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1.  Introduction
Models are among our best integrators of knowledge and understanding of how the world works. Terrestrial bio-
sphere models (TBMs) encapsulate a myriad of land surface and ecosystem processes, and how those respond to 
one another and external forcings (Fisher et al., 2014). But, knowledge is biased and socially constructed (Berger 
& Luckmann, 1966; Nietzsche, 1977); consequently, we too may expect our models to be locally biased to the 
construction of knowledge that created them. How photosynthesis is understood to someone in the US may be 
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different than that to someone in Brazil or Australia or Japan (Rogers et al., 2017). Still, global models must be 
constructed for global science, though their construction is predominantly local (Figure 1).

The great "elephant in the room," so to speak, is not what is behind us, but what is ahead. Projections of the future 
hold no truth in the present, yet are best read by how well we see in the past. Like the fable of the blind men and 
the elephant, we want to know what is in front of us—the future of the Earth—that which we cannot see. Each 
model and modeler, like the blind men, is biased to their local knowledge, each saying something different, yet 
similar. These model differences define the uncertainty of our future (IPCC, 2014). By working together, we may 
piece together a more accurate picture than in isolation.

Model Intercomparison Projects (MIPs) are that “working together.” MIPs are designed to hear different perspec-
tives to sample the population of possible ways the world works. In theory, if that sample is sufficiently robust, 
then one might converge toward a central tendency of likely truth. Ensemble model means typically perform 
better than most individual models (Schwalm et al., 2015). The distribution of multimodel variability could be 
used to construct "emergent constraints" for benchmarks to base future projections (Bretherton & Caldwell, 2020; 
Brient, 2020; Cox et al., 2018; Eyring et al., 2019; Hall et al., 2019; Nijsse et al., 2020; Tokarska et al., 2020). 
In practice, however, that sampling is often not robust and likely skewed toward models that are derivatives of 
one another, thereby compounding local biases (Caldwell et al., 2018; Huntzinger et al., 2013, 2017; Sanderson 
et al., 2015, 2021). Still, MIPs are a necessary starting point for a conversation; otherwise, it is more like a lot of 
voices shouting in dissonance.

Due to numerous user decisions, the same model code run 10 times can have 10 different outputs. If our interest 
is in understanding variability in biophysical processes (Bonan & Doney, 2018), then this is a problem, as there 
should, in theory, be no process representation variability for a single model (with notable exceptions, e.g., 
Lawrence et al., 2019; Niu et al., 2011). What could potentially cause different outputs from the same model and 
can we control for it? Starting with the starting point or spin-up—a model should move forward from the same 
initial conditions every time, but this can easily vary depending on how one wants to create the world (Huntzinger 
et al., 2020; Shi et al., 2013). The forcing data used could vary, for example, from one meteorological data set to 
another, even if the model stays the same (Badgley et al., 2015; Lawrence et al., 2019). How a model/modeler 
uses the same forcing data could vary, for example, mapping of model plant functional types (PFTs) onto a land 
cover/land use change (LCLUC) data set (e.g., “mixed forest,” different crops). A model might have functions 
that can be turned on or off and may be reliant on availability of certain forcing data (e.g., nitrogen cycle). Finally, 
the output may all be identical, but the interpretation of the output can vary from person to person or be altered 
in transfer or analysis.

Now, compound this all with multiple different models, and we can see how comparing models for variability in 
process representation can quickly become muddled by other factors that can influence model output. MIPs at-
tempt to control for many of these factors, but struggle to ensure that their protocols are rigorously met. For TBMs 
alone, there have been a lot of MIPs (global, regional, site; offline, coupled), and there will be more—e.g., PILPS 
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Figure 1.  Most global terrestrial biosphere models (TBMs) are developed primarily in the US, Europe, Australia, and Japan. 
This cartogram inflates/deflates the size of the country based on the number of TBMs developed, n = 58. From Fisher 
et al. (2014).
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(Henderson-Sellers et al., 1993), VEMAP (VEMAP, 1995), CCMLP (Kicklighter et al., 1999), NPP MIP (Cram-
er et al., 1999), DGVM MIP (Cramer et al., 2001), C4MIP (Friedlingstein et al., 2006), AMMA (Redelsperger 
et  al.,  2006), GSWP (Dirmeyer et  al.,  2006), WETCHIMP (Melton et  al.,  2013), LBA-DMIP (de Gonçalves 
et  al.,  2013), NACP Interim Site and Regional Syntheses (Huntzinger et  al.,  2012; Schwalm et  al.,  2010), 
TRENDY (Sitch et al., 2013), MsTMIP (Huntzinger et al., 2013), ISI-MIP (Warszawski et al., 2014), FACE MDS 
(Medlyn et al., 2015), CMIP (Arora et al., 2020), and PalEON (Rollinson et al., 2021) (see Table 1 for acronyms 
and abbreviations). MIPs typically specify common forcing data, but some models need the data transformed 
(e.g., temporally) or require additional individualized data sets. Some MIPs specify spin-up criteria, but those 
are not necessarily applicable across all models (Huntzinger et al., 2013). Finally, a model might adhere strictly 
to the MIP protocol, but some element of tuning to common benchmark data occurs such that inter-model output 
converges, despite differences in processes (Dommenget & Rezny, 2018; Fer et al., 2021; Hourdin et al., 2017; 
Notz, 2015; Raäisaänen, 2007; Scheiter et al., 2013).

