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Target-to-distractor similarity can help visual search performance 
 

Vencislav Popov (vencislav.popov@gmail.com) 
Lynne Reder (reder@cmu.edu)  

Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA 
 
 

Abstract 

We found an unexpected positive effect of target-to-distractor 
similarity (TD) in a visual search task, despite overwhelming 
evidence in the literature that TD similarity hurts visual search 
performance. Participants with no prior knowledge of Chinese 
performed 12 hour-long sessions over 4 weeks, where they had 
to find a briefly presented target character among a set of 
distractors. At the beginning of the experiment, TD similarity 
hurt performance, but the effect reversed during the first 
session and remained positive throughout the remaining 
sessions. We present a simple connectionist model that 
accounts for that reversal of TD similarity effects on visual 
search and we discuss possible theoretical explanations. 

Keywords: visual search; learning; similarity; connectionist 
model; neural network 

Introduction 
Intuitively, the more similar two objects are to each other, 

the more difficult it should be to say whether they are the 
same object or not. Research with the visual search task has 
confirmed this intuition repeatedly – when a target is more 
similar to distractors in the search array accuracy decreases 
and response times (RTs) increase (Treisman & Gormican, 
1988; Duncan & Humphreys, 1989; Treisman, 1991), and 
more errant saccades are made to the highly similar 
distractors (Bichot & Schall, 1999). Despite the ubiquity of 
this negative target-to-distractor (TD) similarity effect, in a 
recent experiment that explored how frequency of exposure 
affects a variety of tasks, including a visual search task, we 
discovered by accident a positive TD similarity effect in 
visual search (Reder, Xiaonan, Keinath & Popov, 2016). We 
found that greater TD similarity eventually lead to greater 
accuracy and faster RTs. 

The visual search task was performed with Chinese 
characters over 12 hour-long sessions and the participants 
were US undergraduates with no previous knowledge of 
Chinese characters. Interestingly, during the initial stages of 
the visual search task we observed a negative TD similarity 
effect, as is expected from prior research, but this effect 
reversed quickly. After a single training session, higher TD 
similarity lead to better performance. Since this result was not 
reported in Reder et al. (2016), we will first describe the 
experiment and the key results with respect to frequency and 
similarity.  

                                                           
1 We thank Xiaonan Liu for pointing us to these representations 

Method 
Participants 
Twenty U.S. college students with no prior experience 
learning Chinese participated in this experiment. 

Materials 
The stimuli for the visual search task were 64 Chinese 
characters. We grouped the characters based on their visual 
similarity in 16 sets of four characters. Characters within a 
set had a higher similarity with each other compared to 
characters from other sets. This was determined by a native 
Chinese speaker and was subsequently confirmed by 
analyzing orthographic vector representations of the 
characters (Xing et al, 2004; Yang et al 2009)1. We used 
highly similar distractors in order to force participants to 
encode the entire character rather than a subset of diagnostic 
features. For each participant, half of the sets were randomly 
assigned to the high-frequency condition and were presented 
20 times more often during the visual search task. 

Procedure 
The visual search task was performed over 12 sessions. There 
were three session per week and each lasted for about 1 hour. 
Each trial began with a sample character presented in the 
middle of the screen for 2 seconds. The sample character was 
followed by a display of 3 to 5 characters. On half of the 
trials, the display included the target character and 
participants were to respond whether the target was present. 
Three of the characters were from the same similarity set as 
the target character. Additionally, 0-2 characters from 
different sets of the same frequency class as the target were 
also present as distractors. After participants made their 
response, they received immediate accuracy feedback. 

Results and Discussion 
We analyzed the accuracy data via logistic mixed-effects 
regressions and RTs via linear mixed-effects regressions, 
both with participants and items2 as random intercept effects. 
All effects discussed below were significant (p < .05) as 
determined by likelihood ratio tests that compared 
alternative regression models with and without each effect. 
Most results concerned with effects of frequency are 
described in Reder et al. (2016; see also Reder et al., 2007); 
here we focus primarily on the role of similarity.  

2 i.e., trials with the same target regardless of distractors 
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Fig 1. Accuracy and RTs to search the display as a function 
of target presence or absence, week of training and frequency 
of exposure.  
 

