of the rainfall data which tends to degrade at higher 

elevations. There is hardly any sensitivity to rainfall product during periods with adequate 

V7 and NLDAS-2 precipitation estimates. For those periods, these two rainfall products are 
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of sufficient quality to warrant landslide prediction. However, the accuracy with which V7 

and NLDSA-2 simulate hillslope stability deteriorates rapidly during periods where the peak 

rainfall values associated with a landslide-triggering storm are entirely or predominantly 

missed by the two products, which this study finds as being more prevalent at higher 

elevations.

While results suggest that overall V7 and NLDAS-2 may provide comparable performance 

to Stage IV if implemented at lower elevations within our study region, an improvement in 

two areas can make modeled response reliably insensitive to rainfall product: (i) 

improvement in quality of data from coarse resolution rain data sources towards acceptably 

low error at higher resolutions, and (ii) many more periods of recorded landslide 

observations (and over more regions) to provide further credence to characterize dependence 

on elevation of the trend in rainfall error and consequent modeled response. Also, the 

requirement of TRIGRS calibration in this study points to the importance of improvement in 

uncalibrated parameter distributions using in situ geomorphologic measurements of the 

depth to bedrock, and in research into the development of pedotransfer functions for 

geotechnical parameters.

To the best of our knowledge, our study is the first to simultaneously consider spatial 

variation of uncertainty in hydraulic, geotechnical and geomorphologic parameters over 

multiple locations in a region. The application of a physically based TRIGRS model in this 

study in an unsaturated and finite-depth mode is in contrast with most earlier studies where 

only saturated or quasi-saturated conditions were simulated in the soil profile following the 

historical legacy of slope stability modeling (e.g., [14]).

Our study also introduced a likelihood function that can be used to evaluate binary model 

output over a spatiotemporal domain. This function is continuous and combines information 

from landslide and null periods to improve parameter estimation and spatiotemporal 

characterization of slope stability. This likelihood function is easy to implement and use and 

can be applied to a suite of other simulation models, be it physically based or empirical, 

point-based or spatially distributed, or event-based or continuous. The selection of null and 

landslide periods is easily automatable for continuous simulation models and for event-

based models that have the flexibility to start in the dry days leading up to a storm event or 

at the onset of rainfall. The proposed likelihood function may also be of use to other 

applications with categorical data, for example, in hydrologic hazards like semiarid 

flashflood modeling where events can be scarce and the discharge volume above some 

threshold is of interest. The likelihood function can be refined per our suggestions to further 

improve search efficiency and reduce as much as possible the required computational budget 

for parameter estimation. This would simplify the calibration of CPU-intensive, distributed, 

hillslope stability models, which is of particular importance in large-scale applications.

Note that the sensitivity tackled in this paper is the sensitivity to nominal discrete categories 

(i.e., not having any progression or rank between them) like rain data sources, and this type 

of sensitivity approach typically involves comparing the simulations between the categories. 

This is different from the typical sensitivity analyses done in literature on cardinal numbers 

(i.e., indicating quantity) that can be continuous or discrete in nature. Ensemble-based 
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sensitivity analyses of this latter type of sensitivity analyses are usually fixed-sampling 

approaches like regionalized and globalized sensitivity approaches that sample from 

distributions of the cardinal variables to give some information of contributions of the 

different factor uncertainties to the uncertainty in the continuous output (e.g., [85, 66]). For 

discrete output observations as in our study that have not been converted to continuous 

values and so essentially constitute a mapping problem, the relevant type of approaches 

include the example Classification and Regression Trees (CART) procedure (e.g., [11]). This 

CART procedure considers only the binary response to optimize towards a high percentage 

of failed or stable slopes, and leads to determination of a parsimonious classification tree 

and its combinations of critical thresholds from the uncalibrated distributions of the model 

parameters.

