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Network evolution of regional brain 
volumes in young children reflects 
neurocognitive scores and mother’s 
education
Yidong Zhou 1*, Hans‑Georg Müller 1, Changbo Zhu 2, Yaqing Chen 3, Jane‑Ling Wang 1, 
Jonathan O’Muircheartaigh 4,5,6, Muriel Bruchhage 7,8,9, Sean Deoni 10 & RESONANCE 
Consortium *

The maturation of regional brain volumes from birth to preadolescence is a critical developmental 
process that underlies emerging brain structural connectivity and function. Regulated by genes and 
environment, the coordinated growth of different brain regions plays an important role in cognitive 
development. Current knowledge about structural network evolution is limited, partly due to the 
sparse and irregular nature of most longitudinal neuroimaging data. In particular, it is unknown 
how factors such as mother’s education or sex of the child impact the structural network evolution. 
To address this issue, we propose a method to construct evolving structural networks and study 
how the evolving connections among brain regions as reflected at the network level are related to 
maternal education and biological sex of the child and also how they are associated with cognitive 
development. Our methodology is based on applying local Fréchet regression to longitudinal 
neuroimaging data acquired from the RESONANCE cohort, a cohort of healthy children (245 females 
and 309 males) ranging in age from 9 weeks to 10 years. Our findings reveal that sustained highly 
coordinated volume growth across brain regions is associated with lower maternal education and 
lower cognitive development. This suggests that higher neurocognitive performance levels in children 
are associated with increased variability of regional growth patterns as children age.

The maturation of the human brain during early development requires coordinated growth of different brain 
regions over time. While the total brain volume is around 80% of the adult volume at 2 years of  age1, there are 
substantial differences across specific brain regions that mature at different speeds. Advances in neuroimaging 
techniques, including postprocessing procedures of regional parcellation, have made it possible to quantify the 
volumes of specific brain areas. Brain networks, i.e., networks with brain regions as nodes and regional connec-
tions as edges, provide a unique perspective in modeling and understanding the structure and functioning of 
brains using graph theoretical analysis  approaches2. Various types of brain networks and specifically structural 
covariance networks (SCNs)3,4 were widely investigated using diffusion  MRI5 or structural MRI  data6. For the 
latter, brain regional connections are typically derived from correlations of cortical  thickness7–9 or  volume10–12.

Postnatal human brain development, especially from birth to the onset of adolescence, is increasingly recog-
nized to play an important role in establishing life-long cognitive  abilities13 and  behaviors14. Furthermore, early 
maturational processes have been shown to be accompanied by functional changes of brain networks at  rest15. 
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While there is very little work investigating network features of structural brain evolution during early brain 
development, even fewer studies utilize longitudinal data. This could be partly due to data sparsity as a result of 
difficulties with image acquisition in very young children and limited methodology to construct networks that 
reflect the growth dynamics of brain regions. As a result, much of the existing literature has been focused on 
cross-sectional analyses, typically considering only a limited number of pre-specified age bins to study differences 
in brain structure with  age5,6,11. Our study is motivated by the need for methodology to assess the specific impact 
of subject-specific factors on the evolution of SCNs and specifically to assess the impact of sex and maternal 
education. The latter are known to be associated with general brain and cognitive development, while their 
effect on SCN evolution has remained unknown. Previously, the SCN corresponding to a specific age bin was 
estimated by pooling data recorded within that age  bin9,10, where potential bias may be introduced since actual 
ages of measurements were not utilized. Additionally, previous longitudinal studies suffered from small sample 
sizes that may lead to considerable random fluctuations.

There is a large literature concerning the influence of genes and environment on brain structure and 
 function16,17. Sex differences in brain structure and function have been well documented at birth and in postna-
tal  development4. Maternal  education18, a central aspect of socioeconomic  status19, has been shown to play an 
important role in language development, reading, and education  attainment20. However, the factors that influence 
evolving SCNs during brain maturation have received little attention and are poorly understood. This study aims 
at filling this gap in current knowledge.

While previous studies have shown that early and prolonged changes in brain volume, shape, and growth are 
associated with cognitive  development13, much remains unknown. While one  study9 connected time-varying 
SCNs to a motor task response time, no previous studies assessed the relation of overall cognitive development, 
such as scores in the Mullen Scales of Early  Learning21 with evolving structural brain networks. To further 
our understanding of the regulating mechanisms of brain maturation during childhood, it is vital to close the 
existing gaps in knowledge, especially how developing SCNs are associated with sex, maternal education, and 
cognitive development.