As a means to address some of these outstanding issues in MIPs, we sought to develop a prototype system 
whereby models are run with common operating software on the same hardware systems (Fer et al., 2021; Kumar 
et al., 2006). This approach is similar to multimodel systems, such as the Land Information System (LIS; Kumar 
et al., 2006), the Terrestrial Observation and Prediction System (TOPS; Nemani et al., 2002), and the Predictive 
Ecosystem Analyzer (PEcAn; Dietze et al., 2013). Such a system ensures that spin-up protocols are run con-
sistently across models, user decisions on forcing data such as LCLUC-to-PFT mapping are systematic, there is 
no tuning, and that output is saved, transferred, and analyzed uniformly. Further, logistical coordination among 
multiple teams can be streamlined. We focused on global TBMs and used the relatively strict MsTMIP protocol 

Acronym/Abbreviation Definition

AMMA African Monsoon Multidisciplinary Analysis

API Application Programming Interface

C4MIP Coupled Climate Carbon Cycle Model Intercomparison Project

CABLE CSIRO Atmosphere Biosphere Land Exchange

CAM Community Atmosphere Model

CASA Carnegie-Ames-Stanford Approach

CCMLP Carbon-Cycle Model Linkage Project

CESM Community Earth System Model

CLASS-CTEM-N Canadian LAnd Surface Scheme—Canadian Terrestrial Ecosystem Model—Nitrogen

CLM Community Land Model

CMIP Coupled Model Intercomparison Project

CMS Carbon Monitoring System

DGVM Dynamic Global Vegetation Model

DLEM Dynamic Land Ecosystem Model

ESM Earth System Model

FACE MDS Free Air CO2 Enrichment Model Data Synthesis

GFDL-CM3 Geophysical Fluid Dynamics Laboratory—Coupled Model

GSWP Global Soil Wetness Project

GTEC Global Terrestrial Ecosystem Carbon

HadGEM2-AO Hadley Center Global Environment Model version 2—Atmosphere-Ocean

I/O Input/Output

IPSL-CM5A-MR Institut Pierre Simon Laplace—Coupled Model—Mid-Resolution

ISAM Integrated Science Assessment Model

ISI-MIP Inter-Sectoral Impact—Model Intercomparison Project

JPL Jet Propulsion Laboratory

Table 1 
Acronyms and Abbreviations
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Table 1 
Continued

