
UCLA
UCLA Previously Published Works

Title

Adiponectin and the steatosis marker Chi3L1 decrease following switch to raltegravir 
compared to continued PI/NNRTI-based antiretroviral therapy

Permalink

https://escholarship.org/uc/item/3mb470nr

Journal

PLOS ONE, 13(5)

ISSN

1932-6203

Authors

Offor, Obiageli
Utay, Netanya
Reynoso, David
et al.

Publication Date

2018

DOI

10.1371/journal.pone.0196395
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3mb470nr
https://escholarship.org/uc/item/3mb470nr#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE

Adiponectin and the steatosis marker Chi3L1

decrease following switch to raltegravir

compared to continued PI/NNRTI-based

antiretroviral therapy

Obiageli Offor1☯*, Netanya Utay2☯, David Reynoso3☯, Anoma Somasunderam2☯,

Judith Currier4☯, Jordan Lake5☯

1 Department of Epidemiology, University of Texas Health Science Center Houston, Texas, United States of

America, 2 Department of Internal Medicine, University of Texas Health Science Center Houston, Texas,

United States of America, 3 Department of Infectious Disease, University of Texas Medical Branch

Galveston, Texas, United States of America, 4 Department of Infectious Disease, University of California Los

Angeles, California, United States of America, 5 Department of Infectious Disease, University of Texas

Health Science Center Houston, Texas, United States of America

☯ These authors contributed equally to this work.

* Obiageli.l.offor@uth.tmc.edu

Abstract

Background

People with HIV are at for metabolic syndrome (MetS) and fatty liver disease, but the role of

Antiretroviral therapy (ART) is poorly understood. MetS and fatty liver disease been associ-

ated with changes in adiponectin, soluble ST2 (sST2), chitinase 3-like 1 (Chi3L1), hyal-

uronic acid (HA), tissue inhibitor of metalloproteinase-1 (TIMP-1), lysyl oxidase-like-2

(LOXL2) and transforming growth factor β (TGF-β) concentrations in HIV-uninfected popu-

lations. Protease (PI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) may con-

tribute to these comorbidities, but the effects of switching from PI- or NNRTI to raltegravir

(RAL) on these biomarkers is unknown.

Methods

Cryopreserved plasma was obtained from a completed, prospective trial of HIV-infected

women with central adiposity on NNRTI- or PI-based ART during which they were random-

ized to remain on their current ART or switch to a RAL based regimen. Biomarker concentra-

tions were quantified using ELISA and Multiplex assays at baseline and 24 weeks after

randomization. Wilcoxon-signed rank test evaluated within-group changes, Spearman and

linear regression models evaluated correlations between biomarkers and clinical covariates.

Results

Participants had a median age of 43 years, CD4+ T lymphocyte count 558 cells/mm3

and BMI 32 kg/m2; 35% met criteria for MetS. At baseline, higher adiponectin levels corre-

lated with higher Chi3L1 levels (r = 0.42, p = 0.02), as did declines after 24 weeks (r = 0.40,
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p = 0.03). Changes in sST2 correlated with changes in Chi3L1 (r = 0.43, p = 0.02) and adipo-

nectin (r = 0.40, p = 0.03). Adiponectin and Chi3L1 levels decreased significantly in women

switched to RAL vs continue PI/NNRTI.

Conclusion

In women with HIV and central obesity, the hepatic steatosis/fibrosis marker Chi3L1 and adi-

ponectin decrease in conjunction with sST2 decreases following switch to RAL. Whether

switching from NNRTI/PI-based regimens to RAL can improve hepatic steatosis and dysme-

tabolism requires further study.

Trial registration

Clinicaltrials.gov NCT00656175

Introduction

Antiretroviral therapy (ART) has led to a decline in HIV-associated mortality, however as

people live longer with treated HIV infection there has been an increase in the prevalence of

chronic co-morbidities [1]. Our understanding of the individual contributions of HIV-1 infec-

tion, systemic inflammation, and/or immune deficiency remain incomplete. [2]. Despite this,

persons with HIV infection on ART appear to be at risk for metabolic and liver disease [3–7].

