UC Berkeley

UC Berkeley Electronic Theses and Dissertations

Title
Computable Continuous Structure Theory

Permalink
https://escholarship.org/uc/item/3mb8a6gm|

Author
Moody, James Gardner

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3mb8q6gm
https://escholarship.org
http://www.cdlib.org/

Computable Continuous Structure Theory

by

James Gardner Moody

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Logic and the Methodology of Science
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Theodore Slaman, Co-chair
Professor Antonio Montalban, Co-chair
Professor John Steel
Professor Thomas Scanlon
Professor Wesley Holliday
Professor Michael Christ

Spring 2019

Computable Continuous Structure Theory

Copyright 2019
by
James Gardner Moody

Abstract

Computable Continuous Structure Theory
by
James Gardner Moody
Doctor of Philosophy in Logic and the Methodology of Science
University of California, Berkeley
Professor Theodore Slaman, Co-chair

Professor Antonio Montalban, Co-chair

We investigate structures of size at most continuum using various techniques originating
from computable structure theory and continuous logic. Our approach, which we are nam-
ing “computable continuous structure theory”, allows the fine-grained tools of computable
structure theory to be generalized to apply to a wide class of separable completely-metrizable
structures, such as Hilbert spaces, the p-adic integers, and many others. We can generalize
many ideas, such as effective Scott families and effective type-omitting, to this wider class
of structures. Since our logic respects the underlying topology of the space under considera-
tion, it is in some sense more natural for structures with a metrizable topology which is not
discrete.

To everyone who helped me continue work in times of trouble.

I am greatly indebted to Ted Slaman, whose support went beyond reason.

Contents

Contents

(1 Computable Continuous Structures|
(L1 Basic Definitions
(1.2 Equalness Relation| o 00
(1.3 Continuous Logic and Computable Continuous Structures|.
(1.4 Formula Complexity and Definability|
(1.5 Examples of Computable Continuous Structures

2 Computable Continuous Structure Theory|
[2.1 Quasi Back-and-Forth Arguments|

[3 Hilbert Spaces and Observations|

[4 Bridging Continuous Structures and Descriptive Set Theory?|

[> Notions of (zenericity|

6 Model T = C on
[6.1 Effective Type Omitting]

|7 Why limit truth values to |0,1]7|
[7.1 T =[0,1] as a continuous structure]

A Miscell F] Moduli
[B Decidability]

[C Computing Moduli and Functions|

[D Compactness and Los’s Theorem|

i

ii

77

82
82

91
91

96

99

101

102

il

[E Notes on Equalness| 106

(Bibliography| 107

v

Acknowledgments

I am using this space to acknowledge the animals who were killed and mistreated as a result
of my choices before I decided to stop eating meat and using animals products. They have
suffered because of me, and many of their body parts which they could have used better for
their own existence are now part of me, being used instead for pursuits such as the academic
study of logic which are relatively trivial in comparison. We can hope for a future in which
our mathematical results are not powered by exploitation of sentient animals.

Philosophical Background

0.1 A Brief Introduction for a General Audience

The entire edifice of mathematics is rooted in human experience. Mathematical understand-
ing is more than just skill in symbolic manipulation. The languages that mathematicians
have developed are tools to expand the reach of the human mind. Far from being universal,
mathematical languages are designed fit the cognitive abilities, intuitions, and limitations of
the human mind. Mathematical logic studies rigorously how mathematical language and its
associated rules carve out mathematical concepts.

It has been considered a mystery why mathematical concepts, apparently objective, un-
changing, and non-physical, have proven so useful in understanding reality. In other fields
of scientific study, entire theories are regularly discarded and replaced to improve empirical
adequacy. We can understand why these theories are useful by analogy to natural selec-
tion: only the useful theories survive the brutal process of the scientific method. But in
mathematics, theories once established are established forever, barring logical inconsisten-
cies; furthermore, agreement with observation of physical reality is not considered by pure
mathematicians to be an important criterion for a mathematical theory. One might expect,
then, that mathematics ought to be about as practically useful as theology. Yet somehow,
mathematics has been incredibly useful for describing and predicting reality.

The physicist Max Tegmark has proposed one explanation: the physical universe is a math-
ematical structure. There is perhaps a better explanation, however. Mathematicians, in the
course of their work, build general purpose cognitive tools which fit together nicely. The
tools which work to solve only one particular problem tend to be forgotten and considered
not beautiful, while the tools with wide applicability are developed further and refined to be
easier to use and more powerful. It doesn’t matter that mathematicians are using these tools
to solve problems which have almost no connection to physical reality: these are tools to aid
in mental work, not physical work. The same human mind which tries to understand the
natural numbers is employed when trying to send a rocket to the moon. The constant factor
in the application of mathematical thinking to physical problems and to abstract problems
in number theory is that there is a human doing the thinking. The cognitive problems which
mathematicians learn to overcome are often ubiquitous in human thought in general. From

CONTENTS 2

this perspective, the “unreasonable effectiveness of mathematics in the natural sciences”, as
Eugene Wigner put it, is about as mysterious as the unreasonable effectiveness of English in
science fiction novels.

That being said, it is still worth asking for particular mathematical techniques, “why does
this work so well?”. Far from being blind beneficiaries of the evolution of mathematical
thought, we guide it by choosing to care about mathematical virtues like beauty, univer-
sality, and simplicity. The areas we are concerned with in this thesis are recursion theory
and general topology. Recursion theory can be thought of as the study of the dynamics
of information. General topology can be thought of as the study of categorization (in the
ordinary, non-mathematical sense of the term). There is a deep connection between the
concepts of a recursively enumerable set in recursion theory, an open set in topology, and a
verifiable property in philosophy of science. Dually, there is a connection between recursively
co-enumerable sets in recursion theory, closed sets in topology, and falsifiable properties in
philosophy of science.

This connection has been explored in the field of effective descriptive set theory, but we wish
to take an alternative approach using a newly-revived form of logic called “continuous logic”,
which incorporates topology into the fabric of our mathematical language. In continuous
logic, truth values now lie on a continuum, rather than the discrete set {True, False} or
{1,0}, and formulas are understood as continuous functions. The advantage to this approach
is that we can, in the same breath, talk about both discrete and continuous structures
without sacrificing any naturality of presentation. Our aim is to faithfully generalize results
from computable structure theory to this new setting, allowing the tool set of computable
structure theory to be transparently applied to well-behaved uncountable structures as well.

0.2 Why have a Continuum of Truth Values?

There are a few problems in the philosophy of language known as “vagueness paradoxes”.
The classical, Aristotelian basis for reasoning is based on assigning statements or proposi-
tions truth values in a systematic way. If a statement is well-defined, we expect it to be
either true or false, and we can build connections, through logical reasoning, between the
truth-values of some sentences and other sentences. A valid deductive argument, with true
statements as premises, must have a true conclusion. The problem comes when we try to
apply this reasoning to statements involving vague terms, such as “warm”, “blue”, “huge”,
etc. Consider the Sorites paradox [7]:

A heap is a large pile of stuff. We seem to understand what a heap of sand would look
like. Our intuition also tells us that, since grains of sand are so minuscule, if you have a
heap of sand, and remove a single grain, it will still be a heap. On the other hand, we can
definitively say that a few grains of sand on the ground do not form a heap: a heap should

CONTENTS 3

be large! But then we end up with the following, seemingly valid argument. Our premises
are: (i) if we have a billion grains of sand in a pile, it will form a heap; (ii) for any number
n of sand grains, if a pile of n grains forms a heap, then a pile of n — 1 grains also forms a
heap; and (iii) a pile of six grains sand on the ground does not form a heap. Using classical
reasoning, we start from premise (i), which tells us that for n = 1000000000, n grains of sand
in a pile forms a heap, and repeatedly apply premise (ii) to get that 999999999, 999999998,
999999997, etc. grains of sand in a pile also would form a heap. After applying premise (ii)
999999993 times, we conclude that six grains of sand in a pile forms a heap, contradicting
premise (iii).

Similar arguments can be used to prove absurdities like “red = blue”. The idea is that if we
take a shade of red, and make it imperceptibly more blue, it will still appear red to us (since
the change in hue is imperceptible). On the other hand, repeating such an imperceptible
change in hue many, many times could take us from a red hue to a blue hue.

These apparent paradoxes can be resolved without abandoning classical logic, but doing so
seems to change the meaning of everyday words. For example, we might redefine “red” to
be a precise band of frequencies, but then we are forced to say that it’s possible for one
hue which is visually indistinguishable from another hue to be red, while the other is not
red. Taking this further, the difference in corresponding frequencies could hypothetically be
so small that it would be physically impossible to detect a difference in frequency in the
lifespan of the universe (an inevitable consequence of Heisenberg’s Uncertainty Principle).
In other words, if we try to resolve the paradox by creating a precise definition of “red”, we
end up concluding that whether a given frequency of light is red or not may not be physically
observable.

The fundamental problem, from our perspective, is that we, as humans, are forcing a binary
distinction on something which does not naturally fit into binary categories but in some kind
of continuum. We’ll talk a bit more about how physicists solve this problem in the section
on Hilbert Spaces and Observations.

For now, we have a somewhat nice resolution to this problem that doesn’t require us to
completely rewrite mathematical reasoning in the physicists’ preferred framework: broaden
our perspective to allow for statements to have intermediate truth values. In our color ex-
ample, the idea would be that as we shift the hue continuously from red to blue, the truth
value of “this is red” shifts continuously from true to false, taking on intermediate values
in the region of hues which are not clearly red clearly blue. It’s convenient here to think of
truth values as lying in the interval [0, 1], with O corresponding to completely false, and 1
corresponding to completely true. It’s important that we do not identify truth values with
probabilities, as tempting as it may be. Probabilities can certainly be thought of as a sort
of generalized truth value, but we don’t want to commit ourselves to thinking that if “this

is red” is % true, then there is a % probability it is red, and a i probability it is not red.

CONTENTS 4

Rather, we want to eschew our preconceived notion that everything must ultimately either
end up completely true or completely false.

Of course, this creates some problems for our simple classical rules of inference. But they
can be replaced with approximate rules of inference. For example, we could generalize some
of the logical connectives from classical logic by defining the connectives “A”, “V” and “—="
to be interpreted as min, max, and x — 1 — x on truth values, and “=" to be interpreted as
(x,y) — 1 —(x —vy), where x —y is x — y if this is non-negative, and 0 otherwise. Note that
with this choice of connectives, the classical equivalence between P =) and) V =P no
longer holds (for another choice, this would hold). However, they still retain some of their
properties. “P =)7 still means something like “Q is at least as true as P”. If an implica-
tion has truth value, say %, this means the truth of the consequent is at worst % less than
the truth of the antecedent. Using this, we can resolve the Sorites paradox as follows. We
believe that the implication “n grains of sand in a pile forms a heap = n — 1 grains of sand
in a pile forms a heap” has truth value at least %, but not 1. This means if we start with
a premise with truth value 1, like “a billion grains of sand in a pile forms a heap”, and apply
this almost-true implication only a few dozen times, we will still be left with an almost-true
conclusion. If we apply it a billion times, however we are no longer guaranteed anything
about the truth value of the conclusion. Our new implication is no longer transitive, but it
is approximately transitive, in that if P = () has truth value at least 7, and () = R has
truth value at least 7/ then P = R has truth value at least 1 — (1 —7)—(1—7) =747 — 1.
When 7 and 7/ are both 1, this gives us transitivity of implication in classical logic.

What we’ve said so far can be considered one starting point into something like Lotfi Zadeh’s
“fuzzy logic”, which has been successfully applied to the discipline of control theory. See
Zadeh’s 1965 paper “Fuzzy Sets” [21], for example. So allowing more general truth values
is not only of philosophical interest, but also practically useful. You might still be skep-
tical about whether there are any applications to pure mathematics, however. You might
compare some applications of fuzzy logic to the analogue ballistics computers used in old
battleships: their design may be inspired by some principled physics, and they may be beau-
tiful machinesﬂ but it seems unlikely that new physics or mathematics would arise from
studying them. If you peruse the literature on fuzzy logic, you will find numerous examples
of seemingly arbitrary choices made in the process of comporting fuzzy logic to particular
applied problems. One particular mistake is the conflation of intermediate truth values with
probabilities]

This is nothing against fuzzy logic itself, it’s just that if we want to introduce intermediate

'From an engineering perspective, that is, not from the perspective of a scared draftee

2Lotfi Zadeh himself has indicated it is important to distinguish between probabilities and fuzzi-
ness/vagueness. Some people use the choice of connective A : (z,y) — x *y, which resembles computing the
probability of a conjunction of two independent events. It will often be OK in many applications to conflate
these two things (since many events are, after all, independent) but it is conceptually wrong.

CONTENTS 5

truth values into mathematics itself in a way mathematicians will actually care about, we
should show some tangible benefit and some serious mathematical structure. The direction
we are headed in is the direction of Chang and Keisler’s “Continuous Model Theory” (1966)
[4]. The idea here can be traced back to what many would consider to be normal (even
essential, classical) mathematics: studying a space by looking at a ring of functions on it.
From a mathematician’s perspective, logicians have been perhaps myopically focused only
on functions valued in Fy = {0,1}. This works really well for discrete structures, but could
be considered unnatural when applied to continuous structures. For example <, as a {0, 1}-
valued relation on the reals, does not respect the topology of the reals: it is not continuous.
To emphasize that we care more about topology than vagueness (which many would say
has no place in mathematics), we’ll be using the term “continuous logic” rather than “fuzzy
logic” to describe what we are doing. This is the terminology used by Ben Yaacov, Beren-
stein, Henson, and Usvayatsov, who have recently revived Chang and Keisler’s work with
their recent “Model Theory for Metric Structures” |19]. Another candidate term would have
been “Lukasiewicz logic”, after the work of Lukasiewicz and Tarski on many-valued logics in
the 1930s.

It could be argued, and we will, that continuous logic with truth values in [0, 1] is in some
sense more natural as a general-purpose logical framework for mathematics than classical
{0, 1}-valued logic. We find that using continuous logic greatly expands the reach of com-
putable structure theory to a much larger class of structures, especially those appearing in
analysis.

Chapter 1

Computable Continuous Structures

We present here many important definitions and conventions we will use to describe uncount-
able structures. These definitions combine concepts from computable structure theory and
the model theory of metric structures. The idea is that uncountable structures are amenable
to study from the perspective of recursion theory so long as their features can be controlled
by a suitable metric on that structure.

1.1 Basic Definitions

Convention: Whenever we use the term “function”, we allow any acceptable description
of a function, either a set-theoretic function (set of ordered pairs) or a Turing machine or
Turing functional which computes the function, or any other reasonable mathematical ob-
ject which has the ability to be evaluated on objects in the domain to obtain objects in the
codomain. If we say a function is a computable function, we take this to mean that the
function was described by a particular Turing machine or Turing functional, meaning we are
allowed to ask “What is the index of this computable function?”, rather than just “What is
an index of this computable function?”. This is at odds with a different convention, where
“computable function” just means a function for which there exists some description or other
of the function via a Turing machine or Turing functional. The same convention applies to
recursively enumerable sets, partial computable functions, etc.

Convention: We do not require in general that the domain and codomain of a function
are stored as datum in the description of the function. Rather, for any choice of domain
and codomain, we have a “type” of functions with that domain and codomain. The same
description of a function may pick out functions with many different possible domains. So
really, whenever we are using the word “function”, that’s really shorthand for “function
D — C”, where D and C are often left implicit. One consequence of this is that when we
say two functions are equal, we are always talking about extensional equality of functions
with the same domain and codomain. So, functions given by the exact same Turing machine

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 7

will be considered not equal if they are thought of as operating on different domains, and
two computable functions may be equal even if they are given by completely different Turing
functionals. The type information about a function (what its domain and codomain are) is
thus to some extent extrinsic and stored separately from the description of the function itself.

Convention: We assume that we have fixed a standard one-to-one enumeration (¢;);e,, of
Q to serve as our means of coding rational numbers as natural numbers. We suppose this
coding yields an interpretation of Q into N in which the operations on Q are computable.
The dot on top is just to distinguish it from other dense subsets (g;);c. of other metric spaces
we will consider later.

Definition 1. A lower name for r € R is a non-decreasing function |r| : w — Q such
that limy |7] (k) = r. A lower name |r| for r is computable if |r| is a computable function
w — QIf

Definition 2. An upper name for r € R is a non-increasing function [r] : w — Q such
that limg [r]|(k) = r. An upper name [r] for r is computable if [r] is a computable function
w— Q.

Definition 3. A name for r € R is a function [r] : w — Q such that |[r](k) — r| < 5. A
name [r] for r is computable if [r] is a computable function w — Q]

Exercise for the Reader: There is a computable name for » € R if and only if there is
a computable lower name for r and a computable upper name for r. There are reals which
have a computable lower name but no computable upper name, and vice versa (hint: think
about a real whose base 2 digits encode the halting set).

Definition 4. Let X be a countable space interpreted in N (for example w™, w<“, or Q).
Let A be a not-necessarily-definable subset of X. A lower name for a real-valued function
f A — Ris a partial function |[f] : X x w — Q such that for all x € A, |f](z,-) is a
lower name for f(z). An upper name for f is a partial function [f] : X x w — Q such
that for all € A, [f](x,-) is an upper name for f(z). A name for f is a partial function
[f] : X x w — Q such that for all z € A, [f](z,-) is a name for f(z). A lower name | f], an
upper name [f], or a name [f] for f is computable if | f], [f], or [f] respectively is partial
computablerﬂ

'We have an interpretation of Q in N, so we can talk about computable functions w — Q

2The reason we use non-strict inequality here is motivated by descriptive set theory considerations. One
can build many Polish spaces by quotients a II9 subset of w* (Baire space), by a II{ equivalence relation
(which you can think of as an equivalence relation defined by « ~ y < f(x) = f(y) for some continuous
function f). This allows us to have the property “z € w* is a name for p € M”, as well as “x,y € w* are
names for the same point” (i.e., equality in M pulled back to names), both be II.

3Tt makes sense to talk about partial computable functions X x w — Q, since X is interpreted in N.

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 8

Notation: If [f] is a name for a real-valued function f : A — R, we will by abuse of
notation write [f(«)] to denote the name [f](c,) : w — w of f(a). Note that f(a) =
need not imply [f(a)] = [B], but the reverse does hold. The square brackets in [f] do not
constitute an operation, because there are many possible ways to name the same function.
Rather, the removal of brackets to obtain a function from a name for a function is an op-
eration. The same convention holds for upper/lower names and upper/lower square brackets.

Definition 5. A computable metric space is a quadruple ((M,d), D, (¢;)icw, [0]), where
(M,d) is a complete, separable metric space, D is a countable dense subset of M, (¢;)icw
is an enumeration of D, and [0] : D?* X w — Q is a computable name for the function

6 =d|pz : D* = R[]

Observation 1. FEssentially, a computable metric space is just a complete metric space with
a countable dense subset, together with a method to calculate distances on that dense subset.
We can recover the metric on the whole space by defining the distance between two Cauchy
sequences of elements from D to be the limit of the pairwise distances between the elements
of those sequences. If we wanted to, we could eschew the metric space entirely, identify the
countable dense subset with w via the enumeration, and just use (w,[d]) as a computable
structure on its own, because we can recover the metric space using just this information.
We won’t do this, however, as it will be convenient to refer directly to points in the space.

Definition 6. Let ((M,d), D, (¢;)icw, [0]) be a computable metric space. A name for a point
p € M is a function [p] : w — D such that d([p|(k),p) < QL,C

Observation 2. The metric space R can be turned into a computable metric space by using
the rationals as the countable dense subset, (§;)ic, as an enumeration of the rationals, and
defining [0] : Q* x w — R by [0](q,¢)(k) = |qg — ¢'|. A name for a point r in the computable
metric space ((R,d), Q, (¢;)icw, [0]) is then just a function [r] : w — Q such that |[r](k) —r| <

2%. This agrees exactly with our original definition of a “name” for r € R.

Definition 7. Let ((M,d), D, (¢:)icw, [0]) and ((M',d"), D', (¢})icw, [0']) be two computable
metric spaces. A name for a function ¢ : M — M’ is a partial function [¢] : D¥ — D™
which sends every name for p € M to a name for ¢(p) € M'. [¢] is computable if [¢] can be
given by a Turing functional ®, i.e. for every name [p] for a point in M, ®P/(k) = ([¢]([p]))(k)
for all k € w.

Abuse of Notation Given names [¢] and [p| for a function ¢ and point p respectively, we
will write [¢(p)] as shorthand for [¢]([p]).

4A one-to-one enumeration of D allows us to interpret the set D in N, so it makes sense to talk about
whether a function D? x w — R is computable in that context. However, you'll notice we didn’t include
in our definition that the enumeration is one-to-one. This is not of any essential importance: if we have a
computably presented metric space in our sense, we can effectively transform this presentation into a different
one with a possibly different dense set with a one-to-one enumeration. We’ll go into this more later.

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 9

Note. The previous definition can be extended in two obvious ways to multivariate functions.
One is to give a definition directly of a (computable) name for a multivariate function: just
say it sends a tuple of names ([p1], ..., [pn]) to a name for ¢(py,...,p,). Another is to give a
definition of product computable metric space (just let the product metric be the max of
the distances in each coordinate, and let the countable dense subset be given by the product
of the countable dense subsets of each, enumerated in a natural way using a computable
pairing/tupling function), and say that a (computable) name for a multivariate function is
just a (computable) name for a function on the appropriate product space. These turn out
to be equivalent.

Sanity Check: With this extended definition, it’s easy to verify that if ((M, d), D, (¢;)icw, [0])
is a computable metric space, then the continuous binary function d : M? — R has a com-
putable name. Namely, we can set:

[d]([a], [pI) (k) = []([al(k + 2), [b](k + 2))(k + 1)

Proof. By definition, [a](k+2) and [b](k+2) are within 27572 of @ and b respectively, so by the
triangle inequality d(a, b) is within 2%~ of d([a](k+2), [b](k+2)). Since we know the latter is
itself within 2771 of [8]([a](k+2), [b](k+2))(k+1), this tells us [§]([a] (k+2), [b](k+2))(k+1)
is within 27% of d(a,b). But [d]([a](k + 2), [b](k + 2))(k + 1) is computable uniformly in k,
an oracle for [a], and an oracle for [b]. O

Definition 8. A function between two computable metric spaces is computable if it is
given by a computable name.

In the special case that ¢ is a real-valued function on M, where M is a computable metric
space, and R is given its standard presentation, we can also define upper/lower names for ¢:

Definition 9. A lower name for ¢ is a partial function |¢] : D¥ — QY which sends every
name for a point in p € M to a lower name for ¢(p) in R, i.e. to a non-decreasing sequence
of rationals converging to ¢(p) from below. Likewise, an upper name for ¢ is a partial
function [¢] : D¥ — Q¥ which sends every name for a point in p € M to a upper name for
¢(p) in R, i.e. to a non-increasing sequence of rationals converging to ¢(p) from above. A
lower /upper name is computable if it is given by a Turing functional.

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 10

1.2 Equalness Relation

We would like to think of metric spaces as being like sets with a continuous notion of equal-
ity (close-by points are more equal than far-away points). For this reason (and for some
technical reasons that will become clear later), it turns out it is useful to replace the met-
ric d : M? — R with an equalness relation ¢ : M? — [0, 1] given by e(x,y) = 274,
This has the additional advantage of making it easy to accommodate infinite distances (two
points are infinite distance apart if and only if £(a,b) = 0), which means we don’t need to
talk about oco-metric spaces, and our presentation of a version of the compactness theorem
is nicer [}

Definition 10. An equalness relation on a set M is a function € : M? — [0, 1] satisfying
the following properties:

o (Va,y,z € M)(e(z,2) > e(z,y) *e(y, 2))
o (Vo,y € M)(e(z,y) =e(y, 7))
o (Vz,ye M)(e(z,y) =1&z=y)

One can easily verify that d : M? — R is a metric if and only if its corresponding ¢ = 27 :
M? — [0,1] is an equalness relation.

We'll occasionally use the infix notation xey in place of e(z,y) when this allows for neater
notation, with an order of operations making e weaker than every other operation (meaning
it is performed last, unless explicitly marked by brackets).

Definition 11. We call a set together with an equalness relation a continuous space.

All metric spaces can be turned into continuous spaces canonically, but the converse is
not true, since a continuous space may have points which are entirely unequal, i.e. have
e(a,b) = 0, which would correspond to an infinite distance.

Definition 12. We call a continuous space discrete if ¢ takes values only in {0, 1}.
Observation 3. Discrete continuous spaces are just sets, with € being identical with equality.

We’re now going to replace the definitions in the previous section based on metrics with
new definitions based on equalness relations. The reason for giving the previous definitions
was to motivate these new definitions, which might seem obtuse otherwise to someone used

5The potential issue here is that while any finite subset of the conditions {d(a,b) > n : n € N} can be
realized in a metric space, they cannot all simultaneously be realized.

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 11

to working with metrics. You can compare some of our definitions with those like that of
“effective Polish space” in Moschovakis’ “Descriptive Set Theory” . You can also com-
pare the axiom “(Vx,y,z € M) (8($, z) > e(x,y) ey, z))” with the triangle inequality: like
the ordinary sub-additive triangle inequality for metrics, this super-multiplicative triangle
inequality for equalness relations is used to chain together bounds to obtain a common bound.

Definition 13. A name for r € [0,1] is a function [r] : w — Q N[0, 1] with e([r](k),r) >
272" where e(z,y) = 2717l for x,y € [0, 1]E|

The following Mathematica graphs may aid in visualizing this definition:

Graph of 272" for k =0 to 10 Graph of equalness relation on [0, 1]

A higher value of k corresponds to a closer-to-1 value of 272" which corresponds to ([r](k), r)
lying closer to the diagonal x = y.

Definition 14. A name for a function f : A — [0, 1], where A is a not-necessarily-definable
subset of some countable X interpretable in N, is a partial function [f] : X x w — QN [0, 1]
such that for all z € A, [f](z) is a name for f(z) € [0,1].

A

Definition 15. A computable continuous space is a quadruple ((M,¢), D, (¢;)icw, [€]),
where (M, ¢) is a completeﬂ, separableﬂ continuous space, D is a countable dense subset of

SIf the typesetting is hard to read here, by 227" we mean 2(_2%), not (272)~*.

TA continuous space is complete if whenever limpy inf; j>ne(x;.z;) = 1, there is a limit z, with
lim; (2, z00) = 1

8 A continuous space is separable if there is some countable D C M such that for all x € M and 7 < 1,
there is some ¢ € D with e(¢q,z) > 7

o5 &(xy)

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 12

M, (¢; : i € w) is an enumeration of D, and [¢] : D? x w — [0,1] N Q is a computable name
for the function é = ¢|p2 : D* — [0, 1].

Note. For continuous spaces arising from metric spaces, we could have used either the old
definition of “computable name for a function” here, i.e. |[[€](q;,q;)[k] — (g, q;)] < 27F,
or the new one, ie. ([&](q:, q;)[k],é(q,q5)) > 272" These are equivalent. However, []
being a computable name for ¢ arising from a metric d does not imply that —logs([€]) is a
computable name for d (or rather § = d|p2, as we were calling it earlier). The basic reason is
that for very large distances, being able to estimate 2-4*%) to within error 210% might not
even tell us d(z,y) to within an error 1. In this sense, by moving to an equalness relation
rather than a distance function, we are allowing our approximations of large distances to
converge more slowly than small distances. This makes sense, though. Imagine trying to
name the points of [0, 0] by branches of an infinite binary tree in an order preserving way.
The first split will correspond to breaking up [0, oo] into two pieces, and the right-most piece
will always be bigger, in the sense of Euclidean length, than the left-most piece, meaning
the first bit of information gives us less accuracy about the number being described if it is
1 than if it is 0.

Aside: You may also noticed, if you read a footnote in the previous section, that we have
again cheated slightly here: D is not necessarily interpretable in N via our enumeration,
because we did not require our enumeration to be one-to-one. This is no worry, however:
if we have more than one representative for x,y € D, say ¢ = x = ¢; and ¢y = y = g¢j,
then we would find both |[€](qgi, ;) (k) — e(x,y)| < 27% and |[€](gi, ¢;) (k) — e(x,y)| < 27F,
so our choice of representatives for p;,ps € D does not really matter, as long as we care
only about approximating e(z,y) to arbitrarily small error. If we wanted to make a more
straightforward (but more notation-heavy) definition, we could have defined € be a function
w? — [0,1], given by £(i,5) = (g, g;), but to simplify our presentation, we have by abuse
of notation treated € as a function D* — [0, 1] and swept this issue under the rug. This
is unproblematic if we have an injective enumeration of D, which is naturally the case for
many of the spaces we encounter, such as R. If our enumeration is not injective, we could
still identify D with a quotient structure N/ ~ where ¢ ~ j iff €(¢;,¢;) = 1. In general,
the equivalence relation ~ for a computable continuous space would be I1Y classically, but it
turns out this doesn’t really matter, since in general strict equality itself of points in M is
I19, so using this quotient structure does not increase either the complexity of strict equality
on our space M, nor of the equalness relation. In fact, in our context, we don’t have strict
equality, so what might appear to be a non-computable quotient structure turns out to be
computable in the continuous setting. We can think of £(g;, ¢;) : w* — [0, 1] as a continuous
generalization of the characteristic function of ~ (which is just another name for classical
equality). It’s easy to check that for a discrete computable continuous space, ~ will in fact
be decidable, meaning we can take the quotient effectively. Hopefully this helps alleviate
some worries that our definition of “computable continuous space” might be better described

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 13

as a “quotient presentation of a continuous space”.

Note. We prove in Appendix [B]a theorem that every computable continuous space presented
with a non-injective enumeration of D can also be presented with an injective enumeration
of D. The basic idea is to delay enumerating a point into D (possibly indefinitely) until we
have computed the distance from that point to the elements we have already enumerated
to within sufficient accuracy to see that it is different from all the points we have already
enumerated. This can be done uniformly. Ultimately, this is altogether a boot-strapping
problem, not a serious concern. It is just important to keep this in mind, because some
model-theoretic constructions more naturally yield a non-injective enumeration of a dense
set (such as building function spaces as the completion of a countable algebra of functions
on which strict equality is not decidable).

Definition 16. Let ((M,¢), D, (¢:)icw, [€]) be a computable continuous space. A name for
a point p € M is a function [p] : w — D such that ([p](k),p) > 272"

Definition 17. Let ((M,¢), D, (¢)icw, [€]) and ((M',€), D', (¢})icw, [€']) be computable con-
tinuous spaces. A name for a function ¢ : M — M’ is a partial function [¢] : D¥ — D"
which sends every name for p € M to a name for ¢(p) € M'.

The following definition gives us a concept analogous to that of a modulus of continuity for
functions between metric spaces:

Definition 18. An n-ary modulus for functions between continuous spaces is a function
A]0,1]™ — [0, 1] such that:
(i) Va,v € [0,1]", A(a) > A(uv) > A(u)A(v), where v is the coordinate-wise product.
(ii) A is continuous and A(1) = A(1,1,...,1) =1

Example 1. A : [0,1]" — [0, 1] defined by A(vy, ...,v,—1) = min(vy,...,v,—1) is an n-ary
modulus. We’ll call this the 1-Lipschitz modulus.

Definition 19. A function f : [[,_,, M; — M between continuity spaces respects the mod-
ulus A if for all z,¢ € Hi<n M;, e(f(z), f(y)) > A(€(z,7)), where €(Z,7) = (d;(4, Y:))i<n-

If a function respects a modulus, it is not only continuous, but uniformly continuous in a
way which can be explicitly controlled. The equalness (think, degree of closeness) of f(z)
and f(y) can be estimated purely in terms of the degree of equalness of z and y.

Example 2. The function A : [0,1]> — [0,1] defined by u A v = min(u,v) (with [0,1]
presented in some standard way as a computable continuous space) respects the 1-Lipschitz
modulus A. We call such functions 1-Lipschitz. The functions = : [0, 1] — [0, 1] defined by
—v=1—wvand V:|[0,1]> = [0,1] defined by uV v = max(u,v) are also 1-Lipschitz.

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 14

Intuitively, if a function is 1-Lipschitz, the values of that function on two different inputs are
at least as equal as the inputs.

Observation 4. The composition of moduli is a modulus.