Acronym/Abbreviation Definition

JULES Joint UK Land Environment Simulator

LBA-DMIP Large-Scale Biosphere-Atmosphere—Data Model Intercomparison Project

LCLUC Land Cover Land Use Change

LPJ-GUESS Lund-Potsdam-Jena—General Ecosystem Simulator

LPJ-wsl Lund-Potsdam-Jena—Wald Schnee und Landschaft

LSCE Laboratoire des Sciences du Climat et de l'Environnement

LUH-SYNMAP Land Use Harmonization—Synergetic Land Cover

MIP Model Intercomparison Project

MPI-ESM-MR Max Planck Institute—Earth System Model—Mixed Resolution

MsTMIP Multi-scale Synthesis and Terrestrial Model Intercomparison Project

NACP North American Carbon Program

NASA National Aeronautics and Space Administration

NetCDF Network Common Data Form

NPP Net Primary Productivity

ORCHIDEE ORganizing Carbon and Hydrology In Dynamic Ecosystems Environment

PalEON Paleo-Ecological Observatory Network

PEcAn Predictive Ecosystem Analyzer

PFT Plant Functional Type

PILPS Project for Intercomparison of Land Surface Parameterization Schemes

RCP Representative Concentration Pathways

SG3 Simulation Global 3

SiB Simple Biosphere

TBM Terrestrial Biosphere Model

TEM Terrestrial Ecosystem Model

VEGAS VEgetation Global Atmosphere & Soil

VEMAP Vegetation-Ecosystem Modeling & Analysis Project

VIC Variable Infiltration Capacity

VISIT Vegetation Integrative SImulator for Trace gases

WETCHIMP Wetland CH4 Intercomparison of Models Project

for spin-up and factorial model experiments from 1901 to 2010 (Phase I) and 2011 to 2100 (Phase II; Huntzinger 
et al., 2013). Overcoming two major challenges was required for this to be successful: (a) development of a soft-
ware system that could interface consistently across disparate models as well as supercomputing infrastructure 
and (b) compilation and setup of multiple models. Here, we describe this system, called the Terrestrial Biosphere 
Model Farm, named with tribute to a similar initial effort by others (Denning et al., 2009). The Model Farm 
conceptually builds on efforts such as LIS with hydrological strengths, but here with more of an emphasis on 
terrestrial carbon cycling. We show an example output for illustration, but the focus of this paper is descriptive 
rather than output analytical. Finally, we provide experiential lessons-learned and recommended paths forward.

2.  Methods
2.1.  Data and Models

We primarily used the MsTMIP data and simulation protocols (Huntzinger et al., 2013; Wei et al., 2014). Phase 
I consisted of simulations from years 1801 to 2010 and Phase II from 2011 to 2100, all globally at 0.5° × 0.5° 
resolution. Phase I forcing data included climate, LCLUC, atmospheric CO2, and nitrogen deposition. These 
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drivers were turned on/off (i.e., variable or constant) semi-factorially such that the influence of each driver 
can be isolated in analysis (Huntzinger et al., 2013). Spin-up to initial conditions was dictated by steady-state 
criteria (Huntzinger et al., 2013). Climate variables were given at a 6-hourly temporal resolution derived from a 
CRU-NCEP merged product (Harris et al., 2014; Kalnay et al., 1996). LCLUC was derived from a merged LUH-
SYNMAP product, resulting in 47 classes annually (Hurtt et al., 2011; Jung et al., 2006). Monthly atmospheric 
CO2 was constructed for consistency with GLOBALVIEW among other databases (Wei et al., 2014). Finally, 
annual nitrogen deposition was constructed based on Dentener et al. (2006).

MsTMIP Phase II simulations were forced with climate and CO2 projections from five CMIP5 Earth System 
Models (ESMs) and two Representative Concentration Pathways (RCPs). The ESMs included CESM1-CAM5 
(Meehl et al., 2013), GFDL-CM3 (Griffies et al., 2011), HadGEM2-AO (Bellouin et al., 2011), IPSL-CM5A-
MR (Dufresne et al., 2013), and MPI-ESM-MR (Giorgetta et al., 2013). The ESMs span the full range of model 
climate sensitivity between low- and high-temperature response. The RCPs included business-as-usual (RCP8.5) 
and medium mitigation scenarios (RCP4.5) (Van Vuuren et al., 2011). LCLUC was held constant, and nitrogen 
deposition was not used in our Phase II simulations, though they are available as time-varying to 2100.

The TBMs used in the Farm included CABLE (Wang et al., 2010), CENTURY (Parton et al., 1988), HyLand 
(Levy et al., 2004), ISAM (El-Masri et al., 2013), JULES (Clark et al., 2011), LPJ-GUESS (Smith et al., 2001), 
ORCHIDEE (Krinner et al., 2005), SiB-3 (Baker et al., 2008), and SiB-CASA (Schaefer et al., 2008). We also 
used the output from the MsTMIP version 1 models for comparison (Huntzinger et al., 2013), which included: 
CLASS-CTEM-N (S. Huang et al., 2011), CLM4 (Bonan et al., 1995), CLM4VIC (Lei et al., 2014), DLEM 
(Tian et al., 2012), GTEC (Ricciuto et al., 2011), ISAM (Jain & Yang, 2005), LPJ-wsl (Sitch et al., 2003), OR-
CHIDEE-LSCE (Krinner et al., 2005), SiB-CASA (Schaefer et al., 2008), TEM6 (Hayes et al., 2011), VEGAS2.1 
(Zeng et al., 2005), and VISIT (Ito, 2010). We do not describe the models in detail here, instead referring the 
reader to the respective references. Different models were run for different combinations of simulations and mod-
el experiments with all completing spin-up, some completing some or all of the MsTMIP Phase I experiments, 
and some completing all of the MsTMIP Phase I and II experiments (see Section 3), depending on application 
(see, e.g., Discussion).

2.2.  Model Farm

The Terrestrial Biosphere Model Farm was designed to keep individual TBM codes intact and treated as mod-
ular or compartmentalized, which can also facilitate the replacement of models by new versions. Each TBM is 
wrapped in the Farm software infrastructure, interfacing with the original model codes without modification, 
enabling different forcing data sets to be used, and unifying model output into defined formats.