We hope that our use of a large number of sites and stochastic simulations in this study helps 

to advance progress in the field of dynamic modeling of landslides. Additional studies over 

other regions and where further consideration of uncertainties in the rain forcing and even in 

model structure are needed to advance potential applications of satellite estimates within 

these types of model studies.
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Fig. 1. 
Map of North Carolina showing landslide sites considered in this study from the NCGS 

geodatabase, and the monitoring locations. Elevation data from https://

hydrosheds.cr.usgs.gov/dataavail.php.
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Fig. 2. 
Time series of rain (solid lines; left y-axis label) and time-cumulative rain (dotted lines: right 

inverted y-axis label) averaged across sites during selected null and landslide periods in 

2004 (subplot a) & 2011 (subplot b). Subplot b shows possible event-based rainfall errors in 

the V7 and NLDAS-2 in 2011 reflected by higher rain volumes during their null periods than 

during the landslide period.
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Fig. 3. 
Characteristics of mean and standard deviation-defined range for binary response 

distributions from uncalibrated parameter sets grouped by Musym soils, landslide event year 

and overall (the latter two form the rightmost three x-axis values). Subplot (a) is for null 

periods where failure is assumed to not have occurred and so y-axis values close to zero are 

desirable; subplot (b) is for the recorded slope failure period and so y-axis values close to 

one are desirable. Circle (see legend) represents the mean for the distribution, vertical line 

bounded by plus signs represent one standard deviation on either side of mean. Dashed line 

at the y = 0.5 threshold helps interpret whether any response value (or mean) is closer to 0 or 

to 1. Per Section 3.5, the means in Subplots (a) are also the False Positive Rates (FPR), and 

in (b) are also the True Positive Rates (TPR) or the complement of the False Negative Rates 

(FNR).
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Fig. 4. 
As in Fig. 3 but for response distributions from calibrated parameter sets.
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Fig. 5. 
Distribution characteristics for hyperparameters Rfo (top subplot) and Rfd (bottom subplot) 

grouped by Musym soils, landslide event year and overall (the latter two form the rightmost 

three x-axis values). Characteristics before calibration are shown by black solid lines for 

mean and black dashed lines for range bounded by 1σ, while those after calibration are 

shown by green circles for mean and green plus signs for range bounded by 1σ (σ is the 

standard deviation).
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Fig. 6. 
Distribution characteristics for initial conditions grouped by Musym soils, landslide event 

year and overall (the latter two form the rightmost three x-axis values). Subplot (a) shows 

both the uncalibrated (Stage IV, TMPA V7 and NLDAS-2) and the Stage IV-calibrated IZLT 

distribution. Subplot (b) shows the Stage IV calibrated and uncalibrated versions of the 

normalized dinit distribution.
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Fig. 7. 
Distribution characteristics for example parameters grouped by Musym soils, landslide event 

year and overall (the latter two form the rightmost three x-axis values). Subplot (a) shows 

the uncalibrated distribution needing to be shifted toward lower values of effective cohesion 

(c′) for desirable simulations. Subplot (b) shows the distribution almost unchanged from 

calibrated to uncalibrated distributions for the saturated soil water content (θs).
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Fig. 8. 
As in Fig. 4 but for site groupings by elevation ranges. Subplot (b) shows degradation in 

modeled response for V7 and NLDAS-2 against Stage IV for the highest elevation ranges.
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Fig. 9. 
As in Fig. 8 but for site groupings by slope ranges.
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Table 1

SSURGO Musym soils (ref. Section 2.4) at the NCGS-recorded failure sites used, with the ones also present at 

the monitoring locations shown in bold.

Musym soil Descriptive name

Ac Ashe-Cleveland-Rock outcrop complex, very stony/rocky

Ar Arkaqua loam, frequently flooded; Ashe-Cleveland-Rock outcrop complex, very bouldery

Bu Burton-Craggey-Rock outcrop complex, windswept, stony

Bw Burton-Wayah complex, windswept, stony

Bx Burton-Craggey-Rock outcrop complex, windswept, very bouldery

Ca Cashiers gravelly fine sandy loam

Cd Chandler (gravelly) fine sandy loam; Cataska-Sylco-Rock outcrop complex, very stony

Ch Cheoah channery loam, stony; Chestnut-Ashe complex, very stony

Ck Chestoa-Ditney-Rock outcrop complex, very bouldery; Cheoah-Jeffrey complex, very rocky; Chestnut-Edneyville complex, 
stony