Liver pathology in HIV-infected patients on ART ranges from steatosis and steatohepatitis

to fibrosis, cirrhosis and end stage liver disease [3, 5, 7–9]. The spectrum of associated meta-

bolic derangements is not yet fully understood, but includes adipose tissue dysfunction,

dyslipidemia, insulin resistance and the metabolic syndrome (MetS) [1, 7, 8, 10]. There is con-

siderable evidence that ART plays a role in these metabolic derangements, with nucleoside

reverse transcriptase inhibitors (NRTI) and protease inhibitors (PI) most commonly impli-

cated in metabolic disruptions [7, 11].

Novel, non-invasive diagnostic procedures to monitor the evolution of liver and metabolic

pathology are needed. Circulating biomarkers have the potential to predict and reflect end-

organ metabolic changes caused by ART and HIV, but are in need of further exploration.

For example, decreased concentrations of the adipokine adiponectin has been linked to MetS,

insulin resistance and non-alcoholic liver disease (NAFLD) [12–14]. Adiponectin is an insu-

lin-sensitizing hormone secreted by adipocytes, and unlike other adipokines, adiponectin lev-

els are reduced in insulin resistance, type 2 diabetes mellitus (T2DM) and lipodystrophy [4].

Additionally, hyperglycemia, dyslipidemia and the pro-inflammatory state of MetS [14] are

plausible stimuli for the synthesis and release of tissue inhibitor of metalloproteinase (TIMP)-1

[15,16]. Changes in circulating levels of hyaluronic acid (HA), transforming growth factor

(TGF)-β, chitinase 3-like (Chi3L1, also known as YKL40), lysyl oxidase-like 2 (LOXL2), and

soluble ST2 (sST2) have been observed in obesity, insulin resistance, MetS and liver disease in

HIV-uninfected persons, and may be useful biomarkers to detect and monitor these co-mor-

bidities [17–22].

TGF-β1 activates hepatic stellate cells to increase extracellular matrix deposition and fibro-

genesis [23]. It has many functions including increasing TIMP-1 expression, which inhibits

the activity of metalloproteinases that breakdown extracellular matrix [24]. HA is a high

molecular weight glycosaminoglycan that is normally synthesized by hepatic Ito cells,
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deposited in the extracellular matrix, and degraded by sinusoidal endothelial cells [25]. Injury

affecting sinusoidal endothelial cells and increased portal pressure leads to accumulation of

HA, which has been shown to correlate with severity of inflammation and fibrosis [25–27].

Chi3L1 is a glycoprotein that plays a role in cell proliferation and differentiation, inflamma-

tion, and extracellular matrix remodeling by exerting growth factor activity on cells involved

in matrix remodeling [28]. Elevated levels of Chi3L1 correlate with greater fibrosis by Ishak

and FIB-4 scores [29]. LOXL2 belongs to a family of copper-dependent amine oxidases and

specifically promotes fibrotic matrix crosslinking and stabilization [30]. Selective LOXL2

monoclonal antibody blockers suppress the progression of fibrosis and promote fibrosis rever-

sal [30]. sST2 functions as a decoy receptor for IL-33, preventing the pro-inflammatory and

pro-fibrotic effects of IL-33 on hepatic stellate cells [31, 32].

We measured concentrations of putative circulating biomarkers of metabolic disease from

the cryopreserved plasma of HIV-1 infected women with central obesity on PI-/NNRTI-based

ART who were enrolled in the Women, Integrase and Fat Accumulation Trial (WiFAT), a trial

of continued NRTI backbone with randomization to switch the 3rd agent to raltegravir (RAL)

immediately or continue PI or NNRTI.