Proof. Suppose A;, i < n are n;-ary moduli, and A is an n — ary modulus. Since the
composition of moduli is continuous, and A(Ag(1),...,A,_1(1)) = A(1,...,1) = 1, condition
(17) is satisfied. Condition (¢) implies A, Ao, ..., A,_1 are non-decreasing in each coordinate,
so we can see that A;(u;) > A;(w;0;) for all i < n, and thus

A(Ao(T0)s - - s A (Tn_1)) > A(Ao(@oTo)s - - - s A (Tin_1Tn-1))

. which is the left-hand inequality of condition (7). We can also see
A(Ao(ﬂoﬂo), o 7An71<’an711_]n71)) > A(Ao(ﬂo)/\o(ﬂo), e 7Anfl(ﬂn71)AO(@nfl>)

> A(Ao(o), - - - s Ap—1(tn—1)) A (Ao (Do), - - ., Ape1(Tn1))
so the right-hand inequality of condition (i) is satisfied. O

Observation 5. If each f; : Hj<”i M;; — N; respects modulus A\; for i < n, and g :
[Iic,, Ni = K respects modulus A, then the composition go(fo, fi, ...y fa-1) : [T, icn Mij —
K respects the composition of their moduli, A o (Ao, Ay,..., Ap_1).

Proof. Exercise for the reader. m

Observation 6. The composition of 1-Lipschitz moduli is itself a 1-Lipschitz modulus, so
the composition of 1-Lipschitz functions is 1-Lipschitz.

Proof. min;<, (mz'nj<kiuij) = MiNcp jr,; Wij- O

Definition 20. A modulus [0, 1]* — [0, 1] is computable if it is computable as a function
[0,1]™ — [0, 1] with [0, 1] interpreted as a computable continuous space using the equalness
relation &(7y,) = 27177l

Definition 21. A modulus is bounded if A(0) # 0.

Note. A bounded modulus can be everywhere bounded away from 0, i.e. there is some § > 0,
namely 6 = A(0), such that Range(A) C [4,1]. If a function obeys a bounded modulus, it
is bounded, as well as uniformly continuous. The problem of determining whether an index
of a computable modulus is that of a bounded modulus is ¥;: if a computable modulus is

bounded, then eventually we know A(0) to within sufficient accuracy to conclude A(0) # 0.

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 15

1.3 Continuous Logic and Computable Continuous
Structures

Now that we've gotten through some of preliminary definitions, we want to talk about con-
tinuous spaces with additional constants, functions, and relations on them. A constant is
just an element of M, which is more-or-less the same thing as a function {0} — M. An
n-ary function is a uniformly continuous map M™ — M. A relation (generalizing from first
order logic) is a uniformly continuous function M"™ — [0,1]. As mentioned in the introduc-
tion, we are using the interval [0,1] C R in place of {0,1} as a set of “truth values”. For
example, if our continuity space is a Banach space, perhaps we want a constant for the 0
vector, a binary function for addition, etc. Up to this point, our definitions were inspired
by mathematical folklore and pedantically refined by us for convenience of exposition. Sim-
ilar definitions exist scattered throughout the literature, e.g in literature on effective Polish
spaces etc., but we made no promise of adhering to any kind of existing standard. In what
follows, we are taking definitions almost directly from papers by Ben Yaacov, Berenstein,
Henson, & Usvyatsov [19] and Ben Yaacov, Doucha, Nies, & Tsankov [1§]. Our contribution
is merely to give computable analogues of their definitions, framed using continuous spaces
rather than metric spaces, which usually involves just inserting the word “computable” in
the right places and adjusting appropriately for an equalness relation rather rather than a
distance function. This should make it relatively easy for the reader to relate our results to
the work of Ben Yaacov et. al.

To motivate ourselves a bit, consider the classical theorem that total computable functions
2% — 2% (where 2“ is Cantor Space) are all uniformly continuous, and every uniformly con-
tinuous function 2¥ — 2% is computable relative to some oracle. This is what allows us to
make a connection between recursion theory and analysis. Our n-ary moduli in continuous
spaces play a similar role to moduli of continuity there: they tell you, roughly, how many
bits of precision you need on the inputs to a function to compute a certain number of bits
of precision on the output. Or more precisely, for us an n-ary modulus tells us how equal
we can guarantee f(Z) and f(y) are, given how equal the coordinates of Z and g are. It will
be useful to make an analogy to non-standard analysis (and in fact there is a non-trivial
connection here, which we’ll explain later when we talk about ultraproducts). There, we
can equivalently define a function f : R — R to be uniformly continuous if its non-standard
extension f*: R* — R* satisfies that if 2 ~ y then f(x) ~ f(y), where ~ is the relation of
being infinitesimally close (which we can think of as being almost equal). In other words,
the naive definition of continuity which is painfully scrubbed from undergraduate students
minds (”close-by points are sent to close-by points”) turns out to be meaningful and formally
correct in non-standard analysis.

One can check with our definitions that if (f; : ¢ € w) converges to f pointwise, and each f;
obeys modulus A, then f obeys modulus A. Likewise if a continuous function f obeys modu-

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 16

lus A on a dense set of points in its domain, it obeys the modulus everywhere. See Appendix
[A] for proofs of these facts. Also recall from the previous section that moduli compose: if
fos -y fn_1 and g are functions obeying moduli Ay, ..., A,,_1, and A respectively which can
be composed as g o (fo, ..., fn_1), then Ao (Ag,...,A,_1) is a modulus for g o (fo,..., fn_1)-
This also shows there is a uniform procedure for taking computable moduli for functions and
obtaining a computable modulus for their composition, since compositions of computable
functions are computable. These facts will enable us to represent uniformly continuous func-
tions and relations on a computable continuous space in a nice way, which paves the way for
computable continuous structure theory. But first lets give some of the basic definitions for
continuous logic and continuous structures.

Definition 22 (modified from Ben Yaacov, Henson, et. al.). A (multi-sorted) continuous
signature o consists of the following:

(a) A set S, of sort symbols
(b) a set R, of relation symbols

c) a set F, of function symbols

(e) a function Dom : R, U Fy — Useszw [115 57 giving the domain
(

)

)

()
(d) a function Ari: R, UF, = w

)
f) a function Cod : R, U F, — (S, U{[0,1]}) giving the codomain
)

(g) a function A : R, UF, = U, ([0,1]" = [0, 1]) giving the modulus

We also assume that the symbols in R, and F, are assigned arities, domains, and codomains
by Ari, Dom and Cod, consistently with the type of symbol and with the arity of the modulus
each is assigned. Constant symbols are just function symbols with arity 0 with domain {0}
and codomain S for some sort S € S,. Relation symbols should have codomain [0, 1], while
function symbols should have codomain one of the named sorts.

Note. For two continuous signatures o and 7, we say ¢ C 7 if all of the objects mentioned
in (a)-(g) constituting o are contained in the corresponding objects for 7, i.e., S, C S, the
Dom function for 7 is an extension of the Dom function for o, etcl

Definition 23. A continuous signature is computable if it can be interpreted in N in such
a way that the sets of sort, relation, and function symbols are each computable, Ari, Dom,
and Cod are computable functions, and Ay is a computable function for each symbol X,
uniformly in the symbol X.

9Tf we were more clever with our definition of “continuous signature”, we could ensure that extension of
signatures is just set containment, but we choose not to because it would greatly complicate the definition.

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 17

Definition 24. A (multi-sorted) continuous structure M with signature o is a collection
of continuous spaces ((Mg,e5) : S € S,) together with relations (RM € Mpom(ry, X ... X
Mpom(ry,, — [0,1] : R € R, and Ari(R) = n) and functions (f* € Mpom(p), X .. X
Mpom(fyns = Mcoacp) + f € Fo and Ari(f) = n) such that fM and RM obey the moduli
Ay and Ap respectively.

Definition 25. A (multi-sorted) continuous structure M with computable signature o is
computable if the underlying continuous spaces for each sort are computable uniformly
and we can uniformly compute a name for each f™ and RM.

It’s especially useful to look at continuous structures based off of metric spaces which are
bounded or even compact. Ben Yaacov, Henson, et. al. [19] (who have a definition of metric
structures) assume all sorts are bounded, and use many sorts to deal with unbounded spaces,
but we are hoping to avoid this by using equalness relations. In any case, if we want some-
thing like the compactness theorem to be satisfied for continuous structures, the presentation
of simple spaces like R may seem a bit complicated. The use of equalness relations sacrifices
the ability to use classical reasoning dealing with subadditivity of metrics and such, but we
think it is probably an easier sacrifice than presenting R as a structure with infinitely many
sorts. We'll go into more detail about challenges to presenting R as a continuous structure
later.

In addition to having a continuous version of equality, we also have a continuous version of
logical connectives:

Definition 26. A continuous logical connective is a continuous function p : [0,1]" —
0, 1] together with a modulus of continuity A, which p obeys.

Definition 27. A continuous logical connective is computable if both p and A, are com-
putable.

Note. You might be wondering, if you are thinking ahead, why don’t our moduli of continuity
themselves need moduli of continuity? After all, a modulus of continuity allows us to compute
the values of a continuous function everywhere if we can compute them on a dense set. If
we just know a function is continuous, and know its values on a dense set, that doesn’t
imply we can compute the function everywhere, because we don’t know how close we need
to approximate our input point to get a given level of closeness to the value of the function
at that point. We might worry that we will have an infinite regress, where even if we can
compute a modulus of continuity on a dense set, it need not be computable unless we have
a further modulus of continuity, and so on. It turns out the reason we don’t have an infinite
regress is that if you can lower compute A on a dense set which includes 0, then there is a
computable lower name for A, and this is all we need to be able to compute a continuous
function which obeys A everywhere if we can compute it on a dense set. See Appendix [C] for
more details.

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 18

Definition 28. Let o be a (multi-sorted) continuous signature, and for each S € S,, let xs
be a set of new symbols for variables of sort S (e.g. x = {27 : i € w}). We will define the
terms over o with variables y = (x5 : S € §7). Terms(o, x) is the smallest set of strings
such that:

(i) If ¢ € F, has arity 0, then ¢ € Terms(o, x), Type(c) := {0} — Cod(c) = Cod(c), and
Ao=1

(ii) If v € xg, then x € Terms(o,X), Type(x) := S — S. We set A, := Idjp;], the unary
1-Lipschitz modulus.

(iil) If to,...,tn1 € Terms(g X), [€ Fo, and Type(t;) = ;.. Sij = Dom(f); for i <
Ari(f), then f(to,...,tn—1) € Terms(o,x), Type(f(to,...,tn-1)) = [L;icf. Si = Cod(f),
and A b0 1) Af o (Asgy s Ay, ,) 1 [0,1]% — [0,1]. Here (S; : i < k) is obtained
by reading f(to,...,t,—1) left-to-right, starting with the empty list, and adding a copy
of S to the end of the list whenever we encounter a variable symbol from yg which
has not appeared before. We identify variables in the composition of the moduli which
correspond to the same variable symbol [(]

In this definition we also defined the type of terms in parallel. We could have written this
without (i) and treated constants as a special case of (iii), but instead we separated it out to
avoid confusion. We will always make use of the canonical isomorphisms between the space
of functions {#} — X and X, as well as the canonical isomorphisms between {(} x X and
X. This means we will treat a formula like R(c,z), where ¢ is a constant symbol and z a
variable symbol, as denoting a unary [0,1]-valued function rather than a binary [0,1]-valued
function with one of the inputs ranging over a domain with only a single point. This means
we will always simplify product and function types to exclude irrelevant copies of {0}. If we
wanted to be really pedantic, we also could have talked about diagonal functions being used
to identify variables, but we will leave that to people who are interested in categorical logic.

Definition 29. Let o be a (multi-sorted) continuous signature and y = (xs: S € §7) a set
of variable of each sort. Then the atomic formulas over ¢ with variables y, which we will
call Atomic(o,Y), is the smallest set of strings with the property that if ¢; € Terms(o, x) and
Type(t;) = Dom(R); for i < Ari(R) for some R € R,, then R(to,....,t,—1) € Atomic(o,X).
Here we treat the equalness relation eg for each sort S as a binary relation symbol with
modulus A (7, 7) = 77e. We also let Type(R(to,...,tn—1)) = [[,., S — [0,1], where
(S; : i < k) is determined as in part (iii) of the definition of terms. Ap,,..4, ,) = Ago©
(Mg, s Mg, 1)

107 variables are not repeated, [LickSi = Ilicn H g, Sij- This is just to say what happens when we
repeat a variable. For example, suppose our formula is f ((y),s(2),7(2), h(x,y))”. Assuming x ranges over
real numbers, y and z over complex numbers, and the codomain of f is the real numbers, this would have
type CxC xR —R

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 19

Definition 30. Let ¢ be a (multi-sorted) continuous signature, and v be a collection of
continuous logical connectives. Fix y = (xs : S € S,) a countable set of variables for each
sort. Then the continuous language with signature o and connectives v is called £(co,v) and
is defined as the smallest set of formulas satisfying the following:

(i) Atomic(o,x) C L(o,v)

(ii) If p € v is an n-ary logical connective, and ¢q, ..., p,—1 € L(0,v), then p(¢g, ..., Pn_1) €
L(o,v). Type(p(do, ..., on-1)) = [LicxSi — [0,1], where (S; : ¢ < k) is just the
list of sorts of the “free” variables appearing in u(¢y, ..., ¢,_1) from left to right (not
counting repeats of a variable). Apg,. 6. 1) = Ay 0 (Mg, .oy Ng,_,) (with arguments
corresponding to the same variable symbol identified).

(iii) If ¢ € L(o,v), and = is a variable, then inf,¢ € L(o,v) and sup,¢ € L(o,v).
Type(inf,¢) = Type(sup,¢) = [[,.,Si — [0,1], where (S; : ¢ < k) is just the list
of sorts of the “free” variables besides x appearing in ¢ from left to right (not counting
repeats of a variable). A, = Agup, ¢ 18 just Ay with 1 plugged in for the coordinate
corresponding to x (if it appears). See Appendix |A| for an explanation of this choice
of modulus for sup,¢ and inf, ¢.

Definition 31 (Interpretation and Moduli). These formulas are all to be interpreted in the
obvious way in a structure: the interpretation of a complex formula is the interpretation of
the outermost symbol used in its construction composed with the interpretations of all the
sub-formulas used in the last step of the construction of the term. Additionally, it’s possible
to extend Ari, Cod, and Dom to both terms and to formulas (as we did with A). Ari, Cod
and Dom can be extracted from the type.

Definition 32. The language L£(o,v) is computable if both the signature ¢ is computable
(according to the definition given before) and the connective collection v is computable, in
the sense that we have an interpretation of the set of connectives v inside N and a uniform
procedure taking a connective p and returning computable names [p] : ([0, 1]NQ)A™ ™ x w —
0,1]NQ and [A,] : ([0,1] N Q)4 — [0,1]NQ for p and A, respectively|']

1Tt’s fun to note, for those who really enjoy pedantry, that we are using the continuous logical connectives
in v as symbols for themselves. You might be wondering something like this: what if we have a way of
enumerating connectives which is unavoidably non-injective? Then by our convention to use extensional
equality rather than intensional equality for functions, when two connectives we enumerate turn out to be
extensionally equal, we have committed ourselves to assigning them the same symbol. But it is not decidable
whether two connectives are extensionally equal! This seems to exclude perfectly reasonable collections of
connectives. We can solve this problem by using a separate set of connective symbols, which are assigned
to logical connectives by some assignment function. Another way to solve it would be to consider a kind
of effective presentation of a closed collection of connectives, where we have a countable dense subset of
connectives approximating the whole collection, and we don’t care exactly which connectives are in this
dense set, as long as its closure is as desired. In that framework, we could always find a presentation of
our closed collection of connectives that has an injective enumeration of a dense subset of that collection,
assuming we could find a not-necessarily-injective enumeration of a dense subset of that collection. But we
are already so notation heavy, it seemed best to leave this to a footnote.

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 20

Discussion. There is a sense in which formulas in a computable language can approximate
those in an uncountable language. We’re not talking about the interpretations of those
formulas in a structure, but the formulas themselves. The idea is that a sequence of logical
connectives p, might converge to a limit p. So we should think of the formulas p,(¢,?) as
converging to p(¢,v), and so too for more complex formulas which differ only by having
pn in place of p. The topology we place on the set of formulas in our language is given as
follows: first assign each atomic formula a distinct variable symbol. Next, construct for each
complex formula ¢ in our language a function f, : [0, 1]4%™@) — [0,1] by replacing each
occurrence of each atomic formula in ¢ with its corresponding variable symbol, and thinking
of the result as a [0, 1]-valued function on [0, 1]4%™¥(®) with the product topology. f, will
depend only on the variables corresponding to the finitely many atomic formulas appearing
in ¢. Finally, define a metric by

d(¢,) = max [fy(T) — fu(2)]

16[071]Atomic(o)

This is a maximum, not just a supremum, because [0, 1]4%™*() is compact, and each fois
continuous. Essentially, this gives the topology before we have a theory relating the values
of the atomic formulas. One we have a background theory, it makes sense to take a quotient
our space of formulas by equivalence modulo that theory.

1.4 Formula Complexity and Definability

Definability is relatively uncomplicated notion in N. Formulas correspond to subsets of
(Cartesian powers of) N, and you can gauge the complexity of such a subset by counting
alternations of quantifiers in the formula defining it. If you have a computable presentation
of N, then there is an algorithm to enumerate the 3; truths (sentences whose normal forms
have only existential quantifiers). II; truths (universal statements) can be effectively falsified
using an algorithm which searches for counter-examples. And more complicated formulas,
in general, might require iterates of the halting problem to compute their truth values. The
principle here is a syntactic-semantic duality, where syntactic objects (formulas) correspond
to semantic objects (subsets), and the complexity of a definable subset can be gauged by the
syntactic form of the form of the formula defining it.

It turns out, even for classical computable structures, that in the general case it is more
natural to work in a computable infinitary language to describe the complexity of sets. The
basic reason for this is that in any computable structure, you can verify a computable infinite
disjunction just as easily as you can verify a existential statement. In Q in the language
(0,1,+), for example, the non-negative dyadic rationals (rationals of the form Zr) are not de-

finable by an existential formula, but they are definable by a computable infinite disjunction

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 21

] which is just as easy to verify in any computable copy of Q. See Antonio Montalban’s
upcoming book (available as a draft on his website) Computable Structure Theory |10] for
a nice exposition of this material for classical first-order structures. We will be proving
analogues of theorems presented in his book for continuous structures, so it may be useful
to compare. It is worth noting that not only do many of the theorems generalize to this
setting, but many of their proofs do too, which provides some evidence that our framework
for computable continuous structure theory is the right one.

However, care must be taken in laying out the definitions. It is temping to define “definable
subset” to mean a set of the form {p € M" : ¢ (p) = 1} (for a single-sorted structure).
But we can see this is probably the wrong definition: even if ¢(x) is an atomic formula, and
M is a computable continuous structure, it may not be decidable from an oracle giving a
name for p whether ¢ (p) = 1. In general, we can only evaluate atomic formulas in a com-
putable continuous structure to arbitrary precision. Think, for example, of trying to figure
out whether a real number is equal to 0 from its binary expansion. We might read a million
zero digits, but never know if later there might be a one. The problem here is essentially that
the characteristic function of the set we are trying to define is not continuous. In a discrete
structure, this problem does not arise, because every function is continuous. Instead, we
want to be able to compute how close elements are to a given set. Specifically:

Definition 33. Suppose A € M". Let xa(Z) := suppea A, €(xi, ps). This is the continu-
ous characteristic function of A. For 7 € [0, 1], A is 7-definable (without parameters)
if there is a formula ¢(Z) such that

inf =(6(2), xa(®) > 7
The continuous characteristic function tells you how close a point Z is to A. For A to be
T-definable is for there to be a formula which approximates the characteristic function x4 to
degree T of closeness. We are using the symbol “7”7 because we might want to think of [0, 1]
as a set of truth values. Instead of choosing an error €, and approximating up to an error, we
are thinking of choosing a truth value, and requiring that the equality of the functions ¢(z)
and x4(Z) is at least 7-true, or to put it another way: that their values are at least T-equal.
Note that T-equality is an equivalence relation only when 7 = 1 (or 0, in which case it is
trivial). In general it is a similarity relation (reflexive and symmetric, but not necessarily
transitive). See section 0.2 for some intuitions on how this lack of transitivity plays out.
There is still a weakened version of transitivity: if x and y are T-equal, and y and z are 7/

12This formula would just be something like:

o) = \/ w (L+1)%(1+ 1% (14 1) (k times)) = 1+ 14+ 1 (p times)
p,keN

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 22

equal, then z and z are at least (7 * 7')-equal. Recall this is just our version of the triangle
inequality.

Note. In the case that we are working with a discrete continuous structure, where all values
lie in {0, 1}, 7-definability is identical with classical first-order definability for any 7 > 1.

Definition 34. A C M" is definable if for every 0 < 7 < 1, A is 7-definable.

For a long discussion of why this notion of definability is the appropriate one for model-
theoretic purposes, see the section titled “Definability in Metric Structures” in [19]. The
basic idea is that there is a natural metric on the class of functions f : M™ — [0, 1] (which
we can think of as having all the continuous characteristic functions of sets). This metric
roughly corresponds to the Hausdorff distance between the sets so defined. We would like
that any of the sub-classes we consider will be closed with respect to this metric, so we define
the class of definable functions M™ — [0, 1] to be the closure of the set of functions given
by formulas of our language (rather than just functions given by formulas in our language).
If we want to preserve the duality between sets and characteristic functions, we should then
say the definable sets are those whose continuous characteristic functions can be uniformly
approximated to arbitrary precision by formulas in our language. It’s worth noting that this
is a faithful generalization of definability in classical first-order model theory, if that makes
it more palatable.

However, this may not be the appropriate notion of definability for computable continuous
structure theory. One concern is the lack of uniformity in the formulas giving the approxima-
tions. For example, what should we say is the complexity of a set which can be approximated
to truth value 7,, = 272" by a formula ¢,, only with n alterations of sups and infs (and no
fewer)? Even if each ¢, is X1, what if this sequence of formulas is not computable? These
worries can be resolved by working in a computable infinitary language. In [19], Ben Yaacov
et. al. use the Tietze extension theorem to construct a continuous infinitary connective
which essentially takes the limit of a fast Cauchy sequence of formulas, allowing you a for-
mula like lim,,¢,(Z) to define a set, where ¢,(Z) are the successive approximations to its
continuous characteristic function. This connective turns out to be computable. We give
a version of it here in our formalism, described in a way that make it obvious it is computable:

Definition 35. The forced limit of (7,),e, € [0,1]¥, denoted lim, 7, is computed from
an oracle giving a name for n — 7, by [lim, 7,](0) = 7 (1),

[Thgo] (K + 2) if &([Tpya)(k + 2), [lim, 7] (k)) > 272"
[lirrln To)(k + 1) := < [lim, 7,,] (k) + 27571 if otherwise [y 2](k + 2) > [lim,, 7,,] (k)
[lim,, 7,](k) —27%"1 i otherwise [} 12](k + 2) < [lim,, 7,,] (k)

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 23

Essentially, if n +— [7,](n) is a name for some 7 € [0,1], [lim,7,|(k) is just equal to
[Tk+1](k 4+ 1), and [lim, 7] is a name for 7. If the terms of [r,41](n + 1) don’t converge
fast enough, the sequence is modified to only change within some predefined bounds at each
step, ensuring that [lim, 7,] always converges fast to something (but it won’t necessarily be
equal to the limit of the 7,, if the sequence (7,)ne., converges too slowly). All we’re doing here
is extending the (computable) process of taking the limit of a (quickly) converging sequence
of points to the class of all sequences, obtaining a computable connective [0, 1] — [0, 1].

Observation 7. Suppose R is a function M™ — [0,1]. If ¢,(T) is a computable sequence of
formulas with infz e(R(Z), ¢,(Z)) > 272", then inf; e(R(Z),lim, ¢, (%)) = 1. In particular,
the relation R(Z) is T-definable for all 7 € [0,1) by the same formula, lim,, ¢,,(T).

Thus if we allow this connective into our language, every definable set is definable by a
single formula, and every set definable by a computable sequence of formulas is definable by
a computable formula (although we haven’t said what computable formulas are yet).

Note. We might consider the addition of the connective lim to be a very weak kind of
infinitary connective. While the infinite conjunction and disjunction (inf and sup) of a
computable sequence of computable functions need not be computable in a computable
structure, the forced limit of computable sequence of computable functions on a computable
structure will always be computable.

We now define a computable infinitary language. First we need to port a definition from [18]:

Definition 36. A weak modulus is a function 2 : [0,1]* — [0, 1] such that:
(i) Qu) > Qu=*v) > Qu)Q(v), where * is the coordinate-wise product.

(ii) €2 is lower semi-continuous in the product topology, and separately continuous in each
argument, and Q(1) = Q(1,1,1,1,....) =1

Example 3. The connective lim,, obeys the weak modulus Q(7) = [],..., max(272", 1),
which is not only lower semi-continuous, but continuous.

However, the main reason for using weak moduli is for their truncations, which allow us to
simultaneously require an infinite family of formulas, possibly with different free variables,
to all obey compatible moduli.

Definition 37. The n-th truncation of Q is Q|,, : [0, 1]™ — [0, 1] defined by Q| (70,, Tn_1) =
Q(To, ceey Tn—1, 1, 1, 1, 1, 1,)

Observation 8. The n-th truncation of a weak modulus € is an n-ary modulus.

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 24

An example of a useful weak modulus that is not continuous, but still useful, is the universal
1-Lipschitz modulus:

Definition 38. The universal weak 1-Lipschitz modulus 2 is defined by Q(7) = inf; ;

Its truncations are all the n-ary 1-Lipschitz moduli. This is a convenient way say that a class
of formulas all with different numbers of free variables are all 1-Lipschitz. Another example
is the universal Lipschitz modulus:

Definition 39. The universal weak Lipschitz modulus is defined by Q(7) =[] . 7"

new '‘n°

Note that if f obeys modulus A(7) = 7, and ¢ arises from a metric d(z, y), then 2~ @:/W) —
e(f(z), f(y)) > e(z,y)* = (271==¥" "and thus taking the negative base-2 logarithm on both
sides, d(f(x), f(y)) < n|x — y|, which is exactly saying f is n-Lipschitz.

Definition 40. Fix ¢ a computable signature, and v a computable collection of continuous
logical connectives, we define the computable infinitary language L (o, v) as follows:

e The basic formulas are formulas ¢(zo,,z,—1) € L(0,v) that do not make use of
the quantifiers inf, or sup,, depend only on the first n variables (but possibly not all
of them), and whose modulus is bounded below by the modulus |,

o If (¢, : i € w) is a computable sequence of n-ary formulas in £§ (o, v), then A, ¢; and
V, ¢: are n-ary formulas in £ (o, v) (to be interpreted as an infimum and supremum
over i € w, respectively).

o If ¢ is an (n+1)-ary formula in £§(0,v), then inf,, ¢ and sup, ¢ are n-ary formulas
in LG (o, v).

o If (¢, : i < a), a < w is a computable sequence of n-ary formulas in £ (o, v), and
u € v is a 1-Lipschitz a-ary continuous logical connective, then u((¢; : i < «)) is an
n-ary formula in £ (o, v).

Note some of the restrictions we have placed. We are only allowed to quantify over the
largest variable in a formula. We are only allowed to apply 1-Lipschitz connectives, aside
from the construction of basic formulas. The reason for this is that when we take an in-
finite conjunction or disjunction, we need all the formulas in that infinite conjunction or
disjunction to respect a common modulus, and so we want it to be trivial (computationally
speaking) to verify this.

One potential problem with our language, however, is that it may be computationally non-
trivial to tell whether a basic formula respects 2|, or verify that a continuous logical connec-
tive is 1-Lipschitz. If we knew that we could enumerate the basic formulas in our language,

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 25

and the 1-Lipschitz connectives in v, then we could enumerate all the formulas of our lan-
guage by induction. So we will assume from now on that we have chosen a language for
which we have an enumeration of the basic formulas in £(0, v), and can enumerate all the
1-Lipschitz connectives in v. One way to do this is to choose v to consist only of 1-Lipschitz
connectives, and to give our relations/functions moduli which are easy to compare to |,
(for example, maybe we can separately enumerate the r-Lipschitz relations/functions for
each r € Qx¢). It’s worth noting that A, Vv, =, and lim,, are all 1-Lipschitz.

Definition 41. We define some complexity classes of formulas in £ (o, v):
e Basic formulas are II§ = X
o A formula of the form \/, sup;, ¢;(Z;,y) where the ¢; are uniformly II}, is 3 ;.
e A formula of the form A, infz, ¢;(Z;,y) where the ¢; are uniformly 3¢ is II¢ , ;.
o A formula is A¢ if it is equivalent to both a II¢ and a X formula.

Definition 42. A logical connective u is order preserving if whenever 7 < 7/ coordinate-
wise, u(T) < u(7’)

Observation 9. A, V, and lim,, are all order-preserving, while — is order reversing. X
and 11 formulas are thus both closed under order-preserving connectives, in the sense than
any formula obtain by applying order-preserving connective like N\ or \V to a 3¢ formula
(respectively, 115 formula) is equivalent to a 3¢ formula (respectively, 115) formula). This
means X and 117 formulas up to equivalence form a lattice. The negation of a X, formula
15 equivalent to IIS, and vice versa, which tells us that AS formulas form a Boolean alge-
bra. But these lattices and Boolean algebras have many more operations than the classical
Boolean connectives, which give us a richer algebraic structure on these classes of formulas
i continuous logic than in classical logic.

Aside. We haven’t said what it means for two formulas to be equivalent. For us, this will just
mean that infz £(¢(z), 9 (z)) = 1 in every model of the theory under consideration. Usually
this will be the theory of a particular structure M whose definable sets we are considering,
in which case this is just saying that those two formulas have inf; e(¢M(z),vM(z)) = 1 We
haven’t said what a theory is in continuous logic, so we’ll have to refer back when we do
define continuous theories (there are some subtleties). If we are working over the empty the-
ory, however, equivalence can be characterized by the metric on formulas we defined at the
end of section 1.3: two formulas are equivalent if d(¢, 1) = 0 (which is straight-forwardly the
same as saying they take on the same values for any interpretation of the function/relation
symbols in the language). This also has a syntactic characterization for finitary continuous
logic: there is a completeness theorem for continuous logic, proven by Ben Yaacov and Ped-
ersen in [20], but we won’t go into this now.

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 26

Definition 43. A set A C M" is 3¢ (respectively, I1¢) if there is a X¢ (respectively, 11¢)
formula ¢(z) € L (0, v) with inf; e(p(Z), xa(Z)) =1

From now on when we refer to these complexity classes of formulas, we will always be using
equivalence in a given structure, rather than over a class of structures.

Definition 44. We say function f : M — [0,1] is a I" function for I' = X¢ or IIS or A¢ a
class of formulas if f is definable by a single formula in I', i.e. f is 7-definable by the same
I' formula for each 7 < 1.

Note. For N treated as a computable continuous structure with the discrete metric, the
subsets whose characteristic functions are X{ are exactly the ¥; (recursively enumerable)
sets. This should give us some indication we are using the right definitions.

Observation 10. X{ functions M™ — [0,1] on a computable continuous structure have
computable lower names (i.e., they can be computably approximated from below) 11§ functions
have a computable upper names (i.e. they can be computably approximated from above). A§
functions have computable names.

What’s interesting is that the syntactically defined class of 3¢ functions M"™ — [0, 1], which
we will call “X¢ relations”, corresponds to a semantic class of relations: the “uniformly
relatively intrinsically computably enumerable”, or “u.r.i.c.e.”, relations. We extend some
definitions from Antonio Montalban’s “Computable Structure Theory [10] to continuous
structures:

Definition 45. An w-presentation (a.k.a. a copy) of a continuous structure M over a
computable language is an isomorphic continuous structure A whose dense set D = w, whose
elements are equivalence classes of fast Cauchy sequences of elements of D = w under the
equivalence relation (n;)icw ~ (M;)ic, iff lim; e(n;, m;) = 1, and whose constants, functions,
and relations are given uniformly by names (not necessarily computable names, but the data
should be stored as a mapping from symbols to names for functions/relations/constants).
The named atomic diagram of an w-presentation A of M, denoted D(A), is exactly this
datum: the mapping from the set of function/relation/constant symbols to names for the
corresponding functions/relations/constants.

Definition 46. A computable copy of a continuous structure M is an w-presentation of
M whose named atomic diagram is computable.

An w-presentation of a continuous structure is essentially just a computable continuous
structure relative to some oracle, with the constraint that the dense set is w. The idea be-
hind restricting the dense set to be w rather than some arbitrary countable dense set D is
that it makes it easier to consider the class of all separable continuous structures in a given
language. Likewise, a computable copy of a continuous structure M is just a computable

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 27

structure A isomorphic to M whose dense set is w, so this definition is not really anything
new. The main difference here is that it’s possible to describe these structures completely
(up to equality, not just isomorphism) with only a countable amount of information.

Definition 47. A relation R : M™ — [0, 1] obeying weak modulus € is u.r.i.c.e. if there is
a Turing functional ® such that ®P is a computable lower name for R for every copy A

of M.