Figure 1 shows the effect of frequency of exposure on 
accuracy and RTs for finding the target character. Overall, 
accuracy was greater and RTs faster for characters from high 
frequency sets. There was a two-way interaction between 
frequency and whether the target was present or absent. For 
accuracy, the effect of frequency was evident only when the 
target was absent. In Reder et al. (2015), we proposed that 
frequent exposure facilitates the development of unitized 
representations of each character. That is, a character seen 
less often has a weaker chunk representation and is more 
likely to be encoded as a configuration of some of its features 
rather than as a single higher-level unit. Thus, when a 
participant is searching for a LF character the probability of 
partially matching some of the target’s features with features 
of the distractors is much greater compared to HF characters. 
This leads to more false alarms in the absent condition, but 
does not affect the present condition. The interaction was 
also evident in RTs, although there was still a small effect of 
frequency in the present trials, likely reflecting the 
differential efficiency of encoding high and low frequency 
characters. 

A number of previous versions of this experiment had 
failed to show the hypothesized frequency effects. In those 
experiments, the distractors in each search array were chosen 
at random and thus were not very similar to the targets on 
each trial. In contrast, in the current experiment we ensured 
that targets were paired with highly similar distractors. We 
believe that the discrimination required in the prior versions 
of our visual search task was too easy and as a result, 
participants were able to perform the task by noting and 
remembering individual features that distinguish the target 
from its distractors. As a result, participants did not have to 
develop stable chunks for each character.  

If that is the correct interpretation, then we expected to see 
an analogous effect within this experiment based on the 
discriminability (similarity) of the target character to its 
distractors in the search array. We should see that greater TD 
similarity leads to a better performance over time, because 
the increased difficulty in discriminating the target from the 
distractors forces people to develop stronger and more stable 
representations of each character as a whole unit/chunk. Note 
that this prediction is contrary to an intuitive and classic 
result in the visual search literature – usually, the more 
similar a target to its distractors, the more difficult it is to 
perform the task (Duncan & Humphreys, 1989). 

TD similarity was calculated based on vector 
representations obtained from Yang et al. (2009). Each 
character was represented as a vector of 270 binary features 
for five dimensions – simple features, shapes, structure, 
position and strokes. These vector representations are based 
on an orthographic analysis of the characters and prior 
behavioral work (Xing et al, 2004). These representations 
have been already used successfully to model print-to-sound 
mappings in Chinese (Yang et al, 2009) with a connectionist 
model similar to those used in modeling English print-to-
sound mappings (Harm & Seidenberg, 1999). For each 
search array, we calculated the mean Euclidean distance 
between the target and each distractor. Low and high 
similarity groups were defined as being below or above one 
SD around the mean similarity of all search arrays. 

Figure 2 shows that our prediction was confirmed. During 
the first session, initially greater TD similarity lead to slower 
RTs. However, by the end of the first session the effect had 
reversed and throughout the remaining sessions high 
similarity between the target and distractors lead to faster 
RTs and greater accuracy.  

 

 
 
Fig 2. Accuracy and RTs for visual search as a function of 

similarity of target to distractors within the search array. 
Right panel shows performance over time during the first 
session. Left panel shows performance over all 12 sessions. 

 

969



Contrary to our findings, visual search tasks usually show 
that high TD similarity leads to lower accuracy and slower 
response times. Why is it that we found exactly the opposite? 
A trivial explanation would be that TD similarity in our study 
was confounded with distractor-to-distractor similarity. The 
latter consistently shows positive similarity effects. We 
discounted this explanation by showing that the positive 
effect of target-to-distractor similarity remained even after 
controlling for distractor-to-distractor similarity in the 
regression model. 

A theoretical explanation is that most visual search studies 
use simple stimuli that have pre-existing representations in 
long-term memory and no additional learning is required. Our 
study instead used Chinese characters, which are a complex 
configuration of features for participants who do not know 
Chinese. Since these characters did not have preexisting 
representations, participants had to develop them while doing 
the visual search task. We suggest that those representations 
were influenced by the demands of the task – to make highly 
similar patterns more distinct from one another so as to be 
better suited to support future performance. In essence, we 
argue that over time when the target is presented along highly 
similar distractors, the cognitive system builds more 
distinctive and stable representations of these targets.  

Additional support from this argument comes from the fact 
that (as it was with frequency) the similarity effect is mostly 
observed in the absent condition (Figure 3, left panel). That 
is, the benefit from gaining more distinct and stable 
representations is mostly to prevent the partial matching of 
shared features between the target and distractors on absent 
trials. 

 

 
Fig. 3. Effect of TD similarity on visual search accuracy as a 
function of training session and whether the target was absent 
(left panel) or present (right panel). 

