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Abstract

Motivation: Flow cytometry (FCM) and transcription profiling are the two widely used assays in translational im-
munology research. However, there is no data integration pipeline for analyzing these two types of assays together
with experiment variables for biomarker inference. Current FCM data analysis mainly relies on subjective manual
gating analysis, which is difficult to be directly integrated with other automated computational methods. Existing
deconvolutional analysis of bulk transcriptomics relies on predefined marker genes in the transcriptomics data,
which are unavailable for novel cell types and does not utilize the FCM data that provide canonical phenotypic defini-
tions of the cell types.

Results: We developed a novel analytics pipeline—FastMix—for computational immunology, which integrates flow
cytometry, bulk transcriptomics and clinical covariates for identifying cell type-specific gene expression signatures
and biomarker genes. FastMix addresses the ‘large p, small n’ problem in the gene expression and flow cytometry
integration analysis via a linear mixed effects model (LMER) for both cross-sectional and longitudinal studies.
Its novel moment-based estimator not only reduces bias in parameter estimation but also is more efficient than
iterative optimization. The FastMix pipeline also includes a cutting-edge flow cytometry data analysis method—
DAFi—for identifying cell populations of interest and their characteristics. Simulation studies showed that FastMix
produced smaller type I/II errors than competing methods. Validation using real data of two vaccine studies showed
that FastMix identified a consistent set of signature genes as in independent single-cell RNA-seq analysis, producing
additional interesting findings.

Availability and implementation: Source code of FastMix is publicly available at https://github.com/terrysun0302/
FastMix.

Contact: xing_qiu@urmc.rochester.edu or mqian@jcvi.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Different characteristics of the same subject in transcriptomics, proteo-
mics and metabolomics can now be measured using a variety of bioas-
says. Recent publications (Aevermann et al., 2021; HIPC-I Consortium,
2017; Li et al., 2021; McCall et al., 2021; Noecker et al., 2016; Pinu
et al., 2019; Tomic et al., 2019) have shown that the integrative analysis
of multi-omics data can identify patterns missed by individual assays.
However, how to deal with the large number of experiment variables

(p) involved in a multi-omics study, which is often much larger than the
number of samples (n), is highly challenging.

Currently, dimensionality reduction and regularization are two
major approaches to address this ‘large p, small n’ problem. For ex-
ample, DIABLO (Singh et al., 2019) uses sparse generalized canonic-
al correlation analysis (sGCCA) with L1 regularization [a.k.a.
LASSO (Tibshirani, 1996)] to predict patient’s disease type from
multiple assays. LUCID (Peng et al., 2020) uses latent unknown
clusters model with LASSO to integrate multi-omics data. UMAP
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and other embedding techniques are frequently used for dimension-
ality reduction in multi-modal data integration (Cao et al., 2020; Jin
et al., 2020). Regularized fixed effects regressions solve the ‘large p,
small n’ issue and reduce the variability in the estimation procedure
by shrinking the estimates toward zero (Hoerl and Kennard, 1970;
Tibshirani, 1996; Zou and Hastie, 2005). In comparison, a linear
mixed effects regression (LMER) shrinks the estimates toward the
fixed effects instead of zero, which are less biased (Maldonado et al.,
2009; Zhang et al., 2020). Conventional LMER fitting algorithms
such as lme4 (Bates et al., 2015), the reference implementation of
LMER in R programming language, use iterative expectation-
maximization (EM) algorithm to fit the model based on the (restricted)
maximum likelihood principle. This iterative process is slow and may
not converge, making LMER impractical for large-scale data analysis.

We developed a non-iterative, moment-based robust estimation
procedure for a wide class of LMER useful for gene expression and
flow cytometry data integration. We also designed a novel statistical
inference framework customized for the fitted LMER, which not
only selects significant fixed effects, but also classifies informative
random effects based on a mixture model. To exemplify the utility
of the proposed method (dubbed FastMix), we applied it to inte-
grate three types of data: (i) bulk gene expressions; (ii) proportions
of cell populations identified from flow cytometry (FCM); and (iii)
experimental and/or clinical covariates. FastMix is designed to
identify not only cell type-specific differentially expressed genes, a
common need in biological studies, but also cell type-specific signa-
ture genes, a problem not specifically addressed by the existing
methods. Figure 1 depicts the overall structure of FastMix includ-
ing automated analysis of flow cytometry data using DAFi (Lee
et al., 2018) for identifying proportions of the cell populations.
FastMix provide an in silico solution for inference of cell type-
specific expression signatures that complements the cutting-edge sin-
gle-cell transcriptomics.

2 Materials and methods

2.1 Motivating example: integrating flow cytometry,

transcriptomics and clinical data
In this example, we consider three sets of input data: (i) clinical
covariates (denoted as Clin), (ii) cell type proportions (denoted as
Cell) and (iii) bulk gene expression (denoted as Y). The composite
tissue data are modeled as

Yji ¼
XK

k¼1

Celljk � bkij þ �ij; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n: (1)

Specifically, Yji is the bulk expression of the ith gene and jth sample;
Celljk is the proportion of the kth cell type (population) in the jth
sample, and bkij is the gene expression contributed solely by the kth
cell type and �ij is the error. We propose to associate bkij (cell type-
specific gene expression) instead of Yji with the clinical data as
follows

bkij ¼ bki þ
XP

p¼1

Clinjp � aipk þ ekij: (2)

Here, bki is the baseline expression level, Clinjp is the pth clinical
covariate associated with the jth sample, aipk quantifies the linear as-
sociation between the pth clinical covariate and the ith gene specific
to the kth cell type. For the kth cell type, the ith gene is declared as a
cell type-specific differentially expressed gene (csDEG) for Clinjp, if
the following null hypothesis is rejected

H0;ipk : aipk ¼ 0; v:s: H1;ipk : aipk 6¼ 0: (3)

One straightforward approach to identify csDEGs would consist
of two stages: (i) apply an in silico deconvolution algorithm to
estimate b̂kij; and (ii) apply a differential gene expression analysis
(DGEA) to associate b̂kij with the clinical data. However, Equation

(1) is a ‘large p, small n’ problem because there are approximately
Knm unknown parameters (bkij) to be estimated from only nm
observations (Yji). While certain computational methods such as
non-negative matrix factorization (Gaujoux and Seoighe, 2012;
Lähdesmäki et al., 2005; Repsilber et al., 2010; Venet et al., 2001),
regularization (Newman et al., 2015) and Bayesian methods (Qiao
et al., 2012; Quon et al., 2013; Quon and Morris, 2009; Zhanget al,
2019a,b), can be used to obtain approximate solutions of an under-
determined system for deconvolution (Mohammadi et al., 2017),
the bias and variance of the estimated b̂kij are inevitably large, which
make downstream DGEA inaccurate.