Recent neuroimaging studies have demonstrated that SCNs can be meaningfully characterized by modularity 
and global  efficiency3,4.  Modularity22 is a measure of network segregation. Larger values of modularity reflect high 
connectivity between nodes within the same modules and low connectivity between nodes that belong to different 
modules. Global  efficiency23 is a scaled measure of how many steps it takes when moving through the network 
from one node to another, where higher efficiency means that on average fewer steps are needed. Modularity and 
global efficiency are widely used to characterize brain networks. These summary measures are especially useful to 
quantify time-varying changes in SCNs and thus can be used to assess the network evolution of brain  volumes9.

We adopt here a methodology that was previously introduced in Petersen et al.24 and is aimed at obtaining 
time-varying structural covariance using local Fréchet  regression25,26. This approach has been shown to lead to 
consistent estimation of the cross-sectional time-varying covariance structure, even in very sparse cases, where 
each subject is visited at only one random age and, specifically, when these ages are different for each subject, 
as is invariably the case in neurodevelopmental studies. The Fréchet estimation approach overcomes difficul-
ties caused by the sparsity and irregularity of the data and makes it possible to obtain the structural covariance 
matrix at any age of interest.

In this paper, we construct time-varying SCNs for 554 children from 9 weeks to 10 years of age using brain 
volumes extracted from structural MRI data, and investigate the temporal evolution of these networks using 
modularity and global efficiency. We study here how the time co-evolution of brain volumes and the ensuing 
SCNs are related to the biological sex of the child and the education level of the mother, and also their associa-
tion with cognitive development as represented by the Mullen ELC scores. Further details on demographics, 
MRI acquisition and analysis, network measures, dynamic brain structural covariance network modeling, local 
Fréchet  regression25,26, inference using permutation tests, and statistical analyses are described in “Methods”.

Results
Sex and maternal education effects. The total sample was divided into four groups using sex and mater-
nal education to study their effects on the evolution of SCNs. The four groups are females with low maternal edu-
cation, females with high maternal education, males with low maternal education, and males with high maternal 
education. For each group, the estimated SCNs at different ages were obtained using local Fréchet regression; see 
“Methods” for details. SCNs at ages 1, 3, 5, 7, 9 years using threshold θ = 0.8 are demonstrated as heatmaps in 
Fig. 1, where columns correspond to the four groups and within each column the SCNs are arranged according 
to age. See the supplementary material S1 for a circular visualization of the same SCNs.

We observe from Fig. 1 that the 91 ROIs (for details see supplementary material S1) separate with increasing 
age into two communities: a small community in top left and a large community in bottom right. This trend is 
more pronounced for children with a high maternal education. The two communities are found to coincide with 
the non-cortical and the cortical area of the brain, respectively. The cortical area consists of 31 regions from the 
left hemisphere and 31 regions from the right hemisphere.

To assess the statistical significance of sex and maternal education effects on the evolution of SCNs, permuta-
tion tests were applied at ages 1, 2, . . . , 9 years, using modularity and global efficiency with Q = 5000 . The testing 
procedure is described in “Methods” and corresponding p-values are reported in the first two columns of Table 1. 
Recall that the test statistic is defined as the integral of average network measure over age tj to tN (specifically, 
tN = 9 in our analysis) while conducting permutation tests at age tj . We are thus essentially testing whether the 
sex and maternal education effects are significant starting age tj , rather than solely at age tj . We observe that the 
sex and maternal education effects are significant with p < 0.05 with respect to modularity at the later childhood 
period (age 6, 7, 8, 9 years). Specifically, for ages 7 and 9, the effects are significant with p < 0.01 . However, none 
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of the tests are significant with respect to global efficiency. Modularity is a measure of network segregation, while 
global efficiency in contrast is a measure of network integration. This suggests that sex and maternal education 
shape the evolution of SCNs more on their segregation than on their integration aspects.

To better understand the effects of sex and maternal education on the evolution of SCNs, a plot of modularity 
for the four groups at the nine ages is shown in Fig. 2. It can be seen that the effect of maternal education on the 
evolution of SCNs is much more pronounced than that of sex with respect to modularity. As a complementary 
analysis, we assessed the significance of maternal education effects for females and males separately, using 
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Figure 1.  SCNs represented as heatmaps at ages 1, 3, 5, 7, 9 years for the four groups divided by sex and 
maternal education. Rows from top to bottom correspond to the five ages. Columns from left to right 
correspond to the four groups: females with low maternal education, females with high maternal education, 
males with low maternal education, males with high maternal education. The top left block contains the non-
cortex regions, while the bottom right contains the left and right cortex regions; see supplementary material S1 
for details of ROIs.
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Table 1.  p-values for the permutation tests assessing the sex and maternal education effects and cognitive 
development association with the evolution of brain region volumes based on modularity and global efficiency, 
where p-values less than 0.05 are emphasized in bold.

