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Connected Cooperative Ecodriving System
Considering Human Driver Error

Xuewei Qi', Member, IEEE, Peng Wang

Kanok Boriboonsomsin

Abstract—In recent years, eco-friendly driving or ecodriving
technologies are being developed to assist human drivers to
achieve maximum fuel/energy efficiency in different driving
conditions. Enhanced by V2X wireless communications, con-
nected ecodriving is expected to be very promising in reducing
transportation-related fossil fuel consumption as well as pollutant
emissions. Besides, the deployment of electric vehicles (EVs)
also has great potential in reducing greenhouse gas emissions
due to the use of batteries as the sole energy source. Although
recent research shows that significant energy savings can be
achieved with the aid of ecodriving systems in real-world driving,
there have been very few research efforts that consider human
driver error, especially for electric vehicle (EV) driving. In this
paper, a connected cooperative ecodriving system for energy-
efficient driving that considers human driver error is designed
and evaluated with an EV energy consumption model. Real-
world driving data were collected and used to evaluate system
performance in terms of energy consumption. The simulation
and numerical analysis shows that an average of 12% energy
savings can be achieved by the proposed system that considers
human driver error comparing with the conventional ecodriving
system without considering driver error.

Index Terms— Intelligent vehicles, advanced driver assistance
systems, electric vehicles, ecodriving.

NOMENCLATURE
d distance of vehicle to intersection
T desired time to arrival at the intersection
v(t)  vehicle speed at time step ¢
v,(t) reference speed of the vehicle at time ¢
x(t)  the vehicle’s position at time ¢
oM upper bound of allowed vehicle speed
Om lower bound of allowed vehicle speed
ay bound of vehicle acceleration
dy bound of vehicle deceleration
dupy  upper bound of jerk
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uy(t) actual acceleration/deceleration of vehicle

u(t) reference acceleration/deceleration suggested by the
driving assistance system

w human error

Cp the drag coefficient of the vehicle

Da the air density

Ay the frontal area of the vehicle

M the vehicle mass

0 the road gradient

g the acceleration of gravity

u the rolling friction coefficient

N, number of discretized error states
T. transition matrix of Markov chain

Tjj transition probability from state i to state j

[ time horizon of the stochastic model predictive
control

Ds probability of error occurrence

N, total number of scenario trees

Npe number of scenarios generated by Monte Carlo
method

to initial time

k time step in stochastic model predictive control

I. INTRODUCTION

IR pollution and climate change impacts associated with

the use of fossil fuels in transportation have continued to
attract public attention. Reducing transportation-related energy
consumption as well as criteria pollutant and greenhouse gas
(GHG) emissions has been one of the goals of public agencies
and research institutes for years. In 2014, the total energy con-
sumed by the transportation sector in the United States was as
high as 24.90 Quadrillion BTU (British Thermal Unit) [1]. The
U.S. Environmental Protection Agency (EPA) reported that
nearly 27% GHG emissions resulted from fossil fuel combus-
tion for transportation activities in 2014 [2]. Therefore, many
researchers are motivated to search for different ways to reduce
transportation-related fuel consumption and emissions from
different perspectives [3]-[8]., such as, 1) building more envi-
ronmentally friendly vehicles, which includes but is not limited
to creating alternative fuel vehicles (AFVs), e.g., electric vehi-
cles (EVs); 2) taking advantage of transportation infrastruc-
ture, for example, reducing traffic congestion or unnecessary
stop-and-go behaviors at signalized intersections in arterials by
using vehicle-to-infrastructure (V2I) wireless communication;
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and 3) analyzing the impact of human driving behavior on
vehicle energy consumption. For example, the unnecessarily
aggressive acceleration and decelerations could be reduced to
avoid additional energy consumption by training the drivers
to have good driving habits through the ecodriving training
programs [8].

Transportation electrification is one of the promising ways
to significantly reduce fossil fuel consumption and emissions
from the transportation sector. However, the mass adoption
of EVs has been impeded by limited availability of charging
infrastructure, long charging time, and limited travel range
per charge. These can cause driver’s concern which is called
“range anxiety” [9]. There have been efforts to overcome these
barriers by advancing battery technology [10] and investing
in electric charging infrastructure [11]. However, very few
efforts so far have been focused on improving the energy
efficiency of EVs through vehicle connectivity and automa-
tion. Furthermore, the dynamic interactions between vehicle,
infrastructure, and human driver and their aggregated energy
impact on the energy efficiency of EV driving is not well
investigated.

To fill the research gap, a driver-in-the-loop connected
ecodriving system for energy-efficient driving that consid-
ers human driver error is designed under a driver-vehicle-
infrastructure cooperation framework. The proposed system
is evaluated with electric vehicle energy consumption model
and compared with a conventional ecodriving system that
does not consider human driver error. The designed system
is capable of estimating the human driver error and making
adjustment to mitigate the negative impact of such error on
system effectiveness in order to achieve the maximum energy
efficiency benefit. Real-world driving data were collected and
used to evaluate system performance in terms of energy
consumption. The major contribution of this study is its effort
to advance the state-of-the-art of ecodriving by considering
the human errors for EV driving. It is the first-of-its-kind
connected cooperative ecodriving system considering human
driver error that is evaluated with real-world EV driving
data.