Fig. 1. FastMix schematics and analytical pipeline. (a) FastMix takes three input

data matrices: a bulk gene expression matrix, a matrix of cell type proportions, and

a matrix of clinical covariates (both continuous and categorical). (b) Flow chart of

key steps of FastMix. (Details please refer to complementary material.) (i) The

FastMix model utilizes linear mixed-effects regression (LMER) model and mixture

distribution to construct a unified regression model for the three data inputs. (ii)

Reparametrize the FastMix model by vectorization and Kronecker product so the

data can be analyzed in a unified LMER model. (iii) The FastMix algorithm gains

computational efficiency through using a novel moment-based estimator of the co-

variance matrix B̂
ð0Þ

, followed by solving for the fixed effects estimate b̂
ð1Þ

and the

random effects estimate ĉ 1ð Þ
i , both of which depend on B̂

ð0Þ
. (iv) In FastMix,

csDEG identification is viewed as an outlier detection problem. It uses a trimming

technique to improve the robustness due to the existence of csDEGs (outliers). (v)

After trimming, re-estimate the variance-covariance matrix using the robust estima-

tor B̂T with bias correction, followed by re-estimating b̂ and ĉ i using B̂T . (vi)

FastMix performs hypothesis test and constructs quasi-P-values that indicate the

significance of csDEGs. (c) Using trimming improves the estimation of the covari-

ance matrix. Axes are random effect signals of two cell populations (Cell1 and

Cell2); dots are simulated data of 5000 genes, among which, 250 genes are true

csDEGs in the Cell1 direction (dark dots). Three ellipses are the density contour

curves that represent the 95% confidence region of the centered data distribution

with covariance matrices of: B that is the true covariance matrix shown as "True"

in the legend, B̂
ð0Þ

that is the initial non-robust covariance estimator shown as "No

Trim" in the legend and B̂T that is the robust covariance estimator based on trim-

ming shown as "FastMix" in the legend. Due to the existence of the true csDEGs

(outliers), B̂
ð0Þ

overestimated the true covariance matrix. The trimming-based esti-

mator B̂T is very close to the true covariance matrix. (d) Sample analytical pipeline

for cell type-specific differential analysis between disease and control groups by inte-

grating flow cytometry data and bulk RNA-seq data using two newly developed

computational algorithms DAFi and FastMix

4736 Y.Zhang et al.



2.2 FastMix model
We propose to jointly model the two-stage analysis in one unified
regression model. First, we combine Equations (1) and (2) to obtain:

Yji ¼
XK

k¼1

Celljk � bki þ
XP

p¼1

Clinjp � aipk þ ekij

0
@

1
Aþ �ij

¼
XK

k¼1

Celljkbki þ
XK

k¼1

XP

p¼1

CelljkClinjp � aipk þ ~� ij:

(4)

Here, ~�ij ¼ �ij þ
PK

k¼1 Celljkekij is the combined error term. To
model the direct association between the bulk gene expression and
clinical covariates (a common task in bulk DGEA), we further add a
main term Clinjp in Equation (4). Therefore, the unified model
includes main terms Celljk and Clinjp, and their interaction term
CelljkClinjp, which can be restated in the following standard multi-
variate regression model

Y ¼ XW þ E; Yji ¼
XL

l¼1

Xjlbli þ �ij : (5)

Here, Xjl is an element in matrix X :¼ Cell Clin Cell� Clin
� �

,
which has n rows and L ¼ Kþ Pþ KP columns (linear predictors).
Both bulk and cell type-specific DGEA (csDGEA) can be made from
the estimated linear coefficients (bli) based on this unified model.
Note that there are only about mL unknown parameters (bli) in
Equation (5), which is much smaller than Knm unknown parameters
(bkij) in Equation (1). Equation (5) is no longer a ‘large p, small n’ re-
gression problem when L < n, which is seen in many real-world
applications. However, Equation (5) is still a large-scale regression
model; so it is tempting to apply regularization techniques such as
ridge (Hoerl and Kennard, 1970), LASSO (Tibshirani, 1996) and
elastic-net (Zou and Hastie, 2005) to increase numerical stability and
improve prediction accuracy. However, these techniques have two
drawbacks: (i) they shrink the estimated linear coefficients toward
zero and create non-trivial bias; and (ii) the best penalty parameter(s)
are typically trained by time-consuming cross-validation (CV) proce-
dures. As an alternative, we propose to use linear mixed effects re-
gression (LMER) to reduce model complexity. Specifically, we
decompose the linear coefficients as

bli ¼ bl þ cli; (6)

where bl is the fixed effect of X�l to the entire transcriptome, and cli is
the gene-specific random effect associated with X�l. By combining
Equations (5) and (6), we obtain the following general FastMix model

Yji ¼
XL

l¼1

Xjlðbl þ cliÞ þ �ij : (7)

Compared to regularized regressions, Model (7) does not contain
hyperparameters that need to be trained, and shrinks the gene-
specific linear coefficients toward the fixed effects (bl) instead of
zero (Maldonado, 2009), thereby achieving variance-reduction with
less bias.

While the inference on bl can be made with a standard regression
t-test; no classical hypothesis test is applicable to gene-specific ran-
dom effects (cli) for theoretical reasons (Robinson, 1991). Note that
in most practical cases, the majority of the genes are non-
differentially expressed genes (NDEGs). In this regard, we recon-
sider the DGEA based on random effects as an outlier detection
problem, and adapt a non-parametric empirical Bayes method
(Efron et al., 2001; Qiu et al., 2005) to perform statistical inference.
Let i be a binary indicator for csDEG (i ¼ 1) and NDEG (i ¼ 0).
The prior probability of a gene being NDEG or csDEG is Pði ¼ 0Þ ¼
p0 or Pði ¼ 1Þ ¼ 1� p0, respectively. The mixture model (MM) of
the multivariate vector ci ¼ ðcli; l ¼ 1; . . . ;LÞ0 is

ci � f xð Þ; f xð Þ ¼ p0f0 xð Þ þ 1� p0ð Þf1 xð Þ; (8)

where x 2 R
L is a dummy variable, f0 �ð Þ is the component distribu-

tion for NDEGs and f1 �ð Þ is the component distribution for csDEGs.