The Terrestrial Biosphere Model Farm consists of five stages from distribution of forcing data to collection of 
model output (Figure 2): (a) Data Distribution, (b) Data Conversion, (c) Spin/Run Model, (d) Compact Output, 
and (e) Collect Output. Finally, a Diagnostics package enables automatic and relatively immediate visualization 
of model output to check for problems and/or success. The Model Farm was written in a combination of C++, 
Fortran, Matlab, and R for different functions. The Model Farm migrated over three different NASA JPL super-
computers (Zodiac, Halo, and Gattaca) during the course of development due to infrastructure upgrades (Table 2).

2.2.1.  Stage 1: Data Distribution

Data Distribution restructures all input files into the supercomputing environment. This is the most time-consum-
ing of all the stages, but is done only once per forcing data set, and used for all models. Here, the global forcing 
data are read, split into "patches" (i.e., groups) of cells, and distributed onto supercomputing nodes for parallel 
processing such that each patch has an approximately similar computational load. This split can be done because 
there is no lateral/horizontal cell-to-cell transport (e.g., water, carbon, and energy) for these models. Some patch-
es may contain more grid cells than others due to empty ocean cells (i.e., land-only data). The global grid from 
MsTMIP was a 1-degree spatial resolution at 181 × 360 latitude and longitude or 65,160 cells (Wei et al., 2014). 
We distributed these data into 2,000 patches, each with ∼32 cells (or "points") per patch, on 2,000 matching su-
percomputing processors/nodes based on memory and storage capacities of the nodes (with modifications as we 
migrated supercomputers). An index file assigns a patch and point number for each grid cell along with a time 
dimension, also forcing each model to operate with the same spatial resolution. This index file may be matched 
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to index files from new data sets that need to align in space and time, for example, connecting historical data 
(1901–2010; Phase I) to future projections (2011–2100; Phase II), which may have disparate grid sizes and north/
south orientations. MD5 checksums ensure that no data are corrupted in transfer from one computer to another.

The time required to complete Data Distribution varies depending on hardware infrastructure. Initially, the Data 
Distribution stage took 3–4 months to complete, but eventually came down to 3–4 days to complete per data set as 
we migrated across supercomputers. The bottleneck in the first supercomputer, Zodiac, was due to file transfer Input/
Output (I/O) capacity and file count capacity, which were later expanded in the subsequent supercomputers, Halo 
and Gattaca. While I/O was expanded sufficiently in Halo, our project storage was reduced (from 30 TB in Zodiac to 
10 TB in Halo), which required additional time to manage. MsTMIP forcing data required >500 GB (split roughly 
equally between Phase I and II). Finally, in Gattaca, the I/O and storage were sufficient for efficient Data Distribution.

2.2.2.  Stage 2: Data Conversion

Data Conversion restructures the input forcing data to meet the unique requirements of individual models. Stage 
2 is applied to each model after the model is successfully compiled and tested with provided test data or single 
point data on the supercomputer. Stage 2 ensures that there are no changes to the model code within the Farm. 

Figure 2.  Terrestrial Biosphere Model Farm software flowchart consists of five stages. Stage 1: forcing data (e.g., from 
MsTMIP) are partitioned and distributed among supercomputer nodes. Stage 2: forcing data are converted to individual 
model requirements (format, temporal resolution, and units). Stage 3: models are spun up and run. Stage 4: model output is 
converted again (format, temporal resolution, and units) for standardization across models. Stage 5: model output is gathered 
off supercomputing nodes and recombined into global (or otherwise) grids.

System name Zodiac Halo Gattaca

Project block quota 30 TB 10 TB 15 TB/high-performance scratch filesystema

Project file # (inode) 1 million 10 million 9 million (scratch_lgb)|4 million (scratch_smb)

Interconnect (I/O) Dual 40 Gb/sb 40 Gb/sb 100 Gb/sb

Total cores 1,920 1,328/1,040 4,608

Number of cores/node 12 16 48

Memory/node 24 (2 GB/core) 64 (4 GB/core) 384 (8 GB/core)

Local scratch None 1 TB HDD/node 365 GB SSD/node|1.9 TB HDD/node
an = 4. bInfiniBand.

Table 2 
High-Performance Computing Specifications for the Terrestrial Biosphere Model Farm Project Generally Improved as the 
Project Migrated Across NASA JPL Supercomputers From Zodiac to Halo to Gattaca
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Specifically, forcing data may be converted to different: (a) formats such as NetCDF 3 or 4, ascii, *.mat, etc.; (b) 
temporal resolutions (e.g., hourly and daily); and (c) units, depending on the model. LCLUC is assigned to model 
PFTs. Configuration parameters are generated for each model to specify which data sets to access. This control 
module can be updated to swap out different forcing data sets for different domains and experiments. Spin-up 
data may be reorganized for length of runs. Time required for data conversion was approximately 6 hr per data 
set transformation. Additional storage was required for the converted data (e.g., >2 TB for SiB3). After Stage 2 
is complete, a model may be ready to spin-up and run various global simulations.