A connectionist model 
The reversal of the similarity effect is something of a 

challenge from a modeling perspective. How exactly are 
more distinct representations built over time and what 
mechanism drives that differentiation?  

In order to capture the reversal of similarity effects, we 
decided to apply a novel connectionist model that will be able 
to perform a visual search task while continuously modifying 
its internal representations of the stimuli. Connectionist 

models that represent stimuli as distributed patterns of 
activity are well suited for exploring the time-dependent 
changes in the structure of conceptual representations that 
consist of multiple features. In line with our theoretical 
interpretation of the data, we expected that in the beginning 
of training, the model will behave similarly to our human 
participants and will make more errors for highly similar 
distractors. However, since this initial behavior would lead 
to more errors, over time the error-dependent learning might 
cause the model to alter its internal representations of each 
stimulus so as to make them more distinct from one another.  

In this way, the problem that a connectionist model of this 
task has to solve is akin to the XOR problem. Specifically, 
how should the representation of the input patterns be 
transformed so that similarity is reversed through the 
transformation? One possibility is for our model to have at 
least one layer that intervenes between the input layer and a 
layer that computes similarity between patterns. After a 
number of failed attempts using a single hidden layer we tried 
two separate hidden layers, which allowed the network to 
more gradually change the similarity structure in the input. 

The visual search task here requires that participants are 
able to initially encode the sample character and keep it 
active in short term memory while comparing it in turn with 
each candidate character in the search array. To model the 
task as fully as possible, a model was implemented with a 
single input layer that can send activation through two 
different pathways – either to a working memory (WM) 
module (implemented as a kind of a long short-term memory 
module), or directly to the comparison layer. This dual 
pathway represents two ways to use information coming 
through the senses. One pathway can store the representation 
of the target in short-term memory and then manipulate it in 
the absence of the stimulus itself. The other pathway can 
directly use the incoming information (i.e. the candidates for 
comparison in the search array). 

We assumed that the visual search is performed serially, 
because the RTs increased linearly with the search array size, 
and because the slope in the absent condition was twice as 
large as the slope in the present condition (Treisman & 
Gelade, 1980). As a simplification, the model presented 
below will deal only with this serial search case. 

Architecture 
The network consisted of the following layers (the 
architecture is presented in Figure 4): 

 Input: 20 units 
 Hidden1: 15 sigmoid units 
 Hidden2: 10 sigmoid units 
 LSTM module 1 

o LSTM_Input: 10 linear units 
o LSTM_Buffer: 10 linear units 
o LSTM_Context: 10 linear units 
o LSTM_Output: 10 linear units 
o LSTM_Input_gate: 1 input unit 
o LSTM_Context_gate: 1 input unit 
o LSTM_Output_gate: 1 input unit 

970



 Direct_output: 10 linear units 
 Direct_output_gate: 1 linear unit 
 Comaprison: 20 units 
 Response: 2 softmax units (output layer) 

 
The input was connected in a feedforward manner to 

hidden1, which in turn was connected to hidden2. We 
expected the two hidden layers to progressively extract 
higher order features of the input. Initial weights between 
these layers were randomized with a mean of 0 and sd of 0.5. 
Each unit of the hidden2 layer was connected with the 
corresponding unit in the input layer of the LSTM module, as 
well as with the direct_output layer with a frozen weight of 
1. The same applied to the connections from LSTM_Input to 
LSTM_Buffer and from LSTM_Buffer to LSTM_Output. 
Thus, the output of the hidden2 layer was copied forward to 
the output layer of the LSTM module, and to the 
direct_output layer. The LSTM module also had a recurrent 
context layer that was connected bi-directionally to the 
LSTM_Buffer layer. 

The purpose of the four gates was to control the flow of 
activation through these two modules. There was a fixed 
negative bias of -1 to the LSTM_input and LSTM_output 
layers, and a fixed positive connection of 1 with their 
corresponding gates. Since they were all linear units that were 
cropped at 0 and 1, when a gate was off, no activity was 
copied to corresponding and subsequent layers. When a gate 
was on, it negated the bias and the layer copied the output of 
the preceding layer and passed it forward.  

Network functioning 
Each example trial was composed of four events (i.e., 

presenting different input patterns): 
1. Presentation of the target 
2. First candidate from the search array 
3. Second candidate from the search array 
4. Final candidate from the search array 

When the target was presented to the input, only the 
LSTM_input gate was on. Thus, the activity in hidden2 layer 
that corresponds to the sample input was copied to the 
LSTM1_input, LSTM_buffer and LSTM1_context layer. All 
other gates were off, thus preventing the sample input from 
transferring to the direct_output layer.  