Furthermore, we assume that: (i) p0 � 1� p0, i.e. most of the genes
are NDEGs; (ii) the conditional distribution of the multivariate vec-
tor ci given i ¼ 0 is a L-dimensional normal random vector centered

at the origin with covariance matrix B (no parametric assumptions
are needed for f1 �ð Þ); and (iii) let Da � R

L be the confidence region

of f0ð�Þ centered at the origin with probability 1� a with a relatively
large a, then

P ci 2 Daji ¼ 1ð Þ � P ci 2 Daji ¼ 0ð Þ: (9)

Intuitively, Equation (9) implies that, compared with NDEGs,
the DEGs can be viewed as ‘outliers’ (Fig. 1c). From the above
assumptions, the marginal distribution for the non-parametric em-

pirical Bayes method is

f xjið Þ ¼ f0 xð Þ :¼ / xj0;Bð Þ; i ¼ 0
f1 xð Þ; i ¼ 1

�
(10)

where /ð�j0;BÞ is the density function of a multivariate normal

random vector defined on R
L with zero mean and covariance

matrix B.
In summary, Equations (7), (8) and (10) specify the complete

FastMix model of the unified pipeline for the application of

csDGEA:

Yji ¼
PL

l¼1 Xjl bl þ clið Þ þ �ij; �ij � N 0; r2
�

� �
for the LMER model;

ci � f xð Þ; f xð Þ ¼ p0f0 xð Þ þ 1� p0ð Þf1 xð Þ for MM; and

f xjið Þ ¼ f0 xð Þ :¼ / xj0;Bð Þ; i ¼ 0
f1 xð Þ; i ¼ 1

for non-parametric empirical Bayes:

�

2.2.1 Computationally efficient FastMix algorithm

Conventional algorithms to fit a large LMER model such as
Equation (7) with high-throughput data are not only time consum-

ing but also prone to convergence issues and non-uniformity (the
DEGs and NDEGs do not follow the same distribution) in the data.

To address these challenges, we designed a novel LMER fitting
algorithm based on moment matching and trimming. The following
sections provide high-level descriptions of key steps in FastMix.

Technical details, including derivations, proofs and step-by-step pro-
cedures are provided in Supplementary Text.

2.2.2 Vectorization and Kronecker product

The FastMix LMER model can be concisely represented in vector-

ization form using Kronecker product (Horn et al., 1994):

Y ¼ Xbþ Zcþ �;

X :¼ 1m 	X ¼
X
..
.

X

0
B@

1
CA; c :¼

c1

..

.

cm

0
B@

1
CA;

Z :¼ Im 	X ¼
X

. .
.

X

0
B@

1
CA:

(11)

Note that X is N � L-dimensional, Z is N �mL-dimensional and c
is mL� 1-dimensional, where N ¼ mn is the total number of obser-
vations. In this form, Y is a long vector of length N, by column-wise

stacking of the bulk gene expression matrix; b is the long vector of
linear coefficients to be estimated of the same length; and � is the
corresponding error vector.

2.2.3 Moment-based estimation

An initial estimation of the linear coefficients, b̂
0ð Þ

i ¼
ðb̂li; l ¼ 1; � � � ;LÞ0, can be obtained through fitting the multivariate
linear regression in Equation (5) using the ordinary least squares
(OLS) criterion for each gene. Denote the sample covariance matrix
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of b̂
0ð Þ

i as R̂
b̂
ð0Þ 2ML�L. Even for NDEGs (i ¼ 0), R̂

b̂
ð0Þ is not an un-

biased estimator of B because

E R̂
b̂
ð0Þ ji ¼ 0

� �
¼ Bþ r2

� X0Xð Þ�1
: (12)

Based on the assumption that most genes are NDEGs, we propose
the following bias-corrected, moment-based estimator for an initial
estimation of B

B̂
ð0Þ

:¼ R̂
b̂
ð0Þ � r̂2

� X0Xð Þ�1
: (13)

Based on B̂
ð0Þ

, We apply the weighted least squares (WLS)
method to compute b̂

ð1Þ
, and use the empirical best linear unbiased

predictor (EBLUP) to compute ĉ 1ð Þ
i .

2.2.4 Trimming

Recall that there is a small but important subset of csDEGs pre-
sented in the data. When the csDEGs are present, ĉ 1ð Þ

i no longer fol-
lows a multivariate normal distribution. Of note, a csDEG for one
covariate may be an NDEG for another covariate. It is also possible
that a covariate is not associated with any gene (we call it an unin-
formative covariate). We designed a trimming procedure to remove
the negative impact of csDEGs to the parameter estimation for
FastMix: (i) use an information-based criterion to identify inform-
ative covariates; (ii) for informative covariates, remove genes that
are ‘outliers’ based on a Mahalanobis distance. The remaining
genes, denoted as S0 
 1; . . . ;mf g, will be used to refine the initial
estimation.

2.2.5 Re-estimation and bias correction

Based on our previous work on gene expression normalization (Cui
et al., 2021; Liu et al., 2017; Qiu et al., 2013, 2014), we know that
trimming can introduce noticeable bias in statistical inference. We
derive the trimmed and bias-corrected covariance estimates for B as
follows

B̂T :¼ K�1=2 ~K
1=2

R̂
b̂
ð0Þ ~K

1=2
K�1=2 � r̂2

� X0Xð Þ�1
: (14)

After obtaining B̂T , we adopt a method in Appendix 1 of
Cui et al. (2021) to correct bias in b̂ induced by trimming. Finally,
random effects are re-computed with EBLUP using bias-corrected
covariance and fixed effects. Figure 1c illustrates the advantage of
the trimming and re-estimation procedures.