2.2.3.  Stage 3: Spin and Run Model

Spin and Run Model runs the model to meet defined steady-state initial conditions and/or executes a desired tran-
sient model experiment. Here, independent instances of the model for each of the 2000 patches are scheduled for 
parallel execution. In theory, Stage 3 should run smoothly; in practice, however, several issues must be managed 
for complete success. In spin-up, individual patches may fail to meet spin-up requirements within the run time 
allotted and must be rerun (Shi et al., 2013). Incorrect or incongruent LCLUC assignments may cause a model 
to crash a patch due to unspecified model parameters for the assignment. Forcing data sets may not align with 
each other (e.g., LCLUC assignment, but no climate). An automated failed-patch detector was written to rerun 
patches with longer run times to handle some spin-up issues. Other failed patches had to be identified visually, 
for example, noticeable as stripes or unexpectedly high/low values in a global map or as spikes in diagnostic 
zonal/latitudinal line plots. These patches were then gathered by the Farm operator for rerun and/or debugging. 
For efficiency, the Model Farm framework allowed for individual patches to be rerun without requiring the entire 
global data set to be rerun. Spin-up required 1–2 days for most patches to complete, depending on model and 
supercomputer. Transient run time also required 1–2 days, depending on model, supercomputer, and simulation 
(e.g., 100 years historical-only vs. 200 years historical plus future).

2.2.4.  Stage 4: Compact Output

Compact Output converts output from individual models into common formats and units for analysis. Model 
output from Stage 3 is produced in individual model-dependent formats, units, variables, and time steps. Stage 
4 unifies model output across models. Here, we convert all model outputs into NetCDF, common units (e.g., as 
defined by MsTMIP), standardized NaN/water/ice values, and monthly time steps. The monthly time step con-
version reduces storage and transfer time demand, as most models operate and output at sub-monthly time steps 
(e.g., daily for HyLand and 6-hourly for CABLE), and which gives Stage 4 its name. For example, pre-Stage 
4, HyLand used 1 TB per simulation; whereas, CABLE used nearly 4 TB per simulation. Monthly compaction 
requires approximately half a day (e.g., HyLand) to a day (e.g., CABLE) per simulation per model depending 
on the Stage 3 output. Converting output file formats (e.g., *.out files from CENTURY to NetCDF) requires 
approximately another day.

2.2.5.  Stage 5: Collect Output

Collect Output converts all the individual patches into a common global grid. The final stage in the Model Farm 
requires collecting all the outputs, which are still partitioned into patches on individual supercomputer nodes and 
pieces the patches back together into a cohesive and standardized global grid (still at the monthly time step from 
Stage 4). Metadata are added at this stage, including, for example, model source code, model version, and contact 
information. Model output files are organized as one variable per file per model. Stage 5 collection requires less 
than half a day per simulation, depending on the number of variables saved.

3.  Results
The Model Farm includes two visual diagnostic packages: the Single Variable package and the Experiment 
package. The Single Variable package is automatically run after collecting the model output from spin-up or 
a transient run. The user repeats the Experiment package as needed. These packages allow the user to quickly 
evaluate the model output and identify any problems. The Single Variable package produces a single PDF page 
per variable per model for all output variables (Figure 3). Each page includes six panels, including three maps and 
three line plots: (a) map of average variable value over simulation time span, (b) map of average variable value 
over simulation time span from comparison models, (c) difference map between (a) and (b), (d) annual time series 
with comparison models, (e) average monthly values with comparison models, and (f) average zonal/latitudinal 
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values with comparison models. A specific model of interest is given a thicker line than the other models for 
visualization (Purdy et al., 2019). Axis and map ranges are automatically set to minimum and maximum extent of 
data visualized. The user must develop their own customized packages to answer specific scientific questions and 
to alter and improve esthetic visualization of the model output. The Experiment package produces inter-simula-
tion comparisons. The Diagnostics package requires a few hours per variable to produce the plots for the global 
MsTMIP-structured output.

An example of the Single Variable package visualization is shown in Figure  3. Here, we show Net Primary 
Productivity (NPP) for CENTURY as the highlighted model for the MsTMIP Phase II simulation (2011–2100) 
with CESM1-CAM5 climate and RCP4.5 CO2 scenario. The top-left map displays the 2011–2100 annual NPP. 
The top-middle map shows the mean NPP from the MsTMIP Phase I models, SG3 simulation (CO2, climate, and 
LCLUC all "on"); we note that the 1901–2010 time period for SG3 is not an equivalent time comparison to the 
2011–2100 runs, but it provides a first-order check. The top-right map shows the difference between the first two 
maps.