II. BACKGROUND & RELATED WORKS
A. Connected Ecodriving Technology

In recent years, a significant amount of effort has
been made worldwide in developing energy/environment-
focused connected vehicle (CV) applications through various
research programs, for instance, the European Union (EU)’s
eCoMove [12] and Compass4D [13] programs and the United
States” AERIS (Applications for the Environment: Real-Time
Information Synthesis) program [14]. Among all the CV
applications developed under the AERIS program, the Eco-
Approach and Departure (EAD) at signalized intersections
application is furthest along and has shown great promise
in terms of reducing fuel consumption and emissions [15].
Just like many other CV applications that involve determining
optimal speed profiles for vehicles traveling within the urban
transportation network (e.g., [16]-[20]), the EAD application
utilizes signal phase and timing (SPaT) information from
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Fig. 1. Ilustration of different vehicle trajectories traveling across a
signalized intersection.

the upcoming traffic signal to determine a speed profile that
minimizes fuel consumption and emissions when approaching
and departing the signalized intersection. The speed profile is
then conveyed to the driver through a driver-vehicle interface.

Basically, there are four different “passing scenarios” when
a vehicle travels through an isolated signalized intersection
without the interaction with other traffic. The speed profiles
of these four scenarios are shown in Fig.1. All these speed
profiles have the same initial and final speeds and cover
the same distance (i.e., the analysis boundary). Each passing
scenario can be described as follows:

o Scenario 1 (cruise): The vehicle cruises through the
intersection at a constant speed (green solid line);

o Scenario 2 (speed up): The vehicle speeds up (within
the speed limit) to pass through the intersection and then
slows down to the initial speed after the intersection (blue
dashed line);

o Scenario 3 (coast down with stop): The vehicle coasts
down and stops at the intersection (red solid line);

o Scenario 4 (coast down without stop or glide): The
vehicle slows down and passes through the intersection
without stopping, and then speeds up to its initial speed
(yellow dashed line).

B. Human Factor in Ecodriving Technology

Some of the current connected ecodriving technologies are
based on the assumption that the driver is able to follow
the instruction precisely, which is actually impossible in most
cases. In our previous study, the fuel savings from the EAD
system for an ICE vehicle traveling along an actuated signal-
ized corridor was found to reach 10% in numerical simula-
tion [21], but it was only 2% in real-world test driving [22].
The difference in fuel savings benefit is at least partially
due to the imperfection of the human driver trying to follow
the recommended speed profile. In this study, we define
“human driver error” as the error when driver is trying to
follow the suggested optimal driving strategy (e.g., optimal
speed), which is elaborated in the following section. There
are also some efforts that explicitly investigated the energy
impact of human driver error on ecodriving systems. In [23],
a proportional-integral-derivative (PID) function is used to
model driver behavior in response to the speed guidance. The
simulation results show 4% of energy savings as compared to
the scenario without considering driver behavior. One possible
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issue in applying such model is the difficulty in identifying the
appropriate gains for the proportional, integral, and derivative
components that reflect different driving habits. In addition,
this PID model is not good at considering the expected human
driver error in future time steps and therefore no optimization
is conducted according to such error.

There are some existing results on stochastic model pre-
dictive control (SMPC), but most of them are on linear
systems [29]-[31]. For example, in [29], a stochastic model
predictive control method is used for hybrid electric vehi-
cle (HEV) energy management. It treats human error as a
stochastic process, models human error with Markov chains,
applies a linear stochastic model predictive control to HEV
energy management, and simplifies the computation burden
with scenario based algorithms. But this study does not
consider the nonlinear dynamics of vehicles, which is very
important to reduce energy consumption of the vehicles. There
is very limited study on nonlinear stochastic model predictive
control. The stability of nonlinear SMPC using Markov chain
Monte Carlo optimization is discussed in [32]. The nonlinear
systems with Markov switching properties is investigated
in [33]. But neither of them deal with the computational
issues.

To address these issues, we propose a Markov chain based
driving error estimation model based on a nonlinear longitudi-
nal dynamics of vehicles. The error estimation model can adapt
to the changing driving behavior and also estimate the driving
error in multiple time steps ahead. The nonlinear longitudinal
dynamics of vehicles can model the movement of vehicles in
a more precise way so that the results can be more practical.
In addition, scenario based SMPC as described in [29] is
adopted to address the high computational cost issue. We select
the total number of scenarios to achieve a balance between
the optimality and the computational overhead. Moreover,
the approach in this paper can also be classified as human-
in-loop semi-autonomous systems. Nunes ef al. [34] gave a
comprehensive overview of human-in-loop cyber-physical sys-
tems. Shia et al. [35] developed a semi-autonomous vehicular
control method for threat assessment when correcting the
human inputs is necessary. In [36], semi-autonomous vehicle
control is considered for road departure and obstacle avoidance
using a driver steering model. In this paper, we consider and
model human errors as Markovian processes. More details are
given in the following sections.

