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The purpose of this document is to provide a calculus spreadsheet for the design of second-order pseudo-

gaussian shapers.  A very interesting reference is given by C.H. Mosher “Pseudo-Gaussian Transfer 

Functions with Superlative Recovery”, IEEE TNS Volume 23, p. 226-228 (1976).  Fred Goulding and Don 

Landis have studied the structure of those filters and their implementation and this document will outline 

the calculation leading to the relation between the coefficients of the filter. 

 The general equation of the second order pseudo-gaussian filter is:  

)(sin)( 23
0 ktePtf kt ��� �     (1) 

The parameter k is a normalization factor. 
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1. Filter Transfer Function 

A possible implementation of the filter is based on the following schematic (modified Bridge T): 
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Figure 1: Schematic of the second-order pseudo gaussian shaper. 

 

The analysis conducted hereafter assumes that all the components of the schematic of Figure 1 are 

ideal. 

 

1.1. Notations 

The following notations are adopted for the calculations: 
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�� The voltage potentials on nodes A, B or C are noted VA, VB, or VC. 
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1.2. Transfer function calculation 

The analysis of the circuit leads to the following system of equations: 

�� Summing all the currents at node A gives: 
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���
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Bin       (2) 

�� The potential VC is equal to Vout and can be expressed as a function of VB: 
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1
�

�       (3) 

Equation (3) can be rewritten as: 

� � outB VCsRV 331��       (4) 

Replacing VB in Equation (2) with the expression of Equation (4) leads to the filter transfer function: 

� � � �� �332211

12

111
)(

CsRCsRCsR

CsR

V

V
sH

in

out

���
�

��   (5) 

 

Introducing the ai coefficients, Equation (5) can be rewritten as: 
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2. Step Response 

In the Laplace space, the unity step response of the filter is given by the following equation: 
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The pole separation is the next step of the analysis, and Equation (7) must be expressed as: 
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The coefficients ��
�can be determined by identification with Equation (7), leading to the following set of 

equations: 
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Leading to the solution: 
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Finally Equation (7) can be written as: 
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2.1. Pseudo-Gaussian Function 

Equation (8) represents the general Laplace response of the two-pole filter to a step function.  In order to 

obtain a pseudo-gaussian response similar to Equation (1), the coefficients ai must follow some criteria.  

The first term of the parenthesis corresponds to a delay function in the time domain, which can be 

associated to the delay component of the pseudo-gaussian function (hypothesis #1).  The second term has 

either complex poles or real poles depending on the coefficient values.  In the case of complex poles, the 

time-domain equivalent function will contain a sinusoidal component (hypothesis #2). 

The denominator of the second term of the parenthesis is given by the following equation: 

2

3
32

2

3
323

2

22
�
�

�
�
�

����
�

�
�
�

� ����
a

aa
a

saasas    (9) 

�� Hypothesis #1:  a3 = 2 a1 

Equation (9) can be rewritten as: 

� � 2
121

2
1323

2 2 aaaasaasas ������    (10) 

�� Hypothesis #2:   2a1a2 – a1
2 > 0 ���� 2a2 > a1 (since a1 > 0) 

In this case, the roots of the polynomial expression represented by Equation (10) are complex, insuring 

that the time-domain response is sinusoidal. 
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With those conditions on the coefficients, the constant term of Equation (8) can be simplified: 
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The step response of the filter can be expressed as: 
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Finally the time domain response of the filter is: 
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The fourth term of the expression can be expressed as a sine function the following way: 
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Leading to the expression: 
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This expression is only valid under the conditions of the hypotheses #1 and #2. 

 

2.2. Peaking Time 

When designing any shaper, the peaking time is one of the main criteria.   The peaking time corresponds to 

the maximum of the function f described by Equation (15).  The peaking time is therefore one of the roots 

of the function’s derivative.   
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The solutions of the equation 0)( �" tf are numerous and are: 
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The first solution (t = 0) shows that the response starts with a horizontal tangent.  For the other solutions, it 

can be shown that n=0 corresponds to the maximum of the function.  The others roots (n>0) lead to ripples 

on the relaxation of the pulse and it can be shown that the amplitude of those is negligible. 
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The peaking time of the second-order pseudo-gaussian shaper is given by 
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2.3. Peak Value 

The expression of the peak value is obtained by replacing t by $p in Equation (15). 
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Taking into account that: 
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3. Filter Synthesis 

The analysis conducted so far did not include the specific expression of Equation (1) in which the relation 

between a1 and b is fixed. 

)(sin)( 23
0 ktePtf kt ��� �     (1) 

The results from the previous sections will be applied to this particular example.  After determining the 

expression of coefficients ai, a few examples will be given. 

 

3.1. Expression of the Filter coefficients as a function of k 

This expression has to be compared to Equation (15), which leads to: 
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From those parameters it is possible to calculate a2 from the expression of b (Equation 12) and a3 from 

hypothesis #1: 

ka

ka

6
6

13

3

2

�

�
  

Hypothesis #2 is always verified for any value of k. 

With these coefficients, the expression of the coefficient P0 is the following: 

1

2
0 2

13
R

R
P 	��  

The filter step response can then be written as: 
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The peaking time expression is then: 
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Finally, using Equation (17), it is also possible to calculate the peak value: 
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The peak value defines the ratio of R2 over R1 and can be made independent of the values of the peaking 

time and of the parameter k. 

 

Since the filter synthesis always starts with the choice of the peaking time, it is important to calculate the 

relations of the coefficients to the peaking time for this particular function. 

 

3.2. Expression of the Filter coefficients as a function of the peaking time 

The peaking time expression given by (18) yields: 
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It is therefore possible to express all the coefficients as a function of the peaking time. 
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Table 1: Filter Coefficients vs. Peaking Time 
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3.3. Example 

�� Coefficients’ Calculation 

Peaking Time  1.00E-07 

K  5.88E+06 

A1=3K  1.76E+07 

A2=13K/6  1.27E+07 

A3=2A1=6K  3.53E+07 

A1=1/(R1xC1) C1 6.80E-11 

 R1 8.34E+02 

A2=1/(R2xC2) C2 6.80E-11 

 R2 1.15E+03 

A3=1/(R3xC3) C3 6.80E-11 

 R3 4.17E+02 

Peak Value  4.75E-01 

Table 2: Calculation Example 

 

�� Implementation 
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Figure 2: Filter Implementation 
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�� Simulation Results 

           Time
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200mV
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Figure 3: Response of the filter to a voltage step (Amplitude –1V). 

The peaking time of the pulse is 100ns and its amplitude is 475mV, as the calculation predicted. 
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Disclaimer 

This document was prepared as an account of work sponsored by the United States Government. While this 

document is believed to contain correct information, neither the United States Government nor any agency 

thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, 

express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents that its use would not infringe privately 

owned rights. Reference herein to any specific commercial product, process, or service by its trade name, 

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 

recommendation, or favoring by the United States Government or any agency thereof, or The Regents of 

the University of California. The views and opinions of authors expressed herein do not necessarily state or 

reflect those of the United States Government or any agency thereof, or The Regents of the University of 

California.  

 

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 