2.3 Hypothesis test and quasi-P-value
Hypotheses about bl can be tested with standard regression F- and
t-tests. These results can be interpreted as whether X�l has significant
association with the whole transcriptome. On the other hand, we
cannot test H0 : i ¼ 0 (i.e. NDEG) versus H1 : i ¼ 1 (i.e. csDEG) be-
cause i is a random variable, not a parameter. Instead, we develop
the following P-value-like quantity (called the ‘quasi-P-value’) to
identify genes that have extremely large/small random effects based
on their distribution:

p̂li :¼ 1� U
ĉ lij j
r̂ĉ l

 !
: (15)

Here, Uð�Þ is the standard normal distribution function.
Although p̂li is not a classical P-value, in practice, it is a pragmatic
and efficient way to rank and select genes with strong association
with the lth covariate, which are the central inference output from
the FastMix model. For each component of the design matrix,
FastMix inference on random effects can be interpreted as:

• Cell—detection of cell type signature genes that distinguish cell

types from each other,
• Clin—bulk DGEA,
• Cell 3 Clin—cell type-specific DGEA (csDGEA).

2.4 Weighted FastMix model
We implemented weights (for covariance matrix) in the FastMix
model so that users can: (a) incorporate quality scores to weigh sam-
ples, and (b) account for serial correlation in longitudinal studies. If
unknown, the weighted covariance matrix can be estimated by tech-
niques we presented in (Zhang et al., 2019a,b) [getSigma() func-
tion from the PBtest R package]. See Supplementary Material,
Supplementary Section S2.3, for implementation details.

2.5 Discriminant analysis
By combining LMER and MM, we can define four types of discrim-
inant scores in FastMix that predict a binary response (e.g.
response to a vaccination) from the input data (e.g. bulk
gene expressions, cell proportions and subject demographics):
(i) single_score, an 1-dimensional score based on all input
genes; (ii) single_sparse_score, a 1-dimensional score
based on genes with significant interactions with the response;
(iii) multi_score, an n-dimensional score based on all genes; and
(iv) multi_sparse_score, a multivariate score based on genes
with significant interactions with the response. See Supplementary
Text, Supplementary Section S5 for technical details.

The analysis of flow cytometry data of the two vaccine studies
using DAFi (Lee et al., 2018) for identifying proportions of the im-
mune cell populations can be found in Supplementary Materials.

3 Results

3.1 Simulation studies
We outline three simulation studies designed to demonstrate the util-
ity and advantages of FastMix. Technical details are described in
Supplementary Text, Supplementary Section S3.

3.1.1 Simulation I: robustness in estimating covariance matrices

We simulated two cell populations with proportions Cell1 and
Cell2, with random effects c1i and c2i, whose covariance structure is
shown with the black ellipse in Figure 1c. We simulated expressions
of 5000 genes (dots); among them, 250 genes were true DEGs (black
dots) of Cell1. Figure 1c compares the true covariance with those
estimated from the standard method without trimming (large grey
ellipse) and the proposed robust and bias-corrected covariance esti-
mator B̂T (small grey ellipse).

Simulation I showed that the proposed covariance estimator B̂T

was robust to the existence of outliers (DEGs), and accurately reca-
pitulated the true covariance matrix, i.e. the overlay of the grey
ellipse and the black ellipse.

3.1.2 Simulation II: comparing performance of FastMix with other

regression models

We generated synthetic gene expression values for 5000 genes and
50 samples. For each sample, we simulated three cell population
proportions (Cell1, Cell2 and Cell3), one continuous clinical covari-
ate (Severity) and one categorical clinical covariate (Sex). Table 1
reports computational cost and mean square error (MSE) for esti-
mating B using lme4 and FastMix, with independent (denoted as
lme4_ind and FastMix_ind) and dependent covariance structure.

When random effects are independent and without csDEGs,
lme4_ind achieved the best MSE (0.04). Using only 2% of the com-
putational time of lme4_ind, FastMix_ind had a slightly larger
but comparable MSE (0.04). When random effects were correlated
and without csDEGs, FastMix (with general covariance structure)
had the smallest MSE (0.21) and was more than 300 times faster
than lme4, which had the second best MSE (0.32). With csDEGs,
lme4-based approaches had large MSEs, because they were not ro-
bust to the presence of outliers (csDEGs). In comparison, FastMix
approaches had much smaller MSEs and used tiny amount of com-
putational time. In Supplementary Material, Supplementary
Sections S3.2 and S3.3, we showed that FastMix also greatly
reduced the bias in regression coefficients compared to the lme4
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approach and other robust covariance estimators (Maronna and
Yohai, 1995; Maronna and Zamar, 2002; Rousseeuw and Driessen,
1999). Among all the methods compared, FastMix had the most
robust performance (Supplementary Material, Supplementary
Tables S1 and S3).

Next, we compared FastMix with ordinary least square (OLS)
and Ridge regression for regression coefficient estimation, using the
most realistic scenario, i.e. with correlation and csDEGs. The regu-
larization parameter in ridge regression was selected by the general-
ized cross-validation (GCV) criterion. Table 2 showed that: (i)
FastMix and Ridge estimates were more accurate than OLS due to
the shrinkage effect; and (ii) Ridge regression had much larger bias
than FastMix and OLS (both are practically unbiased), because
Ridge regression shrank the estimates toward zero, not the fixed
effects (FastMix).

3.1.3 Simulation III: comparing FastMix with existing csDGEA

method

We compare FastMix with csSAM, a popular csDGEA method for
heterogeneous biological samples using gene expression data and
relative cell type frequencies based on deconvolution techniques.
Because csSAM can only performs two-group comparison (binary
covariate), we designed Simulation III based on simulation II but
contained only one binary covariate (Group) for this comparison.
The results are summarized in Table 3a–c. Overall, FastMix had
acceptable type-I error rates (5–7%) which were much lower than
those of csSAM (Table 3a). FastMix also had better power for
detecting csDEGs than csSAM (Table 3b). Notably, FastMix used
just 1/10 of the computational time of csSAM (Table 3c).