Theorem 11. Let M be a computable continuous structure with a given signature, and) is
the universal 1-Lipschitz modulus, Q(7T) := inf; 7;, and our collection v of logical connectives
contains all rational piecewise linear connectives, together with lim,,. Then the X in relations
over L (o,v) are exactly the 1-Lipschitz u.r.i.c.e. relations.

Proof. One direction is straightforward: if a 1-Lipschitz relation R is Y, say by a formula
V, supy, (7, ;) we can approximate R(p) from below using an oracle for the diagram of
any copy A of M, and an oracle for a name [p] for p € A by setting

@Ik =\ BEE+1),g)(k+1)—27F

i<k g;e{qo,-.,qn—1}1i

if this is not less than [R(p)|(k — 1), and [R](p)(k — 1) otherwise.

The reason this is w.r.i.c.e. is because, given the diagram of A, we can uniformly in 7 com-
pute a name for ¢7*, and thus approximate to arbitrary precision a finite maximum of such
functions. By subtracting 27, we ensure that we are approximating R(p) from below: this
is to account for the fact that our estimate for p(z, ;) (namely [¢]([Z](k + 1), @) (k + 1)
may be too high by an error of 2%, accounting for our error in approximating z, and our
error in approximating the value of ¢ on that approximation of z. To see that this converges
to R(p), just note that if \/;sup,, »(z,7;) > 7, then supy, ©(Z,y;,) > 7 for some iy € w,
and if supy, ©(Z,7;,) > 7, then for some ¢ € Dl = Bl we have ¢(z,q) > 7. We only
need to evaluate the supremum ever a dense set of tuples, because ¢ is continuous, and the
supremum of a continuous function over some domain is the same as the supremum of that

continuous function over any dense subset of that domain.

For the converse, suppose the n-ary relation R is u.r.i.c.e. by some Turing functional ®.
That is, given the diagram D(A) of a copy A of M, and any n € w™ C A", ®P(n)(k),
thought of as a function of k, is a lower name for R4(71). We want to obtain from this a %!
formula which defines R.

The main observation is that if ®P(n)(k) |= ¢ € QN [0,1] for a particular k in, say,
s steps of computation, it could only access the first s bits of D(A). This represents a
finite amount of information about some tuple m O 7, and can be expressed by a finite

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 28

collection of closed conditions of the form [5(gz§llt“4(),4;,) > 272 "] for I < s. For each [,
using a computable 1-Lipschitz connective u; (obtainable uniformly from ¢;, and &), we can
re-express the [-th condition as: [ul(gb“t A(m)) = 1], so the entire collection of conditions can
be expressed as:

/\u atA _1]

I<s

Given n and D(A), and k, there is a uniform way of obtaining this formula A,_, ul(gbat A(m))
and q. This formula is 1-Lipschitz, and any § € A™ meeting this condition will necessarily
have RA(p) > i for p = ¢ | n, because if ¢ meets this condition, then there is an alternate
isomorphic copy B of M for which § € A™ can be carried by an isomorphism to 7m inter-
preted as an element of B, and for which the first s bits of D(B) are equal to the first s bits
of D(A) (we obtain this copy B of M by simply choosing an enumeration of a dense set in
A so that the elements corresponding to ¢ are labeled with the labels m). But then we can
see that:

AE sup/\uz u Az7y) =1 = A [R(z) > ¢

Y i<s

Without loss of generality, we may suppose A = M, which tells us:

.A _
M [sup A w6 (779) = 1] = M [[R(@) 2 4]
Yo<s
The problem, of course, is that we cannot necessarily reverse this implication, because there
may be many different ways of making R(Z) > ¢;. The first thing we can do is quantify over
points nearby points meeting this condition, to get an open neighborhood (with a slightly
weaker result):

M = {sgp((7,2) + 27" Asup A\ w(of4(z™ y))) :11 — M= [R(z) > g — 27

Y oi<s

We are taking advantage of the fact that our language is 1-Lipschitz, here. Now we just
want to take an infinite disjunction over all possible ways to to witness R(z) > ¢ for some
rational ¢. For n € w"™ C M", and k € w, define:

Yna(7) = (qn,k—zk) - (1—sgp((7,2) + 27 Asup \ a6 (2 y>>)>

y I<s

where for any 7 and k, gpx, u,;;, and iz, are chosen according to our uniform construction
above, and we take this formula to have value 0 if it evaluates to a negative number (to keep
its values inside [0,1]). This construction of 5 x is uniform in 7 and D(M), and D(M) is

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 29

computable, so this family of formulas for n € M™ is c.e. even without an oracle. Note also
that by construction, for any 7, k, and any = € M", we always have 2} (Z) < RM(Z), i.e.
we are never overestimating R(Z). But then we can take a compute disjunction over n € M™
and k € w to obtain a X{ formula:

We claim this 3¢ formula defines R™M. We have already shown one direction (namely that
it never overestimates R(Z). We need to show that it never underestimates R(Z) either:
Let £ € M", and fix k' € w. Pick a point n € M with ¢(n,z) > g2+
that ®PM) () (k) > R(n) — 2-**2). Then

. Now pick £ so

Uni(T) = Pnp(n) =27 F 2 > R(n) — 272 — 2= (F=2)
> R(z) — 27 W2 9= (W=2) _9=("=2) 5 R(z) — 27F

We are using 1-Lipschitzness of 17, and R in the first and second-to-last inequalities. As &’
was arbitrary, p(z) > R(z) for any z € M™. O

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 30

1.5 Examples of Computable Continuous Structures

Before we go further, it’s worthwhile to present a few structures of general interest to mathe-
maticians as computable continuous structures. The main obstacle to presenting a structure
is possibly needing to modify it so that all the functions and relations are uniformly con-
tinuous. We of course have that complete, separable metric spaces whose metric can be
computed on a dense set can all be represented as computable continuous structure in the
language of equalness by defining (z,y) = 2-4@y) hut this is sort of trivial. Let’s start
with a non-trivia structure which doesn’t need any modification to present it as a computable
continuous structure: the p-adic integers, which are the completion of the integers under a
different norm (or valuation, if that is your preference).

The p-adic Integers

The p-adic integers Z, can be defined in a number of equivalent ways, but the quickest
way to see that they form a continuous structure is to define Z, as the completion of the
integers under the norm |z, = p~max{k: pk‘x} We can then put a metric (in fact, an ultra-
metric) in Z, by defining d(x,y) = | — y|,. We can extend the ring structure of Z to Z,
by continuity. As a topological space, Z, can be thought of as p“, which is homeomorphic
to Cantor space, and it is useful think of it as an infinite p-branching tree. Choosing a
branch along this tree can be thought of as choosing a sequence of numbers (ag, aq, as, . ..)
with each a, € Z/p"Z, and a, = a,+1 (mod p™). Just as finite binary strings correspond
to basic open sets in Cantor space, an element of Z/p"Z corresponds to a basic open subset
la) = {x € Z, : x = a (mod p")}. Here’s our main observation:

Observation 12. The ring Z, has a computable presentation as a continuous structure.

Proof. We identify Z with a dense subset of Z, by identifying n € Z with
(n mod p°, n mod p', n mod p?, ..) € Ly

It’s clear that addition and multiplication are computable on this dense subset, since it’s the
same as multiplication on Z. Using the equalness relation e(z,y) = 271*7¥l», we can verify
that:

—log,(—logy e(x -y, 2’ - ¢/)) = —log, lzy — 2y |, = max{k : p"|(zy — 2'y/)}
> max {k : p"|((z—2")y+2'(y—y)) } > min (max{k : p*|(z—2")y}, max{k:p"2'(y—y)})
> min(max{k : p¥|(z —)}, max {k: My —y)}) = min (—logp |z —2'|,, —log, |y—y’\)

= —max(log, |z — 2'[,,1og, [y — ¥',)

13We define [0lg = p~>° =0

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 31

Taking p to the negative of both sides, we find

—logye(x-y,2" - y') < max(Jx — 2|, ly — y/|,) = — min(log, e(x, 2), log, £(y, y/))

Taking 2 to the negative of both sides of this, we find

8(33 Y, x - y/)> > min(e(.ﬁlﬁ, .Z'/), €(y> y,))

So multiplication is 1-Lipschitz. Addition is also 1-Lipschitz, although we leave this as an
exercise to the reader. This means we can compute addition and multiplication on Z, with
a Turing functional if we represent its elements as fast Cauchy sequences of elements of
Z identified as a dense subset of Z,. We can assign every formula in our language the
1-Lipschitz modulus. O

Note that it’s probably easier in this case to work with the metric rather than the equalness
relation (as is often the case when you are given a space as a metric space). It’s even easier
to work with the valuation v(x) = max{k : p*|x} valued in {0,1,2,3,...,00}. Once you've
proven the corresponding inequality in terms of valuation, the corresponding inequality in
terms of ¢ follows immediately.

Z, is an example of a compact continuous structure, and we will see later that compact
continuous structures have special properties which make them behave like finite structures
do in classical model theory.

Addition in Hilbert Spaces

If we want to do analysis over a continuous logic base, we should probably say how to
present Hilbert spaces. The first thing to notice is that addition in a Hilbert space (or more
generally a Banach space) will be uniformly continuous with respect to the equalness relation
e(z,y) = 27 *=¥l with modulus of continuity Ay (i, 7s) = 717. Let’s verify this:

x4y, 2 +y) = o ll@ty)—@+)ll — o=l@=a)+ =yl > g-llz—a'llg=lly—y'll — e(x, 2)e(y,y)
. We should also verify that A, is in fact a binary modulus:
Ay (11, 7) =111 > (1) (1am) = AL (1171, T2T9)
Ay (nimy, omy) = (m))(1em3) = (MTe)(1173) = A (71, T2) A (71, 75)

We can see A, is continuous, and A, (1,1) = 1% = 1.

The classical way to present a vector space over a field F as a first-order structure is to
include a constant symbol for the zero vector, a binary operation for addition, and unary
function symbol for scalar multiplication by ¢ for each ¢ € F. One reason for not using

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 32

a two-sorted structure with a sort for the field and a sort for the vector space is that you
don’t have to deal with field enlarging if you move to an elementary extension. This isn’t
too much of a worry, though, since any vector space over an elementary extension R* of R,
for example, will also be a vector space over R, so classically there is not much harm in
including a sort for our field classically. In continuous logic, however, there is an additional
problem in including the scalars as a sort: scalar multiplication is not uniformly continuous
as a function R x H — H for H a real Hilbert space. If we try to make a naive bound, using
the metric for convenience, we might write:

/

lex = d'|| = ||(cx — ca’) + (ex’ =)| < felllz — 2l + |e =][]

We cannot express this bound as a function just of |¢ — ¢/| and ||z — 2’||. If we fix ¢ = ¢,
then we see that scalar multiplication by a fixed scalar ¢ € R is |c|-Lipschitz, so if we include
a function symbol for multiplication by ¢ for each ¢ € R, then we don’t have a problem.
But we have an issue here if we want to include a sort for R, for example to allow an easy
presentation of linear functionals and inner products, or to express linear dependence in a

first-order way.

But even though scalar multiplication is not uniformly continuous, it seems to be computable
in many natural presentations of Hilbert spaces, such as a presentation of H = £2([0, 1], R)

with the metric ||f — g|| = 1/ fol fgdx, where our dense set consists of piecewise-linear func-
tions. The reason for this is that for every bounded region U C H and every bounded region
in V' C R, scalar multiplication s uniformly continuous on the product V x U of those
regions. More generally, if we have different moduli for different regions covering our contin-
uous structure, and a uniform procedure for selecting an appropriate computable modulus
for the restriction of a given function to each of those regions, then we can compute the
function given its values on a dense set. The way Ben Yaacov et. al. handle this problem
is to make a sort for each region, and then build into the language the inclusion maps be-
tween these various regions. The problem with this is, of course, that even to present just
the one-dimensional Hilbert space R, you need infinitely many sorts, because you need in-
finitely many bounded regions to cover R, and this makes the language tedious to work with.

To understand why Ben Yaacov makes this choice, we should consider an alternative and
see what goes wrong.

Local Moduli

The idea is that as long as we can locally compute a modulus for a function f from other
functions/relations in our language that we already know how to compute, then we can
compute f given its values on a dense set. These other functions and relations will serve as
parameters which tell us which modulus to use in any given region of our structure. Our
main challenge is that we want this computation of a local modulus to be uniform, and we

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 33

want this local modulus to be properly a part of the language itself, rather than a part of
the theory of a given structure. We’ll see we also will need a kind of well-foundedness in
what functions local moduli are allowed to depend on: we don’t want the modulus of Ry to
depend on Ry, whose modulus depends on Ry, whose modulus depends on Ry. So we will
assume that we have well-order of all the symbols in our language (which we will always
have if our language is computable).

Consider the following inequality for scalar multiplication:

lex—=c|| = [le(z—2") + (¢ =)z +(c=) (@ =2")|| < |el[lz—a'|[+|c = c|l|2]|+|c= ||| —2"]]

If we think of ¢ and = as being fixed, and thus |c| and ||x|| as constants, this gives us a bound
only in terms of ||z — 2'|| and |¢ — ¢/|. Re-expressing this in terms of equalness relations, we
have:

c(cx, ') = 27Nkl > g-lelle=allg=le~clllellg—le='lle=a]

— 9~ (—log2 5(0,0)) (—10g2 a(a:,:c’)) % 2—(—10925(0/70)) (—50925(%0)) %927 (—l0925(670,)) (—10925(55@/))

We can see that (— log, (0, c))(— log,(e(z, x’)), (— log,(e(z, O)) (— logse(c, c’)), and (—
logag(z, @) (—loga(e(c,) are all upper computable (the trick here is that each of the terms
of each of these products must be a finite number, since € will never take on the value 0, so
we can just wait until we see that ¢ is bounded away from zero to get an upper bound on
the —log, of each, which gives us an upper bound on the product). This tells us that:

9~ (flogQ 5(0,0)) (flogz s(x,x’)) % 27(7loggs(c’,c)) (7l0925(x,0)) 9 (710925(@0/)) (7log25(ac,a:’))
is lower computable, if equalness is computable.

To translate this into something like a modulus, define

B(pl D2, T 7_2) — log, p1 log, T2 2= log, p2 log, T1 2~ log, 71 logy T2
) s 11y .

And note that our inequality can be translated as: e(cz, c'z") > B(e(c,0),e(z,0),e(c,), e(z, 2))
We can think of pi, po as parameters, and we get a different “modulus” for each choice of
parameters. The function 3 is lower computable, which suffices to allow us to approximate
g(cx, dz") from below in terms of approximations for ¢, z, ¢, and 2/, which is all we need to
be able compute scalar multiplication given its values on a dense set.

Note that for fixed py1, p2 € [0,1), we have that:

B(p1, p2, 11, 72) > B(p1, p2, i1, T2TH)

and

6(p17 P2, 7—17—{’ 7—27—5)

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 34

— 9~ logy p1(logy T2+logy 75) 9= log, p2(logy T1+logy T{)Q— log, 71 logy T2 —logy 71 log, 75 —logy 1 logy T2 —log, 7 logy 75

logy 71 logy T4 —log, 71 logy T2

= B(plv P2, T1, TQ)B(pla P2, T{’ 75)2_

So B with py, po fixed is not quite a binary modulus in 77, 75, but it has similar enough
properties to a modulus to be used for the same purposes in this application.

We can do a similar trick with the inner product, and end up with a computable presentation
with local moduli of a separable Hilbert space, with sorts for scalars and vectors, and where
addition, scalar multiplication, and the inner product are all computable. This is a fairly
standard practice in the field of computable analysis. But we are not really trying to do
computable analysis here: we’re trying to do computable structure theory for continuous
structures. We don’t care just about computing particular functions in particular presenta-
tions of a structure, but about classes of structures, and the general model theory of such
structures.

We could give a general definition of a “local modulus”, generalizing the idea in this example
with Hilbert spaces, and thus expand our notion of what a “continuous structure” is to those
which have local moduli instead of just moduli. A local modulus would be something with
properties similar to a modulus which depends continuously on some parameters given by
other functions and relations in the language, in a well-founded way. But we’ve already said
enough in this example with scalar multiplication in Hilbert spaces to notice a problem with
this approach from the logical point of view: a version of continuous logic with local moduli
will not satisfy the compactness theorem! You can see Appendix [D] for a discussion of how
the compactness theorem can be proven in continuous logic when we restrict to moduli and
uniformly continuous functions. You might want to read this appendix first so the following
discussion makes sense.

The basic problem here is that while 3 is continuous on (0, 1]*, which are the only values e
takes on standard Hilbert spaces, it cannot be extended to a continuous function on [0, 1]*.
The idea here is to look at what happens in an elementary extension of our Hilbert space
given by an ultraproduct which has “infinite” elements. If you multiply infinite elements
by infinite scalars, even if those infinite elements and infinite scalars are very close to each
other, the scalar products may not be close to each other.

Example 4. Here’s an explicit example. Let ¢; = i, ¢, = i+27", x5 be some non-zero vector,
Tiy1 = 2z, and 2} = (1 + 272)z;. Consider the sequences ¢ = (¢; : i € w), @ = (¢} 1 i € w)
and T = (z; : 1 € w), T = (2} : 1 € w), thought of as representatives of elements of the
classical ultraproduct (before quotienting by the “infinitesimally close” relation to obtain

the continuous ultraproduct). Notice that

e(ci, C;) = 2714270 — 9-27" 4 1 a9y s 0

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 35

and
9% — —2i\91 _9—1 .
e(wy,) = 27 IF2o— (27 2%0ll — 9=27"lwoll 4 1 a5 4 — 0

but e(¢;,0) — 0, e(c},0) — 0, (x;,0) — 0, and e(z},0) — 0, so in the ultraproduct ¢,7, z,
and 7’ are infinite elements. We can calculate that:
e(ciz; c’w‘) — 9 li2fzo—(i+27")(14+27%)2%xo|| _ o—|li2%zo—(i+i2~2'+2°+273)) 2% |
P A

I E)

which means that scalar multiplication does not respect the “infinitesimally close” relation, so
we cannot quotient by it to obtain the continuous ultraproduct. That is, the pairs (¢, Z) and
(¢,z') are infinitesimally close, so should correspond to the same element in the continuous
ultraproduct, but ¢z and ¢z are not infinitesimally close, so they would have to correspond
to different elements in the continuous ultraproduct, meaning scalar multiplication does not
extend to a well-defined function (never mind a continuous function) on the continuous
ultraproduct.

This tells us that expanding our notion of continuous structure to have local moduli loses
some important logical features, so we will not pursue this line. However, it would still be
nice if we could present bilinear maps in a natural and non-tedious way.

Making Bilinear Maps Uniformly Continuous

Note that to be able to express that a vector u is linearly dependent on vectors vy, ..., v in
a vector space over R, it suffices to be able to express

(IA € (0,1))(Fey, ... cx € [0, 1)) such that Au = cyvy + - - - + cxvg

So in fact for most purposes, it is not necessary for scalar multiplication to be defined for
large scalars, which should be able to help us find a version of scalar multiplication which is
both useful in practice and uniformly continuous.

There are some geometric tricks we can do in Hilbert spaces which will help us.

Fact 1. The function z — m is Lipschitz in any Hilbert space.
This fact does not immediately follow from the fact that we are scaling by a positive scalar
less than 1, because it is possible in general for any K to have ||cix — coy|| > K|z — y|| for
some x,y, and scalars 0 < ¢, ¢y < 1.

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 36

y
X/(L+]ix1)

y/(+lyll)

0

Diagram for Reference

Proof of Fact 1. Let x,y € H, a Hilbert space. Without loss of generality, we may suppose
that H is two-dimensional by considering a two-dimensional subspace containing the span of
x and y. Write © = z1u + 290, y = y1u + yov for {u, v} an orthonormal basis.

Then we can see:

x Y 2 T T (1 Y2 2
- = + - +

e ! =Nt e S e
:(Ty Y1)2 (1) Y2)2

L]l 1+ lyll Lzl 14 lyll

Now notice that

x; Yi 1-+Hyll—y: 1+||z||—=

e ez 1 Lllyll-w
T2l ~ T+l _‘(1 e)~ = o) T+{[oT] T]a]
|z —yl| |z —yl| |z —yl|

Atllyll—w) el Qtllell—z)]l
L+ D A+) ‘
|z —yl|
Ll 1+ (gl =gl Hyl—y: 1l el —zo)]|zl —z:
_ A+ G+ A+ T+
|z —yl|
- Ulyll=g)llell= (=l —z)ly]
‘ (Emhdmm) s
||z — yl|
Ti—y; ((IIyII—yz')(IleH—HyII)Jr((HyH—yi)—(IIJ»‘H—wi))IIyH)
o=yl (121D A+ '

’(1+H$H)<1+HyH)+ =

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 37

zi—y; _ Clyllew 1 lyll=llzll zs—y; \ Iyl
_ Te—yl] (=]l = 1lyll) - Tmi - =7 (1[a]] 1+||x\|)1+||y||
= + +
(L[l)X+ [[yl]) |z —yl| |z — |
_ lyll=ys
— i ‘(Hxll yll) - G n ‘(Hyll — |||]) — (zi — ys)
|z —yl| |z —yl| |z — |
T — i ch||—|\yH HyH—H:vH Lo Yi | i1 41—4
|| — |z —yl| |z —yl| Hx—yll

€T . B . . 14
Thus z — 77— ERLRY 32 Llpschlt so in particular uniformly continuous.
O

Aside: We can also generalize this argument to Banach spaces by considering in a given
two-dimensional subspace an inner product whose corresponding norm can be bounded mul-
tiplicatively both above and below the restriction of the Banach space norm to that two-
dimensional subspace. Of course different two-dimensional subspaces of a Banach space
might have wildly different norms, but for an appropriate choice of coordinates on that sub-
space, the restriction of the Banach space norm can be bounded above and below by multiples
of the Euclidean norm on that subspace, i.e. c||z|ls < ||z|| < C||z||2 for some 0 < ¢ < C,
where ¢, C' can be chosen independently of the subspace. To choose the coordinate system,
consider B := {x : ||z|| < 1}, and choose linear functionals [, ls such that {;(B) and l(B)
are bounded by 1, and the maximum of /; and [, are achieved at some v; and vy respectively
on the boundary of B with [;(v;_;) = 0. We can see that using the linear coordinate system
with basis {v1,ve}, the unit ball in the oo-norm with respect to that coordinate system
contains B by construction, and the unit ball in the 1-norm with respect to that coordinate
system is contained in B by convexity of B. We can then see that ¢ = \% and C' = /2 suffices.
Fact 2. The map (¢,) — 5 +| Epis is uniformly continuous when restricted to vectors of norm
at most 1.

Proof of Fact 2. Let x € H with ||z|| < 1. Then we can compute:

1 1 , (1 1)t 1 1 n
xr — X = xr — xXr Xr — xr
1+ |c 1+ | 1+ |c| 1+ | 1+ || 1+ ||
1 Azl + ||z — 2’| (1+\c’|>—<1+!cl>” 1+ ||z — 2]
1+ ¢ 1+| | 1+ || (14 |e)(1+|¢]) 1+ ||

/R = VPP

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 38

] = Ie]

_ |z —
(L)@ +el)

L+ e

<le—d|+ ||z -

||| +
O

Combining facts 1 & 2, we find that the composition (¢, z) + 1 +|C‘ il +| | is uniformly contin-
uous R x H — H. It is a total function, but it is a deviant version of scalar multiplication
which only allows you to scale by small positive amounts.

Definition 48. The small scalar multiplication on a real Hilbert space, ® : R x H — Hi,

is defined by c ©® x = ﬁlﬁlz\l'

Definition 49. The small inner product on a real Hilbert space, ((-,-)) : H x H — R, is

defined by <<1'ay>> = <1+g|c|x|\’ 1+|y|y\}>'

Using fact 1, we can see that the small inner product is uniformly continuous, because for
[lzl], [[yl] <1, we have:

1(z, y)= (=" 0| = (=2,)+ y =) < Nle=2 [yl 2] ly =yl < [Je—=2"l[+]ly=y/]]

It’s useful to note that ((x,y)) = 0 if and only if (x,y) = 0 in a real Hilbert space.

This basic idea of replacing one function which isn’t uniformly continuous with a another
function which is is quite useful. Another idea we can use is that even if an inevitable map
has no uniformly continuous inverse, we may be able to find an analogous function to its
inverse in the set of truth values. The map ||z|| — Hmﬂ has a continuous inverse, but
it’s not uniformly continuous. However, we can, in some sense, build an inverse to this with
the following logical connective:

log2 T

Definition 50. We define the unary continuous logical connective 7(7) := 277 if 1
T<l,and 0if 0 <7 < 5.
Verification of Uniform Continuity. Let’s try to bound 7'(t) for ¢ > %:
1+logat logy t oo t 1 oot _1 t 10%)72’5
77,<t): tln2 tln2 '1112-21‘1"%@ — t 21-1*-+232i — 27082t 21Homa
(1+ log, t)? (1+log, t)? (1+log,t)?
log 1o logat _ logg t+(logg t)? _ (logg 1)2
2 l+log2 t 8ot 2 1+logo t 1+logo t 2 1+logo t
~ (T+1logyt)? (1+log, t)? (1 +1log,t)?

(logg)2 (logg)2

L_2(log, t)(1+logy t)+(logat)? 75 . T
1" (t) i EET; D2 . In2- 2" et - (14 logat)® — 27 et 552(1 4 logy t)
(14 log, t)*

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 39

o 2
%.2_(11+%3gt2)t) 2
= — 2log, t(1 + log, t logot)” — —(1 + log, t
1+ log t4ln2(08y t(1 +logy 1) + (logat) 1n2(+ log,))
2

For t > £, we can see 7 (t) = 0 iff —2log, t(1 + logy t) + (logat)? — 25 (1 + logy t) = 0. This

is a quadratic polynomial in log, ¢, so substitute s = log, ¢ to solve:

2 2 2
= —2s(1 R p— = 52— (24)s— —
0 s(1+s)+s 1n2(+) 57— +ln2)s =5

We can now apply a technique developed by the Indian mathematician Brahmagupta in the
seventh century A.D.ﬁ:

—2(1+ﬁ)i\/%+i+4—i

n (In2) In2 Inp 1 1 1

- - et 1= 1 (1+/T + (In2)?
° 2 * In2 (1112)2+ 1112(+ (In2)%)
So our solutions are t = %(2_ﬁ(li\/ 272y = (e~ (Ey1+In2%)) — (£)eV 1+In2)* -~ Only

the solution ¢ = (4)eV 2” will correspond to t € (3,1]. A numerical calculation shows
that 7'((5;)eV 1+(n2)%) < 4. We can also check that lim, 1 n'(t) =0, and 7'(1) = 1, s0 ' is

uniformly bounded by 4 on (3, 1], and it is by definition 0 on [0, 3]. We can conclude that 7

is 4-Lipschitz. O]

08 |
06 |

04 |

L L L L L
06 0.7 08 09 1.0

Graph of () for $ <t <1

Let’s check that n actually does what it is supposed to do:

I5This obscure technique is known as the quadratic formula.

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 40

) (Hlﬁn ‘)
‘ — 9 N\ || TR

|) _ o(wrmtitmn) = o7l — o(s, 0)

H x
logo 2 1+]]=]]
14+lo 2 H1+

+logo [IE2]]

x
1+ |||’
(*Hﬁ(lﬂﬂm

—9 (HHM\)—H%(HHMI)
Now let’s give an example of how to express the relation that one vector x is a scalar mul-
tiple of another vector y. There is a slight subtlety here, because we are not defining this
relation, in the strict sense of definability of a relation in continuous logic. We cannot define
non-continuous relations, and the relation R(x,y) = Jc(xr = cy) is not continuous. Nor
can we define the continuous analog of the classical relation, i.e. the distance/equalness
function to the set of pairs S := {z,y : Je(x — cy)} given by &(Z,S) = supzcqe(5, 7). We
are rather expressing it in a much weaker sense by a continuous relation R(z,y) for which
R(z,y) = 1 < Je(x = cy). Such things are useful, but it is important to remember that this

is a much weaker notion of definability than the standard notion in continuous logic. For
the sake of clarity, we will give the following definition:

e 0)) = (2| lwamlly = 2

Definition 51. A subset X of (a Cartesian power of) a continuous structure M is weakly
definable if there is a formula ¢ such that M |= [¢p(z) = 1] if and only if z € X.

The important thing to think about here is: what happens to a weakly definable set in an
elementary extension of a structure? We’ll give some examples later that show weakly defin-
able sets are not the appropriate notion of definability over classes of structures. But if we
have a particular structure in mind, it can be useful, but we should really think of ourselves
as no longer working inside continuous logic when we do so. We need to be especially careful
when quantifying over weakly defined sets.

Example 5. Let’s give an example of how quantifying over weakly defined sets can lead
to mistakes. Suppose we want to say that x,y € H are linearly dependent if and only
if e(x,0) = 1, e(y,0) = 1, or there exist ¢,d € R and such that e(c ® z,d ®y) = 1
or e(c® x,d ® (—y)) = 1. This is certainly true, and we might be tempted to replace
this existential quantifier with a supremum to a get a formula in continuous logic. But
unfortunately, when we do so, our definition no longer works, because the limit as ¢ — oo
and d — 0o of e(c® z,d ® y) = 1 for any z,y € H. Essentially the problem is that the
relation R(c,x,d,y) := e(c®x,d®y) only weakly defines the set {(c,z,d,y) : cOx =dOy}.
Tuples (¢,z,d,y) € (R x H)? that are closeness 1 to this set (i.e., distance 1 from this set)
can have R(c,z,d,y) arbitrarily close to 1: fix ,y linearly independent and choose ¢ = 2",
d = 2" +1 for n sufficiently large.

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 41

This explains why Ben Yaacov et. al. chose the definition they did for a set being definable
in continuous logic (the distance function from that set being definable). That being said,
it is still possible to weakly define the linear dependence of z,y € H for standard Hilbert
spaces. The trick is to bound at least one of ¢,d in e(c ® z,d ® y) away from co. A similar
trick will work for linear dependence of n vectors for any n € w.

The case n = 2 is simpler, however, so we will start with this. We know either 0 < ||z|| < ||y]|,
or 0 < |ly|| < ||z|], or x = 0, or y = 0. In the case 0 < [|z|| < ||y||, we can without loss
of generality assume d = 0, and in the case 0 < ||y|| < ||z||, we can assume ¢ = 0. So the
following formula weakly defines {(z,y) € H? : z,y are linearly dependent}:

e(z,0)Ve(y, O)VSgp(e(OQx, doy)Ve(0o, d@(—y)))ngp(e(c@x, 00Y))V(e(cO(—x),00y))

Recall 0 © # = 77, so assuming 0 < llyl| < ||z||, we have:
T 1 Y x Y
supe(0 ®z,d ®y) =supe , = sup € , QU
Pl V=P T T T+ o)~ o2, ST el T+ Tl
LA flzf] | . |||
= sup €(z,a y) =l > sup e(x, By since ———— >1
2, T = i) e =)

So x = Py has a solution 0 < § < 1 (in this case where 0 < ||y|| < ||z||) if and only if
supye(0©x,d®y) = 1. We can simplify our formula slightly by noticing that if x = 0, then
sup, (0 ® z,d ®y) = sup,(0,d ©y) = 1 for any y in a standard Hilbert space, so we don’t
need to include the £(z,0) and e(y,0) disjuncts.

We unfortunately cannot get rid of the disjunction over the signs of the vectors in the linear
combination. Let’s now write our general formula weakly defining linear dependence of n
vectors in a (standard) real Hilbert space:

\/ \/ sqpe(()@:l:i, Z cj®ajxj)

i<nge{+,—}" Jj<n,j#i
The only trick we are using here is that if) . < @iy = 0 for some a; € R not all 0, then
we can rescale this equation so one of the coefficients has absolute value 1, and all other
coefficients have absolute value at most 1. To weakly define linear dependence of n vectors
in a Hilbert space over C, we would need to replace the second disjunction over signs with
a supremum over multiplication by complex scalars of absolute value 1.

Observation 13. If X is weakly definable by a formula ¢, this does not imply X¢ is weakly
definable by =¢. In fact, in most cases the complement of a weakly-definable set is not weakly
definable. In particular, linear dependence is weakly definable, but linear independence is not.

CHAPTER 1. COMPUTABLE CONTINUOUS STRUCTURES 42

Proof. A weakly definable set is always closed, since the inverse image of {1} under any
continuous function must be closed. But this implies that the complement of a weakly
definable set is always open. Thus the complement of a weakly definable set can be weakly
definable only if it is clopen. The set of n-tuples of linearly independent vectors is not closed,
so cannot be weakly-definable. m

Of course, we could always give a definition of a weakly codefinable set as the complement
of a weakly definable set, and even create a Borel hierarchy on a continuous structure by
considering countable unions of definable sets, countable intersections of codefinable sets,
countable unions of countable intersections of codefinable sets, countable intersections of
countable unions of definable sets, and so on. In a computable continuous structure, we
could define an analogue of the effective Borel hierarchy, but we’ll discuss why this is not
necessarily a good idea in a later section.

