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ABSTRACT	OF	THE	THESIS:	

Information	Content	of	Hydrologic	Signatures	and	their	Impacts	on	Watershed	Model	

Calibration	

By	

Mohammad	Sassani	

Master	of	Science	in	Environmental	Engineering	

University	of	California,	Irvine,	2018		

Professor	Amir	AghaKouchak,	Chair	

Approximate	Bayesian	computation,	also	known	as	ABC,	is	a	simulation-based	

method	with	its	roots	in	Bayesian	analysis,	which	is	increasingly	used	in	the	past	couple	of	

years	in	the	field	of	hydrology	for	parameter	estimation	and	uncertainty	analysis.	ABC	

relaxes	the	need	for	an	explicit	likelihood	function	and	uses	multiple	hydrologic	metrics	

(signatures)	to	evaluate	model	simulations.	If	the	hydrologic	signatures	are	sufficient,	and	

the	distance	between	simulated	metrics	and	their	observed	counterparts	are	less	than	a	

nominal	threshold,	model	parameters	are	assumed	to	be	derived	from	the	posterior	

distribution.	Since	finding	a	sufficient	set	of	summary	statistics	is	difficult	for	complex	

environmental	systems	and	high-order	models,	the	inferred	posterior	parameter	and	
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predictive	distributions	are	constrained	on	the	set	of	selected	metrics	and	may	not	

necessarily	mirror	the	“true”	posterior	parameter	distributions.		

In	this	thesis,	we	have	strived	to	shed	some	light	on	how	different	hydrologic	

signatures	constrain	watershed	models.	More	specifically,	we	are	interested	to	understand	

which	portions	of	the	hydrograph	is	constrained	by	each	individual	hydrologic	signature,	

and	ultimately	move	toward	finding	a	set	of	sufficient	metrics	with	least	overlapping	

information.	Throughout	the	years	significant	strides	have	been	made	in	the	field	of	

calibration	and	uncertainty	assessment	of	hydrologic	models,	but	the	constraining	power	

of	different	hydrologic	metrics	have	not	yet	been	characterized.	Using	information	theory,	

likelihood,	entropy,	and	conventional	metrics	such	as	NSE,	RMSE,	and	percent	bias;	we	try	

to	characterize	constraining	power	and	model	parameter	sensitivity	to	each	metric.	

Sensitivity	analysis	of	model	parameters	is	performed	using	Kullback-Leiber	divergence	

metric	and	Two	Sample	Kolmogorov	Smirnov	test.	One	interesting	finding	of	this	study	is	

that	hydrologic	signatures	are	model	specific	and	cannot	be	readily	transferred	between	

different	models.	The	result	of	this	study	also	depict	that	that	each	watershed	possesses	

different	and	unique	characteristics,	which	is	also	manifested	in	the	hydrologic	signatures	

that	are	selected	for	each	watershed.	In	other	word,	hydrologic	signatures	are	model-	and	

watershed-	specific.	We	also	observe	that	more	flexible	watershed	models,	such	as	GR4J,	

react	differently	to	hydrologic	signatures	as	compared	to	less	flexible	model	structures,	

such	as	HyMod.	In	more	detail,	more	flexible	model	structures	are	associated	with	higher	



  

 

xii 

information	content,	which	might	ultimately	help	the	hydrologic	signatures	in	constraining	

model	behavior.
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Chapter	1	

INTRODUCTION:	

Hydrologic	models	are	important	tools	for	improving	our	understanding	of	

catchments	behavior	and	generating	prediction	estimation	of	future	environmental	

responses	[Dmitri	Kavetski,	et	al.,	2006;	Sadegh	et	al.	2018].	In	the	early	1960s,	theoretical	

hydrology	models	such	as	The	Stanford	watershed	Model	that	can	deal	with	the	continuous	

dynamics	of	hydrologic	operations	were	proposed.	These	models	were	designed	to	profit	

from	advancements	in	the	computational	power	of	computers	in	order	to	quantifiably	

illustrate	the	hydrologic	processes	that	occur	in	a	watershed.	These	advancements	have	

taken	place	with	respect	to	available	knowledge	of	a	watershed	and	computational	power	

that	both	limitations	have	been	decreasing	over	the	years	[John	C.	Schaake,2003].	

The	major	limiting	factor	in	hydrologic	modeling	is	in	making	predictions	and	

testing	conclusions	at	space	and	time	scales	of	interest.	Another	factor	is	imperfect	and	

limited	knowledge	in	regard	to:	vegetation	and	topographic	characteristics,	soil	properties,	

water	and	energy	forcing	that	alternate	over	time	and	space,	and	hydrologic	processes	at	

distinct	scales.	Due	to	these	factors,	real	world	modeling	is	both	an	art	and	a	science	of	

implementing	finite	and	incomplete	knowledge	[John	C.	Schaake,2003].	

Each	theoretical	model	poses	parameters	that	are	coefficient	and	exponents	within	

the	model	equations.	These	parameters	usually	cannot	be	measured	in	the	field	[Sadegh	
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and	Vrught,	2013],	and	should	be	assessed	for	the	catchment	in	question.	Using	a	complex	

calibration	process,	parameters	need	to	be	estimated	with	respect	to	the	physical	

characteristics	or	via	parameter	modification	with	the	goal	of	the	model	responding	to	an	

approximate	observed	response	[Naeini	et	al.	2018].	The	process	of	calibration	is	more	

convoluted	than	it	seems	due	to	the	inadequacy	of	available	input	and	output	data,	

insufficiency	in	regard	to	the	available	understanding	of	basin	characteristics,	limitations	

within	models,	and	restrictions	in	one’s	skill	to	define	quantitatively	preferences	for	how	

best	to	fit	the	models	to	the	data.	Consequently,	for	any	explicit	watershed,	there	are	no	

apparent	parameter	values	and	there	exists	an	amount	of	uncertainty	in	regard	to	which	

parameter	value	would	be	optimal	[John	C.	Schaake,2003].	

When	analyzing	the	model’s	output	in	association	with	the	measured	data,	some	

differences	between	these	two	are	observed.	As	a	result,	essential	questions	about	the	

origin	of	this	divergence	emerge.	This	divergence	can	be	the	result	of	many	different	

factors	such	as:	limitations	within	the	model	structure,	parameter	short	comings,	and	last	

but	not	least,	errors	with	in	the	forcing	data	and/or	in	the	output	measurements	[Sadegh	

and	Vrugt,	2013].	The	calibration	scheme	must	clearly	be	account	for	input,	state,	model	

structural	and	parameter	uncertainty,	as	well	as	model	response	uncertainty	for	various	

cases	and	forms	of	information	and	data.	This	process	needs	to	take	place	simultaneously	

with	the	recurrent	processing	of	data	and	new	information	as	they	become	available	and	

ready	to	use	[Moradkhani	et	al.	2005].	
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Traditional	model	calibration	methods	minimized	a	distance	metric	between	model	

simulations	and	observations	such	as	mean	square	error	(RMSE)	or	Nash-Sutcliffe	

Efficiency	(NSE).	Some	of	the	major	weaknesses	of	traditional	methods	includes	their	

fundamental	assumption	that	the	model	structure	is	appropriately	exact,	inefficiency	to	

manage	diverse	sources	of	uncertainty,	their	insistence	on	finding	a	singular	optimal	

parameter	set	when	realistically	there	can	be	range	of	acceptable	parameters,	being	

dependable	on	a	particular	aggregate	measure	of	performance	model	and	foremost	their	

inability	to	characterize	between	different	model	behavior	[HoshinV.	Gupt	et	all,	2003].	