Methods

Study population

Full methods from the parent WiFAT study have previously been published [10]. Briefly, par-

ticipants were recruited from five centers in North America between September 2008 and July

2010. Inclusion criteria included age�18 years, documented HIV-1 infection, continuous

virological suppression since ART initiation, central obesity (waist circumference >94 cm or

waist to hip ratio >0.88) [33], HIV-1 RNA <50 copies/mL in the 6 months preceding study

entry, ART regimen of a NRTI backbone of tenofovir or abacavir plus emtricitabine or lamivu-

dine plus either a PI or NNRTI, no change in ART in the preceding 12 weeks, and ability and

willingness to provide informed consent.

Study design

Participants were randomized 1:1 to immediate (week 0) or delayed (week 24) switch to open

label RAL 400mg orally twice daily. The delayed switch group served as an internal control of

continued PI or NNRTI therapy during weeks 0 to 24, with all participants on RAL during

weeks 24 to 48. The entry NRTI backbone was maintained throughout the 48 weeks of the

study. The parent trial hypothesized that switching from a PI/NNRTI to RAL would be associ-

ated with a reversal of central adiposity or impediment to further fat gain. Results showed a

5.4% (p = 0.43) between group difference in visceral fat at 24 weeks using computed tomogra-

phy-quantified fat area [10].

In this exploratory analysis, measurement of circulating concentrations of biomarkers asso-

ciated with liver steatosis and fibrosis and MetS were performed on cryopreserved plasma

samples obtained from the parent trial. Analyses were performed only for participants with

sufficiently remaining cryopreserved plasma samples. The primary endpoint for these analyses

was the within-group change in biomarker concentrations 24 weeks after switching to RAL

vs continued PI/NNRTI. Institutional review boards and ethics committees of the office of

Human Research Protection, University of California, Los Angeles approved all study proto-

cols. Written informed consent was obtained from all participants prior to the initiation of

study procedures. The WIFAT study is registered at ClinicalTrials.gov, registration number:

NCT00656175.
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Biomarker assessments

Cryopreserved EDTA plasma was obtained from the parent WIFAT study that analyzed fast-

ing (�8 hours) concentrations of plasma biomarkers. Fourteen participants from the RAL

group and 17 from the NNRTI/PI group had sufficient plasma for analysis. Adiponectin, HA

and LOXL2 were quantified with ELISA assay, and TGF-β, sST2, Chi3L1 and TIMP-1 were

quantified by Luminex assay (all R&D Systems, Minneapolis, MN).

Statistical analyses

Baseline characteristics between the treatment groups were compared using the Mann-Whit-

ney U-test and Fisher’s exact test for continuous and categorical variables, respectively. Median

values and interquartile ranges (IQR) are reported for continuous variables, and percentages

for categorical variables. Differences in median changes in biomarker concentrations at base-

line and 24 weeks were assessed using the Wilcoxon sign-rank and Mann-Whitney tests.

Spearman correlation coefficients of changes in biomarkers, and changes between biomarkers

and clinical covariates were calculated. All analyses were conducted as-treated, excluding those

participants who did not adhere to study regimen and/or did not have an observed primary

endpoint.

All statistical tests were exploratory, with no adjustment for multiple testing. Significance

was determined using a two-sided nominal alpha level of 0.05. Bivariate regression modeling

was also performed to further assess associations. Data analysis and management were per-

formed using SAS version 9.2 and 9.3 (SAS Institute, Inc., Cary, NC).

Results

Patient population

Participant enrollment and disposition for this trial and the parent trial is shown on Fig 1.

Table 1 shows the baseline characteristics of the 37 participants comprising the sample for

these analyses. The randomization groups were fairly similar in baseline characteristics, except

that the delayed switch group had a higher rate of current tobacco use (60%) compared to the

immediate switch group (24%). The median age was 43 years, median body mass index (BMI)

32 kg/m2, 59% of participants self-identified as African American, and 16% as Hispanic. Sixty-

two percent were on a PI at entry, and 38% were on an NNRTI. The most commonly used

NRTIs were tenofovir (78%) and emtricitabine (68%). Based on exclusion criteria, no partici-

pants with a diagnosis of diabetes mellitus were enrolled.

Baseline biomarker concentrations

At baseline, no significant differences were observed between the immediate and delayed

switch groups for any of the measured biomarkers (Table 2).