Summary: We can present standard Hilbert spaces with a two-sorted continuous structure
H, R, +,®,®), and in this presentation linear dependence is weakly definable.

Note: Our approach, defining small scalar multiplication and the small inner product as
uniformly continuous replacements for the ordinary scalar and inner products, is useful for
using the language of computable continuous structure theory to do computable analysis,
since in that case we are only concerned with standard Hilbert spaces. However, there is an
alternate approach favored by Ben Yaacov et. al. which can be used, at the expense of some
increased verbosity.

The observation is that if we restrict to bounded subsets of R x H and H x H, the scalar
and inner product are uniformly continuous. If we write both R and H as countable unions
of bounded subsets (say as an increasing union of balls centered around the origin), we can
present a Hilbert space as a multi-sorted structure whose sorts correspond to these bounded
subsets. If we add inclusion maps between their overlaps to our langauge, this gives us a
reasonable presentation of Hilbert spaces with the usual scalar and inner products. However,
the limitation here is that we can only quantify over a priori bounded subsets, so there is
some tradeoff.

43

Chapter 2

Computable Continuous Structure
Theory

“Computable continuous structure theory”, a term we are coining, is a generalization of
computable structure theory to continuous structures. Computable structure theory as a
sub-field of logic combines aspects of recursion theory and model theory. There are a few
directions you might approach computable structure theory from. One is that you would
like to generalize the fine-grained analysis of N and its subsets central to recursion theory
to other structures. Another direction is from a concern about the effectiveness of various
model-theoretic constructions and a desire for more delicate tools for classifying structures.

In this chapter, we’ll try to generalize a representative sample of theorems from computable
structure theory to continuous structures. We hope to demonstrate that computable contin-
uous structure theory is a natural generalization of computable structure theory, and that
the benefit of moving to this new framework is worth the additional effort required to use
these new definitions by default.

2.1 Quasi Back-and-Forth Arguments

We would like to give a technique for producing isomorphisms between continuous structures
analogous to the classical back-and-forth method for countable structures. In the classical
back-and-forth method, you construct an isomorphism from A to B by finding a sequence
of finite partial isomorphims whose limit, in some sense, is an isomorphism. This sequence
can be thought of as given by a winning strategy to a particular infinite game. The game
board starts with @y = () € A° and by = () € B°. At the start of stage n + 1 of the game,
we will have |@,| = |b,|] = n. An antagonistic Player 1 then either extends a,, to @,41 by
adding a single element from A to the end, or else extends b, to b,,; by adding a single
element from B to the end. Player 2 must then extend the other tuple that Player 1 didn’t
choose to also have length n+1, and tries (if they can) to ensure that D 4(dy41) = Dp(bny1),

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY 44

i.e. the atomic diagramsﬂ of these finite structures are the same. After w stages have been
played, the result is a pair of infinite sequences @ and b. Player I, the antagonist, wins if
a enumerates A, b enumerates B, but Da(a | n) # Dg(b | n) for some n € w. Otherwise,
Player II wins. If Player II has a winning strategy, then there is an isomorphism between
the two structures given by sending a@ to b. A classical application of this is showing that
any two countable dense linear orders without endpoints are isomorphic.

We can extend this idea to continuous structures by weakening the requirement that the
diagrams of the finite tuples match exactly, and slightly modifying the back and forth steps.
Back-and-forth style arguments for computable metric structures were explored by Melnikov
in his proof of the computable categoricity of Urysohn space in “Computably Isometric
Spaces”[9]. We describe how to faithfully generalize classical back-and-forth arguments to
continuous structures. But first we need to give a definition of the atomic diagram of a tuple
which works well for our purposes.

Definition 52. Suppose p € MP*. Then the atomic diagra of p is a function k! —
[0, 1] N Q such that

m _o—(k+2)
, 2k+2) > 2

_ : m . a ’M .

DM(p)(i) = gz only if £(6f"" [y > pj, j < K

where “[z; — pj, j < k] refers to substituting variables with corresponding points in M,
and (¢ : i € w) is a computable enumeration of the atomic £(o,) formulas such that

e The free variables of ¢ are contained in {x; : j < k}, where (z; : j € w) is a fixed
one-to-one enumeration of the variable symbols.

o If j < j' <k, e(x;,x;) is among {¢7 : i < k!}.
e If 7w is a permutation of k, and ¢(z;,, 2y,, x;,) is among {@% : i < k!}, then so is
¢(xﬂ(i1)7 Lr(ig)s xﬂ'(is))'

Notice that the atomic diagram is not uniquely defined, because it’s possible for the truth
value of ¢ to be both in the interval (%73, %%5) and (314, 245). However, it is well defined up
to a difference of at most Q,n% Moreover if M is computable, it is possible to make a unique
choice of atomic diagram by evaluating ¢¢*[z; — p;, j < k] to higher and higher accuracy,

Hf we are working in a language with infinitely many atomic formulas of some arity, we define the atomic
diagram D y4(a) to be restricted to the first |a|-many atomic formulas, so that this can be computed. See
Antonio Montalban’s “Computable Structure Theory” (Draft)[10] for more details.

2From now on, we assume for convenience that all structures are single-sorted. All of the following results
generalize in an obvious way to multi-sorted structures, but we choose not to present this because it would
be easier for a reader who wishes to apply these ideas to multi-sorted structures to read the argument for
single-sorted structures, and generalize it themself to multi-sorted structures, rather than to sift through the
many arbitrary conventions we would inevitably use in making our arguments more general.

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY 45

and choosing the first value of 535 for which we are sure g};% < MMz > pj, J < k] < gi—ﬂ

This can be done uniformly in a name for p.

Exercise for the Reader. Let M, N be o structures and p, g k-tuples from each. Show
that if e(DV (), DM (7)) > 272" then e(¢M(p), ¢V (7)) > 272" for any ¢ € {¢% : i < k!}.

Our definition of the atomic diagram of a tuple allows us to give a more canonical form
for the atomic diagram of a copy (w-presentation) of a structure. By restricting to only
certain dyadic rational values with bounded denominators at each stage of the approxima-
tion, we can make the possible atomic diagrams of w-presentations of structures in a given
computable language into the set of branches of a finitely-branching tree.

Definition 53. “The” atomic diagram of an w-presentation (copy) A of a continuous
structure is €, ., D((0,1,....,n — 1))E| Recall that for an w-presentation, we identify the
dense set D with w, so (0,1,...,n — 1) is the tuple consisting of the first k& elements of DE]

Exercise for the Reader. Given a copy of a structure with named atomic diagram, we can
compute “the” atomic diagram by using the values of the names for its atomic formulas and
modifying them to be nearby dyadic rationals with appropriately bounded denominators.
Hint: if you know a rational number r with (4(p),r) > 22~ you should be able to find
(not necessarily uniquely) a dyadic rational 5 with e(¢(p),r) > 227" " You can also
make this choice canonical, by choosing the lower of the two possibilities, if there is more
than one choice. For this reason, we will now be justified in saying “the” atomic diagram of
a copy of a structure (or tuple from a copy of structure), because given the named atomic
diagram of a copy of a structure, we have defined a canonical way of obtaining a named
atomic diagram for it.

Exercise for the Reader. Suppose we identify copies of o-structures, for a fixed com-
putable language o, with their atomic diagrams (instead of using named atomic diagrams).
Show that the space of copies of g-structures is a I1{ subset of QW.E]. Hint: the main idea is
to build a finite-branching tree of initial segments of atomic diagrams. Stop a branch if you
see what you've said so far about the atomic formulas violates a condition (like one of the
moduli of continuity).

¥D((0,1,...,n—1)) is a length k! string of of rationals of the form %5, which can be coded in a canonical
way as a finite binary string. Given an infinite sequence of finite or infinite binary strings (o; : i € w), we
can code these into a single infinite binary string @, 0; in such a way that it is possible to compute from
D;c., 0: the length (finite or infinite) of o; and its k-th digit, uniformly in 4 and k. We assume we have fixed
a canonical way of doing this.

4Again, recall that our enumeration of the dense set may have repeats, so by “first k elements of D”, we
are not implying that these k elements are pairwise non-equal.

5We mean here the space of all copies of all o-structures, not the space of copies of a particular o structure

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY 46

Definition 54. Let Q@ C M~ x N'<%. Q is quasi back-and-forth set if the following
hold:

e [FORTH] Suppose p € M* and g € N*. If (p,q) € Q, and ¢ € M, then there is some
7 € N* and d € N with (¢, ¢)) > 272" for i < k and (pc, ¢d) € Q.

e [BACK] Suppose p € M* and g € N*. If (p,q) € Q, and d € N, then there is some
P € MF and ¢ € M with e(p;, p}) > 2727 for i < k and (P'e,qd) € Q.

e [QUASI ISOMORPHIC DIAGRAMS] If (p,q) € Q, then |p| = |g| =: k and
(DM (p), DV (g)) > 272

Observation 14. If M and N both have the discrete equalness relatior{, then [BACK] and
[FORTH] are equivalent to the much simpler classical back-and-forth conditions:

e [FORTH*] If (p,q) € Q, and ¢ € M, then 3d € N with (pc,qd) € Q.
e [BACK*]If (p,q) € Q, and d € N, then Ic € M with (pc,qd) € Q.

Observation 15. M and N both have the discrete equalness relation, all non—logz'cam re-
lations are {0,1}-valued, and all logical connectives u are {0,1}-valued when restricted to
{0, 1347 then the condition [QUASI ISOMORPHIC DIAGRAMS] can be replaced by the
following:

e [ISOMORPHIC DIAGRAMS] If (p.q) € Q, then |p| = |g| and DM(p) = DV (q).

The reason for this is that in this situation, if we know ¢M (p) > %, we know its equal to 1,
and if we know it’s < %, we know it’s equal to 0, so more precise information is not necessary.

Definition 55. A (multi-sorted) continuous structure is discrete if it has the discrete
equalness relation (on each sort), and all relations are {0, 1} valued.

Definition 56. A collection of continuous logical connectives v is classical if it includes
A (z,y) = min(z,y), V : (z,y) — max(z,y), and = : z +— 1 —x, and for all u € v, we have
u({0,1}*7™)) C {0,1}.

6This is the metric defined by e(x,y) = 1 if 2 = y, and 0 otherwise. Any countable first-order structure
augmented with the discrete equalness relation becomes a continuous structure in a canonical way. There is
no constraint on functions and relations, because every function on a discrete space is continuous.

"This just means we allow the equalness relation to take on values other than 0 and 1. We could change
this to allow all relations by using a “normalized” equalness relation &(z,y) = %, where 0 is the
diameter of the structure. But this would have negative effects elsewhere, because it is possible to have a
computable metric structure whose diameter is not computable (imagine constructing a space whose diameter

is some lower computable but not computable real)

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY 47
You can probably guess what’s coming, from these definitions:

Observation 16. Assuming we work over a classical set of connectives, if M and N are
discrete structures, then @ C M<Y x N<% is a quasi back-and-forth set if and only if it is a
back-and-forth set[]

Theorem 17. Let M and N be two complete, separable continuous structures. There is a
quasi back-and-forth set for M and N if and only if M =N

This theorem would be interesting in it’s own right. But what makes it beautiful is that not
only is the theorem a generalization of the classical theorem about the back-and-forth prop-
erty, but its proof itself is a natural generalization of the proof of the classical theorem. This
is evidence for the following heuristic conjecture: every theorem from classical (first-order)
structure theory has a natural analogue in continuous structure theory, which reduces to the
original theorem when restricted to discrete structures.

Proof. [<=]If f: M =N, {(p,q): f(p) = q} is a quasi back-and-forth set.

[=>] Q is a partial order under the relation <* defined to be the reflexive and transitive clo-
sure of the relation: (p,q) < (p'c, @'d) if (p'c, ¢'d) could be obtained from (p,) by a [FORTH]
step, or by a [BACK] step. (Q,<*) is a well-founded partial order of height w and no dead
ends.

A branch of Q is a sequence of pairs of tuples ((pk, p¥,....pF), (a5, %,qF) = (P*, 7).
Define the limitﬂ of a branch by p2° = limy, p¥, which exists because

E(p;c—&-j’p;c) > Hg(pf+l+1’pf+l) > H2_27(k+z+1) > 2_2*k
I<j 1<j

and ¢ = limy, ¢¥, which exists because

j _o—(k+1+1) Co—k
€(Qf+]aqf) > Hg(qf—i-l—i-l’qf—i-l) > H2 2 > 92

I<j 1<y
By [QUASI ISOMORPHIC DIAGRAMS] and continuity of all relation and function symbols,
we have that for any atomic formula ¢(z4,,, 2;,_,) = ¢%, we have

e(PMP, 2), N (G,) = lilgne(ch(pﬁo,-~-,pfs,1),¢N(q,~’2,--~,qfs,1))
> liiné(ch @, .o pf), DM(P")(m))e (DM (") (m), DV (g%)(m))e (DY(¥) (m), 6™ (f - d)
Zlilgn (2—2*(1€+2)2_27(k+1)2_27(k+2)) _1

8A (classical) back-and-forth set is a set with the back-and-forth property. See Definition II1.3.1 of
Montalbén’s “Computable Structure Theory (Draft)|10]
9By assumption M and A are complete metric spaces, so Cauchy sequences converge.

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY 48

From this we see that for any branch of Q, we can define a map f : pP° — ¢7° which pre-
serves the truth of all atomic formulas. This map will necessarily be 1-Lipschitz as a map
MO {pF:icw} = {¢°:i€w}l CN (as the equalness relation, our proxy for distance,
is among the atomic formulas), and has 1-Lipschitz inverse (by symmetry). If {p*° :i € w},
{¢° : i € w} are dense in M, N respectively, a basic theorem of analysis tells us f ex-
tends uniquely to a bi-Lipschitz map f : M — N, and since f preserves the truth values of
all atomic formulas on a dense set of points, and atomic formulas are uniformly continuous,
f preserves the truth values of all atomic formulas everywhere. That is, f is an isomorphism.

It thus suffices to show Q has a branch whose limit has p> and ¢ dense in M and N
respectively. But we can do this: pick countable bases for M and N and enumerate them
by (U; : i € w) and (V; : i € w), where each open set in each base is repeated infinitely
many timeq'V]in the enumeration of the base. Construct a branch of Q as follows: start with
p° = g° = 0; at stage 2n, extend p*"~! to p*" by adding point in U,,, and then choose ¢*" by
[FORTH]; at stage 2n + 1, extend g*" to > by adding point in V,,, and then choose p*"!
by [BACK]. m

Our concern now is what is needed to perform this back-and-forth construction effectively.
This will be useful for establishing the computable categoricity of spaces like Cantor space.
Constructing the isomorphism, given a path through a back-and-forth set Q which is dense
in both M and N, is fairly easy: look along the path until you find a p¥ sufficiently equal to
the p € M you want to map, and then approximate the value of f(p) by ¢¥. So the difficulty
in effectivizing this construction of an isomorphism lies with being able to construct a quasi
back-and-forth set Q for which we can effectively find a path.

In the last chapter, we gave a definition of u.r.i.c.e. relations on M", which we can think
of as presentation-independent effectively enumerable relations. A presentation-independent
effective open set, then, ought to be a set whose continuous characteristic function is u.r.i.c.e..
In this case, we have two particular copies of M and N, say A and B, and we are concerned
with a presentation-dependent problem (finding @ C A<¥ x B<“ with certain properties).
So we should define presentation-dependent effective open sets.

Definition 57. Given copies A and B of two continuous structures M and N (possibly in two
different languages), and an oracle z € 2, a relation R C A~ X B<Y := L, 0 A" X Uy, B™
is z-effectively open if, we have, uniformly in n,m, a z-computable lower name for the
continuous characteristic function Xg| .,z of the restriction R|4nypm of R to A" x B™.

Theorem 18. Let A and B be two copies of the same continuous structure. Then an
isomorphism f : M — N is computable from oracles for D(A) and D(B) if there is a
(D(A) ® D(B))-effectively open quasi back-and-forth set @ C A< x B<¥.

10Essentially, this boils down to the p¥ and ¢F being “tail-dense” in M and A respectively. We need this
to ensure denseness of the limit sequences p° and ¢;°.

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY 49

Proof. By the above, we just need to show that, with oracle z = (D(A) @ D(B)), we can
construct a path through Q whose points in the respective tuples of the sequence are tail-
dense in A and B. Since Q is z-effectively open, we can easily find a tail-dense enumeration
of points in M and N. Proceed as follows: given p* and ¢*, if k = 2j, let pi“ = q;“,
the j-th point in our tail-dense sequence (q;4 : j € w) in A, and search for a g"*! with
e(gF™ ¢F) > 227" for all i < k for which (PPt @) € Q. We can do this, because
Q is z-effectively open, as is the set of 7! with (g*, ¢¥) > 272" for all i < k. For
k = 2k + 1, interchange the roles of A and B. Since Q is a quasi back-and-forth set, this
procedure will build an infinite path, and we have constructed it so that its limit is dense
in A and B. By our previous argument, we can use this path to build a z-computable

isomorphism from A to B.]

Definition 58. A complete, separable continuous structure M is computably categorical
if all of its computable copies are computably isomorphic (i.e., there exists a computable
isomorphism between them).

Example 6 (Application). Cantor space, 2¥; as a continuous space with only the equalness
relation e(x,y) = 274®¥) (where d(z,y) = 2~-™Mme)#v(M}) is computably categorical.

Proof. Let A and B be two computable copies of Cantor space. By the previous theorem
(specialized to the case where D(A) and D(B) are both computable), it suffices to find an
effectively-open back-and-forth set Q. Let Q := {(p,q) € A™ x B" : e(e(ps, p;),e(ai, q;)) >
2727 forall i,j < n}. It’s easy to see Q this satisfies [QUASI ISOMORPHIC DIA-
GRAMS], since our language only has ¢ as a relation symbol. To see it satisfies [FORTH],
suppose (e(pi, ;). €(qi, q;)) > 227" for all 4, j < n, and let p, € A. First, note that by
moving the ¢; to some ¢} with e(g;,¢)) > 272 """ (think about only modifying the digits of
each g; after the first n + 1 digits), we can ensure that (p;, p;) = €(q;, ¢j) for i < n, i.e. that
p and ¢ are in fact isomorphic as tuples (not just quasi-isomorphic). Every finite partial
isomorphism of Cantor space extends to a isomorphism, so let f be such an extension and
let ¢/, = f(pn). Then (ppn,7q,) € Q. So Q satisfies [FORTH]. The argument for [BACK] is
symmetric. Note that we did not need our construction of ¢ and ¢, to be effective in our
proof of the [FORTH] step, because all we are showing is that there is some extension in Q
of (p,q) (essentially telling us that the space we are searching through to extend our path
from length n to length n + 1 is non-empty). The effectiveness comes from the fact that Q
is effectively open, which can be seen by the fact that it is defined uniformly across n as a
finite union of preimages of effectively open sets in [0, 1] under computable functions. n

You might be wondering about this trick involving partial isomorphisms extending to iso-
morphisms. In this case, it was that partial quasi isomorphisms can be “quasi-extended” to
isomorphisms, meaning that (up to the finite error inherent in a partial quasi isomorphism),
every partial quasi isomorphism was consistent (up to that error) with being the restriction
of an isomorphism. You might expect that there is a general idea here, and in fact there is!

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY 50

Metric Scott Families

For this section, we assume we are working in the computable language L (o, v), where v
is a collection of connectives including all piecewise linear connectives, €2 is the universal
1-Lipschitz modulus, and the basic formulas are recursively enumerable. Note, these were
the conditions we imposed to ensure the equivalence of u.r.i.c.e. and X relations. There are
other ways (such as using a different weak modulus) which can also ensure this, but we don’t
have an exact characterization yet. These conditions allow us to recursively enumerate the
formulas in £ (0, v).

Definition 59. An effective quasi Scott family for a o-structure M is a computably
enumerable family of ¥¢ formulas ¢; ; together with a computable function a : w X w — w
where

(Vﬁ € M<w)<VJ € w)(ﬂz € w)(i (p) >1— 2fa(i,j))
which satisfies that for any p,q € M", j € w:

IF for some i € w we have gzﬁf\;‘ (p) > 1 — 27209 and gb{}’l(q) > 1 — 270

THEN for some automorphism f: M — M, e(py, f(qx)) > 2727 forall k < n

Intuition. A quasi Scott family is essentially a collection of formulas which approximately
isolate automorphism orbits of M by arbitrarily fine neighborhoods. In a structure like the
real Hilbert space R?, there are uncountably many orbits (all concentric circles around the
origin), so you could never hope to find countably many formulas exactly isolating all the
automorphism orbits. But there is a natural sense in which some of the orbits are “close” to
each other: in this case, they are close if they are both contained the same thin annulus. So
it makes sense to say we can “approximately isolate” an orbit by a formula. The important
thing here is that every point which “looks approximately like an element of the orbit O
(according to the quasi Scott family) is close (in the sense of equalness) to the orbit O.

Motivation. As indicated in the previous section, the motivation here is that we would
like to figure out whether two tuples in different structures can be carried close to each
other by an isomorphism of those structures, just by looking at their atomic diagrams. A
quasi Scott family will let us figure out when we know enough about those tuples’ atomic
diagrams to determine whether there is such an isomorphism. In the case of Cantor space,
there was a rather simple effective quasi Scott family: the formulas giving the approximate
pairwise equalness between all the points in the tuple. Cantor space is an example of an
ultrahomogeneous continuous structure: every partial isomorphism extends to a total
isomorphism. But in continuous logic, it is perhaps more appropriate to think of it as an
example of the following:

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY o1

Definition 60. A continuous structure M over a finite relational languagd'l]is ultra-quasi-
homogeneous if any partial 7-quasi-isomorphism f : M — M (meaning from a finite
substructure of M to a another finite substructure of M) p(7)-quasi-extends to a total
isomorphism f : M — M, where p(7) is a non-decreasing function of 7 with lim,_,; p(7) = 1.
Here a partial T-quasi-isomorphism preserves the truth values of atomic formulas up to 7-
equality, i.e. (¢o(f(p)),v(p)) > 7 for any p from the domain of f and any atomic formula
¢(x) in our language. We say ¢ is a T-quasi-extension of f if the domain of g contains the
domain of f, and (f(p),g(p)) > 7 for every p in the domain of f.

Observation 19. Let M be a computable continuous structure over a 1-Lipschitz finite
relational language, and suppose M is ultra-quasi-homogeneous with p(t) lower computable.
Then M has an effective quasi Scott famaly.

Proof Sketch. For each tuple of points ¢ = (gi,, - .. ¢;,_,) from the countable dense set D of
J+1)

M, construct a formula ¢, 4, ,),;(Z) isolating the orbit of g up to 7 = 272" equality by

p(T) = A e(v(@), M@ +3) (G +3))

Y(xo,...,Tx—1) atomic
]

Theorem 20 (originally proved by Ventsov ¢.1992 for classical first-order structures). Sup-
pose M is a computable o-structure. Then the following are equivalent:

(1) M is effectively X5-atomic, i.e. there is an effective quasi Scott family {¢;; : 1,7 €
w} for M.

(ii) M is uniformly relatively computably categorical. That is, there is uniform
procedure which, given the diagram of a copy N of M, computes an isomorphism

N = M.

Note. The term “atomic” here refers to the fact that classically the Boolean algebra of
definable subsets of M™ is an atomic Boolean algebra. In the continuous case, a computable
structure being effectively ¥{ atomic means that we have an effective procedure which takes
a name for a tuple p € M" and returns, for any degree of accuracy, a { formula isolating
the orbit of p to that degree of accuracy. If our language also includes the connective lim,,,
and our name for p is computable, then our procedure can also give us a X! formula isolating
the orbit of p exactly. However, we cannot hope to have a ! formula exactly isolating every
orbit, because there are only countably many such formulas but might be uncountably many
orbits, hence the need for this somewhat more complicated definition of Scott family.

HOver a finite language, we include all atomic formulas in the atomic diagram of an n-tuple, not just the
first n!. We restrict to finite languages here for simplicity. The restriction to relational languages is so that
every subset of a structure is a substructure.

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY 52

Proof of (i) = (ii). Let N be a copy of M. Define a D(N)-effectively open quasi back-and-
forth set by

Q:={(p,q) € M™*xN=*: (3i,j € w)(Ipl =1al = j & M Faij) 6i;(P) & N Faiy) 0:4(D)}
where “M =, ¢” means ¢ > 1—27" i.e. ¢ is at least 7-true in M for some 7 > 1 — 27",

It’s clear this is D(N)-effectively open (it’s defined by a computable disjunction of open
conditions), so suffices to show that Q is in fact a quasi back-and-forth set. Let g : N —
M be an isomorphism. If (p,q) € Q is witnessed by ¢;;, then M =, ;) ¢:;(9(q)) and
M Eqij) ¢ij(D), so for some f € Aut(M), e(pk, (f o g)(qx)) > 227" for all k < j. So by
I-Lipschitzness of formulas, (¢ (), ¢ (2)) = £(61"™(p), 2 ((f 0 9)(@))) > 272
for all & < j! (in fact, for all k). Thus Q satisfies the property [QUASI-ISOMORPHIC
DIAGRAMS].

If (p,q) € Q is witnessed by ¢;;, again we have M =, ;) ¢5;(9(7)), (since g is an isomor-
phism) so for some f € Aut(M), e(pk, (fog)(qk)) > 2727 for all k < j. Suppose ¢ € M.
Then define ¢, = (f o g)"*(px) for k < j, and d = (f o g)~*(c). Notice that for k < j,

éTN(QI/wCIk) = 5N<(f o g)*1<pk>’qk) _ €M<pk7 (f o 9)(qr)) > g—27U+D

Most importantly, however, because an isomorphism (f o g)~! carries pc to 7'd, all formulas
(including the ones in the Scott family) must take on the same values on pc and ¢'d, and by
definition of Scott family there must be some 7/ € w so that ¢{Y‘] 1(pe) > 2_27(1(1'/%1), SO we
must have (pc, ¢'d) € Q. That is, Q satisfies [FORTH]. A similar argument shows Q satisfies

[BACK].

We can thus obtain a (D(N) @& D(M))-effective (= D(N)-effective) isomorphism by the
theorem in the previous section. To see that this procedure is uniform, note that our def-
inition of @ is uniform in D(N). Our procedure for taking our quasi back-and-forth set Q
and producing a tail-dense branch is also uniform in D(N) & D(M) =7 D(N), as is our
procedure for building an isomorphism from this branch. O

Proof of (i1) = (i). This is the harder direction. We need to take a uniform computational
procedure, and produce a collection of syntactic objects. We glossed over the details of one
direction of our argument in the proof of the equivalence between w.r.i.c.e. and X relations
in Section 1.4. We'll try now to include full details.

The idea is essentially to carefully track the convergence of the Turing functional ® naming
the isomorphism f, measured by the amount of information about the atomic diagram of
N we give it, to figure out when we have approximately isolated an orbit. Recall that the
atomic diagram of an w-presentation A only gives the values of the atomic formulas on
tuples from A’s dense subset, which is just w (not just canonically identified with w, but

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY 53

equal to w). Also recall that as a mathematical object, our Turing functional with oracle
for the diagram plugged in, ®PW) is a Turing functional which takes as oracle a name [p]
for p and returns a function w — D which is name for f(p) (where D is the dense subset
of M). That is, ®PV) is a uniformly continuous partial function w® — D*. But since
® is a computational procedure, we can also think of ®PW) as a C-increasing sequence
of partial functions ®7W) : ws — D<® where @?W)(([p](O), ., [pl(s = 1)) (i) is the ac-
curacy 272" approximation of f(p) computed by ® from D(N) in at most s steps (if it
converges) % For i € w* C N*, we will by abuse of notation write TN (n)(i) to stand for

the tuple PN ((no, ng, . . - ,no)) (1), .. ,<I>8D(N) ((nk,l, Nh_1, . - . ,nk,l)) (z)), where these tu-

ples (1,7, ...,n;) are of length s. The important observation is that once we see @?(N)(ﬁ) (1)
converge, we now know f(n) € M up to accuracy 7 = 272", and since ® used only the first s
bits of information about D(N) in its computation, those s bits of information are sufficient
to determine the automorphism orbit of 7 up to 7-equality. Why? Let’s suppose to the
contrary those s bits were not enough to determine the automorphism orbit to this level of
accuracy 7. Then we could construct an alternate w-presentation of M, N, for which those
s bits of the diagram of N used by ®, in this computation are equal to corresponding s bits
of the diagram of N, but for which 7 interpreted as a tuple from N’ cannot be carried by
an isomorphism to a 7-neighborhood of n interpreted as a tuple from A. But this implies
that one of f = ®PWN) or g = PNV is not an isomorphism, for if they were both isomor-
phisms, then f~!o ¢ would be an isomorphism carrying 7 interpreted as a tuple from AN’ to
n interpreted as a tuple from N.

We can also note that if n € w* is 7/-equal to p € N*, then if pPW) (n)(i) converges, we have
also using those same s bits of D(N') determined the automorphism orbit of p up to accuracy
7'7, so this same analysis can be used to figure out how much of the atomic diagram of N
is needed to isolate the automorphism orbit of an arbitrary p € A

Our idea now is to translate the information contained in those s-many bits of D(N) (the
bits used to isolate the automorphism orbit of 7 to accuracy 7) into a syntactic object (a
formula) which expresses the same information. It’s easy to do this for a fixed n € w* C A*:
those finitely many bits express finitely-many facts of the form 77" < ¢jt’N(m) < ",
for some m extending ﬁ.ﬁ Using unary 1-Lipschitz rational piecewise-linear connectives, we
can can express each of these facts as uj(gbth(m)) > 1 — 27! for some [€ w common to all

of the finitely many gb?ﬂ Then the information in those s many bits is expressed exactly

12\We are using the convention that an oracle computation can only access the first s bits of the oracle in
its first s steps of computation. This fits with the idea that the head of the oracle tape can only move one
position left or right in a single step.

13The reason we need m extending 7 is that ®, might read more about diagram of A that just formulas
involving elements of n. But still, it can only read information about finitely many elements of M, so m
will be a finite tuple.

14The tighter the bound required for the values of the qS?t, the larger [must be. Note that if we allowed

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY o4

by:

/\ at/\/ >1_2l

J

where this conjunction (infimum) is finite. Now here’s the important observation:

If M =, () for some § € M<¥, j := § | |A| must be within 7 = 272" of the
automorphism orbit of f(n).

This is somewhat complicated, so we’ll explain this observation step-by-step:

e By construction of #(3), M = ¥(g) if and only if for each ¢§* mentioned in the s

bits of D(N) used by pPN) (7)(4), we have ;""" < qﬁatM(q) < Tiever

Build another w-presentation N’ of M as follows. First, find a function g : w — M
with dense range such that g(m) = g. Next, define D(N’) to match D(N) exactly
on the finite parts used in the computation of ®”™)(72)(i). We can do this because
all of those bits are consistent with the values of gbatM(q). Now define the rest of

DN') =D, DN'(0,1,...,n — 1) not yet spoken for by setting

such that 5(¢atM[xm — g(m) : m < n, L)

N7 AR
DY (0,1,...,n—1)(j) := the least vz

r
2n+2

Note that @?Wl)(’)(') outputs the exact same value that O (N)()(4) does, since the
oracles are identical on all the bits used in the computation. Thus ®PW’)()(7) is at
least T-equal to f(n) € M* (here 7 is thought of as an element of A).

But N’ was constructed so that p := ¢ | |n| is sent by an isomorphism M — N’ (the
inverse of the isomorphism induced by g¢) to 7 interpreted as an element of N’. But
then composing that isomorphism M — N’ with the isomorphism N — M given by
®PWN') gives an automorphism M — M sending p := ¢ | |7| to something at least
T-equal to f(n). That is, p := ¢ | || is T-equal to some point in the automorphism
orbit of f(n).

Amplifying this a bit: we can conclude that for any p € M*, if M |= sup, ¥ (p~ %), then p is
within 7 of the automorphism orbit of f(7) € M*. Conversely, if p is in the automorphism
orbit of (), then since M =, sup; ¢ (7" z), and an isomorphism N' — M carries 7 to p, we
also know M k= sup, ¢(p~z). That is, the set {Z € MF : M =, sup, ¢ (77 2)} contains the
automorphism orbit of f(n), and is contained with a 7-neighborhood of the automorphism

ourselves formulas with n-Lipschitz modulus for any n, we could set [= 1, and we would have had no need
for the function (i, j) in our definition of effective Scott family.

> 2

_27n+2

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY 55

orbit of f(n).