Age

Sex and maternal education Cognitive development

Modularity Global efficiency Modularity Global efficiency

1 0.072 0.434 0.067 0.035

2 0.051 0.440 0.056 0.030

3 0.084 0.467 0.055 0.028

4 0.063 0.545 0.107 0.050

5 0.063 0.541 0.142 0.042

6 0.013 0.200 0.138 0.020

7 0.008 0.088 0.087 0.003

8 0.012 0.215 0.099 0.004

9 0.009 0.430 0.107 0.003

* * * * * * ** * **

Female Male
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Figure 2.  Modularity of SCNs at ages 1–9 for the four groups divided by sex and maternal education. 
Significance of differences is indicated separately for each comparison (*0.05, **0.01).

Table 2.  p-values for the permutation tests assessing the maternal education effects on the evolution of brain 
region volumes within females and males based on modularity and global efficiency, where p-values less than 
0.05 are emphasized in bold.

Age

Maternal education within 
females

Maternal education within 
males

Modularity Global efficiency Modularity Global efficiency

1 0.024 0.112 0.342 0.702

2 0.017 0.132 0.309 0.662

3 0.024 0.181 0.337 0.636

4 0.018 0.218 0.320 0.563

5 0.019 0.174 0.520 0.793

6 0.011 0.080 0.510 0.838

7 0.008 0.039 0.355 0.689

8 0.014 0.079 0.188 0.637

9 0.081 0.358 0.034 0.246
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permutation tests, with p-values reported in Table 2. We found that significance with respect to modularity 
is mainly due to the data collected for the  females, which suggests that maternal education shapes the evolution 
of SCNs for females more than for males.

Cognitive development association. We studied the association between cognitive development and 
the evolution of SCNs through local Fréchet regression, where age and ELC score were incorporated as covari-
ates and SCN as the responses. We estimated the time-varying SCNs at three different levels of cognitive devel-
opment (ELC scores 80, 100, 120), where for each level ages 1, 2, . . . , 9 years are considered. SCNs at ages 1, 3, 5, 
7, 9 years using threshold θ = 0.8 are demonstrated as heatmaps in Fig. 3, where each row contains three SCNs 
corresponding to three different ELC scores and each column contains five SCNs at the five highlighted ages. See 
the supplementary material S1 for a circular visualization of the same SCNs. We observe from Fig. 3 that highly 
correlated volumes are associated with lower Mullen scores, especially at later ages.

Similarly as for sex and maternal education, permutation tests were performed to assess the significance of 
the association between cognitive development and the evolution of SCNs. Specifically, the original sample was 
permutated Q = 5000 times and the permutation test as described in “Methods” was conducted at ages 1–9, one 
year apart. The p-values are reported in the last two columns of Table 1. It can be seen that the association between 
cognitive development and the evolution of SCNs is significant with respect to global efficiency at the level of 
0.05 at ages from 1 to 6 and at the level of 0.01 at ages from 7 to 9. However, none of the tests are significant with 
respect to modularity, which suggests that the association between cognitive development and the evolution of 
SCNs is mainly an association with network integration.

Global efficiency of the time-varying SCNs for the three ELC scores is shown in Fig. 4. It suggests that lower 
level of cognitive development is associated with higher global efficiency, implying greater network integration. 
More importantly, the three curves in the plot are almost perfectly separated, indicating significant association 
between cognitive development and the evolution of SCNs.

Discussion
In this study, we investigated how evolving SCNs are associated with biological sex, maternal education and 
cognitive development (ELC score). Highly coordinated brain volume growth was found to be associated with 
lower maternal education as well as with lower level of cognitive development. These differences were particu-
larly present in older children at ages 7–9, and at early ages for cognitive development. Our results indicate that 
biological sex and maternal education shape the evolution of SCNs more on their segregation, while cognitive 
development as measured by the ELC scores is primarily associated with network integration. While sex and 
maternal education have significant effects at ages 6–9, the association between cognitive development and 
the evolution of SCNs is significant throughout childhood (ages 1–9). The effect of maternal education on the 
evolution of SCNs was shown to be more pronounced than that of sex with respect to modularity. In addition, 
follow-up permutation tests revealed that maternal education shapes the evolution of SCNs for females more 
than for males.

The impact of sex and maternal education on the evolution of SCNs can be quantified by modularity. More 
modular networks are thought to specialize in information  processing27, to perform focal  functions28 and to sup-
port complex neural  dynamics29, suggesting more specialized functions of these networks. In Fig. 2, we observe 
that at high maternal education levels, network modularity increases for males across ages, with some fluctuations 
at early and later ages, while the effect flattens out after age 5 for females. For the case of low maternal education, 
network modularity decreases after age 6 for both females and males. For males, we observe that the modularity 
of SCNs follows an inverted U-shaped curve during infancy, with the modularity of 2-year-olds being higher 
than that of 1-year-olds and 3-year-olds. This descriptive pattern lends support to previous findings in Fan et al.10 
that the strength of network segregation of SCNs during infancy peaks at age 2.