C. Connected Ecodriving Technology for EVs

While there has been much recent research on developing
EAD systems for ICE vehicles, very little has been developed
specifically for EVs. A dynamic programming (DP) based
EAD system is developed for EVs along signalized arteri-
als [24]. The proposed model was tested in the simulation
with very limited signal phase conditions. Zhang and Yao [25]
developed an EAD system for EVs based on their own EV
energy consumption estimation model. The system evaluation
was conducted in a simulation environment under four simple
scenarios with different signal phases. To the best of our
knowledge, there has been little research that investigates
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Fig. 2. A driver-vehicle-infrastructure cooperative framework for energy
efficient driving.

ecodriving systems for EVs based on real-world driving data.
There has been no effort to account for human driver error in
ecodriving technology for EVs either. This study aims to fill
these research gaps.

III. METHODOLOGY

There are a variety of factors that influence the energy
consumption of vehicles, which can be mainly classified into
the following categories:

o Vehicle-related: Many vehicle-related factors could influ-
ence the energy consumption, such as powertrain type
(i.e., ICE or EV), powertrain efficiency, vehicle mass, etc.

o Driver-related: Driving behavior is the major driver-
related factor for vehicle energy consumption. For exam-
ple, aggressive acceleration and deceleration causes
additional energy consumption as compared to normal
driving.

o Infrastructure-related: Traffic signal is one major type of
traffic infrastructure in urban areas. It influences vehicle
energy consumption due to stop and idle at signalized
intersections.

In a driver-vehicle-infrastructure cooperation (DVIC) sys-
tem (see Fig.2), the energy efficiency of EVs can be mini-
mized by considering all the factors together in a connected
vehicle environment. In the connected vehicle environment,
a vehicle equipped with wireless communication devices can
share its location, speed, heading, and many other data in
real time with nearby equipped vehicles and the surrounding
equipped infrastructure. Therefore, in the designed cooper-
ative system, the vehicle and the infrastructure are tightly
integrated by taking advantage of advanced wireless com-
munications, high accuracy positioning, and on-board sensing
technology. In addition, the impact of driving behavior is also
integrated into the framework by modeling and estimating
human driver error introduced into the control loop. In the
designed cooperative system, the interaction between any
two components (e.g., between infrastructure and vehicle) are
bidirectional. For example, a vehicle can adjust its speed
according to SPaT of the upcoming traffic signal. The traf-
fic signal is also able to adjust its SPaT according to the
vehicle states at the intersection (e.g., as in traffic signal
priority).
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A. Connected Ecodriving Without Considering Driver Error

In this work, EAD systems are designed for EVs to achieve
the most energy-efficient driving at signalized intersections.
As a baseline for comparison, an EAD system without con-
sidering human driver error is designed according to Fig. 3.
The vehicle trajectory planning algorithm (VTPA) generates
an optimal speed profile based on real-time SPaT information.
The optimal speed profile is advised to the human driver
through the in-vehicle display, and the human driver controls
the vehicle’s longitudinal speed through the gas pedal and
brake.

As explained in Fig.1, there are different passing scenarios
for the vehicle to pass through a signalized intersection.
Among all the possible speed profiles with which the vehicle
can safely travel through the intersection, the vehicle trajectory
planning algorithm (VTPA) will choose the one that minimizes
tractive power requirements, and thus energy consumption of
the EV( by assuming the motor efficiency and other loss
are not dependent on vehicle dynamics). For a given passing
scenario, the speed profile for approaching and departing the
intersection is calculated using the distance to intersection d,
desired time-to-arrival 7', and vehicle speed v, (f) at current
time 7o (we suppose fop = 0 when calculating reference speed),
based on the trigonometric model developed in our previous
work [26], [37]. The reference speed of the vehicle v, () at
time ¢ for the speed-up scenario (Vehicle 2 in Fig. 1) is shown
below as an example and those for other scenarios are put in
the appendix:

o, (1) )
vp— (p—0(0)) cos (mt), tel0 7[ ),
01— (01 —0(0)) =

I rT T w
cos[n(t—m—i-%)], te + ),

L2m” 2m ' 2n
m (7 o d
l)h+(l)h_l)(0))_, te _+_9_ 5
n | 2m  2n vy
m
—Jo-@i—o )™
d « f[d d =«
cos [n(t——+—)] te| —,—+—),
vp n vp vp  2n

v — (vp —0(0)) cos

in (s d 7r+7r | te_d—i—ﬂ 7T+7T+d
n - T 4 -~ 9 - _’_ -~ _7
vy, 2m  2n Lo 2n 2m  2n oy
3 T d
—+—+—,+OO),

0), te
°(0) |2m  2n vy

(1)
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where v, =
satisfies

d/T, m > 0 is the maximum value that

m- (v, —0(0)) < ay
m?- (v, —0(0)) < duy

dm w dm w\> T
. _— 20 ——Z2 ) —d4m?(=-—1
" m(l)h 2)+\/m (l)h 2) " (2 )