One final modification before we continue is get a formula ¢(z) for which {z : M =, ¢(Z)}
is ensured to contain not only the automorphism orbit of f(n), but an open 7-neighborhood
of the automorphism orbit. It will become clear exactly why we want this, but the basic
idea is that we want to ensure that for any degree of accuracy, the open sets determined by
the formulas in our Scott family for that degree of accuracy actually cover all of M<“. If we
don’t perform this modification, it could be possible that we cover only a dense set of orbits
without covering all of M<“["%] We define our formula ¢(7) to be

o) = supsup (4(572) A etz))
Yy z

Where u : [0,1] — [0,1] is a unary 1-Lipschitz continuous logical connective defined so that

u(t) > 1 — 27" if and only if ¢ > 7 [We now have, with this modified formula, that:

o {T € MF: M |5 ¢(z)} is contained in a 72 neighborhood of the orbit of f(7).
o {1 € MF: M |5 ()} contains a T-neighborhood of the orbit of f(7).

We have one more trick up our sleeves. We have so far a quantifier-free formula p(z) and
[€ w for a particular i € N* and a particular 7 < 1. But we still need to find a uniform way
of doing this. The trick now is to notice that we made no assumptions about A/, except that
it was isomorphic to M. So everything we just proved is still true if we take N' = M. Given
that the diagram of M is computable, we can now, uniformly in 4,7 € w, define ¢;; and
a(i, j) to be the p(Z) and | € w arising from our construction for n = p; and 7 = 1—2_(”3)
We can see each because of these formulas is X (in fact,), and this family is recursively
enumerable because we can recursively enumerate triples (j,s,) for which @PAMIs(p.) (i) |
for k < |p;| (which is all that is needed for this construction). Let’s verify that this does
indeed form a quasi Scott family:

e For any p € M<¥ and i € w, for some j € w, p will belong to an open (1 — 27 (+1)-
neighborhood of f(p;), since the the p; are dense. But then by construction, since
{Z: M =4 #i;(Z)} contains a (1 — 270+D)-neighborhood of the orbit of f(p;), we
have ¢pM(p) > 1 — 27209,

e On the other hand, if ¢;(p) > 1 — 2-2(3) then p is contained within an open 72-
neighborhood of the automorphism orbit of f(p;), so for some automorphism ¢ of M,
c(B.9(f(5,)) > 7 = (- 2-D)2 = 1 = 2025 4 (264D} 5> 1 — 9

15Tn a similar way that it is possible for an open cover of Q to not cover R.

16We can explicitly define u(t) := maz{1,t+ (1 —27%) — 7}.

1"We need to choose 7 = 1—27(%3) to account for the fact that we only guaranteed {Z € M* : M |=; ¢(7)}
contains a 72 neighborhood of the automorphism orbit of f(7), and for the fact that if two tuples p; and po
are guaranteed to be within 7/ of the automorphism orbit of f(7), they are only guaranteed to be withing
72 of each other. So we chose 7 so that 7% > 1 — 2~-(+1),

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY 56

]

Please forgive the length of this proof! In a trade-off between brevity and explanation, we
chose to err on the side of too much explanation. To reiterate the basic idea: whenever
this Turing functional ®P™) has computed for enough time to find a 7-approximation to
f(p), the finite amount of information about D(M) used in that computation is sufficient to
isolate the orbit up to 7-equality, and that finite amount of information can be expressed as a
formula, which is more-or-less just the conjunction of all the facts about the atomic formulas
used in the computation. The worry we had was that perhaps ® is using some special facts
about the presentation of M to compute an approximation to f(p) without actually reading
all the bits of information needed to isolate the orbit to that degree of accuracy. But we
proved this could not happen, because ® has to work for any any copy of M: if & did
not actually read all the bits necessary to isolate the orbit of f(p) to appropriate degree of
accuracy, then ® would not compute an isomorphism when presented with a copy of N/’ of
M specifically constructed to fool it.

Degree Spectra

Recall that we have computable continuous structures, but we also have non-computable
w-presentations (i.e. “copies”) of continuous structures. Some continuous structures have no
computable copies, for example (N, 0, 1,4, %, H), where H is a unary relation for the halting
set.[r_g] If we want to measure the intrinsic complexity of a structure, the naive idea would
be to measure it by the least Turing degree which computes a copy of it. In this case, the
complexity would be (/.

However, Slaman [16] and Wehner [15] independently showed that there is a structure which
has no computable copy, but every non-recursive degree computes a copy of it. This tells us
our naive way of measuring the complexity of a structure does not work. Instead, we need
to use the following:

Definition 61. Let M be a complete, separable continuous structure. We then define the
degree spectrum of M to be the set of Turing degrees which compute a copy of M, i.e.
{deT:3A = M,D(A) <r d}["]

18This is a discrete structure, but thus also a continuous structure with the discrete equalness relation
g(x,y) =1 if z = y and 0 otherwise.

9Here T is the set of Turing degrees, equivalence classes of elements of 2¢ under the equivalence relation
of Turing equivalence. <r is the relation of being Turing reducible to, i.e. <p y if there is an oracle Turing
machine which computes = given y as an oracle. Turing equivalence is defined by x =p y iff x <7 y and
y <p x. We are, of course, blurring the distinction between the relation of Turing reduction on elements of
2% and elements of T, but this doesn’t really matter since this relation is invariant under =7.

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY o7

One thing we might wonder is: is the degree spectrum of a structure the same as the set
of Turing degrees of copies of that structure? The problem is whether we can encode arbi-
trary information into a copy of the structure. Classically, there are trivial structures (e.g.,
a countable set with only equality) which only have computable copies. The degree spec-
trum of such a structure would be the entire set of Turing degrees T, but in this case there is
a mismatch because a copy of such of a structure cannot really encode arbitrary information.

For continuous structures, this question is a bit more subtle, because we have a lot of free
choice in terms of our approximations. Take a countable set {pg, p1, ps, ...} with just the
equalness relation (p;,p;) = 1 if i = j and LQ otherwise. In making a copy of this, even if
we use atomic diagrams instead of named atomic diagrams, as we are doing, we still have a
free choice about whether the k-th approximation to e(p;, p;) for i # j will be equal to the
greatest rational of the form 5735 less than L or the least such rational greater than \%
By making these choices systematically, we can code infinitely many arbitrary bits into the

atomic diagram of a copy of this structure.

Note. If we used the discrete equalness relation, we couldn’t do this, as our definition of
the “atomic diagram” implies that if €(a,b) = 0 (respectively 1) we must choose as our
k-th approximation Qk% (respectively g:—ﬁ) The same is true if we had a more complicated
discrete structure with all relations being {0, 1}-valued. We have set up our definition of
“atomic diagram” so that the atomic diagram of a copy of a classical first-order structure
interpreted as a continuous structure is Turing equivalent to its classical atomic diagram, and
uniformly so. Our worry here is not about whether we are faithfully generalizing the classical
case, but whether our particular faithful generalization is the right one. In particular, it
seems strange that by simply modifying the equalness relation of a structure by applying
the computable linear bijection 7 +— (1 — \%)T + \% we completely change whether we can
encode arbitrary information into the atomic diagram of a copy of that structure.

Our concern relates to the following theorem about classical structures, due to Julia Knight:

Theorem 21 (Knight [8]). Suppose a Turing degree d computes a copy of a non-trivial
structure M. Then there is a copy of M whose atomic diagram s of Turing degree d.

Here a structure is trivial if we can find finitely many points such that every permutation
fixing those points is an automorphism. (An example would be a countable set just with
equality and finitely many named constants). It turns out this theorem is a precise charac-
terization of trivial structures: a structure is trivial if and only if for some Turing degree d
which computes a copy of M, M has no copy of Turing degree d.

Our previous example with the equalness relation taking values in {\/ii, 1} seems like it ought
to be trivial, but this equivalence does not seem to hold. This might seem unconcerning, be-
cause an analogue of Knight’s theorem does hold for continuous structures (for a somewhat

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY 58

trivial reason), it just no longer characterizes trivial structures. But this is an indication that
we might we using the wrong definition somewhere. The point of Knight’s theorem is lost if
our definition of w-presentation allows us include auxiliary information totally unrelated to
the structure itself.

The ideal solution, which we will not pursue now, would be to define a continuous model of
oracle computation. Consider our named atomic diagrams. To a certain extent, modifying
the approximations by some tiny amounts still within bounds shouldn’t matter, since these
are just approximations to the values of formulas anyway. You might imagine two people,
with the same “copy” of a continuous structure, giving different answers for their approxi-
mations to the equality of points in the dense set, even if they are given the dense set in the
same order. Our problem only arises when we have knowledge that the person making the
measurements is hiding information in a systematic way by the way they choose to make
their approximations. But this hidden information shouldn’t really be considered part of
the data: it should be considered measurement noise. In the case of classical structures,
there is no way to hide information in measurement noise, so this problem doesn’t arise. By
moving from named atomic diagrams to atomic diagrams, we cut down on the amount of
information that can be hidden in measurement noise from arbitrarily large finite amounts
of information per step of the approximation to to a single bit per step of the approximation.
But it would be better if we could just use our simpler definition of named atomic diagrams,
and force computations not to take into account things that shouldn’t matter, like which
primes divide the denominator of the rational approximation.

One potential way to ensure this would be to require that the computation give the exact
same result for all oracles which are the same up to measurement noise. The problem with
this, however, is that “being the same up to measurement noise” is not a transitive relation.
Instead, we want our computations to depend uniformly continuously on the input. We’d
like to think of an oracle as a sequence (a, : n € w) € [0,1]*, and an oracle computation as
giving a continuous function which depends continuously on this oracle sequence. An ideal
model of such computations would involve only continuous operations on the oracle and the
input. In fact there is a candidate model of universal analogue computation based on Claude
Shannon’s “General Purpose Analog Computer”. A paper by Bournez, Campagnolo, Graga,
and Hainry have reinterpreted Shannon’s model in [3] to give a Turing complete model of
analog computation (in the sense that it can represent all Turing computable functions in N
using analog approximations to step functions).

It might help to make a physical analogy here, in the spirit of the Church-Turing thesis.
Imagine you are given a sequence of metal rods as an oracle, and you have for every k£ € w a
tool which can measure length to within accuracy 27* (assuming classical physics, so there
are no obstructions to arbitrarily precise measurements). Which continuous functions can
you now compute to arbitrary precision using this oracle, and which computable structures
can you now compute a copy of 7 Towards the first question, Shannon essentially argued that

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY 59

differential analyzers built from a small number of units, including “multipliers”, “adders”,
and “integrators”, can represent a large class of such functions, and in fact these were suc-
cessful in solving ODEs in practice before digital computers were capable of doing som

One way of capturing this without moving to an analog model of computation might be to
model the “randomness” of measurement noise. We could use a model like classical register
machines, augmented with a non-deterministic measurement operation which takes values &
and j from two registers, finds the length of the j-th rod up to error 27%, and outputs that
approximation 7z into a third register. We might imagine flipping a coin to decide between
o5 and m;l if the end of the rod seems to fall partway between two marks on a ruler. But it’s
important that we think of this operation as being non-deterministic, rather than random.
It might seem reasonable to define a continuous function f to be computable from this oracle
of metal rods if there is an augmented register machine M and a 1-random (or sufficiently
random) sequence of choices of under/over for the error of the approximations, such that M
computes a name for f when the measurement operation under/over approximates accord-
ing to that random sequence. If the measurements over/under approximate according to a
random sequence, surely there is no information to be gleaned from this, right? Wrong! If
we use this definition, then from an oracle all of whose rod-lengths are \% we would be able
to compute every l-random, and there are 1-randoms of arbitrary high Turing degree.

OK, perhaps you think we can fix this by changing the existential quantifier over 1-random
sequences to a universal quantifier: we want the function to be computable by a fixed
augmented register machine for every 1-random choice of errors. This will work fine for cap-
turing whether a fixed function is computable or not@ But then we run into the question
of whether it gives the right answer for which continuous structures have computable copies
relative to a given oracle. This is a more subtle problem, and it has to do with the uniformity
of Theodore Slaman’s construction in [16]: there is in fact a uniform procedure for taking
a non-computable binary sequence and obtaining a copy of the Slaman-Wehner structure
(which is not computable). Using this fact, we can see that there is a fixed augmented regis-
ter machine with the oracle consisting of rods all of whose lengths are \/Li such that for any

20They were used to do ballistics calculations on battleships, taking into account the movement of the
ship. One of the many examples showing that pure mathematics can have ethical implications downstream.

21This actually needs proof, but it should be a straightforward generalization of the classical theorem that
every relation R on w computable from each of a positive measure set of oracles is computable. The idea
behind the classical proof is this: there are only countably many computational procedures, and a countable
union of measure zero sets of measure zero, so some fixed machine must compute the relation for a positive
measure set of oracles. Now pick some basic open set of oracles where measure > % of them compute R

via that machine. To figure out whether n € R, use majority rule: compute using all oracles in that basic
open set in parallel, and as soon as you see > % agree on whether n € R or n ¢ R, go with the majority
answer. Since > % of the oracles compute R, > % must give the same answer about whether n € R, and it
must be the correct answer, since < % of them compute the wrong answer. The modification for computing
a continuous function would be to replace the questions about whether n € R with questions about whether

g1 < R(c) < go for pairs of rational numbers ¢; < ¢s.

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY 60

1-random sequence of choices for over/under approximation, the register machine computes
a copy of the Slaman-Wehner structure. But we shouldn’t be able to do this, as this oracle
is computationally trivial, while the Slaman-Wehner structure is not.

All this is to say that randomness is wrong notion to use here. We instead want to say that
for any choice of under/over approximation at all (i.e., for any possible errors in measure-
ment), a fixed machine computes the function or computes a copy of the structure. More
specifically, for a continuous structure or function to be computable from an oracle is for
there to be a fixed augmented register machine such that for any possible choice of error, that
register machine computes some copy of that structure or some name for that function. We
could think of the choice of error as a choice of path in the tree of possible execution traces
of a non-deterministic program, so this could be rephrased as saying that the augmented
register machine with a given oracle computes a structure (or function) if for every execution
trace of the program given that oracle it computes a copy of that structure (or name for that
function).

The only worry about this definition is that it involves a universal quantifier over 2¢. Classi-
cally, the ternary relation of “R C w is computed by Turing machine M relative to oracle X”
is arithmetic (it’s not hard to write down a IT3 definition). But we have here what looks to
be a I} definition of the corresponding ternary relation in the continuous setting “R C w is
computed by Turing machine M relative to continuous oracle X, since we need to quantify
over an uncountable set of possible errors. It’s not as bad as it looks, however. If we are
clever, we can give it an arithmetic definition by noting that it is equivalent to something
like “for any input z and error bound 2~*+ and any two finite strings of errors of sufficient
length, the computation of f(z) up to error 2~*+ via machine M with the given oracle
computes values which are within 27% of each other along the two execution paths given by
those two different strings of errors”. The reason we can do this is because any particular
halting computation can only make finitely many requests from the oracle.

It’s worth noting that while this trick works for continuous functions/relations, it does not
work for continuous structures. The intuitive reason we should expect you really need a
quantifier over 2¥ to capture the relation “A copy of the structure M is computed by Tur-
ing machine M relative to oracle X” is that to check whether what we compute is really
a copy of M, we need to know there exists an isomorphism between M and the structure
whose diagram we are computing, but even classically this cannot be done in a X0 way
for any a < w¢&. This follows from work in a paper by Fokina, Friedman, Harizanov,
Knight, McCoy, and Montalban Isomorphism Relations on Computable Structures|6]. Here
they construct a family of computable trees T, for each a < w¢* such that the equivalence
relation of a being isomorphic to T}, restricted to computable trees is not computable relative
to the a-th iterate of the halting set. If our ternary relation had a X° definition, then by
quantifying over Turing machines M and setting X = 0, we would have a X2 definition
of being a computable structure isomorphic to 7,, a contradiction. So it’s no worry to us

CHAPTER 2. COMPUTABLE CONTINUOUS STRUCTURE THEORY 61

that we end up with a ¥{ definition of our ternary relation for continuous structures too.
Our ternary relation can just say:“Turing machine M computes a continuous structure M’
relative to continuous oracle X and there exists a (classical) oracle Z and a Turing functional
® relative to Z such that ® computes an isomorphism M’ — M?”. The relation of a given
function being an isomorphism if TI¢, and the relation of a Turing machine M computing
some continuous structure or other from a continuous oracle X is I19, by the argument above,
so this gives a 1 definition (the only second order quantifier is an existential quantifier over
classical oracles 7).

We haven’t made much progress here besides laying out definitions, but hopefully others can
work upon this basis. We expect that the “no two cones” theorem (the degree spectrum of a
structure cannot be the union of two cones with neither one contained in the other) should
also hold for continuous structures. The basic difficulty is that there is a difference between
what we might call representations and presentations of a continuous structure.

Definition 62. An w-representation of a continuous structure M as an equalness relation
€ on w together with a uniformly continuous function @™ — @ for each n-ary function symbol
and a uniformly continuous function w — [0, 1] for each n-ary relation symbol (where w is
the completion of w under this equalness relation) such that @ with these functions/relations
is isomorphic to M.

Another way of thinking about it is that an w-representation of M is a structure obtained by
pulling back the continuous structure on M to w via a map w — M with dense range. While
a continuous structure can be presented as a discrete structure by its atomic diagram, there
are usually many such presentations corresponding to each representation of a continuous
structure, corresponding to the many ways to present a function on w. We don’t see a
straightforward way to apply the classical analysis of degree spectra to continuous structures
by considering their representations or presentations. Thinking about representations for a
moment, to represent a uniformly continuous function w™ — @, we can naturally replace
this with a uniformly continuous function w” — @ (since the extension from w™ to @™ is
determined uniquely). @ can be naturally identified with a sort of “quotient” of a I} subset
of w* by the I19 similarity relation x ~ y iff Vie(x(i),y(i)) > 272". So there may be some
idea to apply classical results about degree spectra by thinking of a function f : w — @
as an “similarity class” (if we can make sense of such things) of functions g : w x w — w
under the similarity relation g; ~ gy iff ViVje(g1(4,), g2(i, 7)) > 272 ". We probably should
not replace this universal quantifier with a limit to get an equivalence relation, because this
seems to wash away too much of the computational structure we want to observe. But
perhaps thinking about the degree spectra of classical quotient structures can help here.

62

Chapter 3

Hilbert Spaces and Observations

It’s worth at least discussing an alternative method of rigorously introducing continuity into
our underlying logic, as mentioned in the introduction. There are no new mathematical
results in this chapter, just philosophical discussion of an expository nature. Instead of
thinking of expanding the set of truth values from {0, 1} to [0, 1], and continuing to think of
properties as deterministic functions on a space of objects given by formulas, we can instead
think of properties as inherently non-deterministic, properly being valued in something like
a space of probability distributions. Let’s go over a line of thinking which might lead you to
this approach.

Our modern conception of logic can largely be traced back to Gottlob Frege’s Begriffsschrift
and Grundgesetze der Arithmetik. One of his principles is what we might think of as a
duality between sets and properties. Given any property P, we have a corresponding set
{z : P(x)}ﬂ and conversely any set determines the property of being a member of that
set. Frege thought of properties (or in a more direct English translation of his terminology,
“concepts”) as functions from objects to truth values.

Let’s focus just on unary properties for a moment (rather than more general properties
which relate multiple objects). If X is the collection of all objects, then the set of functions
X — {0, 1} is the collection of all unary properties. These properties form an atomic Boolean
algebra under the operations PV @ := max(P,Q), P A Q := min(P,Q), and =P :=1— P.
The atoms of this Boolean algebra, which are characterstic functions of singletons, are in
one-to-one correspondance with objects.

However, if we reflect on how we actually apply logic to real problems, we notice that what
we count as an “object” varies from context to contex. We might think of a cities as objects,
or tables and chairs as objects, or atoms as objects, or electrons as objects, depending on
context. There are also paradoxes such as the ship of Theseus which challenge our naive

!This idea turns out to have some problems, namely Russell’s Paradox. But this problem can be worked
around by weaking the duality to apply only to subsets of a set in the von Neunmann heirarchy.

CHAPTER 3. HILBERT SPACES AND OBSERVATIONS 63

conception of identity of objects. Given this, we might have some skepticism about whether
there really is a canonical way to break up the world into a collection of objects, as we seemed
to be assuming when making this correspondance between the collection of unary properties
and this atomic Boolean algebra. At the very least, we should probably think about what
an object is, exactly.

One way to represent the non-canonicalness of breaking up the world into objects is to re-
place the Boolean algebra of properties with a vector space over Fy. If we start with, say, a
finite collection of atoms, we can form a vector space over Fy by applying the functor from
sets to Fy vector spaces which takes the set X to the vector space Fy of functions X — Fy
with pointwise addition. We can think of X as a basis for F5', and define a nondegenerate
“Hermitian form” on Fy by specifying (z,y) = d,, for all z,y € X. Subspaces given as the
span of a subset of X are in one-to-one correspodance with properties in the sense of Frege,
and conjunction corresponds to intersection of subspaces, disjunction to sum of subspaces,
and negation to othrogonal complement. The classical bottom element L = () of the Boolean
algebra corresponds to the trivial subspace {0}, and the the top element T = X corresponds
to the entire space Fy .

To model breaking up the world in two different ways, we might choose a different basis Y
for F2X which is orthonormal with respect to (-,-). For example, if X = {a,b,c,d}, then
Y ={b+c+d,a+c+d,a+b+d,a+b+c} is an orthonormal basis as WGHEI Subspaces given
by spans of subsets of Y correspond to new properties that weren’t in our original atomic
Boolean algebra, which arise by breaking up the world in a different way. In general, we
might want to admit any (closed) subspace of F5 as a valid property. Another idea might
be instead of breaking up F;° in different ways by choosing different orthonormal bases,
we can quotient by a linear map to lower-dimensional space (corresponding to grouping the
atoms into larger objects, which we consider to be our new atoms). We can get quite far
with this, but a 1995 paper by Maria Pia Soler Characterization of hilbert spaces by or-
thomodular spaces|14] gives a limitative result on what we can do over a field like Fy: the
only division *-rings’| over which there exists a vector space V with an infinite collection of
vectors orthonormal with respect to an orthomodular Hermitian form (-,-) are R, C, and
H (the quaternions). Soler defines a Hermitian inner product to be “othomodular” if for
any subspace U of V such that (U+)t = U, Ut + U =V, where L and + are orthogonal
complement and sum of subspaces defined in the usual way. Failure of orthomodularity is
quite serious from a logical point of view, because it corresponds to a failure of the classical
law of excluded middle, xV -z = T. Intuitionist logic allows failures of excluded middle, but
quantum logic, developed by Birkhoff and von Neumann to formalize the logic of quantum
mechanics, has excluded middle as an axiom (it is rather distributivity of conjunction over

2This trick depends crucially on the dimension. If |X| = 3, for example, there is only one orthonormal
basis up to permutation, a side effect of the quirky nature of considering “Hermitian forms” over a finite
field.

3F, is a division-*-ring with the only possible conjugation action z* = z.

CHAPTER 3. HILBERT SPACES AND OBSERVATIONS 64

disjunction which fails).

If we believe excluded middle should hold, and we want to work with infinite spaces of objects
(like points on a continuum), then Soler’s theorem more or less necessitates that if we want
to continue in this direction, we need to work over R, C or H. Let’s start this discussion
again, but this time working over C.

Given a finite set X, we can form a Hilbert space H(X) with orthonormal basis X. The
underlying set of H(X) can be considered to consist of elements of the form) _ o,z with
a € C, and the inner product is given by (}° .y 0, oy Bo7) = > .o @B. Every sub-
set of X corresponds to a closed subspace of H(X). Intersections of subsets correspond to
intersections of the corresponding subspaces, and unions of subsets correspond to sums of
subspaces. In this way, the Boolean algebra of subsets of X (think, unary relations on X)
can be represented as a subalgebra of the algebra of subspaces of H(X).

To properly generalize this idea, we should think of H(X) as a space of complex mea-
sures on X. Given f = Y o,z € H(X), we can obtain a real measure on X by
1Y) = 3 ey gy = > ey loyl? = |[Projspany) fI|*. The interesting observation here
is that given another orthonormal basis B for H(X), we can also interpret f € H(X) as
a complex measure on B. Such a change of basis corresponds to a symmetry of this space
of complex measures (just ike a permutation of X would correspond to a symmetry of the
Boolean algebra of its subsets). In physics, this symmetry is useful to describe phenomenona
like the polarization of photons. Fixing an orientation of your polarizing filter corresponds
to choosing an orthonormal basis. Once you've done this, you can obtain a real probabil-
ity distribution on a set of orthogonal directions of polarization. But you can just as well
rotate your polarizing filter, obtaining a real probability distribution on a different set of
orthogonal directions. The same element f € H(X) (thought of a the state of the photon)
gives a probability distribution over outcomes for any orientation of the polarizing filter. It
has been experimentally verified that photons with a given polarization (corresponding to a
particular choice of complex measure) will either be blocked or not blocked by the polarizing
filter with probabilities determined by the real measure obtained from that complex measure
and the orthonormal basis given by the orientatation of the polarizing filter.

For general X, we ought to require X be a topological space with a group action, and a cho-
sen invariant measure p. For finite X, this group action can just be the permutation group
on X and p the uniform probability measure on X. For something like X = R" (thought
of as a space of positions), the group action might be the affine group, and the invariant
measure Lebesgue measure. In this setting, we can define the underlying set of H(X) to be
complex measures of the form ¢;(Y) = [, 1y fdu, where f € L2(X,[L,(C)E| , the space of
p-square-integrable complex-valued functions on X, and 1y is the characteristic function of

41t is also useful to generalize to distributions, e.g. to allow atomic measures.

CHAPTER 3. HILBERT SPACES AND OBSERVATIONS 65

Y. This defines what we’ll call a complex measure on the og-algebra of y-measurable sets
which is absolutely continuous with respect to u. The space of complex measures of this
form can be made into a Hilbert space using the inner product (¢, v,) = [X fgdu. Note
we could have equivalently taken the objects in H(X) to be the functions themselves rather
than the corresponding complex measures.

Given an orthonormal basis B of H(X), each ¢y € H(X) determines a real measure fi; on
B by 1 (Y) = ||Projspanyv)tir]|>. We can also think of this as giving a kind of measure on
subspaces of H(X). For a collection of orthogonal subspaces, the measure of their sum is

the sum of their measures. It is often convenient to normalize this real measure to get a

. 2
probability measure, by means of: i;(Y) = W

We might ask: what is the motivation for this construction? The idea is that there are a
few principles in the underlying philosophy of classical physics which seem to be at odds.
The state space of the universe is presumably a continuum (in particular, connected). We
also think that the result of an observation should depend continuously on the state of the
universe (i.e., be a continuous function of the state of the universe). Finally, we think that
there are some observations which are binary: they always have an answer, and it’s either
“yes” or “no” (one example is whether or not a photon passes through a polarizing grid).
But if all of these are so, such a binary observation must always have the same answer:
a continuous function from a continuum to a discrete set must be constant. The simplest
solution to this is to broaden our notion of what an observable quantity is, so that there is
a continuous path between a definite “yes” result and a definite “no” result. We can do this
by interpreting a definite “yes” result or “no” result to be an atomic probability distribution
over outcomes, and to situate these into a broader space of probability distributions over
outcomes. We then see ex post facto that for polarization of photons (and many other phys-
ical experiments), for reasons of symmetry we should work in a space of complex measures
with the 2-norm, rather than a space of real measures with the 1-norm. It’s easiest to see
with polarization of photons: if we used classical probability distributions, these would form
a simplex whose vertices are the classical outcomes. But this space of probability distri-
butions mathematically favors the classical outcomes we started with, while we know from
experiment that there is no favored set of polarizations: any rotation of the polarizing grid
will give a different set of classical outcomes. This argument about the symmetries of the
2-norm versus the 1-norm giving an a priori reason to use the form comes from Scott Aaron-
son’s book Quantum Computing Since Democritus|l]. All this together seems to give good
reason for the foundations of quantum mechanics to be developed over Hilbert spaces. An it
is important that we have some kind of a priori justification for our foundations if we wish
to have an understanding of physics which goes beyond a mere predictive model. It would
be unsattisfying if the axioms of quantum mechanics were justified only by their agreement
with experiment. The existence of a priori justifications for certain foundational choices also
gives us an excuse to do the kind of “armchair physics” we are currently doing.

CHAPTER 3. HILBERT SPACES AND OBSERVATIONS 66

It is at this point in any discussion of the foundations of physics that we reach some serious
philosophical issues having to do with how this mathematical formalism is to be interpreted
physically. We have, apparently, given up on the idea that the results of observations are
determined by the state of the universe. This runs counter to centuries of physical theory.
But on closer inspection, the situation is not as absurd as it seems. While the results of
observations are not determined by the state of the universe, it can still be said that observ-
able quantities are determined by the state of the universe. The idea is that an observable
quantity is a sort of probability distribution over a set of observation outcomes. We cannot,
in a single experiment, see the entire probability distribution, but if we repeat the same
experiment many times, we can deduce the probability distrubtion over outcomes for vari-
ous physical situations. We also have deterministic laws which govern how this probability
distribution evolves over time. So we have not lost the principle that observable quantities
are deterministic. Rather we have just reinterpreted what an observable quantity is.

We should say a bit about how what we’ve said so far relates to the most common “practi-
cal” interpretion of quantum mechanics: the Copenhagen interpretation. In the Copenhagen
interpretation, an observable quantity corresponds to a self-adjoint operator on H(X). Self-
adjoint operators on a Hilbert space are in bijective correspondance with spanning collections
of closed orthogonal subspaces each with an associated real number. The subspaces are the
eigensapces of the operator, and the real number associated to a subspace is the correspond-
ing eigenvalue. It’s important to note that, from our discussion so far, there is no need to
suppose that these real numbers (the eigenvalues) have any physical meaning. They could
be replaced by an abstract set of observation outcomes. The reason why physicists usually
suppose outcomes of observations are real numbers is because many physical quantities like
energy and momentum in a certain direction seem to naturally lie on a linear scale. But we
need not assume this, and we won’t. So instead of an observable quantity corresponding to a
self-adjoint operator on H(X), we will think of an observable quantity simply as an orthog-
onal collection of closed subspaces of H(X) together with a one-to-one function from this
collection of subspaces to a set of observation outcomes. In this context, the Copenhagen
interpretation is based on the following claim (stated in rough first-approximation for a finite
set of outcomes): when you perform an observation with associated subspaces {W, : a € I}

corresponding to distinct outcomes {0, : @ € I}, and the state of the system is ¢¢, then the

|| Projwe vyll*
ToslZ , _ .
state of the system after the observation is Projw, 1. In particular, if you perform the same

measurement twice in a row, it will not change the state of the system as at all, because with
probability 1, you will just end up applying the same projection operator onto W, as the
last measurement, and projections are idempotent. In general, the claim is as follows: for a
subset J C I, the probability of an outcome in {0, : @ € J} is W!]Projspan({wa:aej})wﬂ]2,

probability of outcome o, is , and if the observation has outcome o,, then the

and if we learn precisely that our outcome is in {o, : @ € J}, then after our observation the

CHAPTER 3. HILBERT SPACES AND OBSERVATIONS 67

state of the system is the projection of ¢y onto Span({W, : a € J })E] The “precisely” is
important: learning precisely that a particle has z-position in the interval (—1/2,1/2) means
we know for sure it is in that interval, and cannot know from the result of the experiment
that it is in some strict subinterval. Although we can conclude logically that the particle
must have z-position in (—1, 1), the resulting state after the observation depends on the fact
that we are projecting s onto the particular subspace corresponding to (—1/2,1/2). This is
important to keep track of to make the correct preductions for experiments like the delayed
choice quantum erasure experiment: the correct prediction results only when you are careful
to keep track of exactly what you are learning from each observation. We can see this even
in the classical double slit experiments: if you know which slit the photon travelled through,
the state of that photon is different (as witnessed by a different interference pattern) than if
you only know it passed through one or the other of the slits. One way of enforcing this in our
theory itself is to make the set of outcomes for each particular observation finite (even if the
Hilbert space is infinite dimensional), e.g. instead of a single z-position observation, we have
many different x-position observations with various levels of precision. For example, when
we detect a photon has travelled through one of the slits, we do not know the exact position
as it pases through, only the position up to the width of the slit. This would correspond to
a different observable quantity than if we had used a more precise means of measuring the
position of the photon.