Twenty-four-week changes in biomarkers

Changes in biomarkers within each treatment group are shown in Table 2. Between weeks 0

and 24, there was a significant decrease in Chi3L1 in RAL-treated participants (-9747pg/ml;

-24%; p = 0.03) but not for those participants that remained on a NNRTI or PI (-5559 pg/ml;

-14%; p = 0.13). A significant decrease in adiponectin was also observed among RAL-treated

participants (-872 ng/ml, -30%, p = 0.02) with a non-significant increase in adiponectin levels

in participants remaining on an NNRTI or PI (163 ng/ml, +7.6%, p = 0.49). No statistically

significant within-group changes were observed in the other measured biomarkers between

week 0 and 24. Only the changes in adiponectin were significant between groups (P = 0.02)
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(Table 3). Fig 2a–2d illustrate the 24- week changes from baseline in adiponectin and Chi3L1

within each randomization group.

Correlations between changes in biomarkers and clinical covariates

At baseline, there were significant positive correlations between TIMP-1 and sST2 (r = 0.48,

p = 0.006) (Fig 3a), Chi3L1 and adiponectin (r = 0.42, p = 0.02) (Fig 3b), and between HA and

sST2 (r = 0.52, p = 0.003) (Fig 3c). Significant baseline correlations were also observed between

high-density lipoprotein (HDL) cholesterol and adiponectin (r = 0.55, p = 0.001) and sST2

Fig 1. Participant enrollment and disposition.

https://doi.org/10.1371/journal.pone.0196395.g001
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(r = 0.38, p = 0.03) concentrations. Higher baseline adiponectin and sST2 concentrations were

associated with higher HDL cholesterol levels (r = 0.55, p = 0.001 and r = 0.38, p = 0.03, respec-

tively). Statistically significant negative correlations at baseline were seen between CRP and

HA (r = -0.43, p = 0.02), sST2 (r = -0.57, p = 0.001), and TIMP-1 (r = -0.53, p = 0.002). There

was a non-significant positive correlation between 24-week changes in adiponectin and

Chi3L1 levels (r = 0.27, p = 0.15) (Fig 4a). Significant positive correlations were seen in

24-week changes between sST2 and Chi3L1 (r = 0.43, p = 0.017) (Fig 4b) and between sST2

and adiponectin (r = 0.40, p = 0.03) (Fig 4c). Adiponectin levels were significantly lower

in participants with MetS compared to those without MetS (Fig 5a and 5b). Only HA levels

correlated with insulin resistance (r = 0.47, p = 0.007), as quantified by the homeostatic model

assessment (HOMA-IR) (Fig 5c).

Upon stratification by randomization group, there was a significant correlation between

24-week changes in Chi3L1 and HDL (r = -0.59, p = 0.04) in the RAL group that was not seen

in the PI/NNRTI group. No other significant correlations were observed for within-group

changes in biomarkers. When data from randomization arms was pooled, there were signifi-

cant correlations in the 24-week changes between Chi3L1 and sST2 (r = 0.43, p = 0.02), and

Table 1. Baseline patient characteristics.

Immediate Switch� Delayed Switch� Overall�

n = 17 n = 20 n = 37

Ethnicity

African American 53% 65% 59%

Hispanic 23% 10% 16%

Age (years) 41 (39, 47) 46 (36, 51) 43 (37, 49)

Weight (kg) 88.7 (81.0, 105.0) 77.7 (71.7, 97.0) 81.8 (73.9, 105.0)

BMI (kg/m2) 34.7 (28.8, 37.6) 30.4 (27.7, 35.4) 32.0 (28.0, 36.5)

Tobacco use (current) 24% 60% 43%

CD4+ T lymphocyte count (cells/μL) 563 (447, 747) 554 (354, 770) 558 (422, 747)

Time on ART (years) 5.1 (3.1, 7.1) 2.7 (1.6, 6.3) 3.7 (2.4, 7.1)