This	has	encouraged	researchers	to	use	Bayesian	inference	to	account	for	modeling	

uncertainties	in	a	robust	and	sound	way	[Sadegh	et	al.,	2017	&	2018;	and	references	

therein].	However,	the	likelihood	function	in	the	Bayesian	framework	is	also	limited	in	

terms	of	providing	detailed	information	about	model	performance	and	lack	the	intrinsic	

capability	to	perform	diagnostic	model	evaluation	[Gupta	et	al.	2008].	Approximate	

Bayesian	Computation	(ABC)	has	become	a	favorable	method	of	calibration	due	it	powerful	

model	evaluation	scheme	[Vrugt	and	Sadegh	2013;	Sadegh	and	Vrugt	2013].	This	method	

relaxes	the	demand	for	certain	likelihood	functions	in	support	of	multiple	summary	

statistics	that	can	extract	independent	pieces	of	information	about	model	performance	

[Sadegh	et	al.	2015	&	2016].	ABC	is	also	notably	useful	due	to	its	superior	capability	(as	

opposed	to	traditional	Bayesian	approach)	of	using	posterior	distributions	that	correctly	

identify	the	role	of	model	structure,	parameter	uncertainty,	as	well	as	calibration	and	

forcing	data	[Vrugt	and	Sadegh,	2013].	
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Over	the	years	significant	strides	have	been	made	in	the	field	of	model	calibration,	

analysis	and	developments,	but	analysis	of	the	impacts	of	each	individual	hydrologic	

signature	on	the	predictive	performance	of	watershed	models	has	not	received	much	

attention.	Therefore,	there	remains	a	need	for	assessing	the	constraining	power	of	

individual	hydrologic	metrics.	This	analysis	is	performed	herein	by	calibrating	the	GR4J	

and	HyMod	models	for	several	watershed	data	and	calculating	mean	ensemble	RMSE,	NSE,	

and	percent	bias	for	the	posterior	samples	of	the	analysis	with	each	metric.	Coverage	of	

observations	within	the	predictive	uncertainty	ranges,	as	well	as	spread	of	the	uncertainty	

range	have	also	been	analyzed.		Moreover,	Entropy	of	model	simulations	and	likelihood	of	

the	observations	given	the	model	simulations’	distribution,	at	each	time	step,	have	been	

computed	to	demonstrate	the	constraining	power	of	each	hydrologic	signature	on	different	

portions	of	the	hydrograph.	Ultimately,	the	Kullback	Leibler	divergence	metric	and	Two-

sample	Kolmogorov-Smirnov	test	was	used	to	evaluate	the	sensitivity	of	each	model	

parameter	for	each	metric	used.	

Results	of	this	study	present	importance	of	understanding	distinctive	characteristics	

of	a	watershed	and	its	relation	to	the	hydrologic	model	implemented,	as	well	as	its	

connection	to	calibration	metrics	used.	Analyzing	of	a	watershed,	it	is	critical	evaluate	the	

model's	performance	using	sets	of	performance	evaluation	metrics	alongside	predictive	

uncertainty	plots.	Furthermore,	this	research	study	indicates	that	metrics	such	as	FDC	Low	

Segment	Volume	less	than	30	Percentile,	Auto	Correlation	of	Hydrograph	with	1Day	Lag,	

Rising	LIMB	Destiny,	Declining	LIMB	Destiny	and	1st	Flow	Percentile	render	more	
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constraining	power	over	the	GR4J	hydrologic	model,	whereas	FDC	High	Segment	Volume	

more	than	90	Percentile	and	99th	Flow	Percentile	are	performing	more	adequately	with	

HyMod	hydrologic	model	that	is	a	less	flexible	model.	In	general,	hydrologic	signatures	are	

both	model-	and	watershed-	specific.	



  

 

6 

Chapter	2	

METHODOLOGY	

1.1. Bayesian	Analysis	

Bayesian	inference	is	a	statistical	approach	that	uses	Bayes’	theorem	to	extract	

meaningful	information	from	observation	data	to	constrain	model	realizations.	As	more	

data,	information,	or	material	become	available,	Bayes’	theorem	is	implemented	with	the	

purpose	of	updating	the	probability	of	a	hypothesis.	The	Bayesian	method	is	named	after	

Reverend	Thomas	Bayes	(1701–1761),	minister	and	mathematician;	who	worked	

extensively	on	scheming	distribution	for	the	probability	parameters	of	a	binomial	

distribution	[Sadegh	and	Vrugt	2013].	

Over	the	years,	the	Bayesian	analysis	has	found	application	in	many	different	fields	

[Geweke,	1989],	such	as	hydrology	[Wood	and	Rodr	ıguez-Iturbe,	1975],	medicine	

[L.Bernardinelli,D	et	al.	1995],	ecology	[G.B.	Arhonditsis	a,et	al.	2005],	geology[Chih-

HsiangHo,	1990],	oceanography[L.	Mark	Berliner,	1997],	meteorology[David	J.	

Spiegelhalter,	et	al.	1993],	and	much	more.	This	analysis	is	used	for	uncertainty	

quantification	purposes	and	model	inference	[Huelsenbeck,	et	al.	2001].	

Quantitative	measurement	of	the	probability	of	a	hypothesis	by	using	available	data,	

describing	probabilities	as	individual	degrees	of	a	notion	in	a	likelihood	of	an	event,	and	
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delineating	the	posterior	space	of	model	parameters	as	random	variables	are	just	some	of	

important	aspects	that	make	Bayesian	inference	a	very	important	statistical	tool	[Aaron	M.	

Ellison,	2004].	

In	hydrology,	the	Bayesian	method	has	become	increasingly	popular	for	uncertainty	

analysis,	fitting	models	to	data,	and	many	more	(e.g.,	estimating	modeling	uncertainties	of	

streamflow,	pollution	dispersion	in	water	bodies,	groundwater	table	depth,	soil	moisture	

pressure	head,	snow	water	equivalent)	[Mojtaba	Sadegh,	Jasper	A.	Vrugt,	2014].		

Bayes’	law	conveniently	attributes	all	modeling	uncertainties	to	model	parameters	

and	estimates	the	posterior	distribution	of	model	parameters	[Sadegh	et	al.	2018].	A	Major	

advantage	of	the	Bayesian	approach	is	that	by	employing	informative	prior	probability	

distribution	function	the	parameter	uncertainty	would	be	lowered	[Guillermo	et	al.,	1975].	

Posterior	distribution	of	model	parameters	using	Bayes’	law	is	defined	as		

qrstuvw = 	
x(y)xzuv{s|

x(}v)
			 	 	 	 (1)	

In	this	equation	qrstuvw	and	q(s)	represent	posterior	and	prior	parameter	

distributions,	respectively.	The	likelihood	function	is	shown	by	qruvtsw ≅ ℒrstuvw,	and	

qruvw = ∫ q(s)qruvtsw Ås
y

.	The	latter	indicates	information	and	evidence,	which	is	a	

constant	value	in	a	modeling	practice.	When	the	main	objective	is	to	estimate	the	posterior	

distribution	of	parameters,	evidence	can	be	removed	from	the	analysis,	and	posterior	

parameter	distribution	can	be	estimated	with	
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qrstuvw ∝ 	q(s)qruvtsw.		 	 	 	 (2)	

When	there	is	a	lack	of	useful	information	about	the	prior	distribution	of	

parameters,	flat	uniform	prior	can	be	employed	[M.		Thiemann	et	al.,	2001].	Now	the	only	

remaining	piece	is	defining	a	likelihood	function,	which	assuming	error	residuals	are	

uncorrelated,	homoscedastic	(same	variance)	and	Gaussian-distributed	with	mean	zero	

can	be	formulated	by	[	Sorooshian	and	Dracup,	,1980].		