The bottom-left panel of Figure 3 shows the annual time series from 1901 to 2100. Here, we can see that the 
MsTMIP Phase I SG3 simulations are given only from 1901 to 2010. Additional Model Farm output is shown for 
1901–2010 from CABLE, CENTURY, HyLand, and SiB-3. This figure also shows Model Farm Phase II simu-
lations for 2011–2100 for CENTURY, HyLand, and SiB-3. The bottom-middle panel shows the mean seasonal 
cycle for all models; two lines are given each to CENTURY, HyLand, and SiB-3, one line for 1901–2010 and the 
other for 2011–2100. Finally, the bottom-right panel shows the zonal/latitudinal averages again with two lines 
each for the three Phase II models. These six figures combined are useful diagnostics to determine if there any 
obvious problems with the model runs. For example, a unit conversion error (e.g., Stage 2) can lead to model 
output significantly outside the spread of the other models.

Figure 3.  An automated diagnostic visualization PDF is generated from the Terrestrial Biosphere Model Farm. (top-left) Map of average variable value over simulation 
time span; (top-middle) comparison map of average variable value; (top-right) difference map between 1 and 2; (bottom-left) annual time series along with comparison 
models; (bottom-middle) average monthly values with comparison models; and (bottom-right) average zonal/latitudinal values with comparison models. Here, we show 
Net Primary Productivity (NPP) with CENTURY as the highlighted model of interest for the MsTMIP Phase II simulation (2011–2100) with CESM1-CAM5 climate 
and RCP4.5 CO2 scenario. Comparison models are from MsTMIP Phase I SG3 simulation. Four additional models from the Farm are shown for 1901–2010 (CABLE, 
CENTURY, HyLand, and SiB-3) with the latter three also shown for the Phase II simulation.
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An additional set of diagnostic visualizations are produced from the Experiment package to compare among 
different model experiments for a single given model (Figures 4 and 5). This is to ensure that there was indeed a 
difference among experiments, which may not happen if there was a problem in setting up the experiment. More-
over, this is also to ensure that the difference between model experiments coincides with theoretical expectations, 
for example, increasing NPP with increasing CO2 (Schimel et al., 2015; Walker et al., 2021). Figures 4 and 5 are 
separated because the magnitude difference between Phase I experiments (Figure 4) and the output from Phase 
II (Figure 5) is so large that the Phase I differences would be too small to see on the raw Phase II scale. For the 
inter-simulation runs, we find that line plots are more useful for diagnosis than are maps, as differences and trends 
are more readily noticeable to the eye than in maps.

Numerous analyses have been published on 1901–2010 model and simulation experiment intercomparisons from 
MsTMIP and other MIPs (e.g., Cui et al., 2019; El Masri et al., 2019; Fang et al., 2017; Fisher et al., 2016; 
He et al., 2020; K. Huang et al., 2018; Huntzinger et al., 2017, 2020; Ito et al., 2016; Kolus et al., 2019; Liu 
et al., 2019; Mao et al., 2015; Schwalm et al., 2015, 2017, 2019, 2020; Shao et al., 2016; Thomas et al., 2016; 
S. Zhou et al., 2017, 2018). However, the 2011–2100 Phase II output is novel with multiple land models having 
been run with a suite of climate and RCP projections (see, also, Warszawski et al., 2014). In the annual time 
series example in Figure 5, we can see simultaneously the spread in NPP caused by differences (or uncertainties) 
in climate, which turn out to be relatively small compared to the large differences due to CO2 scenario (RCP 4.5 
vs. RCP 8.5). These results continue to suggest the overwhelming dominance of the CO2 fertilization effect un-
certainty on land carbon uptake uncertainty both historically and into the future (Arora et al., 2020; Huntzinger 
et al., 2017; Schimel et al., 2015; Sitch et al., 2015; Walker et al., 2021).

Figure 4.  Inter-simulation visual diagnostics for MsTMIP Phase I experiments show how a single model changes 
output among different experiments. Here, we show output (e.g., Net Primary Productivity, NPP, for HyLand) from four 
experiments: (1) spin-up equilibrium conditions (RG1); (2) varying climate (SG1); (3) varying climate and land use/land 
cover change (LCLUC) (SG2); and (4) varying climate, LCLUC, and CO2 (SG3). The top set of lines (primary y-axis) is the 
annual average from 1901 to 2010. The bottom set of lines (secondary y-axis) is the latitudinal/zonal sum from 55°S to 85°N.
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4.  Discussion
The Terrestrial Biosphere Model Farm aims to reduce the time and skill re-
quired to execute a model experiment. An undergraduate student with no 
modeling experience and moderate programming skills can integrate a new 
TBM, spin-up the TBM, and execute at least one experiment with a 10-week 
summer internship. Indeed, many of the coauthors on this paper were those 
undergraduate interns. The core technical team would already have the TBM 
available and compiled with supported libraries installed and debugged be-
fore those internships began. Interns would spend the first few weeks learn-
ing about TBMs in general, studying the model code, and mapping the model 
I/O structure. They would then spend at least a couple of weeks mapping 
the LCLUC forcing data onto the TBM PFT structure. Another week or two 
would be spent connecting the model to the Farm and running tests. The 
next couple of weeks would be spent on spin-up and debugging. The final 
couple of weeks could allow the first MsTMIP simulation, assuming all else 
was successful to that point (which was not always). Some interns continued 
working on their model into their school year or returned for a following 
summer for more model runs and experiments. These examples illustrate the 
relative ease and challenges that the Farm afforded for running TBMs in con-
trast to, for example, traditional model development centers.