ART

PI 65% 60% 62%

NNRTI 35% 40% 38%

Abacavir 18% 25% 22%

Tenofovir 82% 75% 78%

VAT (cm2) 145 (105, 154) 137 (93, 154) 138 (100, 154)

SAT (cm2) 450 (381, 687) 420 (342, 587) 432 (343, 605)

Diabetes mellitus֓ 0% 0% 0%

Hyperlipidemia ֓ 18% 25% 22%

Glucose (mg/dL) 84 (78, 93) 87 (79, 98) 87 (78, 94)

Total cholesterol (mg/dL) 179 (162, 206) 199 (173, 223) 193 (165, 216)

Triglycerides (mg/dL) 116 (85, 144) 123 (101, 176) 117 (91, 153)

LDL (mg/dL) 113 (103, 123) 116 (93, 142) 116 (94, 130)

HDL (mg/dL) 48 (40, 57) 49 (39, 57) 49 (40, 57)

�Percent or median with interquartile range

֓ Defined as self-reported diagnosis or on therapy at baseline

BMI: Body mass index. ART: antiretroviral therapy. PI: protease inhibitor. NNRTI: non-nucleoside reverse transcriptase inhibitor. VAT: Visceral adipose tissue. SAT:

Subcutaneous adipose tissue. LDL: Low-density lipoprotein cholesterol. HDL: High-density lipoprotein cholesterol.

https://doi.org/10.1371/journal.pone.0196395.t001
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between adiponectin and sST2 (r = 0.40, p = 0.03). There was a moderate correlation between

the 24-week changes in sST2 and HDL cholesterol (r = 0.40, p = 0.03).

Discussion

In this randomized trial of HIV-infected women with central adiposity, switching to RAL-

based ART was associated with a statistically significant decline in adiponectin and Chi3L1.

Adiponectin is one of the most studied adipocytokines, and is associated with diseases of adi-

pose tissue dysfunction. While some studies have shown adiponectin to be positively correlated

with total body fat, HDL and insulin levels, others suggest that adiponectin levels are reduced

in people with insulin resistance, T2DM and lipodystrophy [4, 34–35]. We observed a signifi-

cant decline in adiponectin levels after switching to RAL-based ART. Based on findings of

Table 2. Biomarker levels at baseline and 24 weeks after switch to RAL.

Immediate Switch (n = 14) Delayed Switch (n = 17)

Median(IQR) Median (IQR)

Week 0 Week 24 Median Δ p (within

group)

Week 0p (between group) Week 24 Median Δ p(within

group)

HA(ng/mL) 48.7(23.2, 81.7) 41.2(26.2, 66.4) -2.3 0.40 47.5(28.8, 67.7)p = 0.85 36.1(22.2, 63.1) -2.2 0.52

TGF-β1(pg/mL) 31204(13615,

37653)

22942 (11421,

36255)

-3561 0.40 31863(21401, 42534) p = 0.37 27200(15446,

39166)

-1258 0.33

TGF-β2(pg/mL) 1663 (1463,

1801)

1576(1385, 1820) -18 0.36 1750(1526, 1802)p = 0.54 1651(1396, 1783) -49 0.12

TGF-β3(pg/mL) 957(408, 1140) 681(456, 1040) -61 0.19 100(764.9, 1152) p = 0.55 892(466.6, 1055) -4.9 0.24

sST2 (pg/mL) 12785(8125,

15838)

10047(7826,

12424)

-1202 0.10 9792(7383, 13965)p = 0.35 10146(8083,

11903)

354 0.85

Chi3L1(pg/mL) 40166(22752,

54073)

23402(22069,

39897)

-9747 0.03 39026(22539, 60770)p = 0.97 30105(18705,

63513)

-5559 0.13

TIMP-1(pg/mL) 50588(45517,

57075)

50407(44823,

55746)

-354 0.71 50746(42257, 57211)p = 0.76 48543(43086,

54250)

1908 0.46

LOXL2(ng/mL) 0.11(0, 3.4) 0(0, 4.3) 0 0.81 0(0, 1.339)p = 0.38 0(0, 1.1) 0 0.94

Adiponectin

(ng/mL)