When each candidate from the search array appeared, the 
LSTM_input gate was off, preventing the candidate 
representation from entering LSTM module. All the other 
gates were on. This meant several things happened. The 
candidate representation on hidden2 was copied to the 
direct_output layer. The representation of the sample that was 
encoded in the LSTM_context layer on the previous time step 
was transfered back on to the LSTM_buffer, and from there 
it was transfered to the LSTM_output. At this point, the 
network had the hidden2 representation of the sample 
instantiated on the LSTM_output layer, while the hidden2 
representation of the first candidate was active on the 
direct_output layer. 

Both the LSTM_output and the direct_output layers were 
connected with free random weights with sd 0.1 to the 
comparison layer, which integrated the representations of the 
sample and the first candidate input. The comparison layer 
was connected to the response layer, which consisted of two 
units - 1 for responding that the two representations are the 
same, and the other for responding that they are different. 

 

Fig 4. The network architecture. Arrows with stars (*) 
represent copy connections, where each unit in the sending 
layer is connected with a single connection with fixed 
strength 1 to the corresponding unit in the receiving layer.  

Training 
To mimic the experiment’s stimuli, 64 input patterns of 

length 20 were created with binary values that were grouped 
into 16 sets, which had greater similarity within sets than 
between sets. On average, 50% of the features in each input 
vector were “on”. The randomization and conditions were 
equivalent to those in the experiment. 

Mean similarity in a set was calculated using Euclidean 
distance. The groups in the lower 25% quantile of the 
distance distribution were designated as “Low distance / High 
similarity” sets, while groups in the higher 25% quantile were 
designated as “High distance / Low similarity” sets.  
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When a distractor was present, the network was trained to 
activate the “mismatch” response unit, while when a target 
was present it was trained to activate the “match” response 
unit. Therefore, the goal of the network was to discover a 
suitable combined representation in the comparison layer 
such that it will be able to discriminate when the 
LSTM_output and the direct_output layers had the same or 
different patterns of activation. 

We used a back-propagation training algorithm with a 
learning rate of 0.01 and a momentum descent with a 
momentum rate of 0.9. The network was trained for 4000 
passes through the training set and the weights were updated 
at the end of each pass. After every 100 updates, we recorded 
the output activation of the hidden1, hidden2 and the 
response layer. 

Results and discussion 
Frequency effects. The main results of the simulation are 
presented in Figures 5 and 6, which show the activation of 
the “match” response unit over training time. Since the 
response layer had softmax units this value can be directly 
interpreted as the proportion of “match” responses the 
network would give in response to a pattern. In Figure 5 we 
can see that the training patterns that were presented more 
often lead to greater accuracy. 
 

 

Fig 5. Activation of the Match output unit as a function of 
training time, stimulus type and frequency of the input 
pattern. 
 

Several things should be noted about this pattern. We can 
see that initially the network deactivated the match response 
unit for both types of stimuli. We can also see that overall the 
effect of frequency was much greater on target stimuli 
compared to distractor stimuli, which is exactly the opposite 
effect than the one we found in the behavioral data. This was 
probably because there were 5 times more distractor items 
than target items (3 in absent conditions, 2 in the present 
conditions). In the actual experiment, this too was the case, 
but participants got feedback only for their final response, 
thus they had equal amounts of “present” and “absent” 
feedbacks. On the other hand, the network was trained as if 
each individual comparison required a response, which 
causes the discrepancy between distractor and target stimuli. 

Thus, while the network captures the overall effect of 
frequency, its training regimen causes it to miss the specific 
pattern of frequency for different types of stimuli. This could 

possibly be solved by considering the current response layer 
to be an internal response, reflecting whether there is a match 
or not. Then a secondary motor response layer can be added 
which outputs a ‘present’ response if the internal match 
response is higher than a threshold, or stays inactive until all 
candidates have been compared. If by the last one none of 
them had elicited a match response, it produces an ‘absent’ 
response. In this way the network would reflect the actual 
behavior more closely, and weight updating would be 
affected only by the final response in each example. 