After age 3, network modularity tends to increase until age 7, followed by a decrease, which is in line with 
previous  work7 reporting that the strength of network segregation reaches its highest values at 6–7 years of age. 
This might be related to the start of schooling. Females display similar patterns but with a two-year lag ahead, 
which is in line with previous findings that females’ brains integrate and shape themselves two or three years 
earlier than those of  males30. Compared with low maternal education, high maternal education is associated with 
higher modularity and exhibits a slightly different pattern over the last two years. The effect of maternal education 
seems to differ between males and females, mostly manifested in the low maternal education category after age 
5. The supplementary analysis S1 as shown in Table 2 suggests that maternal education has a greater impact on 
the evolution of SCNs for females than males in terms of modularity. In a previous  study31, the authors showed 
that lower SES is associated with worse behavioral inhibition over time and a concurrent increase in anterior 
cingulate activation, but only in females. Additionally, evidence shows that SES interacts with sex on mental 
health, where females benefit more from higher SES in terms of improved mental  health32.

Permutation tests revealed that the association between cognitive development and the evolution of SCNs is 
reflected by network integration, which was shown to remain significant throughout the age range, especially in 
later childhood. Particularly, lower levels of cognitive functioning were associated with higher global efficiency, 
implying greater network integration. For children with low and average ELC scores, global efficiency displayed 
U-shaped curves during infancy, with the global efficiency of 2-year-olds being lower than that of 1-year-olds and 
3-year-olds. Up to age five, SCNs for children with low and average ELC scores showed similar global efficiency. 
The contrast in global efficiency among all three groups increased sharply at ages seven and beyond, reflecting 
accelerating divergence in brain structure among the three groups after age seven.

The gap in global efficiency between the three groups with different ELC scores is increased in the age 
period of 3-5, when brain growth markedly slows and in the age period 7-9, overlapping in time with schooling. 
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Importantly, Fig. 4 indicates a decrease in global efficiency in the coordination and thus overall cognitive function 
with age for children with high cognitive development. Thus, increased path length (decreased global efficiency) 
could indicate the importance of long-range connections in the brain. In the mammalian brain, the distance 
between cortical regions largely determines the extent to which they are inter-connected33,34, and higher-order 
cognition is mirrored and implemented via distributed cortical networks that are linked via long-range con-
nections in the human  brain35. However, long-range connections are biologically expensive, and it is unknown 
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Figure 3.  SCNs represented as heatmaps at ages 1, 3, 5, 7, 9 years for ELC scores 80, 100, and 120. Rows from 
top to bottom correspond to the five selected ages. Columns from left to right correspond to the three ELC 
scores. The top left block contains the non-cortex regions, while the bottom right contains the left and right 
cortex regions; see supplementary material S1 for details of ROIs.
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how the computational advantages that long-range connections provide overcome the associated wiring costs, 
with sensory/motor networks showing locally clustered connectivity profiles, while more complex transmodal 
association cortices show long-range  connections36,37. While our results do not directly pertain to wiring costs, 
but rather to the tightness of the orchestration of longitudinal growth across brain regions, it is possible that 
the tight coordination that persists in the presence of lower neurocognitive performance is characteristic for 
early brain growth and may indicate less potential for brain differentiation and associated performance. Such 
considerations could indicate that at higher levels of cognitive ability (i.e., a standardized ELC score of 120) more 
long-range connections are present.

The present study benefits from a number of strengths. The Fréchet regression approach makes it possible 
to estimate the structural covariance at any age of interest, rather than at certain pre-specified age bins, which 
overcomes difficulties caused by the sparsity and irregularity of the data. The longitudinal design and large sample 
size allow for more powerful and accurate tests of determinants of brain maturation. Additionally, the present 
study covers a wide range of ages, from 9 weeks to 10 years, supporting the understanding of brain maturation 
during childhood. Several limitations must also be considered. First, we only studied the impact of sex and 
maternal education on brain maturation at the network level. Further research could be conducted to determine 
the precise mechanism by which sex and maternal education mediate brain maturation at the ROI or neuronal 
level. Second, the current study focused on tests based on network measures, rather than the network itself. With 
adequate data, one may construct SCNs using the across-subject correlations of regional volumes and employ a 
network-response regression  approach38 to uncover determinants of brain maturation.

In conclusion, we present a study of the maturation of regional brain volumes using time-varying structural 
brain networks and demonstrate the utility of local Fréchet regression for the estimation of time-varying struc-
tural covariance from sparse and irregular longitudinal neuroimaging data. The developmental pattern of the 
corresponding brain networks contributes to a better understanding of the maturation of the human brain and 
how it interacts with biological sex and maternal education.