2909(1142, 5183) 1610(935, 4217) -872 0.02 2093(1041, 3232) p = 0.30 1802(1003, 3455) 163 0.49

IQR: Interquartile range, HA: Hyaluronic acid, TGF: Transforming growth factor, sST2: Soluble ST2, Chi3L1: Chitinase 3-Like 1, TIMP-1: Tissue Inhibitor of

metalloproteinase 1, LOXL2: Lysyl oxidase-like 2

Δ = difference in plasma biomarker level (Week 24- Week 0).

https://doi.org/10.1371/journal.pone.0196395.t002

Table 3. Between-group differences in net changes in biomarker levels at 24 weeks.

Raltegravir (n = 14) NNRTI/PI (n = 17)

Median change (Week 24 minus Week 0) Median Δ p- value

HA (ng/mL) -2.307 (-18.2, 6.13) -2.242 (-23.26, 6.94) 0.06547 0.89

TGF-β1 (pg/mL) -3561 (-7119, 3914) -1258 (-14021, 5634) 2303 0.77

TGF- β2 (pg/mL) -17.98 (-324, 151.4) -48.71 (-295.3, 93.39) -30.73 0.77

TGF- β3 (pg/mL) -60.99 (-329.9, 64.59) -4.93 (-383.4, 98.87) 56.06 0.98

sST2 (pg/ml) -1201 (-3580, 613.6) 353.6 (-2786, 1583) 1555 0.34

Chi3L1 (pg/ml) -9747 (-23079, 2020) -5559 (-28072, 5412) 4188 0.93

TIMP-1 (pg/ml) -353.8 (-4404, 4728) -1908 (-4610, 3952) -1554 0.49

LOXL2 (ng/ml) 0 (-0.1243, 0) 0 (-0.04143, 0) 0 0.59

Adiponectin (ng/ml) -872.1 (-1759, 89.84) 162.8 (-436, 744.2) 1035 0.02

https://doi.org/10.1371/journal.pone.0196395.t003
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hypoadiponectinemia in HIV-infected men with lipoatrophy [35–36], a decline in adiponectin

after RAL switch is not in keeping with our hypothesis that an ART regimen with an improved

metabolic profile would result in higher levels of adiponectin [37]. However, while adiponectin

is produced mainly by adipocytes in white adipose tissue, it can also be made by hepatocytes,

myocytes, and epithelial cells [38], and circulates both as an inactive low molecular weight

form and the bioactive high molecular weight form. The assay used did not distinguish

between these forms, so the biological implications of the change in levels are unclear, and the

tissue source of circulating adiponectin is unknown. Further studies are needed to understand

the mechanism and metabolic effects of RAL on circulating levels of adiponectin.

Fig 2. Biomarker changes following switch to RAL vs continued PI/NNRTI.

https://doi.org/10.1371/journal.pone.0196395.g002

Fig 3. Biomarker correlations at baseline.

https://doi.org/10.1371/journal.pone.0196395.g003
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We also observed a statistically significant decline in Chi3L1 levels in the immediate switch

group compared to those who remained on a PI-/NNRTI-based ART regimen. Chi3L1 pro-

motes extracellular matrix deposition and remodeling, with higher Chi3L1 levels correlating

with higher Ishak fibrosis scores [29]. The significant decline in Chi3L1 after switching to

RAL-based ART suggests that RAL may be associated with a reduced pro-fibrotic milieu

compared to PI-/NNRTI-based regimens [28–29]. Elevated levels of Chi3L1 have also been

observed in patients with T2DM [39]. In a prospective study of patients with T2DM, all-cause

mortality was increased in patients within the second and third tertile of Chi3L1 levels (Hazard

ratio (HR) 1.50, p = 0.034 and 2.88, p<0.001, respectively compared with the first tertile) [40].

Although diminished, this association persisted after adjusting for cardiovascular risk factors

which have a documented relationship with Chi3L1, and glomerular filtration rate. Although a

few studies have identified correlations between Chi3L1 and insulin resistance, dyslipidemia,

and acute infections, much remains unknown about the mechanism of Chi3L1 in inflamma-

tion and metabolic homeostasis [41–43], particularly in the setting of HIV/AIDS.