This phenomenon of the state being projected to a particular subspace based on what you
learn from the observation is known as “wavefunction collapse”. The general idea is that
when a system is not being observed, it evolves continuously according to Schrodinger’s
equation. When it is observed, it undergoes collapse, which is a discontinuous process (a
projection). It’s interesting to note that the Copenhagen interpretation essentially integrates
epsitomology into the rules governing the behavior of physical systems: what you can theo-
retically learn from an experiment has a lot of effect on its distributions of outcomes. This
leads to a very strong objection to the Copenhagen interpretation: it depends on having a
system with external observers. An isolated system (such as the universe itself) does not
have external observers, and so ought to (according to the Copenhagen interpretation) never
undergo collapse. This does not mean that the Copenhagen interpretation is not valid: in
fact it is incredibly good at making practical predictions. It’s just that it cannot form the
foundations of a complete physical theory. Physicists who care about foundations have tried
to get around this by deriving apparent wavefunction collapse as a feature of coupled sys-
tems consisting of an environment and an observed subsystem. This is known as ” quantum
decoherence”, and in this picture, rather than an immediate and discontinuous wavefunction
collapse, there is rather a very rapid yet continuous evolution of the system from one in
which the state of the observed subsystem is not correlated to the state of the environment,

5Since we are working with Hilbert spaces, when we use the word “span”, we mean orthogonal span (so
infinite linear combinations are allowed, not just finite linear combinations). This is necessary to ensure that
the span of a collection of closed subspaces is again a closed subspace.

CHAPTER 3. HILBERT SPACES AND OBSERVATIONS 68

to one in which the state of the observed subsystem is heavily correlated to the state of the
environment. Roughly, before a photon passes through a polarizing grid, the content of your
lab notebook doesn’t tell you anything about the polarization of the photon, but after your
experiment, it does. According to this picture, your lab notebook will in fact end up in a
superposition of states, one in which you’ve written “photon passed through” and another
in which you've written “photon blocked”: this is a necessary consequence of the linearity of
Schrodinger’s equation if we suppose (as these physicists do) that it describes the dynamics
completely. The idea is that the new correlation between the state of the environment (e.g.
your lab notebook) and the polarization of the photon gives the appearance of wavefunction
collapse, because each of the classical states which compose the superposition which the
entire system is in after the experiment will be states in which experiments on the photon
give a deterministic outcome: if your lab notebook says the photon passed through, and
you repeat the experiment, the photon will again pass through (and vice versa). This was
not true before the experiment: the future observed polarization of the yet-to-be-observed
photon will not be correlated with whatever you chose to write beforehand. We will ex-
plore this idea later, because conditional statements when describing quantum systems have
to be interpreted very carefully. The main point of this part of the discussion is only to
point out that the Copenhagen interpretation has problems, and that there is a proposed
solution. There is also something unsatisfactory about this proposed solution, namely that
we never seem to consciously experience such superpositions. One solution to this, known
as the “many-worlds hypothesis”, is that each classical component of a superposition corre-
sponds to one of many equally real worlds in a massive branching tree, and our conscious
mind happens to be experiencing just one branch along that tree, but other versions of our
mind are travelling along all the other branches just as well. This may sound like an aburdly
strong metaphysical claim to a philosopher, but it is the most popular interpretation amongst
physicsts beside the Copenhagen interpretation.

All of this talk about interpretations has just been to put what we are going to do in context
with the main lines of thought in the foundations of physics. We do not wish to resolve what
the "correct” interpretation is, or even make claims about physical reality. Rather, we want
to witness some interesting mathematical phenomena which logicians who are interested in
the interplay between the discrete and the continuous may find interesting. We are using
physics just as an inspiration.

In this thesis, our general theme is that discrete structures often are at home in a broader
continuous context. In this case we have an analogue of Stone’s representation theorem,
where instead of representing a Boolean algebra a colleciton of subsets of some set, we rep-
resent a Boolean algebra as a collection of closed subspaces of a Hilbert space. Elements of
a Boolean algebra are propositions, and conjunction, disjunction, and negation (when repre-
sented as an algebra of sets) correspond to intersection, union, and complement. This idea
can be traced back to Frege, and is ubiquitious in mathematical logic. When represented
as an algebra of closed subspaces of a Hilbert space, conjunction, disjunction, and negation

CHAPTER 3. HILBERT SPACES AND OBSERVATIONS 69

correspond to intersection, sumlﬂ, and orthogonal complement of subspaces.

The phenomenon of interest to logicians here is that if we start with a Boolean algebra of
propositions, and represent it as an algebra of closed subspaces of a Hilbert space, we see in
this representation many new propositions (many new closed subspaces). The phenomenon
we want to look at now is the role of orthogonality. The way we chose to represent Boolean
algebras, given any two propositions, p and ¢, the corresponding subspaces W, and W, have
the property that W, "W, W,N WqL, T/VpL NW,, and VVpL N I/VqL are mutually orthogonal and
direct sum to the entire space. We can think of a proposition as corresponding to a pair of
orthogonal subspaces which direct sum to the entire space, one of which is associated with
the proposition being true, and the other with the proposition being false, or in the language
of quantum mechanics: each proposition corresponds to a self-adjoint operator on a Hilbert
space with two eigenvalues, 1 (corresponding to true) and 0 (corresponding to false). It is
a standard theorem that a collection of self-adjoint operators commute if and only if they
share a common othogonal eigenbasis. Physicists interpret commuting self-adjoint operators
to be simultaneously observable quantities. An example of such quantities are the x-position,
y-position, and z-position of a photon. We can see that our way of representing Boolean al-
gebras as algebras of subspaces of Hilbert spaces assigns the elements of the Boolean algebra
to simultaneously observable quantities. This makes complete sense, as classically for any set
of propositions, we can evaluate the truth of any number of them that we like, in any order
we like, and then take Boolean combinations afterwards without fear that evaluating the
truth of of one proposition might change the truth of another proposition. But this does not
hold in reality. Hiesenberg’s uncertainty principle says that x-position and x-momentum are
not simultaneously observable quantities. They correspond to self-adjoint operators which
do not commute.

One way of witnessing this is a failure the law of conditional probability. This says if we have
two events A and B (think, sets of outcomes for different experiments), then the probability
P(A|B) of A conditional on event B happening is P](fégf) This has been experimentally
demonstrated to not hold for position and momentum of a particle in the same direction
(as well as many other observable quantities), and is even part of the standard labwork of

undergraduate physics students.

The question we wish to pose to the reader is: should we take this as a serious challenge to
the foundations of mathematics? On the one hand, because of the representation theorem
we just gave of Boolean algebas inside algebras of closed subspaces of Hilbert spaces, clas-
sical logic is at least consistent, and applicable to a wide range of circumstances. On the
other hand, it seems to challenge the notion that classical logic has any kind of undisputed
a priori status as a basis for all mathematical thought. In particular, it excludes as logical

6We define the sum of an infinite collection of subspaces to be the closure of their span, rather than just
the span, so our operations always give closed subspaces when applied to closed subspaces

CHAPTER 3. HILBERT SPACES AND OBSERVATIONS 70

impossibilities actual situations which seem to have perfectly fine mathematical descriptions.

One defense of classical logic here is to claim that there is some yet-unknown but completely
classical explanation for the observations of physicists. Bohm’s “Pilot Wave” theory, for
example, attempts to bring quantum mechanics closer to a classical explanation: this essen-
tially states that that there are hidden variables which guide the evolution of the universe
classically. But this explanation has the unfortunate feature of violating one of main tennets
of physics, namely that all interactions happen locally. It could also be considered to vio-
late Occam’s razor, by proposing a theory that is strictly more complicated (and observably
indistinguishable) from other interpretations of quantum mechanics. The situation is that
for around a century, physicists have tried to find a clear, coherent, and simple classical
explanation of their observations, and failed. Although this is in no way a proof that our
universe operates on a kind of non-classical logic, it means we cannot be so quick to dismiss it.

Another defense would be to point at that quantum mechanics and its strange logic is, in
fact, interpreted inside classical mathematics. So although what scientists may call “proposi-
tions” turn out not to really be propositions in a classical mathematical /philosophical sense,
this is just a problem with scientists using confusing and wrong terminology, not with math-
ematics itself.

However, we could point out that the development of continuous logic proceeded by first
giving an interpretation of continuous logic inside classcal mathematics. This will be so
with almost any new mathematics: one of the very first things you try to do is interpret
your new mathematical structures inside the existing framework of mathematics. This is
the easiest way of establishing the consistency of a new theory, and it’s important to ensure
that mathematics as a whole has a coherent ontology. This does not mean that we think
that classical logic should be held to be more fundamental than continuous logic. In fact,
we think the opposite! It would certainly be a challenge to try to “boot-strap” continuous
logic, working only on first-principles which are easily explained to someone who does not
know any classical logic or mathematics. But this can be explained by the fact that humans
have been refining classical logic and classical mathematics for thousands of years, and have
developed a relatively useful pedagody for it. In practice, a professional geometer will rarely
think of themselves as dealing with Zermelo-Fraenkel sets, and may not even know what the
axioms are. Most of the body of mathematics has never been proved from the ZFC axioms.
All this is to say that, at the very least, the meaning of mathematical concepts don’t seem
to depend upon them being interpreted in classical set theory. So it would probably be
premature to claim that just because quantum mechanics has been developed using largely
classical mathematical structures which have standard interpretations as sets, quantum me-
chanics is ultimately a classical theory.

As an area of future study, it would be interesting if there were a common generalization
of the logic of quantum mechanics and continuous logic. It’s hard to see, at the moment,

CHAPTER 3. HILBERT SPACES AND OBSERVATIONS 71

how supremums and infimums would play a role, since these do not have analogues in the
complex numbers. At the very least, we encourage the reader to keep an open mind about
the foundations of mathematics, and take serious the question of whether it would benefit
mathematics to found it on a continuous base, or a quantum logic base.

72

Chapter 4

Bridging Continuous Structures and
Descriptive Set Theory?

The theory of Polish spaces, some might consider, is squarely in the realm of descriptive set
theory. A classical theorem says that, topologically, every Polish space is a quotient of a
subset w*, Baire space. The construction is what you might expect given some of our defini-
tions in Chapter 1: take a countable dense set D of your Polish space X, identify D with w,
then identify sequences from D with elements of w®. Take the subset of w“ corresponding
to fast Cauchy sequences, and quotient by the relation of converging to the same point in
X. A refinement of this argument shows that every non-empty Polish space is a quotient of
w® itself, meaning Baire space can be considered a kind of universal Polish space to do de-
scriptive set theory with. See Moschovakis’ Descriptive Set Theory [11] for more background.

We might wonder, now that we can think of effective Polish spaces as computable continuous
structures, how much of effective descriptive set theory can we develop in this framework?
Usually descriptive set theory is done in a second-order language, with quantifiers both over
realsE] and over the naturals. Descriptive set theory is quite powerful, allowing us for example
to quantify of models of fragments of set theory. We can immediately see that our continu-
ous first-order theory of w*“, even if we add additional functions and relations, is going to be
weaker, in the sense that we can define less. One problem is that because all of our formulas
are uniformly continuous, we can only ever define closed sets (according to our definition
where a set is a definable if the equalness relation to that set is definable). Actually there is
a subtlety here, which is that our language cannot distinguish between a set and its closure.
In a sense the “definable sets” in a continuous structure are equivalence classes of subsets
under the relation X; = X5 iff X; = X,. But in any case, it makes sense to say we will only
ever be able to define sets that are I19 in the (boldface) Borel hierarchy. However, there are
still complicated closed sets when measured with the lightface Borel hierarchy, where unions
and intersections are required to be effective.

!The term “reals” is sometimes used to describe elements of w*, since it is homeomorphic to R \ Q

CHAPTER 4. BRIDGING CONTINUOUS STRUCTURES AND DESCRIPTIVE SET
THEORY? 73

This is brings up an interesting consideration for the philosophy of science. Some questions,
like whether the distance from Earth to the center of the galaxy is rational or irrational at
a given moment, are neither falsifiable nor verifiable. Even someone with access to arbi-
trarily precise instruments, all mathematical knowledge, and access to all < w{'¥ iterates
of the halting problem as an oracle could find no physical evidence either for or against
this distance being rational] But we might think that this is a silly example of something
neither falsifiable nor verifiable: it doesn’t really correspond to any kind of natural physical
property. After all, nature abhors the discontinuous. The complication here doesn’t really
have to do with the descriptive complexity of the property, but more with the fact that the
corresponding relation is nowhere continuous. But there can be uniformly continuous prop-
erties which are not falsifiable or verifiable, because the process of converting measurement
data into a decision about to whether or not (or rather, to what extent) the property holds is
computationally non-trivial. In other words, an all-knowing being might be able to use the
data we gather to figure out to what extent the property holds, but we are unable to, because
we don’t know how to put the pieces together. An example along these lines might be the
“spectral gap problem”, which asks whether there is a gap between the energy of the ground
state of a physical system and its other states. A paper by Cubitt et. al. “Undecidability of
the spectral gap” [5] showed there is a family of physical systems for which it is undecidable
which have a spectral gap. Meaning even with a complete description of the physical system
and its governing laws, there are properties of the system we can’t determine. In general, we
might wonder about the role of uniformly continuous relations at high levels of the effective
Borel hierarchy. These are relations which would be falsifiable or verifiable if we had access
to an oracle. If the Church-Turing thesis turns out to be false (e.g., if there is some physical
procedure to solve the n-th iterate of the halting problem), then some of these relations
which we initially thought were neither falsifiable nor verifiable might turn out to be both
verifiable and falsifiable.

One other question to consider when thinking about definability in continuous logic is “what
if infinite mathematical objects don’t really exist?”. We've already seen that some well-
behaved uncountable continuous structures can be described completely using only a count-
able amount of information, including many of the standard uncountable spaces used by
practicing mathematiciang’] such as Cantor space, R, separable Hilbert spaces, etc. Fur-
thermore for any point p in one of these nice uncountable spaces, and any degree of accuracy

2There is of course the measure-theoretic argument that rational distances are very rare, but how do we
know the universe was not set up so the Earth is in a perfectly circular orbit around the center of galaxy?
Or perhaps suppose this is being asked by an omnipotent demon who is trying to trick you by asking you
this question about a moment of their choosing with an unlikely answer? If these hypotheticals bother you,
you could replace this by breaking up R into two disjoint pieces A and B which are both dense in R and
both have measure r inside any interval [—r,r], but then there is the question of how to communicate the
question to someone. Let’s not dwell on this, though.

3Logicians, of course, prefer impractical mathematics.

CHAPTER 4. BRIDGING CONTINUOUS STRUCTURES AND DESCRIPTIVE SET
THEORY? 74

we like, we can find a point p which is indistinguishable from p (to that degree of accuracy)
which can be described by only a finite amount of information. Going further, a function
between such spaces, which in general would require an uncountable amount of information
to describe as a set-theoretic function, will only need a countable amount of information to
describe if it is uniformly continuous (only its values on the points which have finite descrip-
tions are needed); and if the function is computable, we would actually only need a finite
amount of information to describe it! Given all of this, it’s interesting to consider whether we
really need infinite objects at all. If we are satisfied with only having finite approximations,
how much mathematics would we really be missing? Recall, a finitist might say something
like:

I don’t really believe in Cantor space, the uncountable set. Nor do I believe
in the completed infinity of 2<“, the set of all finite binary strings. I am sure,
however, that the finite binary strings I can write down exist, and that for any
two finite binary strings ¢ and 7 that exist, their concatenation o7 exists. |
also believe that, given a nice finite description of a well-defined computational
procedure, I can apply it to any binary string that exists, and the result will be
another existing binary string.

This might seem hopelessly limiting at first, but there is a way of interpreting statements
with many alternations of quantifiers over infinite sets as iterated modal statements about
finite objects. For example, consider the IIy statement “(Vz € N)(Fy € N)(z +x =y + z)”.
There are Il statements which are independent of ZFC, so just by looking at the syntactic
form, for all we know this could be an impossible problem to solve. But we can translate
it into a kind of modal statement which seems more palatable: “If you give me a natural
number z, I can produce for you a natural number y so that x + x = y + x”. There is no
longer an explicit reference to the set of all natural numbers. Rather, there is a claim about
your ability to fulfill requests of a given form. In this case, you can fulfill the request trivially
by handing back the number z you are given: the identity function is a Skolem function for
this I, statement. We don’t need to believe in infinite sets to make sense of this statement.

In the context of continuous logic, consider a statement like “inf, sup, ¢(x,y) > 77, where
¢(x,y) is computable and 1-Lipschitz, and 7 € [0, 1] is computable, evaluated in a computable
continuous structure based on the continuous space 2¢ with additional relations/functions.
While inf, and sup, could be thought of as quantifiers over an uncountable set, the result is
the same if they are interpreted as quantifiers over a dense subset of 2, which we can identify
with 2<“. So translating, this becomes a statement with quantifiers over only countable sets:

(3m € w)(Vk € w)(Voy € 2¥)(3oz € 2°¥)([¢](01, 02)(m + k +2) > [T](m + k +2) +27™)

Because our function is 1-Lipschitz, however, we can actually create an a priori bound on
|o1| and |o3| depending on m. So this turns out to be equivalent to something like:

CHAPTER 4. BRIDGING CONTINUOUS STRUCTURES AND DESCRIPTIVE SET
THEORY? 75

(Im € w)(Vk € w)(Voy € 277)(Joy € 2™ ([¢](01, 02) (M + k+3) > [7](m+k+3) +27™)

Optimizing further, we don’t need to know the value of ¢ or 7 to arbitrary precision, only
to sufficient precision to see the value of one is bounded strictly above the other, meaning
we don’t need to quantify over k. In fact, £ = 0 suffices here:

(3m € w)(Vo, € 2™*)(Foy € 2™ ([¢) (01, 02) (m + 3) > [r](m + 3) +27)

In other words, this statement about given by a Il; continuous formula turned out to be
equivalent to a classical ¥; statement! And our argument can be generalized: for any 1-
Lipschitz II,, sentence for any n € w, evaluating whether 1) > 7 in 2¥ for 7 computable will
be classically ¥;. The reason for this, essentially, is that 2¥ is compact. For any given level
of precision, we can evaluate any formula to that given level of precision by considering only
a finite collection of points in 2* to which every point in 2* is sufficiently close. The only
reason this turns out to be X, and not recursive, is because in general deciding for two
computable reals whether r; > ry is a 37 problem. If we only wanted to be able to compute
e(¢(z),) to arbitrary precision, this would turn out to be computable for any %, or %,
1-Lipschitz formula ¢(z) for any n: for any fixed z € (2¥)", simply search in parallel for
each rational 7 < 7, for a witness to 71 < (%) < 79. It’s also worth noting this can be done
uniformly across w-presentations of 2“, because to find an analogue of 2™ C 2 in any copy of
2% given its atomic diagram, we can just search for 2" points with pairwise equalness 272",
so in fact Y, relations for every k € w are both u.r.i.c.e. an co-u.r.i.c.e. But this means,
by our previous result in chapter 1, that they are all A{, which gives us a form of effective
quantifier elimination for Cantor spaceff]

Note. A similar argument would not work for a non-compact space like R or w®, because
no finite collection of points can approximate every point to within distance, say % What’s
important, philosophically, is that we have found a beautiful expression of the intuition
that compact structures are “basically finite”. It’s also worth noting that the condition our
formulas be 1-Lipschitz can be weakened, as long as we can compute a modulus for them.

We'll go into more detail about compact continuous structures in a later section, the point
of this discussion was to show that the hierarchy of ¥,, and II,, continuous relations on 2 (in
our finitary continuous language) bears very little resemblance to the hierarchy of classically
Y0 and II? relations on 2% as classical structure that we look at in effective descriptive set
theory. This will be true even if we additional 1-Lipschitz functions and relations to our
continuous language, like coordinate-wise addition (mod 2). This is all to say that continu-
ous logic at least at first glance, doesn’t give us a new intrinsic way to study to study the
effective Borel hierarchy on 2. The way it handles uncountable spaces is quite different

4We can replace A§ with A; if we have the connective lim,, in our language.

CHAPTER 4. BRIDGING CONTINUOUS STRUCTURES AND DESCRIPTIVE SET
THEORY? 76

from effective descriptive set theory.

It’s also worth trying to understand what goes wrong if we try to, say, add some function
and relations in our language which allow us to interpret N, giving us back some of the
expressive power we take advantage of in effective descriptive set theory. For example, per-
haps we use a prefix-free coding of natural numbers to identify it with a subset of 2<%, and
represent natural numbers as equivalence classes under a nice equivalence relation on strings
in 2¢. The problem will be that we will end up with our representations of natural numbers
having accumulation points in 2¥. If we, say, we identify 0 with the equivalence class of
strings starting with 00 and 1 with the equivalence class of string starting with 01, then
any uniformly continuous binary relation representing the graph of a function N — {0,1}
will need to need to relate all (representatives of) natural numbers sufficiently close to an
accumulation point to (a representative of) the same value. If we have a single accumulation
point, this means our function must be eventually constant.

However, we might still have a chance on w®, since it is not compact. Indeed, we can identify
natural numbers with equivalence classes under the computable equivalence relation x = y
iff 2(0) = y(0). We can add functions corresponding to addition and multiplication to our
language (pointwise addition and multiplication would work). The problem here is that the
evaluation map (z,4) — x(i) (represented using our interpretation of natural numbers in w*)
will not be uniformly continuous. We can see this because for each i € w, the map = — z(i)
is 2°-Lipschitz, but no better. S0 our binary modulus would need to be bounded from below
by the function (7y,73) +— 74 for each 4, inconsistent with the modulus axioms. The fact
that we can’t define the graph of the evaluation map seems to suggest that we won’t have
much luck defining general closed sets. We can also see that in any compact subset of w®,
we will have the same limitation on definability of sets as we did in the case of 2v.

7

Chapter 5

Notions of GGenericity

This chapter is not really related to continuous logic, but we think it fits with the gen-
eral theme of studying uncountable structures from a logical point of view. It might have
something to say about extending the notion of genericity to points in arbitrary continu-
ous spaces, but we have not done that here. We want to study a more intrinsic notion of
genericty inside closed perfect subsets of Cantor space. It turns out after the fact that this
replicates some work of Bernard Anderson in [2], which is a good lesson to properly review
the literature before starting work on your own. We include this mostly because it might
serve some expository purpose. This work was done to try to replicate some of what Jan
Reimann and Theodore Slaman did for measure in Measures and the Random Reals|13].

Lemma 22 (Fixed-Point Lemma). Let G € 2¥ be 1-generic relative to z, and ® be a truth-
table functional 2¥ — 2% recursive in z. Then if ®(G) = G, there is basic clopen [o] 5 G
with <I>|[U] =]d[g}.

Proof. Consider the z-effective open set V := {x € 2 : (In € w)P@(z)(n) I# z(n)}. G &V
(since ®(G) = G), so by 1-genericity of G relative to z, there is some condition forcing G ¢ V/,
i.e., there is some o C G such that [c]NV = (. So if z € [0], then (Vn € w)®(x)(n) = x(n),
ie, ®(x)=uz. O

Conventions. If X C 2¥ then W C X is open in the relative topology of X (abbre-
viated openx) if W = U N X for some open U C 2. Likewise we use the abbreviations 0x,
Clx, and Intx to refer to the boundary, closure, and interior operations relative to X, and
use the same notation for other topological properties. We abide by the convention that if
we apply a typed adjective to a new name, the name is of the corresponding type (e.g., if we
say “Z is openy”, we are implicitly stating that Z C X).

Definition 63. Let X C 2¢ be a perfect subset of 2¥, and z € 2. Then z € X is weakly 1-
generic in X relative to z (or weakly z-1-generic in X) if x belongs to every z-effectively

CHAPTER 5. NOTIONS OF GENERICITY 78

open set U such that X N U is dense in X E| (Equivalently, = belongs to every z-effectively
openy densex Set)ﬂ

Definition 64. Let X C 2“ be a perfect subset of 2, and z € 2*. Then x € X is 1-generic
in X relative to z (or z-1-generic in X) if x is not in IxU = Clx(U) \ Intx(U) for any
z-effectively openy set U E|

The intuition behind the property of 1-genericity is that if x is 1-generic, any X9 property
x might have or not have is either forced to hold or forced to not hold by some finite ini-
tial segment of x. The following observation shows this intuition extends to 1-genericity in X:

Observation 23. Let X = [T] C 2*, where T is a perfect tree, and x € X[The following
are equivalent:

(i) x is z-1-generic in X.
(ii) For any z-effectively open set U, if X N U is dense along IEL thenx € XNU.

(iii) For every X0(z) set of finite strings S, there is an initial segment ¢ C x such that
eitherc € SNT or (VT D o)(t ¢ SNT).

(iv) For every Turing functional relative to z, say ®, there is an initial segment o C x such

that either ®7(0) | or (V7 D o)(tr € T — ®7(0) 1)

Definition 65. A z-uniformly perfect subset of 2¢ is a perfect set X C 2¢ such that the
1 [o]nX #0
0 [o]NX =0

'We say x € X, but we could have equivalently said x € 2%, since if x € X, there is a basic clopen set
[0] 2 = disjoint from X, and thus given any z-effectively open set U with X N U dense in X, U \ [0] is a
z-effectively open set whose intersection with X is dense in X not containing x.

2We didn’t define what a z-effectively openx set is, but you could imagine the definition: we can consider
set of the form [0]NX as basic open sets in X, and then a z-effective openx set is a set of the form | J,._[0;]NX,
where the map i — ¢; is recursive.

31t is worth saying why 1-generic in X is not just the same as 1-generic which happens to belong to
X. It is true since X is closed that for Z C X (no topological assumptions on Z), Clx(Z) = X N CIl(Z).
Moreover, if U C X is openy (say U = X NV with V open), then Intx(U) =U = XNV = X N Int(V),
s0 Ix(U) = (X NnCUUN)\ (X NInt(V)) = X N(CIUU) \ Int(V)). This looks very close to X N OV, and if
we are not careful this might make us suspect that the boundary points of an openx set U = X NV, where
V' is open, are just the boundary points of V' which happen to lie in X. This is in fact true if X is clopen,
which makes 1-genericity in X trivial for X clopen. However, for an arbitrary perfect X, it need not be true
for all open V' C 2% that CI(X NV) = X N CI(V). For example, if X is the perfect set of infinite binary
sequences with all even digits being “0”, and V is the open set of binary sequences which have at least one
even digit being “1”, then V is dense in 2, so X NCI(V) = X N2¥ = X, but Clx (X NV) = Clx(0) = 0.
In other words, this fails spectacularly.

4Here we actually have to assume x € X, because condition (iii) is trivially satisfied if z ¢ X

le, (Vnew)Fy Dz n)(ye XNU)

6Note that for a z-uniformly perfect set X, x € X if and only if Vnfx (X | n) = 1, so such a set is 119(z2).

function fx (o) := is recursive in z|

iew[

CHAPTER 5. NOTIONS OF GENERICITY 79

Observation 24. Let X C 2% be non-empty. The following are equivalent:
(i) X is z-uniformly perfect.
(1)) X = [T for some z-recursive perfect tree T C 2%,

(i1i) X = ®(2¥) for some injective, order-preserving, Z—Lipschitﬂ functional ® relative to
z.

(iv) X = ®(2¥) for some injective truth-table functional ® relative to z.

Proof. (i) = (4i): Suppose that X is a non-empty z-uniformly perfect subset of 2. Then
T:={o0: fx(o) =1} C 2<% is a z-recursive perfect tree such that X = [T7].

(1) = (i4i): Define ® by recursion as follows. Given ®(c), let 7 be the longest string 7 2 o
in 7" such that there is no string 7/ O ¢ in T of the same length incompatible with 7. Then
define ®(¢70) =770 and ®(6™1) = 771.

(13i) => (iv): An injective 1-Lipschitz functional is an injective truth-table functional.

(iv) = (i): Suppose that ® is an injective truth-table functional relative to z with ®(2¢) =
X. Then there is a z-recursive function v : w — w such that (Vp € 24M) (Vi < n)(®(p)(i) 1).
Then define fx (o) = 1 if and only if (37 € 24U7D) (Vi < |o|)(®(7)(i) = o (7). O

Note. The function u in the previous proof is a uniform upper bound on the “use” function of
®. The use function tells us how many bits of z € 2“ are needed to compute the first k digits
of ®(x). Why can we get a uniform bound (one that works for all x € 2¥ at once)? Well,
for any k, the function: = — “number of bits needed to compute ®(x)(0),..., ®(z)(k — 1)”
is continuous, and 2¢ is compact, so its image must be a compact subset of w, thus bounded.

Observation 25. The image of a z-effective open set U C 2¥ under an injective 1-Lipschitz
functional ® is a z-effective openg vy set.

Proof. Fix z € U. First we’ll prove that for every basic clopen [r] C U with « € 7], there
is a basic clopen of the form [®(z) | n] whose preimage is contained in [r]. Consider the
continuous function f : [7]° — R defined by f(y) = d(®(x), ®(y)F} f is continuous, and
[7]¢ is compact, so f achieves a minimum. Since y € [7]* = y # ©z = P(z) # P(y) =
d(®(x), ®(y)) > 0, this minimum cannot be 0, so must be 5 for some m € w. But then
€0 (8(0) [+1) = 003) € 9lo) 1) — (B0} B0) <55 — & " =
Yy € \|T|.

7A 1-Lipschitz functional relative to z is a Turing functional relative to z such that for all ¢ € 2<%,
®9(i) | for all i < |o].

8The metric d(x,y) := 27% where k € w is the greatest such that 2 [k =y [k (or 0 if # = y). This
turns 2% into a complete metric space inducing the usual topology.

CHAPTER 5. NOTIONS OF GENERICITY 80

To prove the observation, define V' C 2 by V = [J{[o] : 7 !([o]) C U}. Note that V is a
z-effective open subset of 2%, since z can compute a finite cover of ®([o]) by basic clopen
sets uniformly in o: ®7([o]) = U{[r] : 7 € 217! A (Vi < |o|)(®(7)(i) = o(i))}. We can check
O(U) = P(2¥) NV, since

B(x) € B(U) &= a € U <= (3r € 2)(z € [7] A [r] CU)

< (o €2°)(z € @ ([o]) AP !([o]) CU)
< (Jo € 2°9)(P(x) € [o] AP H([0]) CU) <= P(x) €V

N

Thus ®(U) is a z-effective openg(ovy set. O

Observation 26. If ® is an injective truth-table functional, then ® has a truth-table left
inverse (i.e., a truth-table functional ¥ such that ¥ o ® = Ida.).

Proof. Let u be a recursive uniform bound on the use of ®, as defined in the proof of
Observation 24 Define a z-recursive labeling function [: 2<% — 2<% as follows. If ®(7) |
lo| = o for some 7 € 247D et I(¢) = p, where p is the longest common initial segment
of the strings {7 € 2ul°D : ®(7) | |o| = o}. If ®(7) | |o| # o for any 7 € 240D et
l() =1l(o | (Jo| = 1))70. Notice that if 0 C 7, then I(¢) C I(7). We’ll now show that
for any z € 2 I(z | (n+ 1)) € l(z | n) infinitely often. For z ¢ ®(2¥) this is clear, so
suppose 2z = ®(x), and suppose to the contrary that [(®(z) [(n+ 1)) = I(®(z) [n) for
all n > N. Then for all n € w, there exists some y, € 2 with d(®(x), ®(y,)) < 27" but
d(z,y,) > 2711@INI=1 Since C := {y € 2¢ : d(z,y) > 27 =IN)I=11 i5 compact, the continuous
function y — d(®(x), ®(y)) restricted to C' must achieve its minimum in C, which by our
previous sentence must be 0. But then there is some y € C with ®(z) = ®(y). This is
impossible, however, since z ¢ C' and ® is injective. Now simply define ¥(o)(i) = I(0)(i)
for i < |l(0)|. We just verified that U is total and z-recursive, and we can also see that
U (P(z)) = x for any z € 2¥. O

Theorem 27. The following are equivalent:
(i) x is z-1-generic in X for some z-uniformly perfect set X C 2“.

(i1) x is truth-table equivalent relative to z to a z-1-generic G.

Proof. (i) = (ii): Fix an injective 1-Lipschitz functional ® relative to z with ®(2¢) = X. We
claim G := ®~1(x) is 1-generic relative to 2. Let U C 2“ be a z-effective open set dense along
G. Then by Observation 25 ®(U) is z-effective openy. Let’s check that ®(U) is dense along
x in X. Let o C . Suppose for the sake of contradiction that (X N [o]) N ®(U) = 0, then
[c]N®(U) =0 (since ®(U) C X). But then) = &~ ([o]NP(U)) = &~ ([o]) NP (P(V)) =
®~!([o]) NU. But then ®7!([o]) is an open neighborhood of G = ®~!(z) disjoint from U,

CHAPTER 5. NOTIONS OF GENERICITY 81

contradicting that U was dense along G. So ®(U) is a z-effective openy set dense along x.
Thus z € ®(U), so G € 1(®(U)) = U. This shows G is z-1-generic. And G and z are
truth-table equivalent relative to z, because by assumption x = ®(G) and @ is truth-table
relative to z, and by (the relativization of) Observation [26] there is a ¥ truth-table relative
to z with ¥(G) = U(P(x)) = x.