ℒrstuvw = 	∏
Ñ

√Üáàâä
ã
åçÑ éèq ê−

Ñ

Ü
íìîÜ[ïìå − ïå(s)]Üñ	 	 	 	 	(3)	

The	standard	deviation	of	measurements	errors	is	signified	by	íì	in	the	above	

equation,	and	this	equation	can	be	logarithmically	transformed	for	simplicity	and	

numerical	stability	to	

ℓrstuvw = −
ã

Ü
òô(2ö) −

ã

Ü
òô íìÜ −

Ñ

Ü
íìîÜ ∑ [ïúâ − ïå(s)]Ü

ã
åçÑ .		 	 (4)	

	

Furthermore,	íì	can	be	estimated	as	

íì = 	ù
∑ [ûìüîûü(y)]ä
†
ü°¢

ã
	.	 	 	 	 	 	 (5)	

Equation	4	can	be	further	simplified	by	removing	the	constant	terms,	as	they	does	

not	impact	the	inference	[Sadegh,	M.,	E.	Ragno,	and�A.	AghaKouchak,	2017],	
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ℓrstuvw ≅ −
ã

Ü
òô ê

∑ [û£â îûü(y)]
ä†

ü°¢

ã
ñ.		 	 	 	 	 (6)	

1.2. Approximate	Bayesian	Computation	(ABC)	

Over	the	years	models	are	becoming	more	and	more	complex.	Increasing	

computational	power	and	advancements	in	measurement	technologies	have	increased	the	

availability	and	accuracy	of	hydrologic	data	and	raised	the	need	for	higher	diagnostic	

computational	power	[Sadegh	et	al.	2016].	Since	traditional	likelihood-based	calibration	

and	system	analysis	algorithms	are	insufficient	to	distinguish	and	find	flaws	in	model	

structures,	novel	statistical	techniques	are	required	to	extract	independent	pieces	of	

information	from	model	behavior	and	pinpoint	potential	shortcomings	of	modeling	

approach	[Vrugt	and	Sadegh,	2013].	Note,	however,	that	although	significant	strides	are	

made	in	this	direction,	accommodating	higher	order	system	models	with	a	considerable	

amount	of	field	information	is	still	a	challenge	[Turner,	B.	M.,	&	Van	Zandt,	T.	,2012].	

Approximate	Bayesian	computation	(ABC)	has	become	popular	to	address	the	

search	for	a	more	powerful	model	evaluation,	an	absolute	necessity	raised	by	several	

researchers	such	as	Gupta	et	al.	2008.	This	statistical	methodology	softens	the	need	for	

accurate	likelihood	function	and	replaces	it	with	one	or	more	summary	statistics	rooted	in	

environmental	theory	and	doing	so	has	provided	a	great	diagnostic	power	for	hydrological	

theory	assessments	[Turner,	B.	M.,	&	Van	Zandt,	T.	,2012].	
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ABC	was	originally	developed	by	Diggle	and	Gratton	in	1984	and	has	been	broadly	

used	where	evaluation	of	likelihood	is	exorbitant	and/or	for	situations	that	specific	

objective	function/likelihood	cannot	be	supported	[Brandon	M.	et	al.,	2012].	ABC	has	

gained	popularity	in	different	fields	of	study	such	as	genetics	and	has	become	an	essential	

tool	for	human	behavior	models	that	endure	extremely	complex	likelihoods	[Turner,	B.	M.,	

&	Van	Zandt,	T.	,2012]	and	[Beaumont,	M.	et	al.	,2002].		ABC	was	introduced	to	the	field	of	

hydrology	by	the	early	works	of	Nott	et	al.,	2012	and	Vrugt	and	Sadegh,	2013.	

The	proper	implementation	of	ABC	lies	in	the	careful	selection	of	summary	metrics	

that	appropriately	extract	nearly	all	available	information	from	calibration	data,	assigning	

an	appropriate	tolerance	value	and	proper	sampling	procedure	for	complex	

multidimensional	spaces	involving	tens	to	hundreds	of	parameters	[Mojtaba	Sadegh	and	

Jasper	A.	Vrugt,	2014].	ABC	replaces	the	likelihood	function	calculation	in	Bayesian	

equation,	

qrstuvw = 	
xzuv{s|	x(y)	

∫ xzuv{s|	x(y) •y
	,	 	 	 	 	(7)	

with	some	representative	summary	metrics	that	ideally	extract	as	much	information	as	the	

underlying	“true”	likelihood	function.	Note	that	the	“true”	likelihood	function	is	not	simple	

to	derive	in	a	complex	environmental	problem	and	is	instead	formulated	given	some	

assumptions	about	the	system	behavior	which	are	often	violated	by	the	model	response	

[Sadegh	et	al.	2016].	In	short,	intention	of	ABC	is	to	gain	estimation	of	posterior	

distribution	for	model	parameters,	without	computation	of	an	explicit	likelihood	function.	
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Without	implementing	likelihood,	a	s∗can	be	assumed	to	be	a	sample	from	the	

posterior	distribution,	if	distance	value,	q	(u, uv),	that	evaluates	the	divergence	between	

model	simulations,	u,	and	measurements,	uv,	is	less	than	a	tolerance	threshold	value	ß .	For	

a	small	value	of	tolerance	threshold,	the	posterior	distribution	can	be	defined	as:	

[Pritchard,	J.	K.,	Seielstad,	M.	T.,	Perez-Lezaun,	A.,	&	Feldman,	M.	W.	,1999].	

qrst®r	u,uvw ≤ ß w 	≅ 	q(s│uv)			 	 	 	 	 (8)	

Approximate	Bayesian	computation	algorithm	progresses	by	first	sampling	a	

parameter	set,	s∗,	form	a	prior	distribution	q(s).	Then,	information	gained	from	the	1st	

step	is	used	to	generate	a	vector	of	model	simulations,	u,		similar	in	dimension	to	

observation	data,	uv.	Next	step	is	computing	®	(u, uv)	which	is	estimated	by	comparing	the	

distance	between	u	(simulated	data)	and	uv	(observed	data)	and	if	the	value	of	®	(u, uv)	is	

less	than	a	nominal	threshold,	ß ,	the	distance	is	regarded	as	small	and	parameter	s∗has	a	

nonzero	probability	of	being	within	the	range	of	the	approximate	posterior	distribution.	

When	such	case	is	true,	s∗	is	kept	as	a	posterior	sample;	otherwise	would	be	disregarded	

and	a	new	s∗	would	be	chosen	and	the	discussed	process	would	take	place	again.		

	 Instead	of	measuring	the	distance	between	a	vector	of	observations,	uv,	and	

simulations,	u,	one	may	characterize	the	distance	between	a	set	of	their	representative	

summary	metrics.	Summery	metrics,	´(	. ),	could	represent	different	statistics	such	as	

sample	mean,	standard	deviation,	etc.	More	importantly,	these	metrics	could	have	roots	in	

the	environmental	theory	to	extract	some	clear	and	compelling	information	from	the	data	
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[Sadegh	and	Vrugt,	2014].	Information	content	of	these	metrics	should	be	sufficient	to	

delineate	the	posterior	distribution	of	model	parameters.	Ideally,	appropriate	statistics,	

´(	. ),		offer	the	same	amount	of	information	about	the	parameters	as	the	original	data	set	

(uv,),	and	hence	the	posterior	distribution	can	be	written	as:	

																															qrst®(´(u), ´(uv) ≤ ßw 	≅ qrstuvw		 	 	 	 (9)	

In	summary,	the	assumption	behind	ABC	is	when	®r	u, uvw	is	characterized	by	

satisfactory	statistics,	the	resulting	approximation	to	the	posterior	would	be	sufficient,	as	

long	as	®	r´(u), ´(uv)w < ß.	Some	factors	that	need	to	be	kept	in	mind	are	when	the	value	of	

ß 	is	very	small,	the	rejection	would	increase	dramatically,	and	choosing	sufficient	

summary	metrics	is	not	simple	partly	due	to	its	dependency	on	unknown	likelihood	qruvtsw	

[Turner,	B.	M.,	&	Van	Zandt,	T.,	2012].	