In Supplementary Section S3.5, we tried a variant of Simulation
III with unbalanced csDEGs (more up-regulated csDEGs than
down-regulated csDEGs). The results were similar to those shown in
Table 3a–c. In order to evaluate the model performance for varying
DAFi outputs, we conducted another variant of Simulation III, in
which proportions of cell populations (Celljk) are simulated as a
mixture of the original DAFi-output values and noise. We found
that the performance of FastMix was robust to noisy DAFi output
ðCelljkÞ. These results can be found in Supplementary Tables SB–SE
in Supplementary Data S6.

3.2 Real-data analyses
3.2.1 FastMix integration reveals consistent cell type-specific sig-

nature genes with scRNA-seq

We applied FastMix to a multi-modal study [HVP01, the Human
Vaccine Project (Shannon et al., 2020)] that measures human

immune responses to a licensed hepatitis B vaccine—Engerix-B. The
HVP01 study provides us data from flow cytometry, bulk RNA-seq
and virus neutralization (anti-HBs) on blood samples from adults. In

Table 1. Simulation performance

No DEGs With DEGs

cor¼ 0 cor¼ 0.5 cor¼ 0 cor¼ 0.5

Method Time MSE Time MSE Time MSE Time MSE

lme4_ind 1137.9 0.02 854.1 30.7 765.6 1.69 749.9 34.09

lme4 8163.6 0.22 9798.9 0.32 8378.2 2.09 9525.6 1.96

FastMix_ind 27.9 0.04 27.6 34.3 29.4 0.49 28.7 34.57

FastMix 29.3 0.2 27.5 0.21 30.8 0.68 28.8 1.16

Note: Comparison of FastMix implementations (FastMix with inde-

pendence assumption, i.e. FastMix_ind, and default FastMix with no as-

sumption on the covariance matrix) and lme4 implementations (lme4 with

independence assumption, i.e. lme4_ind, and default lme4 with no assump-

tion on the covariance matrix) for estimating B, the covariance matrix of ran-

dom effects, in linear mixed effects regression (LMER). Four simulation

scenarios are considered: with or without true csDEGs, and with or without

correlation between random effects. Mean computational time (in seconds)

and mean MSE are reported. MSE is defined as
Pp

i¼1

Pp
j¼1 1=p2ðB̂ij � BijÞ2.

Simulations are repeated 200 times.

Table 2. Simulation performance

OLS Ridge FastMix

MSE 2.708 (0.200) 1.765 (0.047) 0.919 (0.022)

Cell1 �0.124 (1.709) �2.127 (1.821) �0.060 (0.979)

Cell2 0.108 (1.517) 0.005 (1.637) 0.059 (0.876)

Cell3 �0.102 (1.520) �0.122 (1.647) �0.124 (0.876)

Severity �0.089 (0.986) 3.956 (0.399) �0.081 (0.618)

Sex �0.135 (0.855) �0.087 (0.360) �0.184 (0.544)

Cell1.Severity 0.015 (1.912) �34.210 (1.349) 0.003 (1.014)

Cell2.Severity 0.252 (2.107) 9.125 (1.438) 0.212 (1.238)

Cell3.Severity 0.047 (1.895) 8.986 (1.348) 0.068 (1.014)

Cell1.Sex �0.015 (1.874) �0.308 (1.291) 0.183 (0.994)

Cell2.Sex �0.015 (2.078) 0.063 (1.390) �0.042 (1.188)

Cell3.Sex 0.287 (1.866) 0.298 (1.293) 0.218 (0.996)

Note: Comparison of FastMix with ordinary least squares (OLS) and Ridge

regression for regression coefficient, bij, estimation. The first row is the mean

MSE (standard deviation in brackets) defined as 1=ðmpÞ
Pm

i¼1

Pp
j¼1 ðb̂ ij � bijÞ2.

The other rows are the mean bias (standard deviation in brackets) of each fix ef-

fect coefficient estimation. Simulations are repeated 200 times. All results are

reported after multiplying by 100 for better readability.

Table 3. Simulation performance

a

cor¼ 0 Type-I Error csSAM FastMix

Cell1.Group 17.34 (9.11) 6.85 (0.42)

Cell2.Group 9.71 (5.97) 6.85 (0.46)

Cell3.Group 6.86 (5.54) 5.00 (0.23)

cor ¼ 0.5 Type-I Error csSAM FastMix

Cell1.Group 28.99 (11.19) 6.36 (1.11)

Cell2.Group 17.23 (7.70) 6.31 (1.09)

Cell3.Group 13.05 (7.61) 5.04 (0.21)

b

cor¼ 0 Power csSAM FastMix

Cell1.Group 56.48 (17.75) 61.86 (4.11)

Cell2.Group 40.54 (16.88) 62.79 (4.36)

cor ¼ 0.5 Power csSAM FastMix

Cell1.Group 62.82 (15.18) 64.22 (6.50)

Cell2.Group 46.72 (14.88) 64.68 (6.31)

c

Comp. Time csSAM FastMix

cor¼ 0 209.05 20.82

cor¼ 0.5 206.96 19.95

Note: (a–c) Mean (standard deviation in brackets) of type-I error rate (a),

statistical power (b) and computational time (in seconds) (c) of csSAM and

FastMix for cell type-specific DEG detection, in the same simulation scheme

repeated 200 times. The simulation design includes independent random

effects (i.e. cor¼ 0) and correlated random effects (i.e. cor¼ 0.5). True

csDEGs are only assigned in cell1 and cell2 in the simulations. Type-I error

rate and statistical power are reported in percentage (%).
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addition, it also has single cell RNA-sequence (scRNA-seq) data for
immune cells using the Smart-Seq2 (Picelli et al., 2014) protocol,
which we used as the ground truth to validate FastMix results.

After Dose 3 of Engerix-B, all 15 subjects responded to vaccin-
ation, but some had much higher level of anti-HBs titer than others
(Supplementary Fig. S1). Using anti-HBs titer > 5000 mUI/mL as
cutoff, we separated the subjects into two groups: high responders
(5 subjects) and low responders (10 subjects). Then we identified
neutrophils (CD45þCD66þ) and non-neutrophils (CD45þCD66-)
following the DAFi gating hierarchy (Fig. 2a). Using all 5 time
points (Day 0,1,3,7,14), a weighted FastMix model is fitted to inte-
grate the bulk RNA-seq gene expressions, proportions of cell popu-
lations and clinical covariates including response groups and ages
(Supplementary Fig. S1) for identification of neutrophil-specific
genes that may regulate the anti-HBs response levels.