(0 —0(0)) < 2dupy

O T T op [T T
m>—\2/=—1+=—)or0<m<—(=-2/=—1

d 2 d

3)

Here, parameters m and n determine the shape of the speed
profile. They are also the dominant variables to control the
energy efficiency of the acceleration and deceleration process.
In [37], results indicated that if m and n satisfy Eq. (2)
and (3), then the tractive power (of a generic vehicle model)
would be minimized without compromising the driving com-
fort (constrained by the maximum jerk, duy, in this study)
and acceleration/deceleration capability (i.e., ay and dyy).
This trigonometric model was tested on ICE vehicles in our
previous work which showed 10-15% fuel savings. In this
study, a similar model is designed and tested on EVs to
improve their energy efficiency by recommending smooth and
energy-efficient speed profile at intersections.

B. Driver Error Modeling With Markov Chain Model

A nonlinear vehicle longitudinal dynamics model [27] is
adopted in this work:

x(t) = o(1),
5(1) = —-Copadyo (1) — g — 80 +us (1), (4b)
up(t) =u) +w() (4¢)

where x(¢) is the vehicle’s position; v(¢) is the velocity;
M = 1266kg is the vehicle mass; 6 is the road gradient
(@ = 0 in this work); g is the acceleration of gravity (i.e.,
9.8 m/s%); u 7(t) is the braking or traction force per unit
mass (i.e., the acceleration/deceleration generated from vehicle
propulsion) and is considered as the sum of actual vehicle con-
trol; u(t) is the optimal tractive force per unit mass suggested
by the driving assistance system; w(f) is the error (m/s?)
injected by the human when trying to follow the advised u;
Cp = 0.32 is the drag coefficient; p, = 1.184kg/m? is the air
density; A, = 2.5m? is the frontal area of the vehicle; and
& = 0.015 is the rolling friction coefficient. The values of
Cp, pa, Ay, and u can be found in [27].

The driver error in this study is defined as the difference
between the actual tractive force per unit mass (resulted
by human driver through gas paddle) and the optimal trac-
tive force per unit distance calculated by the VTPA model.

(4a)
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Fig. 4. HMI interface for in-vehicle advising.

And it is generated by human drivers when trying to follow
the advised speed displaying on the in-vehicle human-machine
interface (HMI) as shown in Fig.4. Fig.5 provides an example
on how to obtain the error from the real-world driving data.

To investigate the human error in a formal way, the error
is first discretized into a finite number of states N.. When we
look at the human error along the time step, it can be observed
that the human error in the next time step only depends on
the current error and it is driver specific. Inspired by this
Markovian property, a Markov chain model is adopted for
modeling the human driver error and it can help represent
the stochastic behavior of the human driver while tracking the
advised command from driving assistance system.

Now the driver error dynamics is modeled as a Markov
chain with a transition probability matrix 7, where its elements
7;; represents the probability of error state transition from state
i to j, where i, j < N,

791 T2 T3 TN, 1
T2 T2 132 TN,2

T,=| @13 123 73 TN,3 5)
TIN, T2N, T3N, TN, N,

The transition matrix is driver specific and can be obtained
from the real-world driving data collected from driving with
the designed driving assistance system..

C. Connected Ecodriving Considering Driver Error

By taking into account the abovementioned driver error,
an EAD system considering driver error is proposed (see
Fig.5). In this system, the designed VTPA is integrated with a
stochastic model predictive control (SMPC) strategy to calcu-
late the optimal advisory speed for EV drivers (see Figure 2)
based on the estimated human driver error when following the
advice, so that the resulting actual vehicle speed (with human
inputs) is as close to the calculated optimal vehicle trajectory
as possible. For each optimization time horizon, the future
human error during that time horizon is estimated based on
the probability transition matrix learned from the historical
driving data. From a control system perspective, the human
input error actually is regarded as a source of disturbances.
The receding horizon property of SMPC allows the system
to better handle predictable disturbances. The control system
diagram is provided in Figure 6.
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The above vehicle dynamics model described in eq. (4)
needs to be discretized as follows when implementing SMPC:

x (to + (k+ 1) At) = x (1o + kAt) + v (1o + kA1) At,
v (to + (k+ 1) At) = v (to + kAt)
1
+(—MCDpaAUv(to+kAt)2
—ug — g0 +uy(to +kAr))At, (6b)

(6a)

where 1 is starting time, At is sampling period, and k is time
step. For brevity, we denote x (fo + kAt) as x (k), v (fo + kAt)
as v (k), and u s (to + kAt) as uy (k) in the remaining of this
work.