Methods
Subjects details and demographics. We included 554 children (245 females and 309 males) in this 
study, ranging from 9 weeks to 10 years of age. All data were drawn from an ongoing RESONANCE longitudinal 
study of healthy and neurotypical brain and cognitive development from early childhood to preadolescence, 
based at Brown University in Providence, RI, USA.  RESONANCE39,40 was designed as an accelerated longitu-
dinal study of a large community cohort of healthy children, with around half of the cohort enrolled between 
the ages of 2 and 8 months, and the remaining children between the ages of two and four years. Children in this 
study are typically enrolled between birth and 2 years of age, and then followed with repeated study visits and 
assessments at 6 or 12-month increments depending on child age. During each visit, multi-modal MRI, perfor-
mance and parent-reported measures of cognitive and behavioral functioning, anthropometry, and biospecimen 
collection were collected. For our analysis, data from 1,025 visits were included. Table 3 shows the number of 
visits per child, where one can see that most children had completed only a single visit. The distribution of ages 
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Figure 4.  Global efficiency of SCNs at ages 1–9 with one year apart for three different ELC scores 80, 100, 120. 
Significance of differences is indicated separately for each comparison (*0.05, **0.01).

Table 3.  Distribution of numbers of visits per child.

Number of visits per child 1 2 3 4 5 6 7 8 Total number of visits

Females 142 60 14 15 11 3 0 0 437

Males 163 71 42 19 6 6 1 1 588
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of visits per child for the 10 females and 10 males with the most visits is illustrated in Fig. 5, which exemplifies 
the irregular design of the study. The histogram for ages of visits for all children is provided in Fig. 6.

Children with known significant risk factors for developmental abnormalities or cognitive impairments were 
excluded from enrollment. Exclusion criteria included: born prematurely (37 weeks) or small for gestational 
age (1500 g), self-reported in utero exposure to alcohol, cigarette smoke, or illicit substances; fetal ultrasound 
abnormalities; complicated delivery resulting in 5-minute APGAR scores of 8 and/or NCU admission; neuro-
logical pediatric disorder (e.g., head injury resulting in loss of consciousness, epilepsy); and known psychiatric 
or learning disorder in the infant, parents, or siblings (including maternal depression requiring medication in 
the year prior to pregnancy).

Ethics statement. The host institutions, Brown University and Lifespan Institutional Review Boards, 
provided ethical approval for this study. All study-related procedures were performed in accordance with the 
research ethics guidelines outlined in the Declaration of Helsinki. Written informed consent was acquired from 
all children’s parents or legal guardians.

MRI acquisition and analysis. For all MR image acquisition, children under 4 years of age were scanned 
during natural and non-sedated sleep and older children were imaged whilst watching a movie or other video. 
Our imaging protocol included relaxometry, multi-shell diffusion, resting-state connectivity, and magnetic 
resonance spectroscopy acquisitions in addition to the anatomical data. As a result, depending on child com-
pliance (sleeping and/or motion), high quality anatomical data were not collected or available for every child 
at every scan time-point. Following data acquisition, scans were inspected to ensure there were no motion-
related artifacts and image blurring and ghosting. T1-weighted anatomical data were acquired on a 3T Siemens 
Trio scanner with a 12-channel head RF array. T1-weighted magnetization-prepared rapid acquisition gradi-
ent echo anatomical data were acquired with an isotropic voxel volume of 1.2× 1.2× 1.2 mm

3 , resampled to 
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Figure 5.  A longitudinal event plot demonstrating the distribution of ages of visits per child for the 10 females 
and 10 males with the most visits. Each row corresponds to a child, where dots denote the event times where 
visits took place.
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Figure 6.  Histogram for ages at time of visits for the RESONANCE cohort.
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0.9× 0.9× 0.9 mm
3 . Sequence specific parameters were: TE = 6.9 ms; TR = 16 ms; inversion preparation time = 

950 ms; flip angle = 15 degrees; BW = 450 Hz/Pixel. The acquisition matrix and field of view were varied accord-
ing to child head size in order to maintain a constant voxel volume and spatial resolution across all  ages41. Using 
a multistep registration  procedure42, a series of age-specific anatomical T1-weighted templates were created cor-
responding to 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 42, 48, 60, 72, 84, 96 and 108-month ages. At least 10 females and 
10 males were included in each template. An overall study template was then created from these age templates, 
which was aligned to the MNI152  template43. Each child’s anatomical T1-weighted image was transformed into 
MNI space by first aligning to their age-appropriate template and then applying the pre-computed transfor-
mation to MNI space, with the calculated individual forward and reverse transformations saved and used for 
the volumetric analysis described below. All template creation and image alignment were performed using a 
3D nonlinear  approach44 with cross-correlation and mutual information cost functions. We then applied the 
Desikan-Killiany-Tourville (DKT) cortical labeling protocol, FreeSurfer’s wmparc and aseg non-cortical (plus 
white matter) labels through  Mindboggle45,46, resulting in volumetric output from 96 brain regions. Five regions 
with very small volumes were excluded: left inferior lateral ventricle, left vessel, right inferior lateral ventricle, left 
basal forebrain, and right basal forebrain.