Out of the 13 157 genes in the processed bulk RNA-seq data,
851 of them are identified by FastMix as neutrophil specific and 520
as non-neutrophil specific. To validate these 851 neutrophil-specific
genes, we used the independent scRNA-seq data. We followed a
standard scRNA-seq analysis pipeline including low-dimensional
embedding of cells on UMAP (Blondel et al., 2008) and a non-
parametric hypothesis testing approach for single cell DEG detection
(Aevermann et al., 2021). The UMAP visualization of the ground
truth cell types (Fig. 2b) showed a good separation of the neutrophil
population from other cell populations. 2744 neutrophil-specific
DEGs (a.k.a. signature) were identified by the scRNA-seq data ana-
lysis from the total 58 036 annotated genes.

Figure 2c compared the FastMix and scRNA-seq results. The
majority (>50%) of the FastMix identified genes were also found
by the scRNA-seq analysis. In fact, 72% of the top 100 FastMix
genes were the same as identified by the scRNA-seq. The overlap-
ping rate gradually decreased as we included more top genes in the
comparison, meaning that FastMix ranked ‘ground truth’ (scRNA-
seq) signature genes at the top in its DEG list. We further selected
365 scRNA-seq signature genes that have substantial fold change
(FC), i.e. jlogFCj > 1. The Venn diagram (Fig. 2d) showed that 39
of the top 100 FastMix signature genes were found in the list. That

is, only 16% of the scRNA-seq signature genes versus 39% of the
top 100 FastMix signature genes could pass the logFC threshold.
These 39 genes include the IFIT and IFITM family genes (IFIT2,
IFITM2, IFITM3) for interferon-induced proteins. Many of them
are highly relevant to neutrophils and Hepatitis B in literature re-
view, e.g. CXCR1/2 plays an important role (Khanam et al., 2017)
in hepatic inflammatory response (Xu et al., 2016). Furthermore,
we plotted in violin plots the scRNA-seq expression values of the 39
overlapping genes across multiple cell types (Fig. 3a), compared
with the bottom genes (Fig. 3b) and the top genes (Fig. 3c) identified
by FastMix. We clearly see in the neutrophils for the high expres-
sions of the overlapping and the top genes, and low expressions of
the bottom genes.

3.2.2 Identifying cell type-specific interferon signaling pathway

genes after Hepatitis B vaccination

Next, we compared FastMix and csSAM (Shen-Orr et al., 2010),
the only pre-existing method that can process data from both flow
cytometry and bulk transcriptomics together, for identifying the
neutrophil-specific DEGs. We chose to focus on neutrophils here be-
cause neutrophils play important roles in pathogenesis of liver dis-
eases and immune responses to HBV vaccines (Khanam et al., 2017;
Le et al., 2017). Using the default 5% FDR cutoff, csSAM performs
two-group DE analysis by a cell type-specific SAM model, which
identified no DEG for neutrophils. In contrast, FastMix identified
495 neutrophil-specific DEGs using the same 5% FDR.

We performed enrichment analysis to interpret the genes identi-
fied by FastMix and csSAM. For a fair comparison, we extracted
the same number of csDEGs from results of FastMix and csSAM.
The top 100 genes from each method were fed into ReactomePA
(Yu and He, 2016) R package for pathway enrichment analysis.
FastMix identified 45, 8 and 1 significant cell type-specific path-
ways for the neutrophils, non-neutrophils and rest population, re-
spectively (Supplementary Tables S13–S15). Figure 4a showed the
enriched pathways identified from the top 100 FastMix
neutrophil-specific DEGs for Engerix-B high responders. The inter-
feron (IFN) immune signaling pathways were substantially

Fig. 2. FastMix and scRNA-seq results for HVP01 study. (a) DAFi gating strategy to identify singlets, leukocytes, live leukocytes, CD66- CD45þ population (parent: live leu-

kocytes) and CD66þ CD45- population (parent: live leukocytes). (b) UMAP visualization of scRNA-seq cell type clusters. Cells are colored by cluster labels derived by flow

cytometry panels. (c) Overlapping of the 851 (out of 13157 total genes) FastMix neutrophil-specific signature genes and the 2744 scRNA-seq neutrophil signature genes avail-

able in the bulk RNA-seq data. (d) Venn diagram of the overlapping between the top 100 FastMix neutrophil signature genes and the scRNA-seq neutrophil signature genes

with jlogFCj > 1. The 39 common genes are shown in the text box
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presented (the top 4 pathways). In contrast, using the top 100
csSAM genes identified 0, 1 (neutrophil degranulation) and 5
enriched pathways for the neutrophils, non-neutrophils and rest
population, respectively, which seem problematic (Supplementary
Table S16). Further, BST2 (Tetherin/CD317) is found in the
FastMix top 100 gene list. Tetherin is a key host cell defense mol-
ecule in response to stimuli from IFN pathway (Blasius et al., 2006;
Sarojini et al., 2011). Traditional understanding of BST2 expression
is with mature B cells and plasmacytoid dendritic cells while it has
cell type-dependent variation (Miyagi et al., 2009). Our analysis
showed that BST2 was also expressed in neutrophils, whose
increased expression level is correlated with the high anti-HB levels
after Dose 3 of Engerix B (estimated linear coefficient¼1.016).

3.2.3 Inferring cell type-specific temporal pattern from

longitudinal data

We have also evaluated how FastMix can be applied to identify sig-
nature expression patterns of immune cell-specific genes over time
points before and after vaccination. We downloaded SDY180 from
ImmPort [56] (www.immport.org/shared/home), which represents
typical systems immunology approaches for studying Influenza (102
samples from 12 subjects across at least 8 time points) and
Pneumococcal (Pneumovax23; 100 samples from 12 subjects over at
least 8 time points, Supplementary Table S17) vaccines (Obermoser
et al., 2013). We chose to focus on lymphocytes and neutrophils
(Fig. 5a and Supplementary Fig. S2) based on previous findings
(Tang et al., 2019). In addition to the 8 time points in the design of
SDY180, subject age is also included as a covariate for weighted
FastMix modeling of cell type-specific immune responses.