(17) = (i): Let ® and ¥ be truth-table functionals relative to z such that ¥(z) = G and
®(G) = 2. Then Vo @ is a truth-table functional relative to z with (¥ o ®)(G) = G. By
the fixed-point lemma, there is a basic clopen set [0] 3 G such that (Vo ®)|;,) = Id},. Let
X := Range(®|,)). Then ¥|x gives a homeomorphism X — [o], with inverse ®|;,. Note
that X is z-uniformly perfect, since ®'(7) := ®(o77) is a one-to-one truth-table functional
relative to z with ®'(2¥) = X. We can check x is 1-generic in X relative to z: Suppose U
is a z-effective openy set dense along z. Then ®~1(U) is a z-effective open set in 2¥. But
O~1(U) 2 ¥|x(U), which is dense along G' = ¥|x(x), because all topological properties are
preserved by homeomorphisms, and ¥|y is a homeomorphism X — [o]). Hence ®~1(U) is a
z-effective open set dense along G, so G € ®1(U). But then z = ®(G) € ®(¢~1(U)) = U.
Thus « is z-1-generic in the z-uniformly perfect set X := Range(®|). O]

The philosophical interpretation of this is that 1-genericity in 2 is universal for 1-genericity
in perfect spaces.

82

Chapter 6

Model Theoretic Constructions

We’ll give an overview of some model-theoretic constructions over continuous logic, and
discuss possible effectivizations of these.

6.1 Effective Type Omitting

Definition 66. Fix a language £. A condition E(zq,...,x,) is a formal expression of the
form ¢(z1,...,x,) € A, where ¢(z1,...,x,) is an L-formula, and A C [0, 1]. We say that a
tuple (ay,...,a,) € M" satisfies E, or M |= Elay, ..., a,)], if ¥M(ay,...,a,) € A.

Definition 67. A condition E is closed (resp. open) if A C [0, 1] is closed (resp. open).

Note. If in some presentation of M we can compute ¢* (z1,...,z,) to arbitrary precision,
and A is an effective closed (resp. open) set, then we can effectively falsify (resp. verify)
whether a given (ay,...,a,) € M" satisfies the condition ¢(z1, ..., z,) € A.

Proposition 28. Assuming we use the complete space of logical connectives, every closed
condition is equivalent to one for which A = {1}.

Proof: Define a unary logical connective u : R — R by u(z) = sup,cc (2, y). Then ¢ € C
if and only if u(¢) = 1. It’s easy to see u is uniformly continuous (in fact, 1-Lipschitz).

Definition 68. An L-theory T is a set of a closed conditions with no free variables, where
all conditions have A = {1}

Question for the Reader. Why do we use closed conditions for a theory?

Answer: We want a natural proof theory. In Gentzen’s sequent calculus, we interpret
Ay,..., Ay F By,...,B; to mean what we might abbreviate in our usual terminology as
Ay N~ NA, — By V-V Bj. This is logically equivalent in classical first order logic
to what we might express in English as: “Either one of the A; fails to hold, or one of the
B; holds, or both”. If we abide by the convention that A; should be closed conditions,

CHAPTER 6. MODEL THEORETIC CONSTRUCTIONS 83

and B; should be open conditions, then this entailment relation turns out to itself be an
open condition (as it is a disjunction of open conditions). As you only need a finite amount
of information to verify an open condition, this allows semantic validities to have finite
witnesses, i.e. proofs. Take a look at Ben Yaacov & Pedersen’s “A Proof of Completeness
for Continuous First-order Logic” [20] for a detailed account of a sound and complete proof
system. Another reason to have a theory be formed by closed conditions is a worry about
compactness: the set of open conditions {1 — 2" < e(a,b) < 1:n € w} is finitely satisfiable,
but not satisfiable. This is not a worry for closed conditions.

Definition 69. Suppose A C M |=T. Let T4 be the theory of (M, (a : a € A)). An n-type
over A is a set p of L(A)-conditions of the form ¢(z) = 1 with free variables 1, ..., z,, such
that T4 U p is consistent.

Definition 70. An n-type is principal if there exist formulas ¢y (1, ..., x,) such that

(V7 € M")e(@(2), sup e(z,7)) > 272"
yep(M)

Definition 71. For an n-type p, we define p(M) := {Z € M"™ : M |= p(z)}. This is the set
of tuples in M realizing the type p.

In what follows, we assume our continuous language £ is relational. Recall DM(a) is the
atomic diagram of a.

Definition 72. Given a class K of L-structures, we define K/ = {DM(a) : M € K,a €
M=}

Theorem 29. Let K be a non-empty 115 class for which K" is c.e.. Then there is at least
one computable structure in K.

Proof Sketch: We'll build a computable path through K/, giving an ascending chain of
quasi-substructures M; C My C ... meeting finitely many requirements at each stage. The
“limit” of this chain, M, will be in K.

We are trying to ensure in the limit that M satisfies a condition of the form:

/\ inf \/ sup Gij (Ui, Tij) = 1
icw Yi jew Tij

To do this, it suffices to ensure that for any tuple b from M, of length |y,|, and any i < s,
we have the following at the next stage s + 1:

Mgy =\ sup oy (b,) > 1—-27°

JEW Tig

CHAPTER 6. MODEL THEORETIC CONSTRUCTIONS 84

But this is simply an search problem: we can enumerate K/ and look for a structure M,
quasi-extending M (to the appropriate degree of accuracy), a j € w, and a tuple ¢ € MLﬁﬁ'
such that

Ms+1): ¢ij(67 é) >1- 27

Here we are glossing over some details dealing with error bounds (since we only know the
values of atomic formulas in M1 up to some error).

Checking whether one atomic diagram “extends” another in an appropriate sense can be
done effectively (since these are finite objects). And we are ultimately checking a finite
number of open conditions, so once we have sufficiently tight error bounds on the values of
the atomic formulas, we can verify positive instances of ¢;;(b,¢) > 1 — 275

Now just notice that the truth values of ! formulas can’t decrease by more than an appro-
priate error bound when quasi-extending a structure. By choosing the degree of accuracy of
the quasi-extension from My to Mg, to be at least 1 — 2_(S+2), we can conclude that for
any b € MWl any i € w, and any s € w, we have:

M): /\ sup Qﬁw‘(é, jij) >1-— 2_(8_1)
JEW Tij

since M is an accuracy 1 — 2-¢+1) quasi-extension of M, for all s € w.

But this implies:

M = /\irg;f \/ sup Gij (Ui, Tij) = 1
icw 7 jew i

Ultraproducts, Compactness, and Inspiration from
Nonstandard Analysis

One way to prove the compactness theorem in classical first-order logic is through ultraprod-
ucts. If you have a countably-infinite theory T = {¢; : i € w} which is finitely consistent,
then choose M,, = {¢; : i < n} for each n € w, take a non-principle ultrafilter & on w,
and consider M := ([], M,)/U, whose elements are equivalence classes of sequences of
the form a = (a,)ney with a, € M,. Two elements a and b are equal in the ultraprod-
uct (or equivalent in the product) if {n : a, = b,} € U. We say M = R(al,... a") if
{n: M, E R(al,...a")} € U. By induction on formula complexity, one can then prove
Lo$’s theorem that M = ¢ if and only if {n : M,, = ¢} € U. Since for each i € w,
{n: M~ ¢;} is not in U (since U is non-principle), we must have M = ¢; for each i € w.
This can be generalized to theories of arbitrary cardinality by replacing w with the set of
finite subsets of T

CHAPTER 6. MODEL THEORETIC CONSTRUCTIONS 85

If we try to naively port ultraproducts to continuous logic, we run into some problems. Re-
call that a closed condition is something of the form [p € A] for ¢ a formula in our language
and A C [0,1] a closed set. The idea might be to define M | [R(a,...a*) € A] if and
only if {n : M,, E [p(al,...,ak) € A]} € U. But unfortunately this doesn’t quite work.
Consider A = {1}, and continuous structures M,, over the signature with two constant
symbols “a” and “b” such that M,, = [e(a,b) =1 —27"]. Then {n : M,, = [e(a,b) = 1]}
is the empty set, so certainly not in . But {n : M,, = [e(a,b) > 7]} for any 7 < 1 is
cofinite, so certainly in ¢/. This implies in the ultraproduct M = [g(a,b) > 7] for every
7 < 1, but that M [~ [e(a,b) = 1]. In other words, M must assign to €(a,b) a truth
value strictly between 7 and 1 for every 7 < 1. The difference between this truth value and
1 is thus a non-zero infinitesimal. We seem to be forced into using non-standard truth values.

However, there is a nice observation we can use from non-standard analysis. In non-standard
analysis, a function f : X — Y between two metric spaces is uniformly continuous if any
only if the non-standard extension of that function f*: X* — Y™ between their ultrapowers
satisfies the property Vz,y € X*, T ~ y = f*(Z) ~ f*(g). To put it in other words, a func-
tion/relation is uniformly continuous if and only if it respects the equivalence relation of
being infinitesimally close. This fact can be extended to ultraproducts of continuous spaces
over the same language. In our case, for every k-ary relation symbol R, we have a relation
R*: (T],,(M,)/U)* — (T1,10,1])/U = [0,1]*. To obtain a function to the standard interval
0, 1], we simply quotient both ([], M,)/U and (]],[0,1])/U by the equivalence relation ~
defined by 7 ~ g < (Vj € w)({n : e(z,,yn) > 1—277} € U). Since R is uniformly continuous
with the same modulus in each of the M,,, we can see that if £ ~ g, then R*(Z) ~ R*(y),
and so quotienting both the domain and codomain of R* by ~ yields a well-defined function
((TT, Mn)/U)/ ~)* — [0,1]*/ ~. Note [0,1]*/ ~ is isomorphic to the standard interval
[0, 1], so we end up with a standard predicate on (([[, My)/U)/ ~.

So for continuous structures, we define the ultraproduct to be not (M,,)/U, but the further
quotient ((M,,)/U)/ ~. This completely generalizes ultraproducts in classical logic, because
in classical structures ~ is trivial (roughly because {0,1}* = {0,1}. A more detailed expo-
sition of this, with a proof of Lo§’s theorem can be found in Appendix [D] This has of course
been proven before for continuous logic based on metrics, but we figured it is worthwhile to
show it still holds when we use equalness relations, and our proof which factors through the
classical ultraproduct may be illuminating.

This relation of “being infinitesimally close” from non-standard analysis playing an impor-
tant motivating role in defining ultraproducts of continuous structures raises the question
of whether continuous logic might conversely be useful in non-standard analysis. The im-
mediate stumbling block is that multiplication in the reals is not uniformly continuous. So
while R as a 1-dimensional vector spaces over the reals has a relatively natural presentation
as a continuous structure matching its usual metric, R as a ring does not. We showed how
previously that we can create a theory of Hilbert spaces with a modified version of the inner

CHAPTER 6. MODEL THEORETIC CONSTRUCTIONS 86

product, of which multiplication on the reals is a special case, but we need to be careful
because this modified multiplication does not necessarily behave as expected in elementary
extensions.

There is a work-around, developed by Ben Yaacov, Henson, et. al. The idea would be to
break up the reals into a countable collection of sorts corresponding to the intervals [—n, n].
Then multiplication would be broken up into a countable collection of operations, e.g. multi-
plication on the sort corresponding to [—n,n] could map to sort corresponding to [—k, k] for
any k > n?. There is no obstacle to treating arbitrary continuous functions like e*, sin(z),
etc. likewise, because their restrictions to any of these bounded intervals are bounded. The
sacrifice we make by pulling this trick is that we can now only quantify over bounded inter-
vals of reals. Because we have natural embeddings of “smaller” sorts into “larger” sorts, we
have an atlas for R (in the sense of differential geometry). We have definitions of multiplica-
tion (or whatever other function we might like to add) on each map in the atlas, which are
compatible with the transition maps of the atlas. From an outside perspective, we now have
multiplication on all of R, essentially by taking the union of the sorts and quotienting by
the transition maps, as one does when one constructs a manifold from an atlas. But from an
internal perspective, we only have the atlas, as our language lacks precisely the expressive
capability needed to turn an atlas whose maps are given by sorts into a manifold. In par-
ticular, we cannot interpret the presentation of the reals as a discrete continuous structure
into this presentation of the reals.

We should think of this work-around using sorts as being necessary if we want to keep our
usual ring operation and also keep compactness. The following observation is instructive:

Exercise for the Reader: The ring of real numbers, presented as a continuous structure
in the way suggested above with sorts, is isomorphic to all of its ultrapowers. Hint: for
every 7 < 1, and any sequence (a;;i € I) C [—n,n|%, there is some 7, € [—n,n] with
{ieT:e(ayr.)>71}FEU.

In fact, a more general statement is true. If all the sorts of a structure are compact, then
it is isomorphic to all of its ultrapowers. This is a generalization of the classical fact that
any finite structure is isomorphic to all of its ultrapowers. So indeed it is a fairly substantial
trade-off to accommodate multiplication via this work-around, for if we present the one-
dimensional vector space of the reals as a continuous structure without sorts, its ultrapowers
will have points an infinite distance apart (or in our terminology, entirely unequal points),
but as a ring with sorts it will not. By using the work-around we are losing the ability to
“take advantage” of the compactness theorem, because every consistent type will already be
realized. Let’s actually state this as a theorem:

Theorem: If M is a continuous structure all of whose sorts are compact, then M realizes
every type over M.

CHAPTER 6. MODEL THEORETIC CONSTRUCTIONS 87

Proof: Take an ultrapower of M with a [M|*-complete ultrafilter. This will be isomorphic
to M, and realize every type over M, so M realizes every type over M.

All of this suggests that continuous logic doesn’t have much to say about non-standard
analysis. We can’t add infinitesimals by an elementary extension, which is entire point of
non-standard analysis. However, there is a positive spin on this. The fact that an ultraprod-
uct of a compact structure is always canonically isomorphic to that structure in continuous
logic is important for the philosophical thesis that compactness is for continuous structures
what finiteness is for discrete structures. Logicians are no doubt familiar with the connec-
tion between topological compactness and the compactness theorem given by the fact that
spaces of n-types are compact with a topology generated by formulas with n free variables
(essentially the compactness of Stone spaces). But we have here now a connection with the
topology of the structure itself, not some abstract logical space of ideal points: if a contin-
uous structure is compact, all its types are realized in that structure. In continuous logic,
you can study a wide class of relatively rich structures without needing to move to saturated
elementary extensions.

An example here that might be illustrative is the p-adic integers, which are the completion of
the integers under a different norm. We gave a presentation of this structure as a computable
continuous structure in Chapter 1. We now give another definition of the p-adics as a limit
of Z/p*7Z. Our approach to thinking about the p-adic integers is not necessarily unique,
because it’s widely understood that the p-adic integers are a kind of limit of Z/p*Z. But we
think continuous logic can present the p-adic integers in a beautiful way which illustrates
the interplay between logic and topology. It may be a good idea to re-read the presenta-
tion in Chapter 1 to recall the continuous structure on the p-adics (the ring operations are
1-Lipschitz).

Our idea is to think of Z, as a as a limit of successively-better quasi-isomorphic structures
Z/p"Z. In [18], Ben Yaacov and others generalized the notion of Gromov-Hausdorff distance
between metric spaces to metric structures by defining a “back-and-forth distance” between
structures (which also has an equivalent syntactic definition). Using this idea, it’s possible
to define a notion of convergence of continuous structures. Their definition is a bit technical
(although you have seen some of the main ideas in the section of quasi back-and-forth sets),
but for our purposes now we don’t need to go into it, because we are in a special case where
this distance is easy to compute. On Z/ p*Z, we are using the equality predicate obtained
from the metric d(a,b) = p~max{#'l(@=b)} if ¢ £ p and 0 otherwise, which is basically the
same definition we gave for the metric on Z,, but using divisibility in Z/p*Z instead. We
can define 7, = 277" quasi-isomorphisms f, : Z/p*Z — Z, by sending a € Z/p*Z identified
with a number in {0,1,2,...,p* =1} to 1+1+1+---+1 (a times) thought of as an element
of Z,. We should say what we mean by ar-quasi-isomorphism. We'll give a not completely

CHAPTER 6. MODEL THEORETIC CONSTRUCTIONS 88

general definition here, because a general definition is a bit involved:

Definition: A 7-quasi-isomorphism f : M — M between two continuous structures is a
total function such that:

e For every y € N, exists x € M with e(f(z),y) > 7

e For every atomic formula ¢(Z), and any @ from M, e(¢(f(a)), ¢(a)) > 7

In this case, every atomic formula is equivalent to one of the form (g(xo, ..., x;_1),0), where
q(xo, ..., z;—1) is a multivariate polynomial with integer coefficients. We can see that the
second condition for a Tp-quasi-isomorphism is satisfied by fi, because there exists a map
gk : Zy, — Z/p*Z which sends = € Z, to x mod p* € Z/p*Z. g o fy. is the identity map, and
gr is a ring homomorphism. This means that gi(q(zo,...,z;-1)) = ¢(gr(x0), - .., gr(z;-1)).
gr also satisfies e(e(gx (), gr(y)), £(z,y)) > 277", This last fact is a long calculation, which
we’ve put in Appendix [E| Using these facts, we can then see:

k

£ (5 <9k (ax(fe(ao), . .- »fk(aj—l))),gk(0)>75(%(]‘%(@0): s frlaj1)), 0)) >27"

5<5 (CJk((gk o fx)(ao),---,(gk o gk)(ajl)))ﬁ) : 5(% (fr(ao), . .. 7fk<ajl))70)> >27°

€ (5 <Qk<a07 @), 0) € (Qk(fk<a0)v - felag-n)), 0)) >

k

€ (SO(GO, - ajo1), o(fi(ao), - - -, fk(aj1))> >27F

We can also verify the first property 7, quasi-isomorphism for fi: given = € Z,, fr(gx(x)) is
within 75, of z, so every point inf Z, is at least T7-equal to an element of the range of fi. fi
is thus a 7p-quasi-isomorphism. It’s not hard to see that g is also a 7,-quasi-isomorphism
(and in a sense, it is a 73 inverse of f).

It’s a standard argument by induction on the complexity of formulas that if we work in a
finitary 1-Lipschitz language (a language with weak modulus € the universal 1-Lipschitz
modulus), then if two continuous structures over that language are 7-quasi-isomorphic, then
the truth value of the interpretations in those two structures of any formula ¢ of that lan-
guage are at least T%—equal, where d is the maximum depth of nesting of quantifiers (sups
and infs) in ¢. When 7 = 1, this is simply saying that isomorphic structures have the
same theory. This more general claim can be summarized by saying that quasi-isomorphic
structures have quasi-equal theories. In our case, because the 7, converge to 1, this means is

CHAPTER 6. MODEL THEORETIC CONSTRUCTIONS 89

that the theory of Z, is equal to the limit of the theories of Z/p*Z. And we have an explicit
bound on the rate of convergence of the truth value of any given sentence, meaning given
any sentence ¢ in the 1-Lipschitz continuous language of rings with a maximum quantifier
nesting depth of d, we have a uniform-in-k procedure for evaluating its truth in Z, to accu-
racy TkI /d, simply evaluate that formula in Z/p*Z. Since Z/p*Z are finite structures, we can
evaluate any formula there in time exponential in the length of that formula by a brute force
evaluation: just evaluate sup, 1 (z) or inf, ¢ (x) recursively by checking all p* possibilities
for . Each nested quantifier corresponds to another nested search over a space of size p*.
In particular the continuous theory of Z, is decidable, in the sense that we have a uniform

procedure to compute the truth values of sentences to arbitrary accuracy.

This decidability result is not unique to the p-adic integers. In fact it holds for any “ef-
fectively compact” computable continuous structure. We define a computable, continuous
structure M to be effectively compact if we can compute, uniformly in 7 < 1, a finite
T-covering of M. A 7-covering X C M is a set such that every p € M is 7-equal to some
point in X. The idea is that if M is effectively compact, and ¢ (x) a 1-Lipschitz formula, we
can use the 7-covering X to approximate the truth value of inf, ¥ (x) to within 7 by the finite
conjunction Ay ¥ () (likewise with sup, ¢(x)). One way of viewing this is model-theoretic
terms is that in a 1-Lipschitz continuous language (or generally any continuous language on
which we impose a weak modulus), if a type is realized in a structure by some point, then
nearby points approximately realize that type (or rather, realize an approximately equal
type). This means even if we are working in an infinitary language (with a weak modulus,
as we will always assume), we always have the T-equivalence of inf, ¢ (z) and Azex(x) for
any formula in that language whenever X is a 7’-covering of M, where 7’ depends only
on 7 and the weak modulus Q (it is equal to 7 if © is the universal 1-Lipschitz modulus).
In the case that M is effectively compact, we have a uniform procedure for finding this
X. However, in computable infinitary languages, this doesn’t allow us to compute every
formula, because we can only simplify quantifiers, not infinite conjunctions or disjunctions.
But if we are working in a finitary language (as we have been with the p-adic integers), and
our continuous structure is computable and effectively compact, then that structure has a
decidable theory. This is analogous to the fact that finite computable structures in classical
first-order logic have decidable theories, but we now have the ability to apply it to a much
wider range of structures, like the p-adic integers.

Going back to our p-adic integers example, we've explained why the continuous theory of
Z/p"Z converges to the continuous theory of Z,, but there is also a sense in which the struc-
tures themselves converge. One way to see this is to note that hj;, := g; o fi will also quasi-
isomorphism Z/p*Z — Z/p'7Z, in fact, a 7, quasi-isomorphism with 7, = min(2_p_k, 27P7).
If we consider the family of these maps with 7 < k, we get a directed system whose inverse
limit is Z,. This is the standard algebraic approach to constructing the p-adic integers, and
the reason algebraists prefer it is that the maps h;, preserve addition and multiplication

CHAPTER 6. MODEL THEORETIC CONSTRUCTIONS 90

exactly instead of just approximately (they are classical ring homomorphisms). However
viewing them as continuous structures, we also see it is equally valid to consider the directed
system of these maps hj, for j > k. If we consider this family of these maps with j > k,
and take the direct limit of this directed system, we also get Z,. This fits more in line with
the model-theoretic approach to constructing a structure by a chain of embeddings (rather
than quotients). Continuous logic allows us to generalize this classical limit of a chain of
embeddings to allow converging chains of quasi-embeddings.

We think that this is a useful way to think about Z, because it explains better than the
inverse limit definition why the theory of Z, is connected to that of Z/p*Z better than the in-
verse limit definition. It is useful to consider Hensel’s lifting lemma in this context. This tells
us that if p(a) = 0 and p/'(a) # 0 in Z/p*Z, then we have some a’' € Z/p**Z with gi(a’) = a
and p(a’) =0, p'(a) # 0. This works more generally for polynomials with coefficients in Z,
(we can add these polynomials to our language without changing our previous results). This
allows us, in certain special cases, to compute the value of a formula exactly, not just com-
pute its value to arbitrary precision. And it indicates a general technique to study infinite
structures: construct that infinite structure as a direct limit of quasi-isomorphic substruc-
tures for which you have an easy finite combinatorial relation between the truths of certain
formulas in one of those finite substructures to another.

91

Chapter 7

Why limit truth values to |0,1]|?

7.1 7T =10,1] as a continuous structure

Our set of truth values, 7 = [0, 1] is playing double-duty: it is both a “multiplicative value
semigroup” for continuous equality predicates on continuous structures, and a space of values
for relations. But we may want to think of it as a sort of canonical continuous structure in
its own right, analogous to the way that {0, 1} can be thought of as a the simplest Boolean
algebra (it is the initial object in the category of Boolean algebras with 0 # 1 and morphisms
Boolean homomorphism). This is somewhat tricky, though. We are, in a sense, thinking of
T = [0, 1] as a one-point compactification R>oU{oo} of the non-negative reals, with 0 € Rx
corresponding to 1 € 7, and oo corresponding to 0 € 7.

Our first question is: what is the appropriate continuous equality predicate on 77 One
proposal would be to use €7 (11, 1) = 27 togz(r)/legz(m2)l — min(Z, 2). The idea here is that
these truth-values 7 usually arise from distances, and these distances obey a multiplicative
version of the triangle inequality: e(x, z) > e(z,y)*e(y, 2), or in terms of distances 2742 >
2-d@y) x 274W:2) - Unfortunately, negation 7 — 1 — 7 is not continuous with respect to this
continuous equality predicate, nor are alternative negations like 7 +— 21/%92(7) which one
might consider to be more natural. The basic problem is that the topology on R>oU oo does
not arise from a metric for which R>(is a metric subspace with its usual metric. A solution
to this is simply to use the metric d(7, 2) = |11 — 72|, and corresponding continuous equality
predicate 271"~ An unsatisfactory feature of this, however, is that iterated equality does
not agree with classical equality, in the sense that

(0="1)="1D=0="1)"T=0=01="0)

for 7 = {0, 1}, while

CHAPTER 7. WHY LIMIT TRUTH VALUES TO [0,1]? 92

for 7 = [0, 1]. But an answer to this is that it only makes sense to consider iterated equality
in a few special circumstances (e.g. comparing equality in two quasi-isomorphic structures,
as in Appendix ??). What matters more for us a specific enumeration of a base for the
topology of T (up to computable re-ordering), for which Turing functional computable to-
tal functions 7" — 7T induce computable functions from unions of recursively enumerable
open sets in the codomain to unions of recursively enumerable families basic open sets in
the domain. We should think of uniform continuity as a computational notion, rather than
a purely topological notion: its purpose is to give us a means to estimate the values of a
function in small open balls around a point given the value at the center of that ball, and it
depends on the specific way that we enumerate a base for the topology of our space. The
precise equality predicate we use is not as important as the uniform structure that it imposes.

The classical set of truth values, {0, 1}, is used because it is the smallest set which is suffi-
cient for separating elements in an arbitrary set by functions to it. It can also be considered
the initial object in the category of non—degenerat{] Boolean algebras. The set of all homo-
morphisms from a particular Boolean algebra to {0, 1} naturally corresponds with the set of
all ultrafilters on that Boolean algebra, which can be thought of as consistent assignments of
truth to propositions, given the relations between the propositions imposed by that Boolean
algebra. In the realm of first-order logic, we can think of n-ary predicates on a first-order
structure M as functions M™ — {0, 1}, and complex formulas can be thought of as being
built from simple operations on these functions spaces. For example, existential quantifica-
tion is just projection along one of the coordinates.

We can make an analogy to the role of {0, 1} in classical logic to various other “classifiers” in
mathematics. In classical homotopy theory, one considers maps from S™ into a manifold to
study its topology. We classify manifolds by looking at the structure of the space of all con-
tinuous functions from a simple manifold to the space under consideration, up to homotopy
equivalence. In Morse theory, one considers differentiable maps from a differentiable mani-
fold to R, and classifies manifolds by invariants computed from the critical points of those
functions. In analysis, the underlying field, usually R or C, serves a role as a classifier. Here
the appropriate functions are bounded linear functionals, and one often uses the weakest
topology for which these linear functionals are continuous. One might ask the same question
here: why should we limit ourselves to only maps from 5™, or only maps to R? Ultimately,
the real explanation is that they are sufficient to develop a general theory which has rich
enough consequences. The set of truth values {0, 1} has more than proven its sufficiency in
classical logic.

1Some people allow Boolean Algebras to have 0 = 1 (or L = T in another terminology), because it
gives Boolean algebras a universal theory. But there are reasons to exclude this, similar to the reasons why
algebraists usually exclude 0 = 1 in the definition of fields. We use the term “non-degenerate” to clarify we
are requiring 0 # 1.

CHAPTER 7. WHY LIMIT TRUTH VALUES TO [0,1]? 93

Continuous logic can perhaps be motivated by these examples in other areas of mathematics.
The three examples given all make crucial use of topology. From a high-level perspective,
a topology restricts the the ways in which you are allowed to categorize the objects of the
domain of a structure. If we only use constructions which obey this restriction (e.g., using
only continuous functions), we can prove more powerful results about the structures so
constructed, because we have excluded pathological situations. We gave the example in a
previous chapter of the pathological property of two orbiting bodies being rational distance
apart. This leads to a motivation for topology arising purely from considerations in the
philosophy of science. Roughly, the axioms of a topology can be thought of as axioms of
verifiable properties:

e The conjunction of two verifiable properties is verifiable
e Arbitrary disjunctions of verifiable properties are verifiable
e Trivially necessary and trivially impossible properties are verifiable
These correspond, respectively, to the following axioms of a topology 7 on a set X:
e UVer=UnVer

eU,erforael =, ., UsET

ael

eerand X €71

In this sense, topological spaces can be seen as an alternative to Boolean algebras as a means
of putting a structure on a space of properties. The absence of closure under complementa-
tion (negation) can be considered a feature in philosophy of science, because it corresponds
to the fact that the negation of a verifiable property may not be verifiable. Falsifiable prop-
erties are dual to verifiable properties: closed sets in a topological space can be thought of
as corresponding to falsifiable properties. In the special case where the topology is induced
by a metric, verifiability of a property corresponds to the fact that if an object has the given
property, there is some finite degree of error (measured according to the metric) for which
the result of a measurement with that degree of error can guarantee the property holds of
that object.

The relevance of this to a theory of computability is that computations (classically) can
only make use of a finite amount of information. The way computers are physically instan-
tiated, even for discrete computation, requires a careful analysis of error bounds. A mental
picture of the abstraction of Turing machines can illustrate some general technique for re-
ducing these errors, e.g. using only two symbols, using a tape with uniform spacing, using
a head that moves only at unit speed, having a finite set of clearly defined state transitions
for the head, etc. The purpose of this model was to illustrate one direction of the strong
Church-Turing thesis: that every recursive function can (in an ideal world) be computed by
a physical machine. In fact in the historical development of digital computers, there were

CHAPTER 7. WHY LIMIT TRUTH VALUES TO [0,1]? 94

serious concerns over the ability to compensate for such errors, so much so that John von
Neumann was forced by public criticism to write a paper Probabilistic logics and synthesis of
reliable organisms from unreliable components[12] proving a fault-tolerance theorem. These
concerns recently re-emerged with the burgeoning development of quantum computers, and
a corresponding theorem has been proven here called the “threshhold theorem”, which gives
a bound on the error rate below which it is possible to perform computations which give
the correct answer with arbitrarily high probability. The connection between computability
theory and topology is quite deep. The class of functions 2¢ — 2“ which can be computed
by a Turing functional relative to some oracle or other is equal to the class of all continuous
functions 2¥ — 2¢.

This reflection seems to indicate that perhaps computability theory should not be isolated
to the realm of the discrete. The explanation for why so much of computability theory has
been developed for discrete structures over a classical logic base can be explained more by
our human tendency to want binary answers to questions for the sake of clarity. By moving
to continuous logic, we start to see interesting phenomena like the distinction between defin-
ability and codefinability, corresponding to falsifiability and verifiability, respectively. Note
that falsifiability corresponds to definability, which might be the opposite of what we might
expect. The reason for this is that definability is a closed condition. The way definability
is usually used is in the antecedent of a conditional: when you quantify over a definable
set X, the condition x € X is in the antecedent, and if we want the entire statement to
be an open condition, then the antecedent should be a closed condition. In philosophy of
science, this would correspond to the fact that scientific theories tend to be falsifiable, and
only verifiable in the much weaker sense that we can find inductive evidence for them by
doing many experiments which do not falsify the theory. So this provides one motivation to
not use a continuous space for our set of truth values rather than a discrete set of truth values.

But perhaps more can be said about why we choose [0, 1] instead of some other continuous
space as our set of truth values. Supposing we keep the rest of our logic the same (requiring
some form of uniform continuity, having function symbols generating term algebras, etc.),
but change predicates to take values in a more general space T of truth values, what might
we stand to gain or lose by changing 77

The first thing we can notice is that [0,1] is compact. What happens if we allow a non-
compact 77 Then it seems we will lose the compactness theorem: pick an open cover
{U; : i € I} of T that doesn’t have a finite subcover, and consider the closed conditions
[R(a) € Uy]. These are finitely consistent, because the condition [R(a) € (,_, Uf] is real-
ized by setting R(a) = 7 for some 7 € T \ Uj<n Ui, which is non-empty because Uj<n Ui,
does not cover 7'E| But its inconsistent because (), Uf = 0. Also recall that our construction

2It’s worth noting that Ben Yaacov et. al in [19] allow predicates to take values in R, which is not
compact, but they build into the language constraints for each predicate to take values in a compact interval

CHAPTER 7. WHY LIMIT TRUTH VALUES TO [0,1]? 95

of ultraproducts of continuous structures depended on the fact that ((Hz T)/U)) / ~ is iso-
morphic to 7, where ~ is the “infinitesimally close” relation, and this depended on T being
compact.