Socioeconomic status and neurocognitive assessments. Alongside neuroimaging data, maternal 
education and cognitive development were also assessed for each child. Maternal  education18, as an important 
component of family socioeconomic  status19, was assigned a numerical value based on the education level of the 
mother. These values were as follows: less than seventh grade = 1; junior high school = 2; partial high school = 3; 
high school graduate = 4; partial college or specialized training = 5; college graduate = 6; graduate training = 7. 
In our analysis, maternal education was transformed to a categorical variable by setting values less than 6 to low 
and high otherwise. Then low maternal education corresponds to a mother without bachelor’s degree and high 
corresponds to a mother with bachelor’s degree. The cognitive development was assessed using a combination 
of observed performance and parent-reported measures, where Early Learning Composite (ELC), a composite 
score combining overall visual, motor, and language functioning from the Mullen Scales of Early  Learning21, 
was used to assess overall cognitive functioning of each child. For the RESONANCE cohort, 60.26% of the 
females and 63.76% of the males have a mother with a bachelor’s degree. The mean and standard deviation of 
the ELC scores for females and males are 101.53 (15.56) and 97.23 (17.04), respectively, with standard deviation 
in parentheses.

Network measures. We constructed simple, weighted, and undirected networks G = (V ,A) with a set 
of nodes V = {v1, v2, . . . , vm} and the associated adjacency matrix A = {aij}

m
i,j=1 , indicating nodes vi and vj are 

either connected by an edge of weight aij > 0 , or else unconnected if aij = 0 . The strength of the network for 
segregation can be quantified by  modularity9,22, a measure of the degree to which the network can be subdivided 
into clearly delineated and nonoverlapping groups. Higher modularity values represent stronger network seg-
regation. Defining s =

∑m
i,j=1 aij as the sum of all weights in G, di =

∑m
j=1 aij as the weighted degree of node vi 

and mi as the module containing node vi , the modularity of the network G47 is

where δmi ,mj = 1 if mi = mj and 0 otherwise. In contrast to modularity, global  efficiency9,23, a measure of the 
ability to rapidly combine specialized information from distributed brain regions, can be used to quantify the 
strength of integration of G. Global efficiency is defined as the average inverse of the weighted shortest path 
length of each node to all other nodes,

where lij is the weighted shortest path length between nodes vi and vj , which is lij =
∑

auv∈gi→j
auv , with gi→j the 

shortest path (geodesic) between nodes vi and vj . Note that lij = ∞ if nodes vi and vj are disconnected. Higher 
global efficiency is indicative of faster information transfer, or equivalently, of greater network integration.

Local Fréchet regression for covariance matrices. To obtain age-specific structural covariance for 
brain regions, we require a regression model with age as covariate and structural covariance as the response. 
Since the space where covariance matrices reside is not a vector space, classical regression models do not apply 
due to the non-Euclidean nature of these objects. Local Fréchet  regression25,26 is a nonparametric regression 
method for responses lying in metric spaces that are coupled with Euclidean covariates; it is well suited for our 
purposes.

Suppose (T ,C) ∼ F is a random pair, where the covariate T takes values in R , the response C is a random 
covariance matrix taking values in Sm , the space of symmetric non-negative definite matrices of dimension m, 
and F is the joint distribution of (T, C) on R×Sm . The conditional Fréchet mean, which corresponds to the 
regression function of C given T = t , is

(1)Q =
1

s

m
∑

i,j=1

(

aij −
didj

s

)

δmi ,mj ,

(2)E =
1

m

m
∑

i=1

∑

j �=i l
−1
ij

m− 1
,
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where dF is the Frobenius metric defined as

for two elements �1,�2 ∈ Sm with the single quote denoting the transpose of a matrix.
Further suppose that {(Ti ,Ci)}

n
i=1 are independent realizations of (T, C). Local Fréchet regression aims to 

estimate the conditional Fréchet mean �(t) as per (3) for t ∈ R by

Here siL(t, h) = 1
σ̂ 2
0
Kh(Ti − t)[b̂2 − b̂1(Ti − t)] , where b̂j = n−1

∑n
i=1 Kh(Ti − t)(Ti − t)j for j = 0, 1, 2 , 

σ̂ 2
0 = b̂0b̂2 − b̂21 , and Kh(·) = h−1K(·/h) with K(·) a smoothing kernel and h a bandwidth.