The temporal change of proportions of the lymphocytes, granu-
locytes, monocytes and rest population for the Influenza arm are
shown in Figure 5b. With the flow cytometry data only, we noticed
that the proportion of lymphocytes had a substantial drop on Day 1
after vaccination and was recovered by Day 3. The ‘ground truth’
we used to interpret the FastMix findings is the gene modules identi-
fied by the original study (Obermoser et al., 2013). Using a pre-post
(i.e. between day 0 and day 1) comparison, the original analysis
(Obermoser et al., 2013) curated an interferon module, namely
M1.2, which includes genes (CXCL10, IFIT1 and LAMP3) showing
significant global changes in blood transcript abundance between
the baseline Day 0 and Influenza Vaccine Day 1 at the bulk level
(Fig. 5c and Supplementary Fig. S3) and returning to baseline after
Day 3.

FastMix identified both specific cell populations and their signa-
ture genes that are associated with the temporal activation of these
M1.2 interferon genes. Among the 24 gene in M1.2, FastMix iden-
tified 22 genes with significant P-values (P < 0:05) for lymphocyte-
specific differential expression (Fig. 5d and Supplementary Table
S18); the top 9 M1.2 genes were found in the top 1% (out of 10 732
genes) of the lymphocyte-specific DE list by FastMix. Interestingly,
the majority of the M1.2 genes showed no significance for granulo-
cytes and monocytes in FastMix analysis (Supplementary Table
S18), which suggest that the activation of the interferon genes is
lymphocyte-specific: the differential expression of interferon signal-
ing genes is driven by the up-regulation of the lymphocyte-specific
expression. This increased expression is not because of the abun-
dance of lymphocytes. In fact, the proportion of lymphocytes
decreased on Day 1 after vaccination (Fig. 5b, in rectangle) when
the bulk expression of M1.2 genes increased on Day 1 (Fig. 5c).
Further, FastMix produced positive estimated coefficients for lym-
phocytes for all M1.2 genes (Supplementary Table S19), confirming
the up-regulation of the cell type-specific gene expressions. The
lymphocyte-specific interferon activation was observed only in the
Influenza arm, but not in the Pneumococcal arm (Supplementary
Tables S18 and S20), agreeing with the existing knowledge regard-
ing differences between virus and bacterial infections as reported in
the original study (Obermoser et al., 2013).

We also looked at the cell type and age interaction terms. The
lymphocyte-specific P-values w.r.t. age for the M1.2 interferon
module genes showed very strong significance (23 out of 24 have

Fig. 3. Expression of neutrophil-specific signature genes in the scRNA-seq experi-

ment. (a) The 39 common signature genes identified by FastMix and scRNA-seq

analysis (same in Figure 2c). (b) The bottom 39 genes ranked by FastMix. (c) The

top 39 genes ranked by FastMix

Fig. 4. Pathway enrichment analysis for HVP01 study. (a) Enriched pathways identi-

fied by the top 100 FastMix neutrophil-specific DEGs for high responders. (b)

Unique genes from the CD45pCD66p.Response (i.e. neutrophil and high response)

interaction DEG list that are identified in the enriched pathways in (a). (c) Scores of

weighted FastMix when both age and response are included as covariates, with sig-

nificant P-value indicating age is a factor in vaccine response. (d) Scores of weighted

FastMix without age. The P-value is insignificant
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significant P-values, Figure 5e and Supplementary Table S20),
whose coefficient estimates showed negative association between

the subject age and lymphocyte-specific expression (Supplementary
Table S19 and Fig. S4).

For completeness of method comparison, we tried to apply
csSAM (Shen-Orr et al., 2010) to compare the pre- and post-
vaccination groups for identifying csDEGs. Unlike FastMix, the de-

sign of csSAM does not include a way to handle the within-subject
correlation across multiple time points. Therefore, no significant cell

type-specific DEGs w.r.t. the pre- and post-vaccination groups were
identified by csSAM at the 5% FDR level. Using the top 100 csSAM
genes for each cell type, no enriched pathway was identified for any

cell type.

3.2.4 Discriminant analysis with FastMix
Finally, we used HVP01 data to demonstrate the utility of discrim-

inant analysis based on FastMix. For illustration, two versions
(with and without age) of ‘single_sparse_score’ that predict the re-
sponse to HBV vaccination were computed and plotted in Figure 4c

and d. There was significant (Wilcoxon P-value <0.0001) differ-
ence between the responding (dark grey) and non-responding (grey)
groups only when age was included in the analysis (Fig. 4c). It

suggests that age is highly relevant in host immune response to the
HBV vaccine.

4 Discussion

In this study, we developed an efficient and robust data integration
framework called FastMix based on large-scale LMER models and
MM. We demonstrate the utility of FastMix by applying it for inte-
grating flow cytometry, bulk transcriptomics and clinical data, with
both cross-sectional and longitudinal data. Classical LMER fitting
algorithms, such as lme4, use iterative EM-based algorithm to fit the
model. In comparison, FastMix fits the model with a robust non-
iterative algorithm with built-in trimming and bias-correction.
Using extensive simulation studies, we showed that FastMix
produced more accurate estimates than lme4 and other competing
methods, with only a fraction of computational cost (Tables 1
and 2).

Inspired by competitive tests used in gene set enrichment analy-
ses (Gatti et al., 2010; Wu and Smyth, 2012; Zhang et al., 2017), we
designed a quasi-P-value to rank and select csDEGs that have sig-
nificantly larger/smaller random effects (cell-type-specific effects)
than most other genes. FastMix can also produce discriminative
scores which quantify the contributions of model variables to the

Fig. 5. FastMix analysis for SDY180. (a) DAFi gating strategy to identify lymphocytes, granulocytes and monocytes, CD45þ CD14- (parent: granulocytes and monocytes),

CD45þ CD14þ (parent: granulocytes and monocytes), granulocytes (parent: CD45þ CD14-) and monocytes (parent: CD45þ CD14þ). (b) Boxplots of cell proportions (lym-

phocytes, granulocytes, monocytes) over time in the Influenza vaccine study. (c) Boxplots of bulk expression levels of interferon-stimulated genes (e.g. CXCL10, IFIT1,

LAMP3) over time in the Influenza vaccine study. Highlighted box: matching temporal pattern change of lymphocytes proportion and bulk gene expression. (d) Heatmap of -

log10-transformed P-values for lymphocyte-specific differential expression for the interferon module genes in both Influenza and Pneumococcal study arms. (e) Heatmap of -

log10-transformed P-values for lymphocyte-specific differential expression w.r.t. age for the interferon module genes in both Influenza and Pneumococcal study arms
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classification of samples. This is a practical feature that previous
methods have not provided.