Sampling	algorithms	within	approximate	Bayesian	computation	framework	can	be	

organized	into	three	wide	categories:	Rejection	algorithm,	Markov	Chain	Monte	Carlo	

(MCMC)	algorithms,	and	Sequential	Monte	Carlo	methods	also	known	as	SMC	[Sadegh	and	

Vrugt,	2014].	We	use	the	MCMC	algorithm	of	Sadegh	et	al.	2017	to	delineate	the	posterior	

distribution	of	hydrologic	model	parameters	within	an	ABC	framework	in	this	study.	The	

adaptive	sampling	of	this	algorithm	mitigates	the	high	rejection	rates	of	the	posterior	

samples	within	an	ABC	framework.	
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1.3. Hydrologic	Models	

1.3.1. GR4J	

	GR4J	is	a	modified	version	of	a	GR3J	model	which	was	proposed	by	Edijianto	and	

Michel	in	1989	and	substantially	improved	by	Nascimento	in	1995	and	Edijantoet	et	al	in	

1999	[Charles	Perrin,	Claude	Michel,	Vazken	Andréassian,	2003].	GR4J	is	a	lumped	

conceptual	model	with	four	parameters	and	two	reservoirs	(a	production	reservoir	and	a	

routing	reservoir).	With	precipitation	and	potential	evapotranspiration	as	inputs,	this	

model	provides	streamflow	and	evapotranspiration	prediction	at	the	catchment	outlet.	

Two-unit	hydrograph-based	methods	are	used	in	GR4J	to	represent	the	time	lag	between	

precipitation	and	stream	flow.	This	model	also	takes	into	account	a	transfer	function	between	unit	

hydrograph	and	the	routing	store.	By	subtracting	potential	evapotranspiration	from	precipitation,	

GR4J	divides	the	inputs	into	net	precipitation	and	net	potential	evapotranspiration.	In	cases	where	

the	potential	evapotranspiration	demand	is	not	met	from	rainfall	(precipitation),	a	portion	of	the	

production	store	would	be	dedicated	to	potential	evapotranspiration.	When	net	precipitation	exists,	

parts	of	it	would	go	to	production	store	and	the	routing	unit	hydrograph	function.	Another	factor	

that	contribute	to	unit	hydrograph	is	the	output	of	production	store.	Unit	hydrograph	is	divided	

into	section	one	and	section	two;	90%	of	inputs	to	unit	hydrograph	would	go	to	section	one	(UH1)	

and	the	remaining	10%	would	go	to	section	two	(UH2).	Outputs	of	UH1	will	then	contribute	to	the	

routing	reservoir,	whereas	UH2	outputs	interact	with	the	routing	reservoir	(based	on	surplus	on	

either	side)	and	contribute	to	runoff	generation.	Routing	stores	outlet,	and	net	aggregate	flow	from	

section	one	of	unit	hydrograph	and	ground	water	exchange	(f	and,	ExchT)	combine	to	estimate	
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streamflow	at	the	catchment	outlet	[Sadegh et al., 2017].	Table	3.1	presents	GR4J	Hydrologic	

model’s	parameters,	their	descriptions	and	their	units.	In	addition,	figure	3.1	represents	a	

schematic	overview	of	the	GR4J	hydrologic	model’s	structure.	 

	

	

	

	

	

	

	

	

Table	2.1	Description	of	parameters	of	conceptual	rainfall-runoff	for	GR4J	hydrologic	model.	

	 Parameter	
Symbol	

Parameter	Description	 Range	 Unit	

1	 S1max	 Max	Capacity	of	Production	Store	 50	-	500	 mm	

2	 Exch	
Catchment	Water	Exchange	

Coefficient	
-15	-	4	 mm	

3	 S2max	
One	Day	Maximal	Capacity	of	the	

Routing	Reservoir	
10	-	1300	 mm	

4	 UHB	 Hydrograph	Time	Base	 0.5	-	5	 days	

5	 DD	 Snow	Module	 0.7	-	9	 mm/C/day	
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Figure	2.1.	Diagrammatic	structure	of	GR4J	hydrologic	model.	
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1.3.2. HyMod	

HyMod	was	introduced	by	Boyle	in	2000	and	further	developed	by	Wagner	in	2001	

as	a	flexible	hydrologic	model	that	by	using	a	minimal	number	of	modeling	units	and	

function	parameters	can	represent	hydrologic	processes	within	a	watershed	[Boyle,	

Douglas	Patrick,	2001].	

HyMod	is	a	parsimonious	lumped	conceptual	model	with	five	parameters	and	five	

storage	compartments,	including	one	soil	moisture	reservoir,	three	serial	fast	flow	

reservoirs	and	one	slow	flow	reservoir,	which	is	parallel	to	the	fast	flow	reservoirs.	In	this	

model,	precipitation	is	processed,	and	potential	evapotranspiration	is	controlled	by	two	

parameters	of	storage	capacity	and	spatial	variability	of	soil	moisture.	Precipitation	and	

potential	evapotranspiration	enters	the	first	compartment	(reservoir)	the	output	would	

enter	into	fast	and	slow	flow	reservoirs	working	in	parallel.	The	fast	segment	which	

includes	three	reservoirs	and	the	slow	segment	which	include	one	reservoir,	act	as	routing	

functions,	and	their	outlets	will	represent	streamflow	at	the	catchment	outlet	(2).	Table	3.2	

presents	HyMod	Hydrologic	model’s	parameters,	their	descriptions	and	their	units.	In	

addition,	figure	3.2	represents	a	schematic	overview	of	the	HyMod	hydrologic	model’s	

structure.		
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Table	2.2	Description	of	parameters	of	conceptual	rainfall-runoff	for	HyMod	hydrologic	model.	

	 Parameter	
Symbol	

Parameter	Description	 Range	 Unit	

1	 Cmax	 Maximum	Soil	Moisture	Reservoir	 1	-	500	 mm	

2	 BEXP	
Spatial	Variability	of	Soil	Moisture	

Storage	
0.1	–	2.00	 ____	

3	 Alpha	(a)	 Distribution	Factor	Between	Fast	and	
Slow	Routing	Reservoirs	

0.1	–	0.99	 ____	

4	 Rs	
Residence	Time	of	Slow	Flow	

Reservoir	
0.001	–	
0.1	

days	

5	 Rq	
Residence	Time	of	Quick	Flow	

Reservoirs	
0.1	–	0.99	 days	

6	 DD	 Snow	Module	 0.7	-	9	 mm/C/day	
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Figure	2.2	Diagrammatic	structure	of	HyMod	hydrologic	model.	
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1.3.3. Snow	Module		

We	adopt	snow	module	from	the	HBV	model	of	Aghakouchak	and	Habib	(2010)	

with	the	purpose	of	determining	snow	accumulation	and	melt	with	respect	to	temperature.	