For each finite time horizon, different trajectory states
may depend on different human error w at each time step.
Therefore, SMPC is used to solve this optimization problem
with the uncertainty of human error during each finite time
horizon. A scenario tree is developed consisting of different
paths from the root node to the leaf nodes. The root node is
the current state of the error w and the leaf nodes are the states
reached from the current state at the end of the time horizon /.
A scenario is defined by a path from the root node to leaf
nodes with different w values for each time step within that
time horizon. For each possible scenario, ps is defined as the
probability of its occurrence which is evaluated by the product
of the probability of all edges in the path. The number of the
generated scenario trees are denoted as N,,.. Figure 7 provides
an example of a scenario tree when N, is 3 and only 4 time
steps in the horizon.
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Algorithm 1 Monte Carlo method
Input: total number of sampling paths as N, time hori-

zon [

Output: human errors w (¢, Ny) at times t = 1,2, --- ,[—1
for scenarios Ny = 1,2, -+, Nyec.

1. for Ny =1: Ny

2 forr=1:1-1

3. generate a random number r () ~ U [0, 1]

4 set w (¢, Ny) as the j™ entry in the error vector if

-1
To(w(t — 1, Ny), k) <r(t) <
k=1

Jj
Z Te(w(t, NS)» k)
k=1
5. End for
6. End for

To obtain the Markov chains of human error on acceleration,
we first obtain velocity data of human drivers from road
test and the reference velocity data generated in Appendix.
With these velocity data, the difference (i.e., error) between
acceleration resulted from human driving and the reference are
computed. Then, we discretize the error data into several lev-
els, count the numbers of transitions between different levels
at consecutive time steps and divide them by the number of all
transitions to get the transition matrix 7,. After obtaining T,
we generate the scenarios trees with Algorithm 1. For example,
as seen in Fig.7, the initial error at 70 is known. Then the error
at time 71 is generated obeying the probability determined by
the transition matrix in (5). From the generated error at 71,
the error at time 72 is also generated from the transition matrix
in (5). So are the errors at #3 and r4. We repeat the process
Ny, times, where N, = 3 in Figure 7. The probability of
occurrence of example scenario path (with red solid arrow) is
p=0.11x0.75x%0.33x0.08=0.0022, where the numbers at the
red arrow represent the probability of state transition of the
Markov chain.

When the probability of each possible path is obtained,
the cost function of SMPC is defined as the expected (or mean)
square errors between the reference speed and the predicted
speed over the time horizon as follows:

Npe 1+l
E@®—v,)" = Z Ds Z [v (k) — v, (k)]%, @)
s=1 K=t+1

where E represents expectation, v and v, represent the real
speed and the reference speed of the vehicle while v (k) and
v, (k) represent the real speed and reference speed at time
instance k, where v, is determined in (1).

Therefore, the objective function is defined as the expected
sum of squared differences between the modeled and reference
velocities. We also consider box constraints for the velocities,
acceleration/deceleration, and jerk values. In summary, the
optimal control problem based on SMPC can be formulated
as:

Nme t+1
argminuf z Ds z [v (k) — o, (k)]2

s=1 K=t+1
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subject to the discritized dynamics (6)

om <0 (k) <om,
uy (0)| < am,
iy (k+1) —uy (k)| < dup,

where ¢ is the current time; / is the optimization horizon;
v () is the velocity computed by the SMPC; v, (-) is the
reference velocity in (1); v, is the minimum allowable speed,
which is set to O in this work; vy, is the maximum allowable
speed (usually the speed limit); u )y is the maximum accelera-
tion/deceleration constrained by the vehicle propulsion power
(here we suppose ay = dy); and duys is the user-defined
maximum jerk (mainly for driving comfort). We use 1 second
as the sampling period and the control horizon of the SMPC is
tunable and will be discussed later. Note that as the dynamics
in Eq. (4) are nonlinear, the optimization problem at every
time step of the SMPC is non-convex.

It is also noted that the total number of scenario paths is N..
For example, if there are 10 levels of human error (N, = 10)
and the length of horizon is 10 (/ = 10), then the total number
of scenario path would be 10'°. Henceforth, the increase
of N, and [ would significantly increase the computational
time. To make the solving of this optimization problem more
computationally tractable, the Monte Carlo method is adopted
to generate N,  realizations of scenario paths, where Ny,
the total number of sampling paths, is determined by balancing
the accuracy and computational efficiency. For each sampling
path, the predicted human error at next time instance is
generated obeying the probability distribution of the transition
matrix of Markov chain. Note that in Step 2, to obtain a
predicted human error following the probability distribution
of the Markov chain, a random number is generated by using
a uniform distribution. If the generated number is between the
accumulative distributed function values of the (j — 1)th and
jth error level, then the jth error level as the predicted error.
To solve the optimization problem in the SMPC framework,
the MATLAB command fmincon is used.