We compared the type-I error rate and statistical power of
FastMix for csDGEA with a reference pipeline, csSAM [56], using
both simulations and real data. FastMix achieved better statistical
power with much lower type-I error than csSAM, using about 10%
of csSAM’s run time (see Table 3a–c). A subsequent benchmark
simulation study suggests that the runtime of FastMix is linear to
the dimensions of the input data (number of genes and samples).
These results can be found in Supplementary Table SA,
Supplementary Data S6. We also notice that our method is robust to
measurement error in cell proportion (Supplementary Tables SB–SE,
Supplementary Data S6).

We applied FastMix to analyze multi-modal data from two
clinical studies (Obermoser et al., 2013; Shannon et al., 2020) that
measured host responses to three different vaccines (influenza,
pneumococcal and hepatitis B). Input data included bulk gene
expressions, FCM and various clinical covariates.

Due to the lack of ground true in real data, multi-modal data in-
tegration methods were mostly evaluated by subjective interpret-
ation of the results. We addressed this issue by using scRNA-seq
data as an objective gold standard. Excitingly but not surprisingly,
csDEGs selected by FastMix overlapped significantly with those
selected by the scRNA-seq analysis (Fig. 3). Furthermore, FastMix-
identified biomarker genes are complementary to results from the
scRNA-seq analysis. For example, FastMix identified the
neutrophil-specific genes MMP9 and RSAD2/Viperin (Fig. 3c),
which were not found in the scRNA-seq analysis (Fig. 3a). MMP9 is
a regulatory factor in neutrophil migration (Kolaczkowska et al.,
2009) and Viperin is an important anti-viral protein induced in neu-
trophils (Hinson et al., 2010) (Fig. 3c). Also, FastMix identified the
IFIT gene family members (IFIT1, IFIT2 and IFIT3) that can limit
the HBV replication (Pei et al., 2014). In summary, FastMix pro-
vides an in silico alternative when scRNA-seq data is unavailable or
unreliable.

Among the 1924 experiments in the 495 studies collected by US
NIAID’s ImmPort database (https://immport.org/shared/home) as of
June 2021, the top two assay types are FCM (706; 36.7%) and tran-
scription profiling (213; 11.1%). However, existing solutions for
analyzing and integrating these data are suboptimal. FCM data ana-
lysis mainly relies on subjective manual gating analysis, which is dif-
ficult to be integrated with other computational modules. csDGEA
relies on predefined marker genes in the transcriptomics data, with-
out utilizing the FCM data that provide canonical phenotypic defini-
tions of the cell types. We recently developed an automated and
objective FCM data analysis pipeline, DAFi, that produces more ac-
curate proportions of cell populations. Combining DAFi and
FastMix (Fig. 1d) produces an end-to-end, unbiased solution for
immunologists to investigate the interplay between FCM, transcrip-
tomics data and clinical covariates.

The main limitation of FastMix is that it does not solve the
well-known problem for inferring characteristics of rare cell popula-
tions from bulk assay data. When the proportion of a cell popula-
tion is small, its contribution to the bulk gene expressions is easily
overwhelmed by the abundant cell populations. This challenge can
potentially be solved if there are replicates of the same measurement,
which unfortunately are usually unavailable in most studies.
Inference of rare cell populations can also benefit from longitudinal
(and repeated) measurements when they are available, which will be
investigated in our future work.

Although FastMix is developed based on the normality assump-
tion, it is applicable to properly pre-processed RNA-seq data (e.g.
HVP01 data used in this study) based on our experiment results.
While raw RNA-seq reads are discrete, common pre-processing
steps can make the RNA-seq data much more normal. Recent com-
parative studies (Cui et al., 2021; Law et al., 2014; Rapaport et al.,
2013; Ritchie et al., 2015; Smyth et al., 2005) showed that DGEA
designed for continuous data can achieve comparable, sometimes
even slightly better, performance than those based on discrete mod-
els. We plan to extend FastMix based on generalized linear mixed-

effects regression, so that it can integrate high-dimensional data that
cannot be approximated by normal distributions.

By design, FastMix has reduced complexity inherent to deconvo-
lution methods such as csSAM. However, FastMix still will fail if L
(total number of covariates) is greater than n (sample size). This
limitation motivates us to explore ways to combine regularization
techniques designed for LMER (Adjakossa and Nuel, 2017; Li et al.,
2018) with the moment-based estimation methods in FastMix in a
future study.

The generic design of FastMix allows it can potentially be
applied to address many other bioinformatics problems. For ex-
ample, based on microbial community composition data and bulk
metabolomics data, we may adapt FastMix to infer contributions
of individual species to the metabolomic profiles, modulated by
clinical covariates. Individual components of FastMix, such as the
bias-correction for trimmed parameter estimation based on
Mahalanobis distance; and the quasi-P-value for hypothesis tests
that involves random effects, can also be useful for other
applications.
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Data availability

Both DAFi and FastMix are freely accessible (https://github.com/
JCVenterInstitute/DAFi-gating and https://github.com/terrysun0302/
FastMix) as open-source software packages. Real data used in
this study are available at https://clinicaltrials.gov/ct2/show/
NCT03083158 (HVP01) and http://www.immport.org (SDY180).
Specifically, RNA-Seq data of HVP01 is available at NCBI’s Gene
Expression Omnibus (GEO) under GSE155198. Flow cytometry
data of HVP01 is available at flowRepository with the ID FR-FCM-
Z2R9. Raw and expression matrix for the single cell RNAseq data of
HVP01 are available at dbGaP accession number phs002508.v1.p1,
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id¼phs002508.v1.p1. Data preprocessing details are provided in
Supplementary Material.
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