Similarity effects. As can be seen from Figure 6, initially the 
network performance is better for input stimuli that are less 
similar to their distractors.  This is a normal behavior of 
connectionist networks, and it is also what is expected by 
previous behavioral data from the visual search paradigm 
(Duncan & Humphreys, 1989). However, after about 2300 
weight updates the effect reverses and stimuli that are closer 
to each other in the input space lead to better performance. 
Importantly, this reversal happens very shortly after the 
behavior of the network starts to approximate the behavioral 
result levels (~70% accuracy), which is exactly the pattern we 
have seen from the behavioral session - greater similarity 
impairs performance during the first session of training, but 
the effect reverses by the end of that session. Indeed, if we 
limit our attention to the window between updates 2200 and 
3000, which is immediately after the pre-training, and before 
the performance saturates at ceiling, there is a close 
correspondence between the network performance both in 
terms of frequency and similarity structure. 

 
Fig 6. Activation of the ’Match’ output unit as a function 

of training time, type of stimulus and Euclidean distance 
between the target and distractor input in each array. 

 
What could be causing this reversal of the 

distance/similarity effect? A possible answer comes from 
examining the input-output mappings, as well as the hidden 
representations the network develops during training. 

If we split the candidate input patterns into targets, similar 
distractors and dissimilar distractors, then the network is 
supposed to produce the following outputs. For targets, which 
are identical to the sample item (thus 0 distance or perfect 
correlation) the network has to produce a match response, but 
for distractors that are highly similar as well, it has to produce 
mismatch responses. Thus, a major conflict during training 
comes from the fact that when distance is high, the network 
has to produce only one type of response, but when it is low, 
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it has to either respond with a match or a mismatch. One way 
to achieve these contradictory goals would be to develop such 
hidden representations of the input that cause highly similar 
patterns to be represented as less similar to each other. 

To test this explanation we looked at the distance between 
the sample item and its distractors in activation patterns in 
each of the two hidden layers, split by the distance in the input 
layer. In right panel of Figure 7, we can see that in the first 
hidden layer the distance structure in the input has been 
preserved. In the second hidden layer, however, in the 
beginning there is no difference in distance due to the two 
layers of random weights and the sigmoid nature of the 
stimuli. As training progresses, stimuli that were low in 
distance in the input and the first hidden layer become more 
distant to one another, compared to stimuli that were highly 
distinct to begin with. 
 

 
 

Fig 7. Distance between the hidden layers representations 
of the target and the distractors in each training set as a 
function of training time. Left panel shows distance in the 
first hidden layer, right panel shows the second hidden layer. 

General Discussion 
The current paper present preliminary data on a novel 

counter-intuitive finding that the usual target-to-distractor 
similarity effect in visual search reverses after a short training 
with previously unfamiliar Chinese characters. Namely, 
while targets that are highly similar to distractors in a search 
array are usually more difficult to detect, when the stimuli are 
complex visual objects, this effect reverses after about 20 
repetitions of each object as a target. We propose that visual 
discrimination and learning interact in such a way that greater 
difficulty in discriminating the stimuli causes the 
development of more distinct and stable representations. 

To test this idea of differentiation in the character 
representation over time, we fit a novel connectionist model. 
When it comes to frequency, the network successfully 
captured the overall effect that more frequently exposed 
stimuli led to better performance (although see the preceding 
discussion for some limitations). Theoretically, this was 
presumably because low frequency made it more likely that 
people depend on representing the characters as a 
configuration of features, rather than on its weak chunked 
representation. This caused them to be more likely to partial 
match constituent features and confuse distractors with 
targets. In contrast, the network showed exactly the opposite 

effect, because distractors were present 5 times more than 
targets and had a greater influence over the weight updates.  

The most interesting aspect of the model is that it was able 
to successfully capture the reversal of the similarity effect on 
visual search performance. It achieved this by transforming 
the input through multiple hidden layers, which allowed it to 
change the similarity structure in the input so that highly 
similar distractors became more and more differentiated in 
the second hidden layer as training progressed.  

This explanation was further supported by a model that 
involved direct connections from the input to the comparison 
layer without hidden layer representations (not shown here). 
This model did not show the similarity reversal effect. This 
model is analogous to performing the task without having to 
develop novel representations. One novel prediction from the 
comparison of these two models and task versions would be 
that people who learned the Chinese characters under a visual 
search task would rate highly similar characters as less 
similar after the training. 

Finally, while we simulated the input patterns in this model 
to resemble as closely as possible how our stimuli were 
structured, the simulation results might be specific to the 
interaction between the model architecture and the generated 
stimuli. Initial modeling results using the actual 270-length 
vector representations of the Chinese characters show the 
same pattern as the simplified model presented here. 
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