Dynamic brain structural covariance network modeling. We apply local Fréchet  regression25,26 for 
the case where the responses are raw covariance  matrices24 to obtain estimates for the SCN at a specific age. 
Denote the age domain [0,T] ⊂ R by I and the observed data by i.i.d. pairs {(Ti ,Yi)}

n
i=1 , where Ti ∈ I repre-

sents the age at which the child was examined and Yi ∈ R
m is a vector containing the brain region volumetric 

measurements for m = 91 brain regions of interest (ROIs) extracted from an MR image obtained during visits. 
For details of ROIs see supplementary material S1. Suppose the random pair (T, Y) taking values in I × R

m 
follows the same joint distribution as (Ti ,Yi) for all i. We aim to estimate the time-varying structural covariance 
�(t) = Cov(Y|T = t) , which has been implemented by means of local Fréchet regression  in24. Specifically, the 
starting point are raw covariance matrices given by

where µ̂(·) is the estimate of the conditional mean function µ(·) = E(Y |T = ·) . Estimates of each component 
function µj(·) of µ(·) = [µ1(·), . . . ,µm(·)]

′ can be obtained in a variety of ways, including smoothing splines 
and local polynomial  methods48 or other scatterplot smoothers.

Estimates of the time-varying structural covariance �(t) are obtained by taking Ti as covariates coupled with 
Ĉi as responses in the local Fréchet regression step as per (4),

Estimates of time-varying structural correlations that quantify the dynamic correlations of the 91 brain region 
volumes R̂(t) are then obtained by standardizing �̂(t) , i.e.,

Finally, weight-based  thresholding49 is applied to R̂(t) = {r̂ij(t)}
m
i,j=1 by setting diagonal entries to 0 and retain-

ing only connections surpassing a threshold θ . The resulting so-called adjacency matrices Â(t) = {âij(t)}
m
i,j=1 

uniquely characterize the SCNs at age t. Specifically, âii(t) = 0 for 1 ≤ i ≤ m and

for 1 ≤ i �= j ≤ m . The above estimation procedure essentially enables us to estimate the SCN for any age between 
0 an T. For ease of analysis and presentation, one can choose some representative ages as needed.

Each SCN may be characterized using a variety of network  measures47, among which modularity and global 
efficiency as per (1) and (2) are widely used in the  literature9,50. Since the choice of threshold θ is somewhat arbitrary, 
a range of thresholds is often analyzed to examine the θ-sensitivity of selected network measures. More principled 
approaches include functional data analysis across a range of  thresholds51, as well as integration of a given network 
measure across a range of thresholds, yielding the area under the curve (AUC), and statistical inference is then 
performed on the AUC 52–55. The AUC represents a single summary measure across a range of thresholds, which 
makes it possible to characterize various properties of SCNs independent of the choice of a specific threshold. In 
our analysis, thresholds varying from 0.6 to 0.9 (7 values, 0.05 increments) were examined, where the lower and 
upper bounds 0.6 and 0.9 were chosen to enforce sparsity and avoid fragmentation of the resulting SCNs.

Biological sex‑ and environment‑regulated brain maturation. To investigate how sex (female or 
male) and maternal education (low or high) affect the evolution of brain region volumes, we divided the total 

(3)�(t) = argmin
ω∈Sm

M(ω, t), M(·, t) = E{d2F(C, ·)|T = t},

dF(�1,�2) = ��1 −�2�F = {trace((�1 −�2)
′(�1 −�2))}

1/2,

(4)�̂(t) = argmin
C∈Sm

n
∑

i=1

siL(t, h)d
2
F(C,Ci).

Ĉi = (Yi − µ̂(Ti))(Yi − µ̂(Ti))
′,

(5)�̂(t) = argmin
C∈Sm

n
∑

i=1

siL(t, h)d
2
F(C, Ĉi).

(6)R̂(t) = [diag(�̂(t))]−1/2�̂(t)[diag(�̂(t))]−1/2.

(7)âij(t) =

{

r̂ij(t), r̂ij(t) ≥ θ ,
0, r̂ij(t) < θ ,
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sample into four groups using the above two categorical covariates (or determinants), corresponding to females 
with low maternal education, females with high maternal education, males with low maternal education and 
males with high maternal education, respectively. For each group, local Fréchet regression was applied and the 
predicted correlation matrices R̂(t) are obtained as in (6), which are then converted into SCNs for subsequent 
network visualization and network measure calculation.