IV. REAL-WORLD DRIVING DATA PREPARATION

To fully investigate the performance of the proposed driver-
in-the-loop connected ecodriving system by comparing with
the existing systems, real-world driving data with the designed
open-loop EAD assistance system without considering human
driver error was collected. The field test was conducted at
the Turner-Fairbank Highway Research Center (TFHRC) in
McLean, Virginia using the Saxton Lab Intelligent Intersec-
tion, which offered a sheltered traffic environment where
the connected Ecodriving prototype was able to be tested
with minimal safety risk and without disrupting live traffic
operations [37]. Figure 8 provides an overview of the field
test site, specifying starting point where the vehicle began
test runs from a stop and traveled westbound towards the
intersection and relevant roadside infrastructure (including an
Econolite 2070 controller, Windows PC to encode SPaT and
MAP messages, and Arada Locomate DSRC Roadside Unit).
The test zone covers a range from 190 meters to the east of
the intersection to 116 meters to the west, which allows a
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Fig. 8. Field study site in Turner Fairbank Highway Research Center in
McLean, VA.

maximum traveling speed of up to 30 mph. The traffic signal
controller was set up for fixed timed signal plan: 27 seconds
of green, 3 seconds of yellow, followed by 30 seconds of red.
The in-vehicle advising interface is shown in Fig.4.

In order to comprehensively investigate the energy benefits
of the proposed system for EVs, we collected and processed
real-world driving data in 3 different technological stages as
elaborated in the following:

o Stage I: Uninformed driving. In this stage, the driver
approached and traveled through the intersection in a
normal fashion without guidance or automation, stopping
as needed without any guidance. The vehicle was fully
controlled by the human driver. This stage is used as
lower bound performance technological stage.

o Stage II: In-vehicle advising driving without consider-
ing driver error. In this stage, the driver was assisted
by an EAD system without considering driver error as
described in Fig. 3. An enhanced dashboard presenting
a recommended range of driving speed was provided
(see Figure 4). This information could assist the driver
to approach and depart from the intersection in an
environment-friendly manner while obeying the traffic
signal. This driving assistance system does not consider
human driver error.

o Stage III: In-vehicle advising driving with considering
driver error. At this stage, no real-world testing has
been conducted due to the limited resources. Instead,
we evaluated the performance of the designed EAD with
the driver-in-the-loop system in a simulation environment
developed in Matlab using data collected from the field
testing of Stage II. The same VTPA model was used to
calculate the optimal speed profile as part of the SMPC
control model. More details about the simulation are
given in the following sections.

To investigate different scenarios with respect to when a
vehicle enters a signalized intersection and gets an average
performance of the proposed system under various traffic
conditions, the field experiment was designed to have the test
vehicle approach the intersection at different time instances
throughout the entire signal cycle (i.e., every 5 seconds in
the 60-second cycle). We call these different entering cases as
“entry cases” in the rest of this paper. Furthermore, the test
vehicle approached the intersection at different operating
speeds (i.e., 20 mph and 25 mph). Therefore, a test matrix
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was designed, consisting of the operating speed along the
vertical axis, and the entry case across the horizontal access.
In this matrix, there are a total of 12 entry cases x 2 speed
levels = 24 test cells. For Stage I and Stage II experiments,
a total of four drivers were recruited to conduct test runs.
Each driver completed each of the test cells in the test matrix.
Therefore, a total of 24 test cells x 2 stages x 4 drivers =
192 test runs were conducted. For each test run, data such
as speed and distance to the stop bar were logged at 10 Hz
and post-processed to determine energy consumption and
other performance measures. It is noted that a hybrid vehicle
(2012 Ford Escape) was used in the field study for the purpose
of data collection. The energy consumption was estimated
by the EV energy consumption model (see Section V) based
on the collected driving speed trajectories for different cases.
The proposed system is evaluated only on EV platform with
a microscopic EV energy consumption model. The hybrid
vehicle is only used for driving trajectories collection in the
field test.

V. SIMULATION AND NUMERICAL ANALYSIS

With the collected field driving data, additional simulation
and numerical analysis are conducted to validate the perfor-
mance of the proposed system.

A. EV Energy Consumption Estimation Model

Accurate estimation of EV energy consumption using real-
world driving data (e.g., vehicle speed trajectory) is critical
in evaluating the energy performance of different ecodriving
technologies. In this study, a microscopic EV energy con-
sumption estimation model developed in [25] considering the
regenerative braking was adopted to calculate the EV energy
consumption based on the vehicle speed profiles. This model is
built based on the real-world EV driving data considering dif-
ferent EV driving mode, such as the acceleration mode, idling
mode. For each driving mode, the real-world driving data
includes the second-by-second vehicle speed and actual energy
consumption. This model is used in this study to calculate the
energy consumption of different EV driving trajectories. This
model was designed for 4 different EV driving conditions:
accelerating, decelerating, cruising and idling. The final model
is presented as follows:

r 3
(> > Uiy xo'xuk))
e 1=0J=0 ur >0
303 o
(X X (mijxv’xu}))
ECR = {e =070 ur <0 ®)
3 .
(2 (ixv")
e i=0 ur=0, 0v#0
| const ur=0, =0

where ECR is energy consumption rate (Watt); /; j, m; j and
n; are coefficients for ECR at speed power index i(i = 0,
1, 2, 3) and acceleration power index j (= 0, 1, 2, 3); v is
instantaneous speed (km/h); u s is instantaneous acceleration
(m/s?); const is the average energy consumption rate for
idling. The coefficients in this model were obtained through
training with real-world driving data and can be found in [25].