Snow	module	processes	precipitation	and	temperature	data	for	each	given	date	to	

determine	whether	precipitation	occurs	in	the	form	of	rainfall	or	snow.	If	temperature	is	

below	freezing	point	(zero	degrees	Celsius,	in	this	study),	this	module	will	accumulate	

snow,	otherwise	model	would	operate	by	the	aggregate	of	snow	melt	and	rainfall	[Sadegh	

et	al.,	2017]	.		This	module	is	separated	from	the	HBV	model	of	Aghakouchak	and	Habib	

(2010)	and	added	as	a	separate	module	to	GR4J	and	HyMod.		

Snow	melt	is	estimated	based	on	´± = ≤≤(≥ − ≥¥),	in	which	≥	is	observed	

temperature,	and	≥¥	represents	the	predefined	freezing	threshold,	whereby	if	temperature	

exceeds	its	value,	snow	melt	takes	place	and	when	it	stays	below	this	threshold	snow	

accumulation	occurs.		≤≤	is	degree	day	factor	that	governs	the	snowmelt	volume	taking	

place	due	to	1℃	temperatures	above	the	freezing	threshold,	≥¥ = 0	in	this	study,	for	one	

day.	Degree	day	factor,	≤≤,	can	range	between	0.7	to	9	mm/	C/day	[Aghakouchak,	

AmirHabib,	Emad,	2010].	In	addition,	figure	3.3	represents	a	schematic	overview	of	the	

snow	module.	
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Figure	2.3.	Diagrammatic	structure	of	the	Snow	module.	Observed	precipitation(P)	is	first	filtered	
through	the	snow	module	to	conclude	likely	snow	build	up	or	melt.	Tolerance	threshold	is	

presumed	to	be	zero	degrees	Celsius	(T0	=	0	C).	
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2. Performance	Evaluation	Metrics:	

Estimating	the	precision	of	model	simulations	is	necessary	not	only	to	characterize	

the	accuracy	of	model’s	prediction	but	also	for	model	selection	and	averaging.	In	this	thesis,	

different	performance	evaluation	metrics	are	used	to	estimate	how	accurately	a	predictive	

model	would	execute	in	practice.	In	the	following,	performance	metrics	used	to	evaluate	

model	simulations	in	this	thesis	are	briefly	described.	

2.1. Entropy	

Entropy	(∂)	is	a	measure	of	uncertainty,	variability	or	disorder	of	random	variables.	

Entropy	is	a	logarithmic	measurement	of	different	states	with	the	substantial	lower	

possibility	of	occurrence	[Liu,	M-Y;	Tuzel,	O.;	Ramalingam,	S.;	Chellappa,	R.,	2011].	Entropy	

for	a	distinct	nonspecific	arbitrary	variable	(∑)	with	probability	mass	function	(q∏)	is	

characterized	as	[Liu,	M-Y;	Tuzel,	O.;	Ramalingam,	S.;	Chellappa,	R.,	2011].:	

∂(∑) = −∑ (è)q∏òπ∫q∏(è)ª∈∏ 		 	 	 	 (10)	

2.2. Likelihood	

The	likelihood	function	is	implemented	in	order	to	outline	the	gap	between	

observations	and	model	simulations;	in	another	word,	it	is	employed	to	summarize	the	

divergence	among	the	observations	and	simulations	in	a	scalar	value.	Therefore,	it	can	be	

implemented	to	find	the	best	fit	to	the	observation	data.	The	equation	below	calculates	
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likelihood	values	according	to	observations,	uv	,	simulation,	u 	,	parameter	s,	estimation	of	

standard	deviation	of	measurement	error	íì	,	if	residuals	(divergence	between	model	

simulations	and	observational	data)	are	assumed	independent,	homosckedastic,	and	

Gaussian	distributed	with	mean	zero	[Mojtaba	Sadegh,	Elisa	Ragno,	Amir	AghaKouchak,	

2017].	

ℒrstuvw = ∏ Ñ

√Üáàâä
éèq ê−

Ñ

Ü
íìîÜ[ïìå − ïå(s)]Üñ

ã
åçÑ 	 	 	 		(14)	

2.3. Nash-Sutcliffe	efficiency	(NSE):		

	 The	Nash-Sutcliffe	efficiency,	NSE,	is	an	established	statistic	of	goodness-of-fit[Nash,	

J.	E.,	and	J.	V.	Sutcliffe,1970].	By	using	the	equation	below,	NSE	shows	how	accurately	the	

plot	of	observed	vs.	simulated	data	fits	the	1:1	line.		

Ω´æ = 1 − ø
∑ (ûìüîûü)

ä†
ü°¢

∑ rûìüî}v¿w
ä†

ü°¢

¡	 	 	 	 (15)	

In	the	above	equation,	the	¬th	observation	is	represented	by	uå
√ƒ≈,	the	¬th	simulated	

value	is	represented	by	uå
≈å±,	the	average(mean)	of	data	is	represented	by	uv¿	and	the	total	

number	of	observations	is	shown	by	ô.	

The	value	of	NSE	ranges	between	one	and	negative	infinity	(−∞ ≤ Ω´æ ≤ 1.0),	the	

ideal	NSE	value	is	one.		When	NSE	value	drop	below	0.0,	this	is	a	suggestion	that	the	mean	

observation	value	provide	a	superior	prediction	than	the	simulated	value;	commonly,	in	
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this	case,	the	simulation	performance,	is	not	acceptable	[D.	N.	Moriasi,	J.	G.	Arnold,	M.	W.	

Van	Liew,	R.	L.	Bingner,	R.	D.	Harmel,	T.	L.	Veith,	2007].	

	NSE	is	a	commonly	used	metric	that	can	be	applied	to	a	range	of	model	types.	NSE	

has	been	recommended	by	ASCE	Watershed	Management	Committee	(ASCE	1993)	and	

Legates	and	McCabe	(1999).	The	strength	of	NSE	on	reflecting	the	overall	fit	of	a	

hydrograph	have	been	proven	by	Sevat	and	Dezetter	(1991)	[Sevat,	E.,	and	A.	Dezetter,	

1991].		

2.4. Root	Mean	Square	Error	(RMSE):	

Root	mean	square	error,	RMSE,	historically	has	been	one	of	the	most	popular	

methods	to	measure	the	difference	between	simulated	values	and	observed	data	(model	

error)	over	the	years	[Rob	J.	Hyndmana,	Anne	B.	Koehler,	2006]	and	is	represented	as:	

«»´æ = ù
Ñ

ã
∑ (		ïìå − ïå (s))Ü
ã
å 	 	 	 	 (16)	

In	the	above	equation	discharge	represented	as	y,	the	set	of	model	parameters	as	s,	

the	total	number	of	observations	as			ô	is	(Thomas	Meixner1,	Hoshin	V.	Gupta,	Luis	A.	

Bastidas	and	Roger	C.	Bales,	2013).	A	Smaller	the	value	of	RMSE	(0 ≤	RMSE)	means	a	

smaller	error	(the	difference	between	data	and	simulated	values.	When	the	value	of	RMSE	

is	equal	to	zero,	it	signifies	perfect	fit	which	is	very	rare	[D.	N.	Moriasi,	J.	G.	Arnold,	M.	W.	

Van	Liew,	R.	L.	Bingner,	R.	D.	Harmel,	T.	L.	Veith,	2007].				
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2.5. Percent	Bias	(PBIAS):	

	 The	Percent	Bias,	PBIAS,	calculates	the	average	(mean)	tendency	of	the	simulated	

values	to	be	greater	or	less	than	the	observation	[Gupta	et	al.,	1999].	PBIAS	is	the	

evaluation	process	for	the	deviation	of	data	(simulated	and	observed)	that	represents	this	

deviation	and	it	is	stated	in	the	form	of	percentage.	The	equation	below	is	used	for	this	

calculation	process:			

… ÀÃ´ = 100 ∗ 	
∑ z}ü 	î	}vü |†
ü°¢

∑ }vü
Õ†

ü°¢

	 	 	 	 (17)	

In	the	above	equation,	the	total	number	of	observations	is	shown	by	ô.	