Generally, the Terrestrial Biosphere Model Farm provided several comple-
ments to traditional MIPs. Once the models were properly setup, it was rel-
atively fast to run multiple experiments across models. Moreover, a team 
organizing a MIP might be interested in many different types of experi-
ments—more than they would be comfortable specifying not wanting to 
bother so many people and risking incomplete runs. With a centralized Farm, 
once the forcing data and experiments are setup, multiple models can run 
with relative ease. One example of different types of experiments that the 
Farm supported was on LCLUC data set development for NASA's Carbon 

Monitoring System (CMS) (Kennedy et al., 2018; Neeti & Kennedy, 2016; Y. Zhou et al., 2021). Here, the team 
focused on new and different types of LCLUC data products and their impacts on TBMs. We were able to ingest 
these different LCLUC data sets and provide the corresponding variability in TBM output. Ultimately, future 
MIPs should expand to include not only multiple models, but also multiple forcing data sets (Dietze et al., 2014). 
Additionally, the Farm can be used as a "sandbox" with which to test and debug any problems with the new ex-
periments. Once those are worked out, then the MIP can be extended to individual modeling teams so that each 
team does not have to waste time working out those bugs.

For each model, there were a number of user decisions that had to be made in setup, for example, how to map the 
LCLUC forcing data onto the model PFTs. For instance, a pixel may be classified as “mixed forest” in the forcing 
data, but a model may have multiple forest PFTs (Poulter et al., 2011). By erring consistently toward a single 
definition of mixed forest, for better or for worse, we could at least constrain differences in model output due 
to those types of user decisions. A similar process may be considered for classifying different crop types. Still, 
LCLUC mapping and debugging was a very time-consuming process. Likewise, while MIPs may specify spin-up 
requirements and forcing data, it is challenging to know if the modeling teams adhered completely to those spec-
ifications. In the Farm, all models were run uniformly across those specifications, even if models had different 
ways of going about spin-up, time steps, and use of data. However, while these aspects potentially reduce spread 
among model outputs, we also saw ways in which one could tune models to match benchmark data sets (e.g., 
scalars for stocks and fluxes). Being model and output agnostic, we did not tune. But, as noted earlier, models 
may converge toward each other in traditional MIPs simply because of tuning (Dommenget & Rezny, 2018; Fer 
et al., 2021; Hourdin et al., 2017; Notz, 2015; Raäisaänen, 2007; Scheiter et al., 2013).

Nonetheless, there were challenges in running the Farm and using its output. While “supercomputers” may be 
super at fast processing, they can be bottlenecked by file storage and transfer (Xie et al., 2012). Multiple models 
and multiple scenarios for hundreds of years for thousands of pixels result in a lot of data. Supercomputers are 

Figure 5.  Inter-simulation visual diagnostics for MsTMIP Phase II 
experiments show how a single model changes output among five different 
climate projections and two Representative Concentration Pathways (RCPs). 
The climate projections are from five Earth System Models: (1) CESM1-
CAM5, (2) GFDL-CM3, (3) HadGEM2, (4) IPSL-CM5A-MR, and (5) MPI-
ESM-MR. The two RCPs are: (1) business-as-usual (RCP8.5) and (2) medium 
mitigation (RCP4.5). Output is for Net Primary Productivity (NPP) for the 
HyLand model. The top set of lines (primary y-axis) is the annual average 
from 1901 to 2100 (1901–2010 is from the retrospective SG3 scenario, black 
line). The bottom set of lines (secondary y-axis) is the latitudinal/zonal sum 
from 55°S to 85°N.
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not data archive centers, and so a conflict arises when these requirements are levied upon them at least in the 
relative short term. There needs to be a place to move intermediary model output before they are finalized for 
storage at a data archive, allowing time for debugging and output assessment. Moreover, supercomputers are a 
shared resource, and one cannot monopolize time on them for extended periods. Patches that require extra spin-up 
time to reach equilibrium run into that conflict, requiring disproportionate labor to complete a small number of 
pixels. Additionally, supercomputers are continually evolving, updating, and being replaced (Lim et al., 2015). 
Migration and re-setup of the Farm are very time-consuming for each new system.