2728

o
o o
i /

Transition Probability
o
@

Error levels

o
o

o
o

Transition Probability
o o
N R

Error levels

Error levels .
(b)

Fig. 9. 3-D plot of probability transition matrix. (a) Driver 1. (b) Driver 2.

B. Driver Error Estimation With Real-World Driving Data

As described in the previous section, the dynamics of human
error is modeled as Markov chain. Now with the collected
driving data, the probability transition matrix for each of
these drivers can be built. In this study, the human error is
discretized into 9 levels: —0.4, —0.3, —0.2, —0.1, 0, 0.1,
0.2, 0.3, 0.4. Please note the actual error value would not be
those exact 9 values, but we use them to best approximate
the actual value. For example, when the error is between
—0.1 and 0.1 we use O as the estimated error value. In this
work, the human driver error is extracted from the real-
world with the method described in Fig.5 using the Stage II
driving data. The probability transition matrix for each of
the 4 drivers was built. For example, the transition matrix
for driver 1 is given as follows and the 3-D plot is given
in Fig. 9a.

[0.33 031 0.13 0.15 003 0 0 005 O
0.12 0.62 026 O 0 0 0 0 0
0.04 0.15 0.60 0.15 003 002 0 001 O
0.01 0.01 0.06 0.53 037 0.02 O 0 0

0 0 0 0.07 087 005 O 0 0

0 0 0 0.07 060 031 002 O 0

0 0 0 0.06 0.09 024 0.42 0.15 0.03

0 0 0 0 0.05 008 0.21 0.47 0.18
| 0 0 0 0 0 0 010 0.35 0.55 |

As can be seen in the transition matrix, the diagonal entry of
the matrix is the biggest value for each column. This implies
the latency of human driving manipulation since the human
error at the immediate next step is most likely to be within
the same range of the current error level. It is also noticed
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Fig. 11. Speed trajectory of EAD without considering driver error (real-world
driving by driver 1 in entry case 11).

that different drivers have different driving behavior or habit,
which results in different transition matrix patterns that can
be identified by comparing Fig.9a and Fig. 9b. For example,
there are some off-diagonal peaks for Driver 2. The possible
explanation of the off-diagonal is that driver 2 has some unique
driving behavior, for example, driver 2 tends to give very
aggressive acceleration when the driver notices the vehicle
speed is blow certain speed level. The off diagonal could also
be resulted from the error in the collected data. This could
be a potential future research topic which is about identifying
the relationship between different driving behaviors and the
transition probability matrix patterns.

C. Simulation of EAD System Considering Driver Error

In this study, the EAD assistance system considering driver
error was not implemented in filed driving but simulated
with the real-world driving data collected from EAD assisted
driving without considering driver error. In the simulation
framework as shown in Fig.10, the built human error probabil-
ity transition matrix is used in two places in the simulation for
different purposes. One is used to estimate the human driver
error that is input for the SMPC model. Another is used to
replace the real human driver who adds in error when trying to
follow the advised speed. These two matrices should be from
the same driver and we assume the driving habit (represented
by the error probability transition matrix) is not significantly
changed during the simulation time.

To extensively evaluate the performance of EAD with
driver-in-the-loop, the simulation is conducted using the field
test driving data for every entry case described in the previous
section (192 in total), so that the average performance can
cover different driving conditions and different drivers. The
vehicle speed trajectories obtained from the simulation are
compared with that of real-world test driving. For example,
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Fig. 12. Speed trajectory of EAD considering driver error(simulation driving).
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Fig. 14. Time and energy consumption by different horizon length.

Fig.11 provides the vehicle speed trajectory and its reference
speed trajectory in entry case 11. As we can see in the
figure, the reference speed is adjusted or recalculated for
3 times (marked by A, B, and C in the figure) due to the
increased human driving following error. Although with the
reference speed adjustment, the final driving speed trajectory
is still away from the advised optimal speed due to the
unavoidable human error. However, in Fig.12, we can see that
the speed trajectory by EAD with driver-in-the-loop follows
the referenced speed trajectory for most of the simulation time
(using the same initial speed, initial position and entry time).
It is also observed that the speed trajectory resulting from
EAD with considering driver error is much smoother than that
of EAD without (shown in Fig. 13), which could be another
reason of energy saving that will be discussed in the following
sections.
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D. Real-Time Performance and Parameter Tuning

In the implementation of the proposed SMPC system,
to ensure the real-time performance, the optimization of each
time horizon should be finished within one-time step (e.g., 1s).
In our study, the running time is recorded on the computing
platform used for simulation (with Intel Core i7 3.4GHz,
RAM 4G, and 64bit-Matlab 2012). Fig. 16 provides the time
consumed for time horizon by different horizon length (for
driver 1 and entry case 7, and the total number of sampling
paths is 100). As we can see that, more than 1 second is
consumed when the horizon length is longer than 10s, which
means the real-time performance is ensured when horizon
length is shorter than 10s. It is also noticed that the minimal
energy consumption (marked in the Fig.14 with a circle) is
identified around the horizon length 9 and 10. Therefore,
the length of the receding horizon (/) in this study is set
as 10.