The	value	of	PBIAS	ranges	between	negative	infinity	(−∞)	and	positive	infinity	

(+∞)	with	an	optimal	value	of	0.0,	and	the	small	magnitude	value	of	PBIAS	represents	an	

accurate	water	balance	in	the	modeling	process.	When	the	value	of	PBIAS	is	positive,	it	

represents	an	overall	overestimation	of	discharge	values,	whereas	its	negative	values	

represent	overall	underestimation	of	discharges.	

2.6. Threshold	

Threshold	is	used	in	the	approximate	Bayesian	framework	to	accept	or	reject	a	

model	simulation,	and	can	be	used	as	a	proxy	metric	to	show	whether	model	inference	is	

sensitive	to	a	hydrologic	signature	or	not.	We	use	percent	divergence	of	simulated	

hydrologic	signatures	from	their	observed	counterpart	as	the	distance	metric,	and	hence	
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threshold	adopts	a	percentage	nature.	We	iteratively	search	for	a	threshold	value	that	

renders	a	coverage	of	90%	of	observation	data	in	the	uncertainty	range	of	the	inferred	

model	simulation	(posterior/behavioral	samples).	

The	premise	behind	this	analysis	is	that	the	parameter	vector	should	be	a	sample	of	

the	posterior	distribution	if	the	distance	between	the	observed	and	the	simulated	data	is	

less	than	some	nominal	positive	threshold.	Whenever	the	simulated	data	does	not	satisfy	

the	threshold	value	then	it	expresses	that	this	model	might	prompt	to	weak	performance.			

A	threshold	value	of	0%	shows	a	perfect	fit	with	regard	to	the	hydrologic	signature	

of	interest,	and	as	it	increases	model	fit	degrades	[Mojtaba	Sadegh,	Jasper	A	Vrugt,	

Chonggang	Xu,	Elena	Volpi,	2015].	We	select	the	threshold	separately	for	each	metric,	by	

finding	the	variation	among	summary	metrics	that	is	normalized	with	the	observed	metric,	

the	results	are	found	in	percentage	format	and	presented	as	a	fraction	value	in	this	study.			

2.7. Distance	between	Simulations	and	Acceptance	Range	

This	metric	is	the	average	distance	between	the	observations	that	have	fallen	out	of	

the	acceptance	range	and	the	range	limit.	The	Distance	without	zero	metric	is	very	similar	

to	the	Distance	metric,	with	one	difference	that	for	this	metric	the	simulation	points	that	

are	overlapping	perfectly	with	the	acceptance	range	are	not	taken	into	account	when	

calculating	the	average	distance.	
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2.8. Mean Uncertainty Spread 

Mean	Uncertainty	Spread	takes	into	account	the	spread	of	the	acceptance	range	to	

measure	the	performance	of	each	metric	for	each	model.		

2.9. Coverage	

Coverage	as	a	performance	evaluation	metric	that	measures	the	average	of	coverage	

of	observations	within	the	uncertainty	range	and	presents	the	results	in	form	of	

percentage.	When	values	of	evaluation	are	closer	to	100%,	the	model	simulations	are	

perfect,	with	respect	to	the	metric	of	interest	given	the	uncertainty	ranges	(acceptance	

area).	

3. Sensitivity	Surrogate	Metrics		

3.1. Kullback-Leibler	Divergence	(KL	Divergence)		

An	ideal	method	for	measuring	the	variance	among	two	distributions	is	the	

Kwullback-Leibler	Divergence,	KLD.	Describing	the	statistical	variance	among	two	data	sets	

is	a	complex	task,	and	KLD	summarizes	this	complex	divergence	by	describing	it	as	a	single	

positive	scalar.	

Due	to	Kullback-Leibler	Divergence’s	unique	nature	and	quality,	it	has	found	many	

different	applications	such	as	in	image	recognition	[C.Lin	and	H-Y	Shum,	2003],	analyzing	
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neural	firing	patterns	[H.Nakahara	and	S.-I.	Amari,	2002],	financial	forecasting	[J.	

Robertson,	E.	W.	Tallman,	and	C.	H.	Whiteman,	2002],	and	many	more.		

Kullback-Leibler	Divergence	is	a	measure	of	how	one	probability	distribution,	q,	

varies	from	another	probability	distribution	œ.	Its	equation	is	defined	below:	

≤(q ∥ œ) = 	∑ q(è) òπ∫
x(ª)

—(ª)ª∈∏ 	 	 	 	 (18)	

In	the	above	equation	X	represents	the	outcome	of	all	possible	events.	Due	to	not	

fulfilling	triangle	inequality	and	usually	non-symmetric	difference	between	two	probability	

mass	functions	(PMFs)	(≤(q ∥ œ) ≠ ≤(œ ∥ q)),	KLD	is	not	considered	a	true	distance	

metric.	This	statement	would	not	hold	if	and	only	if	both	probability	distributions	are	

identical;	otherwise	KLD	is	a	non-zero	positive	number.	In	any	case,	KLD	provides	a	

measure	of	distance	between	two	distributions,	with	zero	corresponding	to	two	

distributions	with	similar	(if	not	identical)	statistical	properties.	KLD	values	of	one	depicts	

the	maximum	divergence	of	the	two	distributions	from	one	another.		

Kullback-Leibler	Divergence	is	a	member	of	the	probability	theory	known	as	ƒ-

divergence	[M.	Basseville,	1989].		To	compute	the	variation	of	two	data	sets	by	

implementing	KLD,	the	following	steps	are	commonly	used	[Mostafa	Afgani	;		Sinan	

Sinanovic	;		Harald	Haas,	2008]	:	

1) Determining	the	sets	of	data	that	would	be	compared	against	one	another,	if	needed	

data	sets	can	be	broken	down	to	segments	so	ones	with	similar	features	are	
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compared	with	one	another.	

2) With	data	sets	that	are	collected	in	a	continuous	fashion,	it	is	important	to	assign	

restriction	for	the	number	of	samples	used	to	create	each	set.	

3) After	all	data	sets	are	gathered,	extraction	of	chosen	aspects	for	both	data	sets	

would	take	place.		

4) With	implementing	equation	number	one,	PMF	of	each	data	set	over	the	aspects	

would	be	selected	and	calculated.	

5) Presence	of	an	anomaly	is	shown	when	the	KLD	value	is	greater	than	the	set	

threshold,	which	also	indicates	that	the	there	is	a	major	variance	between	the	data	

sets.	

3.2. Two	Sample	Kolmogorov	Smirnov	Test	

In	the	field	of	statistics,	the	distribution-free	test	of	the	equality	of	continuous,	one	

dimensional	probability	distribution,	known	as	Kolmogorov	Smirnov	(KS)	test,	can	be	

implemented	for	finding	distance	between	a	sample	with	a	reference	probability	

distribution,	and	finding	distance	between	two	samples	also	known	as	two	sample	KS	test.	

In	1933	the	goodness-of-fit	test	for	a	sample	was	developed	by	Andrey	Nikolaevich	

Kolmogorov,	and	in	1939	Vladimir	Ivanovich	Smirnov	established	Kolmogorov-Smirnov	

test	for	two	samples	[Yadolah	Dodge,	2008].		