Cn Chestnut-Edneyville complex, windswept, stony

Cp Cleveland-Chestnut-Rock outcrop complex, windswept

Cr Craggey-Rock outcrop-Clingman complex, windswept, rubbly

Cs Cullasaja very cobbly loam, very stony

Ct Cullasaja very cobbly loam, extremely bouldery; Cullasaja-Tuckasegee complex, very stony;

Cu Cullasaja-Tuckasegee complex, stony

Cx Craggey-Rock outcrop-Clingman complex, windswept, rubbly

Du Ditney-Unicoi complex, very rocky

Ed Edneyville-Chestnut complex, stony

Ev Evard-Cowee complex, stony / moderately eroded

Ew Evard-Cowee complex, stony

Fa Fannin fine sandy loam

Hc Heintooga-Chiltoskie complex, stony

Oc Oconalufee channery loam

Ow Oconalufee channery loam, windswept

Pw Plott fine sandy loam, stony

Rk Rock outcrop-Cleveland complex, windswept

Sn Saunook loam

So Soco-Stecoah complex

Sr Statler loam, rarely flooded; Spivey-Santeetlah complex, stony

Ss Spivey-Santeetlah-Nowhere complex, very stony; Spivey-Santeetlah complex, very stony

Sy Sylco-Soco complex, stony

Sz Sylco-Soco complex, very stony

To Toecane-Tusquitee complex, boulder

Uk Unaka-Porters complex, very rocky
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Table 2

Uncalibrated parameter distributions. Standard deviation is denoted by σ.

Parameter Symbol Type Distribution Source
a
Bayes 

Merge?
Bounds

1 saturated soil water 
content

θs

Hydraulic

Normal ROSETTA b
Y 4σ

2 residual soil water 
content

θr Normal ROSETTA b
Y 4σ

3
vertical satd. 
hydraulic 
conductivity

Ks Lognormal ROSETTA b
Y 4σ

4 specific storage Ss Uniform Baum et al. [2010] b
N 0.005–0.5 m−1

5 inverse of capillary 
rise α Lognormal ROSETTA b

Y 4σ

6 unit weight of soil γs

Geotechnical

Normal ROSETTA + NAVFAC DM 
7.01

b
Y 8σ

7 cohesion for 
effective stress c′ Normal

ROSETTA + 
www.geotechdata.info

b
Y 8σ

8 friction angle ϕ′ Normal b
Y 6σ

9 topographic slope δ Geomor 
phologic

Normal NCGS, else LiDAR - 6σ

10 depth to bedrock Zmax Normal regression to slope - 6σ

11 initial depth to water 
table

dinit

Initial condition

Uniform - -
dinit,Fs = 1 − Zmax 

or 0−Zmax Per 
eqn [20]

12 pre-storm steady 
infiltr. Rate

IZLT Uniform rain data -
0−(0.5 of max. 
rain {landslide, 
null periods})

13 false omission rate Rfo Hyperpa 
rameter

Uniform - - 0–1

14 false discovery rate Rfd Uniform - - 0–1

a
Bayesian merging with information from monitoring locations

b
Y/N: Yes/No
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Table 3:

Ranges used in this study for geotechnical parameters over soil texture classes at the landslide sites. Missing 

property range information for texture types in the NAVFAC DM 7.01 or www.geotechdata.info sources have 

italics font and are filled in or generated here as union of available property ranges for neighboring soil texture 

classes in the soil texture triangle. Bottom row range gives the assumed equivalent in terms of the standard 

deviation for the normal distribution.

Soil texture class ▼ γs range (lb/ft3) c′ range (Pa) ϕ′ range (°)

Loam 81 – 147 10,000 – 20,000 28 – 32

Loamy sand 84 – 148 10,000 – 20,000 31 – 34

Sandy loam 84 – 148 10,000 – 20,000 25 – 34

Normal distribution range ► 6σ 6σ 4σ

Note: Ranges in italics are generated as union of ranges of neighboring soil texture types in the soil textural triangle. E.g., the ϕ′ value range of 25–
34° for sandy loam covers the ϕ′ value ranges for loamy sand (31–34°), sandy clay loam (31–34°), loam (28–32°) and silty loam (25–32°).
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