In addition, another important parameter that can be tuned
to maximize the performance of the SMPC based EAD with
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Fig. 18. Speed trajectory of EAD with/without driver-in-the-loop (for case 4,
driver 1).
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Fig. 19. Speed trajectory of EAD with/without driver-in-the-loop (for case 9,
driver 1).
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Fig. 20. Speed trajectory of EAD with/without driver-in-the-loop (for case 12,
driver 1).

driver-in-the-loop, is the total number of sampled scenario
paths (Np.). Fig. 15 presents the energy consumption by
different numbers of scenario path sampling size and it
is observed that the increase of sampling size is not able
to improve the performance (i.e., reduce energy consump-
tion). A possible reason is that, the scenario path with very
small probability is not likely to be sampled no matter
how large the sample size is. Hence we set the sampling
size (Npc) is 100, which is marked by a circle in the
figure.

E. Energy Savings Analysis

As described in Fig.1, there are 4 different passing scenarios
for a vehicle passing through an intersection. Fig. 18 gives the
passing scenarios (in different colors) resulting from different
stages of technology (for driver 1 with 25 mph initial speed).
It is observed in Fig.16 that for some entry cases, the passing
scenario is changed due to the consideration of human driver
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TABLE I
SCENARIO-CHANGE ANALYSIS

Stage Scenario  Energy savings
Change  in mean  max
MvsIIl  3-2 191%  25.7%  40.5%
IMvsIIl 3-4 9.9% 18.9%  26.7%
IMvsIIl  1-1 -6.7%  13% 10.3%
IMvsIIl 4-4 -155%  1.9% 13.2%
TABLE II

AVERAGE ENERGY AND MOBILITY IMPROVEMENT

Stage Energy benefit

(Energy savings)

min mean  max
I vs 11 -8.9% 11.7%  40.5%
Ivs1 -14.3%  12.1%  27%

error in the EAD system. For example, for entry case 1,
the test scenario in EAD with considering driver error is
4 rather than 3 in EAD without considering driver error.
It shows that a full stop at the intersection is avoided due
to the technology improvement, which will potentially reduce
the energy consumption.

As can be seen in Fig.17, the energy savings of Stage III
comparing to Stage II is significantly different for different
entry case. The largest energy saving occurs at the entry case
4 (40.5%) and the speed trajectories are shown in Fig.18.
The energy saving is due to the passing scenario change from
3 to 2. The avoidance of stop-and-go maneuvers is the main
reason of the energy benefit.

For the entry case 9, all the three stages result in passing
scenario 1. Therefore, there would be no significant energy
savings but even a smaller increase of energy consumption
(—7.8 %) due to the stochastic property of the SMPC strategy.
For the entry case 12, the energy saving (2.3%) is due
to the reduction of acceleration comparing a full stop for
Stage I or II. But this energy saving is much smaller comparing
to the entry case 4 (see Fig.18) where the unnecessary decel-
eration and acceleration are completely avoided. In addition,
the energy savings of Stage II comparing to Stage I are also
given in Fig.17.

To obtain a statistical performance evaluation, the collected
data of all the test driving and simulated driving (288 trips
in total) are used to calculate the energy savings resulting
from different stages of technologies. Table I gives the basic
statistics of energy savings for different passing scenario
changes. The change from 3 to 2 or 4 could result in the
majority of energy savings due to the reduced unnecessary
acceleration from low speed.

The overall average savings of Stage II vs. Stage I and
Stage III vs Stage II are listed in Table II. The EAD system
without considering driver error achieves 12.1% of energy
savings comparing to the human driving without any EAD
assistance. And the EAD assistance with considering driver
error can achieve 11.7% of energy savings comparing to EAD
system without. It shows that considering human driving errors
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in driving assistance systems has great potential in improving
the energy performance of connected ecodriving for electric
vehicles.

VI. CONCLUSIONS AND FUTURE WORK

In this study, a connected ecodriving system for energy-
efficient driving considering human driver error is proposed
under a driver-vehicle-infrastructure cooperation framework.
The proposed system is evaluated with EV energy consump-
tion models and compared with the conventional ecodriving
system without considering driver error. Real-world driving
data was collected and used to comprehensively evaluate
system performance in terms of energy consumption. The
simulation analysis shows that an average of 12% energy
savings can be achieved by the proposed system that accounts
for human driver error. The obvious limitation of this study is
that it does not consider the impact of traffic conditions which
are expected to degrade the energy saving performance of the
proposed system. But the finding of this study will be used as
the performance upper bound with no traffic impact. Future
work will be focused on further evaluation of this proposed
system with more real-world testing that considers different
traffic conditions.

APPENDIX

Reference speed for scenario

(vehicle 3 in Fig. 1):
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Reference speed for coast-down-without-stop scenario
(vehicle 4 in Fig. 1):
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