In our study, a high baseline concentration of sST2 was associated with higher HDL,

TIMP-1, and HA levels and lower hs-CRP levels, and decreased in conjunction with adiponec-

tin and Chi3L1, suggesting that high sST2 levels may reflect a pro-fibrotic rather than pro-

inflammatory state. sST2 functions as a decoy receptor for IL-33 in both transmembrane

(ST2L) and soluble (sST2) forms [31]. IL-33 is an IL-1 related cytokine that is released in

response to cell death and induces a Th2 cytokine response, as occurs during severe hepatic

inflammation and fibrosis [31]. Pascual-Figal et al. demonstrated that while IL-33 interaction

with the transmembrane receptor showed cardioprotective effects in experimental models,

interaction with the soluble decoy receptor sST2 resulted in increased myocardial fibrosis,

cardiomyocyte hypertrophy and myocardial dysfunction [44]. It is unclear what common

Fig 4. Correlations of 24-week changes in adiponectin, sST2 and Chi3L1.

https://doi.org/10.1371/journal.pone.0196395.g004

Fig 5. Baseline correlations between biomarker levels & clinical covariates.

https://doi.org/10.1371/journal.pone.0196395.g005
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stimulus might be driving both HDL and sST2 production. Nonetheless, sST2 may serve as a

surrogate marker for fibrosis and atherosclerosis, components of insulin resistance, metabolic

syndrome and diabetes.

When compared to many PIs and NNRTIs, RAL-based ART regimens have a more favor-

able metabolic profile and have been suggested as an alternative in patients with metabolic

disturbances on other regimens [45–47]. Studies analyzing metabolic changes after switching

PI-/NNRTI-based ART to RAL-based regimens have used a variety of markers and clinical

variables such as BMI, fasting lipid profile, total body fat, visceral adipose tissue quantity and

subcutaneous adipose tissue quantity to arrive at their conclusions [46–49]. Domingo et al

studied mitochondrial DNA and gene transcripts for PPAR-γ, adiponectin, cytochrome b and

TNF-α in patients with HIV-associated lipodystrophy syndrome switching from stavudine to

RAL [49], and demonstrated that switching to RAL improved adipocyte differentiation and

mitochondrial function in SAT. As our study was not designed to formally assess the utility

of the biomarkers measured as indicators of hepatic steatosis, insulin resistance and metabolic

syndrome in HIV patients on ART, these relationships require further investigation.

This study has several limitations. It is small in sample size and is a post-hoc, exploratory

analysis of biomarkers. The prevalence of obesity in both randomization groups of women in

this study (median BMI 32 kg/m2) is high, and the results therefore may not be generalizable

to the non-obese and male populations. As these are post-hoc exploratory analyses, the lack

of a clinical metabolic assessment with which to compare biomarker changes, such as quantifi-

cation of hepatic steatosis, is also a limitation. Another limitation to our study is the lack of

formal assessment of menopausal status by hormonal assessment or self report in the study

participants during follow-up. However, early analyses within the parent protocol did not sug-

gest any significant differences in treatment response when stratified using age<50 vs�50

as a surrogate for menopause. Participants were not required to keep food diaries during the

study period, and no dietary information was obtained either prospectively or retrospectively.

Although all biomarker analyses were performed on performed on cryopreserved plasma

obtained after� 8 hours of fasting, the lack of dietary data is a limitation. However, this is the

first study to our knowledge that has studied the changes in these biomarkers of steatosis and

fibrosis after switching from PI/NNRTI to RAL-based ART.

Conclusion

In women with HIV and central obesity, the adipocytokine adiponectin and Chi3L1, a marker

of liver steatosis and metabolic syndrome, decreased significantly following switch to RAL, but

not with continued PI or NNRTI. Larger studies are needed to confirm these findings, under-

stand the mechanism of this decline, and determine relationships between these biomarkers

and clinical endpoints.
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