Beyond the technical challenges, there are bounds to the scientific utility of the Model Farm output. Like super-
computers, individual models are continuously evolving and updated by the respective modeling teams (e.g., Bo-
nan, 1998; Bonan & Levis, 2006; Bonan et al., 2002; Lawrence et al., 2011, 2019). It requires significant labor to 
repeatedly replace Farm models with their most recent versions; inevitably, the models in the Farm may not be up 
to date. As such, examination of model Farm output may not necessarily be from the most recent model versions. 
This issue is common for traditional MIPs too, though modelers sometimes update their results later for the MIPs 
as their models change. Some MIPs manage to conduct regular updates (Friedlingstein et al., 2020). On the other 
hand, models in the Farm might be considered more stable than newer model versions that may still have bugs 
to be discovered. Further, when trying to publish results from most MIPs, reviewers typically hit those papers 
with, “Why did the models behave the way they did?” This is challenging for any individual modeler to answer 
about their own model, let alone a centralized system that runs other people's models as effective “black boxes.”

So, how do we overcome these challenges, yet still advance the needs for robust MIPs? In Fer et al. (2021), we 
presented a roadmap to community cyberinfrastructure for ecological data-model integration. Five community 
tools are needed to accelerate the merging of models and data: (a) shared workflows, (b) scalable data ingest, (c) 
calibration, (d) benchmarking, and (e) iterative data assimilation. While the Farm addresses (a), (b), and some 
of (d), all five of these tools are implemented within a multimodel workflow management system called PEcAn 
(Dietze et al., 2013; LeBauer et al., 2013). PEcAn, like the Model Farm, is a tool to run multiple TBMs on a 
centralized system. However, unlike the Model Farm, PEcAn is an open-source utility that is available to anyone 
(pecanproject.org), can be installed on anything from a laptop to a supercomputer, or can be run in the cloud. 
As such, PEcAn operates as a distributed network of nodes rather than a single centralized server, which allows 
MIPs to either be fully centralized on one node—analogous to the Farm—or run by individual teams and synced 
via the PEcAn API, which may reduce the “other people's models” challenge mentioned earlier. Because PEcAn 
is containerized in Docker, it also greatly reduces the challenges of getting new models compiled and running on 
new serves as well migrating the system when systems are upgraded.

PEcAn provides a number of language-agnostic API tools to assist with model calibration, data fusion, analysis, 
and provenance tracking (Fer et al., 2018; LeBauer et al., 2013; Shiklomanov et al., 2020). As part of its data 
assimilation workflow, PEcAN can quantify, propagate, and analyze uncertainties associated with parameter, 
driver, and initial condition uncertainty distributions (Dietze et al., 2014). Further capabilities are in progress 
that are not too dissimilar from a community model including, for example, links to benchmarking and validation 
efforts (Abramowitz, 2012; Blyth et al., 2011; Collier et al., 2016; Kelley et al., 2013; Luo et al., 2012; Randerson 
et al., 2009; Schwalm et al., 2010). PEcAn's initial development has been focused on site- to continental-scale 
research; whereas, the Model Farm has focused on global runs, requiring the distribution and gathering of inputs 
and outputs. Still, like the Farm, PEcAn requires significant modeler time to develop couplers for inputs, runs, 
and updates. Nonetheless, PEcAn provides an excellent platform for unifying models for MIPs and ultimately 
saves researchers' time on developing the informatics and analysis tools built into PEcAn; we highly recommend 
that modelers begin to explore it. A blend of a centralized Farm team with the open platform of PEcAN could be 
a beneficial combination. The next frontier is a merger of the strengths of the Model Farm and those of PEcAn, 
which can create a whole that is larger than the sum of its parts.

5.  Conclusion
Earth system modelers are like the blind men and the elephant, each trying to seek the truth in front of them—the 
future of the Earth; and, each saying something different, yet similar. By working together through MIPs, we 
may be able to piece that picture together (Figure 6). Yet, MIPs are challenging, and we need to ensure that each 
of those voices accurately depicts a defined perspective. We attempted to systematically unify and control for a 

http://pecanproject.org


Journal of Advances in Modeling Earth Systems

FISHER ET AL.

10.1029/2021MS002676

12 of 16

number of “free parameters,” or degrees of freedom, in MIPs through a centralized Model Farm. While solving 
these problems raised other challenges, we did bring something novel to the conversation of how MIPs are op-
erated and interpreted. As we collectively continue to strive toward understanding the future, we must not only 
continue working together, but we must do so with improved consistency, transparency, and efficiency. And, we 
must do so quickly, as time is of the essence—the elephant may be gone by the time we figure out what was in 
front of us.
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