A	Kolmogorov-Smirnov	test	can	be	implemented	with	the	purpose	of	finding	a	

correlation	between	two	unknown	distributions.	Particularly,	‘Ñ(è)	and	‘Ü(è)	are	not	
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identified	for	any	è,	but	estimation	for	‘(è)	and	’(è)	is	possible	by	implementing	random	

samples	from	each	group	with	the	aim	of	analyzing	∂¥:		‘Ñ(è) ≅ ‘Ü(è)		for	all	è	with	the	

assumption	equality	of	both	distributions.	

The	highest	potential	outcome	of	|‘Ñ(è) − ‘Ü(è)	|	is	known	as	the	Kolmogorov	distance.	A	

Kolmogorov	distance	of	zero	represents	identicality	of	distributions	(‘Ñ(è) ≅ ‘Ü(è)		for	all	

è).	In	graphs,	Kolmogorov	distance	is	the	largest	vertical	space	among	the	distribution	

functions	[R.	Wilcox,	2005].	

	 As	previously	mentioned,	the	nonparametric	hypothesis	test	that	can	be	

implemented	to	assess	the	variation	among	the	cumulative	distribution	function	(CDF)	of	

the	distributions	of	two	sample	data	vectors	is	known	as	the	two-sample	Kolmogorov-

Smirnov	test.	In	other	words,	the	two-sided	test	implements	the	highest	(maximum)	

departure	among	the	cumulative	distribution	functions	(CDFs)	of	the	distributions	of	two	

data	vectors	

≤∗ = ◊ÿè	ªrt‘ÑŸ (è) − ‘Ü⁄(è)tw	 	 	 	 (19)	

in	which	‘ÑŸ (è)	and	‘Ü⁄(è)	are	sections	of	sample	data	from	the	first	set	of	samples,	stated	in	

vector	format	èÑ	and	èÜ	respectively	with	values	equal	or	less	than	è.		

3.3. Hydrologic	Signatures	

As	mentioned	before	in	this	study	hydrologic	models	of	GR4J	and	HyMod	are	
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constrained	against	watersheds	of	SF	Boise,	Skykomish	and	Henry	Fork	using	Monte	Carlo,	

Runoff	Ratio,	Base	Flow	Index,	Base	Flow	Runoff	Ratio,	Slope	of	Log	FDC	5&	95	Percentile,	

Slope	of	Log	33	&	66	Percentile,	Slope	of	Log	FDC	20	&	70	Percentile,	FDC	High	Segment	

Volume	more	than	90	Percentile	,	FDC	Low	Segment	Volume	less	than	30	Percentile,	FDC	

Medium	Segment	Volume	,	Auto	Correlation	of	Hydrograph	with	1	Day	Lag	,	Peak	

Distribution,	Rising	LIMB	Destiny,	Declining	LIMB	Destiny,	1st	Flow	Percentile,	5th	Flow	

Percentile,	15th	Flow	Percentile,	50th	Flow	Percentile,	95th	Flow	Percentile,	99th	Flow	

Percentile	metrics.	Table	2.3	presents	list	of	these	metrics	name	and	the	symbols	

designated	to	them	for	this	study.	
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Table	2.3.	Hydrologic	Metric’s	Names	and	their	Symbols	designated	to	each	for	this	study,	in		
this	Study	FDC	stands	for	Flow	Duration	Curve			

 
Metric	
Number	

Metric	Name	 Metric	Symbol	

1	 Runoff	Ratio	 RR	

3	 Base	Flow	Index	 BFI	

4	 Base	Flow	Runoff	Ratio	 BFR	

5	 Slope	of	Log	FDC	5&	95	Percentile	 SL	FDC	Q5th&Q95th	

6	 Slope	of	Log	33	&	66	Percentile	 SL	Q33th&Q66th	

7	 Slope	of	Log	FDC	20	&	70	Percentile	 SL	FDC	Q20th&Q70th	

8	
FDC	High	Segment	Volume	more	than	

90	Percentile	
FDC	HSV	Q90th	

9	
FDC	Low	Segment	Volume	less	than	30	

Percentile	
FDC	LSV	Q30th	

10	 FDC	Medium	Segment	Volume	 FDC	MSV	

11	
Auto	Correlation	of	Hydrograph	with	1	

Day	Lag	
AC	

12	 Peak	Distribution	(Slope	of	Peak	Flows)	 PD	

13	 Rising	LIMB	Destiny	 RLD	

14	 Declining	LIMB	Destiny	 DLD	

16	 1st	Flow	Percentile	 Q1st	

17	 5th	Flow	Percentile	 Q5th	

18	 15th	Flow	Percentile	 Q15th	

19	 50th	Flow	Percentile	 Q50th	

20	 95th	Flow	Percentile	 Q95th	

21	 99th	Flow	Percentile	 Q99th	
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Chapter	3	

STUDY	AREA	AND	DATA	RECOURSES	

In	this	analysis,	three	different	watersheds	from	National	Weather	Service’s	MOPEX	

data	set	is	analyzed.	Table	1	contains	name,	location,	and	size	of	each	catchment,	as	well	as	

mean	annual	precipitation,	potential	evapotranspiration,	and	runoff	coefficient.		These	

watersheds	are	located	across	the	United	States	with	different	hydroclimatic	

characteristics,	and	their	sizes	vary	from	83.2	mi2	(215.487	km2)	to	641	mi2	(1660.18	

km2).		

The	computation	and	calculations	done	on	this	thesis	is	based	on	10	years	of	

recorded	daily	data	of	watershed.	Such	length	of	calibration	data	(10	years)	is	sufficient	for	

a	robust	calculation	of	summary	metrics	and	hypothesis	testing.	Indeed,	Yapo	et	al.,	1996	

suggested	that	8	years	of	calibration	data	is	sufficient	to	derive	stable	parameter	

distributions	that	are	relatively	insensitive	to	the	period	of	calibration.	Table	3.1.	presents	

the	description,	name,	region,	USGS	ID,	drainage	area,	for	the	watersheds	that	has	been	

used	in	this	research	study.	
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Table	3.1.	Watersheds	information	and	their	area,	

Name	 City(Region)	Sate,	Country	 USGS	ID	 Area	(Km2)	

SF	Boise	 Elmore	County,	Idaho,	USA	 13186000	 1660.18	

Skykomish	 Snohomish	County,	Washington,	USA	 12134500	 1385.64	

Henry	Fork	 Catawba	County,	North	Carolina,	USA	 02143000	 215.487	
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Chapter	4	

RESULTS	

This	study	strives	to	find	the	constraining	power	of	different	hydrological	signatures	

in	the	approximate	Bayesian	framework	using	two	parsimonious	hydrologic	models	

namely	GR4J	and	HyMod	evaluated	against	historical	observations	from	three	river	basins	

in	the	United	States.	In	doing	so,	each	model	is	iteratively	calibrated	using	one	hydrological	

signature	against	each	watershed,	and	a	plethora	of	performance	evaluation	metrics	are	

employed	to	assess	the	success/failure	of	each	signature	in	sufficiently	constraining	the	

model	response.	We	are	specifically	concerned	with	the	constraining	power	of	each	metric	

for	different	sections	of	the	hydrograph,	in	an	attempt	to	moving	toward	finding	as	set	of	

sufficient	summary	metrics	to	constrain	hydrological	models.	Performance	evaluation	

metrics	include	Entropy,	Likelihood,	NSE,	RMSE	and	percent	bias.	We	also	have	used	

Kullback	Leibler	divergence	metric	and	two-sample	Kolmogorov	Smirnov	test	as	sensitivity	

surrogate	metrics	to	determine	whether	or	not	the	posterior	distribution	of	different	model	

parameters	have	significantly	changed	from	the	uniform	prior	as	a	result	of	model	

calibration.	