Another thing to point out about [0,1] is that by using a continuous equality predicate
(equalness relation) rather than a metric, we could represent in an easy way metric spaces
which have points arbitrarily far apart (even infinitely far apart), so using [0, 1] rather than
some larger interval did not require us to sacrifice the ability to represented unbounded met-
ric spaces.

Finally, [0, 1] is totally ordered and has all sups and infs, which allows us to make sense of
quantifiers in our language, in a way that an arbitrary compact continuous space used as our
set of truth values would not, and it has an algebraic structure which allows us to express a
multiplicative analog of the triangle inequality, which enables us to express a weak kind of
transitivity for equalness.

There are in fact other reasonable choices here, however. In the early 80s Kopperman de-
veloped a theory of “value semigroups”, which allow a substantial generalization of metric
spaces where every topological space can be represented. A good overview of this idea (as well
as the related idea of value quantales) is in Ittay Weiss’s Value semigroups, value quantales,
and positivity domains[17]. The general theory of value semigroups and value quantales is a
bit technical, however, so we have chosen to use [0, 1] to not obscure our presentation, with
the trade-off being less generality in our results.

(possibly different for different predicates), which allows the proof of the compactness theorem to still go
through. This is equivalent to having a multi-sorted language each of whose sorts has only predicates taking
values in a fixed compact interval depending on the sort.

96

Appendix A

Miscellaneous Facts about Moduli

Moduli and Limits

Fact: Suppose (f; : i € w) and f are functions M — N between two continuous spaces. If
(fi -1 € w) converges to f pointwise, and each f; obeys modulus A, then f obeys modulus
A.

Proof: Fix x,y € M. We can compute

e(f(x), [(y)) = e(f(x), filx))e(filz), i(y)e(fily), f(y))

e(f(z), fi(z)) converges to 1 in i, because (f; : i € w) converges to f pointwise. Likewise,
e(fiy), f(y)) converges to 1 in i. But also we have e(f;(z), fi(y)) > A(e(x,y)) for each i,
since f; obeys modulus A. Taking a liminf over ¢, we find

e(f(x), fy)) = liminfe(f(2), fi(z))e(fi(z), fi(y)e(fily), fy)) = liminfe(fi(2), fi(y)) = Ale(z,y))

Fact: If f: M — N is a continuous function between two continuous spaces, and f obeys
modulus A on a dense set of points D C M, it obeys the modulus everywhere.

Proof: Fix z,y € M. We can find (z; : i € w) and (y; : i € w) in D* converging to x and v,
respectively. Then

e(f(2), f(y)) = e(f (), f(wa))e(f(e), [(ys))e(F(y;), F(y)) = e(f (@), f:))Me(@i y;)e(f(y;), f(y)

Since f is continuous, e(f(x), f(x;)) converges to 1 in ¢, and £(f(y;), f(y)) converges to 1 in
j, so taking a liminf over ¢ and j, and using the fact that A is monotonic and continuous,
we find

£(z,y) > liminf A(e(z;,y;)) = A(liminf e(z;,y;)) = Ale(z,y))
2,] 2]

APPENDIX A. MISCELLANEOUS FACTS ABOUT MODULI 97

Note: neither of these proofs depended on the continuous spaces being complete or separa-

ble.

Moduli for Infimums and Supremums

Our definitions of Ay, s and Ay, » might seem strange, because they suggest that taking an
infimum or supremum over a variable should make a function better behaved, in the sense
that it now obeys a (non-strictly) tighter modulus. This is counter-intuitive, but true:

Fact: Let ¢() be a function [[,_, M; — [0, 1] obeying modulus A4. Then for i < n, sup,,¢
obeys Agyp, ¢ defined by Asupwi(ﬁ(To, s Tn—2) = Noy(T0, ooy Tiz1, 1, Tiy ooy Tia).

Proof: Fix ¢ < n. Fix a;,b; € M; for j # i, j < n. Without loss of generality, assume
supxi Qb(a(), ey i1, Ty Ay, ...,an,1> Z ¢(b0, ...,bi,hb, bi+1, ...,bnfl) for all b e M. Choose a

sequence (py, : k € w) from M; (not necessarily convergent) so that sup,. ¢(bo, ..., bi—1, Z, bit1, ...

limy, ¢(bo, ..., bi—1, Pk, bix1, .-, bp—1) Then we can compute:

s(sup ¢<Cl0, ey @i 15 Ty Ajg 15 -1y anfl)a sup ¢(b07 s bi*la T, bi+17) bnfl))
x; i

T

= g(sup ¢(a0, ey 1, Ly g1y vy Clnfl), hlgn ¢(b0, ceey bifl,pk, bi+1, ceey bnfl))

= h]?lE(SU.p QS((I(), ey 1y Ly g1y ey an_l), ¢(b0, ceey bi—lapka bi+1> ceey bn—l))
= hmklnfs(sup gb(ag, ey i1, Ly Qg 1y ooy an_l), gb(b(), ceey bi—l;pk, bi+1, ey bn—l))

> hmkmf Supe(gb(ao, ey i1, Ay Ay 1y -y an_l), Qb(bo, ceey bi—lapky bi+17 ey bn—l))

a

> hmklnf sup <€(¢(a07 ey Ai—1, Ay g 1,5 -y an71>7 ¢(a07 ooy Q15 Ply Qg 15 -+ an71>)
a

*8((]5(010, ey Ai—1, Pk a‘iJrlu s an71>7 ¢(b07 RS bi*lapkn bi+17 L) bnl)))

> hmklnf sup <€(¢(a07 ey Qi1 Ay g 1,5 -y anfl)a ¢(a07 ooy Q515 Ply Qg 15 -+ an71>)
a

*A¢(5(a0, bo), .- €(@iz1,bi—1), €(Prs Pk)> €(Qig1, Dig1), -y €(An—1, bnl))>

)bn—l) -

APPENDIX A. MISCELLANEOUS FACTS ABOUT MODULI 98

a

= limkinf sup (5(¢(a0, ey Qi1 Ay Qg 1y eey A1)y D(A0y ooy Qi1 Diey Qg1 e Cln—1)>

*A¢(€(a0, bo), e 5(%71, bzel), L, €(CL¢+17 bi+1), e E(anla bn1))>

= limkinf sup (5(¢(a0, ey Qi1 Ay Qg 1y ey A1)y (A0, ooy Qi1 Dy Bt 1y -ovs an_l))>

a

*Ay (E(CLO, bo), s (i1, bi-1), 1, €(@i1, biy), o €(an—1, bn71>)

> hmklnf (5(@5(@0, ooy @i—15 Pky Qit 15 -0y an—1)7 QZS((I(), ooy @i—15 Py Qg1 --ey an—l)))
*A¢ (8(@0, bO)7) g(a’ifla bifl)a 17 g(aiJrla biJrl);) 5(an717 bn71>)
= A¢(€((l0, bo), "'7€(ai—17 bi—l)a 175(ai+17bi+1>7 "-75(an—17bn—1))

= Ainfzi ¢(5(a0, bo), -y €(@i—1,0i-1),€(@ig1, big1), s €(An1, bn—l))

Thus sup,. ¢ obeys the modulus Ay, ¢. Note the conversion of limits to liminfs is just
because we always know liminfs exist (so we don’t need to ensure the terms inside when we
break things up converge individually).

By a symmetric argument, we can also show:
6(inf gb(ao, ey g1y Ly Qi1 oovy an_l), inf ¢(b0, ceey bi—17 i, bi+1, ceey bn—l))
x; T

> Ainfziqb(e(aOa bo), ---ag(ai—lybi—l)a5(ai+1>bi+1)7 ---,€(<ln—1>bn—1))

so we also have that inf,, ¢ obeys the n-ary modulus Ainfzi e

Note: inf,, ¢ also obeys Ay, 4, and vice versa: in fact they are the same modulus.

99

Appendix B

Decidability

The appropriate analog of decidability for a relation R on a computable continuous structure
M is that R, thought of as a function M"™ — [0, 1], has a computable name. R is semidecid-
able if R has a computable lower name, cosemidecidable if R has a computable upper name
(equivalently, if =R has a computable lower name), and decidable if R is both semidecidable
and cosemidecidable.

The equalness relation on any computable continuous space is decidable, and this can be
used to show that every computable continuous structure has a computably isomorphic pre-
sentation with an injective enumeration of its countable dense subset:

Theorem: Let M = (M, ¢), D, (¢;)icw, [€]) be a computable continuous space, where (¢;);c.
is a not-necessarily injective enumeration of D, and [¢] is a computable function (w?) X w —
QnN10,1] such that |[£(7,) (k) —e(qi, q;)| > 27% for all i, j, k € w. Then there is a computable
continuous space M’ = (M, ¢), D', (¢})icw, [5’]) which is computably isomorphic to M, uni-
formly in M.

Proof: We define ¢ : w — w by induction by setting ¢(0) = 0, and defining ¢(i + 1) = k, where
(k, 1) is the least element of the recursive set of code{] for pairs

(k1) € w: [E)((), k)1 <2727 for all j < i}

If we define ¢; = ¢,(;), then (¢})ic. is injective w — D, because we defined ¢ so that we always
have a witness to the unequalness of q,;11) with g,), ¢.(1), - ..,). On the other hand, the
sequence (¢)iew is dense in D. Suppose to the contrary that it is not dense. Let ko be the
least such that g, is not in the closure of {¢} : i € w}. Choose [y to be the least such that
[€](e(i), ko) (lo) < 2727"7" for every i € w. Pick i so that for all k < ko, for some i < iy,
[€](e(i), k) (lo) = 27277 Then at stage io + 1 of our induction, we have that (ko, lo) is the
least element of {(k,1) € w : [€]((j), k)(1) < 272" for all j < i}, so ko should have been

1We are using the coding (z,y) = 20+ 30+,

APPENDIX B. DECIDABILITY 100

t(ip+1), a contradiction. So (¢;)icw is a one-to-one enumeration of a dense subset of D. Now
set D' ={¢, :i € w}, and [€'](4,7) = [€](¢(7),¢(j)). Since D" is dense in D, and D is dense
on (M,¢e), D" is dense in M. A computable isomorphism M’ — M can be obtained from
the embedding of D’ into D induced by ¢. Because our construction was uniform in M, this
isomorphism is uniform in M.

Comments: The basic idea here was to delay enumerating a point into D’ (possibly in-
definitely) until we had computed the distance from that point to the elements we have
already enumerated into D’. There are two cases: either we enumerate it, in which case that
point will be in D’; or else we must enumerate points arbitrarily equal to it, in which case
that point is in the closure of D’. This theorem tells us that whether or not we require the
enumeration of the dense subset of M to be one-to-one or not, we get essentially the same
class of computable continuous spaces. To strengthen this result to continuous structures,
just note that the computable isomorphism ¢ : M’ — M we construct is the identity on
(M, e) (it only differs in its presentation), so given any relation R or function f computable
on M, we can pull it back to a computable relation/function R’ or f’ on M’ by defining

R(z) = R(¢(z)) or f(z) = ¢! (f((2))), and ¢.

101

Appendix C

Computing Moduli and Functions

Theorem: Suppose A : [0, 1]" — [0, 1] is an n-ary modulus, and we have a computable lower

name [A] : Q" N [0,1]" — [0,1] such that lim,[A](g)(k) = A(g) for every ¢ € Q" N [0,1]".
Then A has a lower name computable by a Turing functional.

Proof: We'll give a uniform procedure to compute A from below. Suppose that (G;)ie, is
a coordinatewise-non-decreasing sequence converging to 7 € [0,1]" from below. Consider
¢; = maxgc; [A](G)(j). Since [A] is a non-decreasing function, q; is also non-decreasing.
We can also compute ¢; uniformly from (g;)ic,. Note that since A is continuous, for any
¢ > 0, and the g converge to 7 coordinatewise, for some ko, A(7) — A(gx,) < €/2. But also

eventually in j, A(qx,) — [A](qx,)(j) < €/2. Chaining these together, we get that eventually
in k, eventually in j, A(T) — [A(qr)(j)] < €. So (¢])jen converges to A(7) from below.

Theorem: Suppose that f : M — N obeys the lower computable modulus Af, D is a

N

dense subset of M, and [f] is a computable name for f|p : D — N. Then f has a name
computable by a Turing functional.

Proof: Suppose [x] = (¢i)icw is a fast Cauchy sequence from D converging to x € M. To
compute f(x) to within accuracy 272" lower compute in parallel for all j the modulus

As(2727) until you find a j(k) for which A;(2727") > 272" "and define

A

12D (k) == [F1(gim) (k +1)

Then we can see

A

e([f][z](k), f(2)) = e((f1(gjm) (K + 1), F(gm))e(f (g5, [()

> 27 A (e (g, w) 2 27 e =0

102

Appendix D

Compactness and Los’s Theorem

The basic idea of how to prove the compactness theorem for continuous logic: take a classical
ultraproduct of structures satisfying finite subtheories of a given theory, and then quotient
by an “infinitesimally close” relation. In order for the quotient to be a well-defined continu-
ous structure, we will use that the functions and relations are all uniformly continuous with
moduli defined in the language (so the same for every structure over that language).

Recall that a theory consists of a set of closed conditions [p € A] for A C [0,1] a closed
set, and if we have a rich enough set of logical connectives, we can assume without loss
of generality that A = {1} for each condition. We will work with single-sorted structures,
although this can be generalized to multi-sorted structures by a similar, but more verbose,
argument.

Let Z be an index set, and U an ultrafilter on P(Z). Let (M; : i € Z) be an Z-indexed
family of continuous structures over the same continuous language £(o, v). We first consider
(ILicz M:)/U, whose elements equivalence classes of sequences a = (a; : i € Z) in [[,c; M;
under the equivalence a = b iff {i € 7 : a; = b;} € U. We then define a further equivalence
relation, the “infinitesimally close” relation, by

a~be= (Vr<D{i €T :e(a;b)>7eU

For an n-ary relation symbol R in our language, we define

R ([ma)/u)" = (] 0. 1)1

1€l 1€l
by
R([a’],....[a") = [(R™(a],....a}7") 1i € T)]
where [a] denotes the equivalence class of @ modulo =. We likewise define for f an n-ary

function symbol in our language a function

(M) = ([[m)u

1€l 1€L

APPENDIX D. COMPACTNESS AND LOS’S THEOREM 103

by
f*([a,...,[a" ") = [(fMi(a?, cona Y i e 1))
Our task now is to show that these functions R* and f* respect the equivalence relation on

~ in the sense that the following commutative diagrams can be completed with f and R
respectively, where 7 is the quotient map for ~ on (J],.; M)/U, and 7’ is the quotient map

for ~ on ([[;c£[0,1])/U:

(HiEIMi)/u A (HieIMi)/u (HieIMi>/u L) (H'LEI[07 1]/1/{
([Leg MUY/ ~ =T (g MU/~ ([Lieg M) JU) [~ -2 (TTiggl0,1)/U)) ~

Let’s look only at functions, since the argument for relations is the same. Suppose that
a’ ~ b, at ~ bt ..., and @" ' ~ bl Fix 7 < 1, and recall that we have for each i € 7

(A, P,) 2 A), M e)

1771

But then we have for any 7 < 1 and any 79, ...7,—1 < 1 such that As(7,...,7—1) > 7:

(i€ e(faf,...af™"), f,.. 007") >7} D (i €T e(al b)) >} el

i)

j<n
because U is closed under finite intersections. Since limy, .., Ay (70, -, Tn1) = 1, we can
conclude f*([a°],...,[a""']) ~ f*([t°],...,[p""!]). This means that quotienting both the

domain and codomain of f* by ~ yields a well-defined function. This gives an an interpre-
tation of function symbols in the continuous ultraproduct, and a similar argument holds for
relations. In fact, the same proof yields a well-defined interpretation for terms in the term
algebra and formulas in our language in the continuous ultraproduct.

One important question is whether these interpretations actually turn the continuous ultra-
product into a continuous L(c, v) structure. The follow observation tells us that are formulas
in the continuous ultraproduct are in fact [0, 1]-valued:

Observation: ([, ;[0,1])/U)/ ~ is naturally isomorphic to [0, 1].

Proof: Let 7 € [[,.7[0,1]. For o € 2<%, define

L= 27® a7l 4 3" 9770 C [0, 1]
j<lol i<lol
For example Iy = [0,1], I, = [3,1], 1o = [2.3], I11 = [2,1]. If 0 C ¢/, then I, D I/, and for
any length | € w, {I, : |o| = I} cover [0, 1]. We now define a sequence of strings by induction:
oo = (), the empty string, and o1 2 oy is defined to be o0 if {i : 7; € Ig,:o} € U, and

APPENDIX D. COMPACTNESS AND LOS’S THEOREM 104

0}, 1 otherwise. Because U is an ultrafilter, we can prove by induction on £ that for all k£ € w,
{i:7m €I, } €U. Because [0,1] is compact, (), I, 7# 0, and since their diameters go to
0, it is a singleton. Let 7., € [0, 1] be this singleton. Now consider the constant sequence
Too, considered as an element of the ultraproduct. We can see by construction that 7 ~ 7,
so they correspond to equal elements in the continuous ultraproduct (after quotienting by
~). But this means that the diagonal embedding [0,1] = (([T,c7[0,1])/U)/ ~ is actually a
surjection. It’s not hard to verify it is also one-to-one, and preserves the equalness relation,

so [0,1] and ((TT;e7[0,1])/U)/ ~ are isomorphic.

A natural question, now, is: are formulas in the ultraproduct assigned truth values consistent
with the semantics of continuous logic? The classical analog of this question is answered in
the affirmative by Lo$’s Theorem. Let’s prove the continuous analog of this. Note that we
allow infinitary logical connectives (like lim), as long as they are uniformly continuous, so
we have a new phenomenon here! Continuous logic can remain compact even when adding
non-trivial infinitary connectives. We do need to restrict to languages with a weak modulus,
however (e.g., the universal 1-Lipschitz modulus), however.

Continuous Los’s Theorem: Let ¢/(Z) be an L (0, v) formula. Let M be the ultraproduct
of (M; :i €). We'll prove that ¥™(Z) (the interpretation of ¥ (Z) in M defined induc-
tively by the semantics of continuous logic) is equal to 1 (Z)/ ~, the function obtained more
directly from 1*(Z) by quotienting both the domain and codomam by ~). The semantics
for continuous logic is compositional, and formulas are defined inductively by closure under
certain logical operations, so it suffices to show that each of these operations respects the
semantics clauses of continuous logic. Since our space of logical connectives is quite large,
we cannot just do a proof by cases, so we’ll use the following lemma:

Lemma: Suppose M = (([T,cz Mi)/U)/ ~ N = (({Liez No)/U) [~, and K = (([1,e7 Ki)/U) /] ~
where M; . N;, and K; are continuous spaces. Suppose f; : M; — N; each obey modu-
lus Ay, and g; : N; = K; each obey modulus A,. Then for f := (([],.; fi/U)/ ~, and

9= (TLiez fi/U)/ ~, fog: M — K obeys modulus Ajo Ay, and fog = (([T;er fi/U)/ ~.

In fact we need a more general version of this lemma for n-ary (and even infinitary) func-
tions, but this can be done by replacing a higher arity function on M by a unary function
on a “power” of M. We have not said what an infinite product of continuous spaces should
be, but we will do this after we finish the proof of this theorem. There is some subtlety,
because we want the topology to agree with the product topology, but it is well-known the
the category of metric spaces with 1-Lipschitz maps as morphism does not have arbitrary
products.

vt (7)),

); -
) and 1t obeys
1(Z)), then our

Continuing our proof of the theorem, let’s start with terms. If () = f(to(Z
then our lemma tells us that (¢*/ ~)(z) = (f*/ ~)((t;/ ~)(@),..., {51/ ~) (T
the composition their moduli. For atomic formulas, if ¢ (z) = (to() R

APPENDIX D. COMPACTNESS AND LOS’S THEOREM 105

lemma tells us that (¢*/ ~)(z) = (R*/ ~)((t5/ ~)(@),...,(t;_1/ ~)(Z)) and it obeys the
composition their moduli. For the outermost construction in v being a continuous logical
connective, say ¥(z) = u(po(Z), v1(Z), p2(Z),...) for u a continuous (possibly infinitary)
connective, then (the generalization of) our lemma says that

VN (@)) ~= (ux [~)((g5) ~)(@), 91/ ~)(), 93/ ~)(@),-)
It remains only to check the cases ¢(Z) = sup, (2, ..., 2* ', y) and ¢(z) = sup, p(a°, ..., x
We’ll check only sup, since the argument for inf is symmetric:

((supp)*/ N)(jo, . ,:ik_l) <t<={i€Z: sup go(x?, . ,xf‘l,yi) <rtelU
Y yi€EM;

= {iel:(Vy € Mi)(p(},....af L y)<7)} el

= (V(yi:iEI) € H./\/li){iGI: oxd,. gy <nreu

el
— (ng € M) (%) ~)(@°,..., 2" g) < 7<= sup M(p*/ ~)(@°,....7" g <7
yeM

This is essentially the standard idea from the classical proof of Los’s Theorem. [J

Proof of Lemma: Suppose g, : [[; MY — N obey moduli A;; and f, : [], N = Ka obey
modulus A;. Consider for each a@ € 7 their composition h, = f, 0 go. Let’s first look at
(¢) - T, M7 = TLNT, £ LN = K, and b - []; M9 — K* (ie. as functions
between the classical ultraproducts, before quotienting by NH We want first to show that
h* = f*og*. Let x'j, € []; M)kY. We use for notational simplification that z* refers to the
double array of points z% for i fixed. Then:

= (ot i) 2@) o))

~[(tea@) sa e z)| = [(tuten) sa e)| = (el

It follows that (h*/ ~) = (f*/ ~) o (g*/ ~). Note that g’, obeys A; for each j, so (¢)*/ ~
also obeys A, (since closed conditions holding in each factor in an ultraproduct must also
hold in the ultraproduct). Likewise f*/ ~ must obey A. Since (h*/ ~) = (f*/ ~) o (g*/ ~),
and the composition of functions obeys the composition of their moduli, A* obeys modulus
A(Ag, Ay, Ag, ...

IThe classical ultraproduct of a product space is just the product of the ultraproduct of the factors.

k—1

JY)-

106

Appendix E

Notes on Equalness

Sometimes we want to know the equalness of the equalness of two pairs of elements in two
different structures. This ends up being somewhat complicated to compute in continuous
logic, so in the following we describe some useful techniques to make these calculations.

Fact 1: For any d >0, 1 — 277 < d.

Proof: Let f(d) =d— (1 =2"%). We can see f(0) =0, and compute for d > 0:
fl(d)=1-In(2)27">1-1n(2)27°=1-0.693--->0

So f(d) >0 for all d > 0. But then d > 1 —27¢ for all d > 0.

Fact 2: Suppose our equalness predicates in two structures arise from respective metrics by
e(z,y) = 2719@Y Then e(e(a, b), e(z,y)) > 27 1@t —d@y)l,

Proof: Assume without loss of generality £(a,b) > e(x,y). Then
5(@, b) — E(.fl% y) — 2_d(a1b) — 2—d(33,y) — 2_d(a7b)(1 — 2—(d(:ﬁ,y)—d(a,b)))

< 1 — 2~ zy)—d(ab)) < d(z,y) — d(a,b)

where this last inequality is due to fact 1. By symmetry, then, we always have:
le(a,b) — ez, y)| < [d(z,y) — d(a,b)|
Taking 2 to the negative of both sides:

g(g(al’ b)’ 8(1‘7 y)) — 2—|a(a,b)—a(z,y)\ Z 2_‘d(x7y)_d(avb)|

107

Bibliography

Scott Aaronson. Quantum Computing since Democritus. Cambridge University Press,
2013. DoI1:110.1017/CB09780511979309.

Bernard A. Anderson. “Reals n-generic relative to some perfect tree”. In: Journal of
Symbolic Logic 73.2 (2008), pp. 401-411. DOI: 10.2178/js1/1208359051.

Olivier Bournez et al. “The General Purpose Analog Computer and Computable Anal-
ysis are Two Equivalent Paradigms of Analog Computation”. In: Theory and Applica-
tions of Models of Computation. Ed. by Jin-Yi Cai, S. Barry Cooper, and Angsheng
Li. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 631-643. 1SBN: 978-3-540-
34022-5.

C.C. Chang et al. Continuous Model Theory. Annals of mathematics studies. Princeton
University Press, 1966. 1SBN: 9780691079295. URL: https://books . google . com/
books?1d=uTGdPSI5rI4C.

Toby S. Cubitt, David Perez-Garcia, and Michael M. Wolf. “Undecidability of the spec-
tral gap”. In: Nature 528 (2015/12/09/online), 207—77 DOI: 10 . 1038 /nature16059.
URL: https://doi.org/10.1038/naturel16059.

EKATERINA B. FOKINA et al. “ISOMORPHISM RELATIONS ON COMPUTABLE
STRUCTURES”. In: The Journal of Symbolic Logic 77.1 (2012), pp. 122-132. 1SSN:
00224812. URL: http://www. jstor.org/stable/23208238.

Dominic Hyde and Diana Raffman. “Sorites Paradox”. In: The Stanford Encyclopedia
of Philosophy. Ed. by Edward N. Zalta. Summer 2018. Metaphysics Research Lab,
Stanford University, 2018.

J.F. Knight. “Chapter 7 Degrees of models”. In: Handbook of Recursive Mathemat-
ics. Ed. by Yu. L. Ershov et al. Vol. 138. Studies in Logic and the Foundations of
Mathematics. Elsevier, 1998, pp. 289-309. DOI: https://doi.org/10.1016/S0049-
237X(98)80008-6. URL: http://www.sciencedirect.com/science/article/pii/
S0049237X98800086..

Alexander G. Melnikov. “Computably isometric spaces”. In: J. Symbolic Logic 78.4
(Dec. 2013), pp. 1055-1085. DO1: 10.2178/js1.7804030. URL: https://doi.org/10.
2178/3js1.7804030.

Antonio Montalbén. Computable Structure Theory. Berkeley, California: (draft), 2018.

https://doi.org/10.1017/CBO9780511979309
https://doi.org/10.2178/jsl/1208359051
https://books.google.com/books?id=uTGdPSI5rI4C
https://books.google.com/books?id=uTGdPSI5rI4C
https://doi.org/10.1038/nature16059
https://doi.org/10.1038/nature16059
http://www.jstor.org/stable/23208238
https://doi.org/https://doi.org/10.1016/S0049-237X(98)80008-6
https://doi.org/https://doi.org/10.1016/S0049-237X(98)80008-6
http://www.sciencedirect.com/science/article/pii/S0049237X98800086
http://www.sciencedirect.com/science/article/pii/S0049237X98800086
https://doi.org/10.2178/jsl.7804030
https://doi.org/10.2178/jsl.7804030
https://doi.org/10.2178/jsl.7804030

BIBLIOGRAPHY 108

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Y.N. Moschovakis. Descriptive Set Theory. Studies in Logic and the Foundations of
Mathematics. Elsevier Science, 1987. 1SBN: 9780080963198. URL: https : //books .
google.com/books?id=c7FQW1kA3KIC.

J. von Neumann. “Probabilistic logics and synthesis of reliable organisms from un-
reliable components”. In: Automata Studies. Ed. by C. Shannon and J. McCarthy.
Princeton University Press, 1956, pp. 43-98.

Jan Reimann and Theodore A. Slaman. “Measures and their random reals”. In: Trans-
actions of the American Mathematical Society 367 (Feb. 2008). DOI: 10.1090/S0002-
9947-2015-06184-4.

M. P. Soler. “Characterization of hilbert spaces by orthomodular spaces”. In: Com-
munications in Algebra 23.1 (1995), pp. 219-243. po1: 10.1080/00927879508825218.
eprint: https://doi.org/10.1080/00927879508825218. URL: https://doi.org/
10.1080/00927879508825218.

Wehner Stephan. “Enumerations, Countable Structures and Turing Degrees.” In: Pro-
ceedings of the American Mathematical Society 126.7 (1998), p. 2131. 1sSN: 00029939.
URL: https://1libproxy . berkeley.edu/login?qurl=http73a%2f’2fsearch.
ebscohost.com/2flogin.aspx%3fdirect’,3dtrue’,26db%3dedsjsr’,26ANY3dedsjsr.
118896%26sitel3deds-1ive.

Slaman Theodore A. “Relative to Any Nonrecursive Set.” In: Proceedings of the Amer-
ican Mathematical Society 126.7 (1998), p. 2117. 1SsN: 00029939. URL: https : //
libproxy . berkeley . edu/login?qurl=http%3a’2f’2fsearch . ebscohost . com}
2flogin.aspx%3fdirecti3dtrue’,26db%3dedsjsr/26AN3dedsjsr.1188947,26site%
3deds-1live.

Ittay Weiss. “Value semigroups, value quantales, and positivity domains”. In: Journal
of Pure and Applied Algebra 223.2 (2019), pp. 844-866. 1SSN: 0022-4049. DOIL: https:
//doi.org/10.1016/j.jpaa.2018.05.002. URL: http://www.sciencedirect.com/
science/article/pii/S0022404918301257.

I. B. Yaacov et al. “Metric Scott analysis”. In: Advances in Mathematics 318 (2017),
pp. 46-87. DOI: [d0i:10.1016/j.aim.2017.07.021.

I. B. Yaacov et al. “Model theory for metric structures”. In: Model Theoy with Applica-
tions to Algebra and Analysis (1000), pp. 315-427. DOI: doi:10.1017/cbo9780511735219.
011l

Ital Ben Yaacov and Arthur Paul Pedersen. “A proof of completeness for continuous
first-order logic”. In: The Journal of Symbolic Logic 75.1 (2010), pp. 168-190. DOI:
10.2178/3js1/1264433914.

L.A. Zadeh. “Fuzzy sets”. In: Information and Control 8.3 (1965), pp. 338-353. I1SSN:
0019-9958. DOT: https://doi.org/10.1016/30019-9958(65)90241-X. URL: http:
//www.sciencedirect.com/science/article/pii/S001999586590241X.

https://books.google.com/books?id=c7FQWlkA3KIC
https://books.google.com/books?id=c7FQWlkA3KIC
https://doi.org/10.1090/S0002-9947-2015-06184-4
https://doi.org/10.1090/S0002-9947-2015-06184-4
https://doi.org/10.1080/00927879508825218
https://doi.org/10.1080/00927879508825218
https://doi.org/10.1080/00927879508825218
https://doi.org/10.1080/00927879508825218
https://libproxy.berkeley.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dedsjsr%26AN%3dedsjsr.118896%26site%3deds-live
https://libproxy.berkeley.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dedsjsr%26AN%3dedsjsr.118896%26site%3deds-live
https://libproxy.berkeley.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dedsjsr%26AN%3dedsjsr.118896%26site%3deds-live
https://libproxy.berkeley.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dedsjsr%26AN%3dedsjsr.118894%26site%3deds-live
https://libproxy.berkeley.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dedsjsr%26AN%3dedsjsr.118894%26site%3deds-live
https://libproxy.berkeley.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dedsjsr%26AN%3dedsjsr.118894%26site%3deds-live
https://libproxy.berkeley.edu/login?qurl=http%3a%2f%2fsearch.ebscohost.com%2flogin.aspx%3fdirect%3dtrue%26db%3dedsjsr%26AN%3dedsjsr.118894%26site%3deds-live
https://doi.org/https://doi.org/10.1016/j.jpaa.2018.05.002
https://doi.org/https://doi.org/10.1016/j.jpaa.2018.05.002
http://www.sciencedirect.com/science/article/pii/S0022404918301257
http://www.sciencedirect.com/science/article/pii/S0022404918301257
https://doi.org/doi:10.1016/j.aim.2017.07.021
https://doi.org/doi:10.1017/cbo9780511735219.011
https://doi.org/doi:10.1017/cbo9780511735219.011
https://doi.org/10.2178/jsl/1264433914
https://doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
http://www.sciencedirect.com/science/article/pii/S001999586590241X
http://www.sciencedirect.com/science/article/pii/S001999586590241X

	Contents
	A Brief Introduction for a General Audience
	Why have a Continuum of Truth Values?

	Computable Continuous Structures
	Basic Definitions
	Equalness Relation
	Continuous Logic and Computable Continuous Structures
	Formula Complexity and Definability
	Examples of Computable Continuous Structures

	Computable Continuous Structure Theory
	Quasi Back-and-Forth Arguments

	Hilbert Spaces and Observations
	Bridging Continuous Structures and Descriptive Set Theory?
	Notions of Genericity
	Model Theoretic Constructions
	Effective Type Omitting

	Why limit truth values to [0,1]?
	T = [0,1] as a continuous structure

	Miscellaneous Facts about Moduli
	Decidability
	Computing Moduli and Functions
	Compactness and Łos's Theorem
	Notes on Equalness
	Bibliography