Another primary focus of interest is the association between cognitive development and the evolution of brain 
region volumes. By including age and ELC score as covariates (determinants) in local Fréchet  regression25,26, we 
are able to estimate the time-varying SCNs for different ELC scores, corresponding to different levels of cognitive 
development. Denote by Xi = (Ti ,Zi)

′ the two covariates, age and ELC score, for the ith child. The estimation 
of structural covariance �(x) for x = (t, z)′ can be similarly obtained as in (5), i.e.,

where the weight function siL(·, h) takes a slightly different form. Specifically,

where  b̂0 = n−1
∑n

i=1 Kh(Xi − x), b̂1 = n−1
∑n

i=1 Kh(Xi − x)(Xi − x) ,  and b̂2 = n
−1

∑

n

i=1
Kh(Xi − x)

(Xi − x)(Xi − x)′ . The time-varying SCNs for a specific level of cognitive development are then constructed by 
fixing an ELC score and varying ages from 0 to T in the estimation, followed by normalization and thresholding 
as per (6) and (7). In particular, three different ELC scores 80, 100, 120 (corresponding approximately to the 10% , 
50% , 90% quantiles of the sample distribution of the ELC scores) corresponding to low, average, high levels of 
cognitive development were considered. For each level of cognitive development, the estimation of time-varying 
structural covariance was obtained as per (8) by varying t and fixing z as the corresponding ELC score. After 
normalization and thresholding, we were able to estimate the time-varying SCNs for the three levels of cognitive 
development, the changing patterns and group differences of which are of interest.

Inference using permutation tests. A permutation  test56,57 was used to assess the statistical significance 
of sex and maternal education effects on the evolution of SCNs, where the original sample was randomly per-
muted Q times. This approach was implemented as follows: For the qth permutation, nk observations are ran-
domly assigned to the kth group for k = 1, 2, 3, 4 , where nk is the number of observations in the original sample 
that belong to the kth group. Next local Fréchet regression is applied to each group and the SCNs are constructed 
by normalization and thresholding at N different ages, say 0 < t1 < t2 < · · · < tN < 10.

As a result, four time-varying SCNs Â(q)
k (tj) for k = 1, 2, 3, 4 and j = 1, 2, . . . ,N are obtained corresponding 

to the four groups for each threshold, where Â(q)
k (tj) denotes the adjacency matrix associated with the SCN for 

group k at age tj . The average network measure of interest over a range of thresholds varying from 0.6 to 0.9 (7 
values, 0.05 increments), denoted by M̄(q)

k (tj) , is then computed based on the resulting SCNs Â(q)
k (tj) . For each tj , 

we estimate the integral of average network measures from tj to tN by I(q)k (tj) :=
∑N

l=j M̄
(q)
k (tl)(tl − tl−1) where 

t0 = 0 . A permutation test can be conducted based on I(q)k (tj) at each tj.
The test statistic is then the variance of I(q)k (tj) for k = 1, 2, 3, 4 , denoted by

Finally, the one-sided p-value for the permutation test at age tj is calculated as the proportion of Q sampled 
permutations where the variance T(q)

j  is greater than or equal to the observed variance Tj.
We remark that the integral of average network measure I(q)k (tj) provides a comprehensive perspective of the 

temporal evolution of SCNs from tj to tN , reflecting the cumulative effects of sex and maternal education, and 
hence a reasonable quantity to consider for permutation tests. We avoid a multiple comparisons problem as we 
aim to test whether or not sex and maternal education affect the temporal evolution of SCNs after a specific age, 
rather than at all ages. Similar permutation tests can be applied to investigate the statistical significance of the 
relationship between cognitive development and the evolution of SCNs. Specifically, the ELC scores are randomly 
permuted Q times, where each time the integral of average network measure from tj to tN is calculated for each 
of the three ELC scores 80, 100, 120. The test statistic for the permutation test at age tj is then the variance of the 
resulting three integrals of average network measure.

Statistical analysis overview. For sex and maternal education effects, local Fréchet regression was con-
ducted for each of the four groups split by sex and maternal education (low or high), with the age at which the 

(8)�̂(x) = argmin
C∈Sm

n
∑

i=1

siL(x, h)d
2
F(C, Ĉi),

siL(x, h) =
1

b̂0 − b̂′1b̂
−1
2 b̂1

Kh(Xi − x)[1− b̂′1b̂
−1
2 (Xi − x)],

T
(q)
j =

1

3

4
∑

k=1

(I
(q)
k (tj)− Ī(q)(tj))

2, Ī(q)(tj) =
1

4

4
∑

k=1

I
(q)
k (tj).
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child was examined as the covariate. To assess the association between cognitive development and the evolution 
of brain region volumes, age and ELC score were included as covariates in local Fréchet regression, where no 
grouping was involved. For all analyses, all available samples were considered and the prediction was evaluated 
at ages varying from 1 to 9 to minimize boundary effects. Local Fréchet regression was implemented using the 
R package frechet58 (https:// cran.r- proje ct. org/ web/ packa ges/ frech et/ index. html). The R package igraph59 
was used to calculate network measures. All visualizations are obtained using the R package ggplot260.

Data availability
The datasets generated during and/or analyzed during the current study are available in the Dryad repository, 
https:// doi. org/ 10. 25338/ B8B077.
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