We	analyze	hydrological	behavior	of	SF	Boise	river	(USGS	ID	#13186000),	

Skykomish	river	(USGS	ID	#12134500)	and	Henry	Fork	river	(USGS	ID	#02143000)	in	a	

temporal	span	of	10	years,	starting	from	January	1,	1948	to	January	1,	1958	using	GR4J	and	
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HyMod	conceptual	models.	The	conclusions	and	discoveries	found	from	these	watersheds	

in	regard	to	constraining	capabilities	of	various	hydrologic	metrics,	their	characteristics	

and	sensitivities	are	discussed	within	this	section.		The	outcomes	and	results	of	this	study	

features	various	critical	findings	that	have	been	gained	by	analyzing	the	model’s	outcome	

through	multiple	graphs,	figures	and	tables	discussed	and	analyzed	in	this	section.	In	the	

following,	we	show	some	example	predictive	uncertainty	ranges	with	calibrated	GR4J	and	

HyMod	models	using	different	individual	hydrologic	signatures,	followed	by	a	broader	and	

comparative	picture	that	is	presented	in	performance	evaluation	tables.	More	predictive	

uncertainty	range	plots	are	provided	in	the	supplementary	information.	

Figure	4.1	displays	the	predictive	uncertainty	ranges	of	GR4J	model	calibrated	

against	the	South	Fork	(SF)	Boise	river	watershed	historical	record	represented	by	the	FDC	

High	Segment	Volume	more	than	90th	Percentile	Metric	(FDC	HSV	Q90th)	and	figure	4.2	

displays	predictive	uncertainty	ranges	of	HyMod	model	calibrated	against	the	stated	

watershed	using	same	metric.	In	these	figures	unconstrained	model	predictive	range	

(derived	by	10,000	Monte	Carlo	samples	from	the	uniform	prior	parameter	distributions)	

is	represented	with	blue,	posterior	distribution	of	simulated	flow	(derived	from	posterior	

parameter	distribution	constrained	with	the	FDC	HSV	Q90th	metric)	is	represented	with	

green	and	observed	data	are	represented	with	red.	The	x-axis	of	these	plots	represents	the	

time	in	form	of	day-month-year	and	the	y-axis	represents	the	stream	flow	data	(
±‹

≈
).		
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Figure	4.1.		Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
SF	Boise	watershed	(USGS	ID	13186000)	using	FDC	High	Segment	Volume	
more	than	90th	Percentile	Metric	(FDC	HSV	Q90th).	Prior	channel	inflow	in	

blue,	posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	4.2	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	SF	
Boise	watershed	(USGS	ID	13186000)	using	FDC	High	Segment	Volume	more	
than	90th	Percentile	Metric	(FDC	HSV	Q90th).	Prior	channel	inflow	in	blue,	

posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	4.1	displays	that	the	GR4J	hydrologic	model	calibrated	with	the	FDC	High	

Segment	Volume	more	than	90th	Percentile	Metric	(FDC	HSV	Q90th)	metric	as	compared	to	

HyMod	hydrologic	model	calibrated	with	the	same	metric	(figure	4.2)	is	over	estimating	

base	flow.	Indeed,	HyMod	simulates	the	base	flow	for	SF	Boise	river	watershed	closer	to	the	

observed	data.	This	rather	disagreeable	behavior	of	the	GR4J	can	be	attributed	to	the	

flexibility	of	model	structure	and	impacts	of	tunable	parameters	on	the	model	outcome.	

The	HyMod	model	structure,	however,	is	stricter	in	how	it	responds	to	the	forcing,	and	is	

less	dependent	on	the	parameter	values.	When	model	is	calibrated	using	a	less	informative	

metric	such	as	FDC	HSV	Q90th,	model	parameters	are	rather	dispersed	over	the	entire	prior	

range,	and	hence	a	less	flexible	model	structure	such	as	HyMod	outperforms	its	flexible	

counterpart,	GR4J;	as	it	depends	more	on	the	forcing.		Surprisingly,	this	metric	even	fails	to	

constrain	peak	flows	for	a	flexible	model	structure	such	as	GR4J	(see,	for	example,	

08/July/1995	in	figure	4.1),	but	it	has	a	more	favorable	behavior	for	HyMod	model.	In	

figure	4.2	it	can	be	seen	that	posterior	channel	flow	is	much	closer	representation	of	the	

flow	observed	data.	In	general,	one	hypothesis	could	be	that	the	FDC	HSV	Q90th	individually	

is	insufficient	to	constrain	a	flexible	model,	but	if	the	information	content	of	FDC	HSV	Q90th	

is	matched	with	information	from	a	stricter	model	structure	(HyMod)	it	can	constrain	the	

model	response	to	some	extent.	Note	that	if	constraining	is	defined	by	the	divergence	of	the	

posterior	simulations	from	the	unconstrained	model	simulations	(blue	to	green	in	these	

figures)	the	FDC	HSV	Q90th	shows	some	merit	for	GR4J	model,	but	if	one	is	concerned	about	

model	performance	this	metric	is	certainly	not	sufficient.	Figure	4.3	displays	posterior	

parameter	distributions	of	the	GR4J	and	HyMod	models	constrained	against	SF	Boise	
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watershed	(USGS	ID	13186000)	using	the	FDC	high	segment	volume	more	than	90th	

percentile	hydrologic	signature.	The	x	axis	represents	parameters	minimum	and	maximum	

values.



  

 

 

	

Posterior	Parameter	Distributions	for	Watershed	SF	Boise	

GR4J	

S1max	 Exch	 S2max	 UHB	 	

	 	 	 	

	

HyMod	

Cmax	 BEXP	 Alpha	(a)	 Rs	 Rq	

	 	 	 	 	

Figure	4.3.	Posterior	Parameter	Distributions	of	GR4J	and	HyMod	model	constrained	against	SF	Boise	
watershed	(USGS	ID	13186000),	the	x	axis	represents	parameters	minimum	and	maximum	values	 
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Figure	4.4	displays	the	predictive	uncertainty	ranges	of	GR4J	model	calibrated	

against	the	SF	Boise	river	watershed	using	FDC	less	than	30th	Percentile	Metric	(FDC	LSV	

Q30th)	and	figure	4.5	displays	predictive	uncertainty	ranges	of	HyMod	model	calibrated	

against	the	stated	watershed	using	same	metric.	Similar	to	previous	figures,	unconstrained	

model	simulations	are	shown	with	blue,	posterior	predictive	flow	range	is	represented	

with	green	and	observed	data	are	represented	with	red.		

	 	

Figure	4.4.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	SF	
Boise	watershed	(USGS	ID	13186000)	using	FDC	Low	Segment	Volume	less	than	
30th	Percentile	Metric	(FDC	LSV	Q30th).	Prior	channel	inflow	in	blue,	posterior	

channel	flow	in	green	and	observed	data	in	red	



  

 

43 

	
	 	

Figure	4.5	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	
SF	Boise	watershed	(USGS	ID	13186000)	using	FDC	Low	Segment	Volume	less	

than	30th	Percentile	Metric	(FDC	LSV	Q30th).	Prior	channel	inflow	in	blue,	
posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	4.4	displays	posterior	predictive	flow	range	for	GR4J	hydrologic	model	

constrained	with	FDC	less	than	30th	percentile	metric	(FDC	LSV	Q30th),	and	is	capturing	

the	base	flow	and	to	some	extent	the	peak	flows	for	the	SF	Boise	river	watershed.	

Interestingly,	model	predictions	with	GR4J	model	in	this	case	are	even	superior	to	

predictive	uncertainty	ranges	of	the	HyMod	model	(see	figure	4.5),	as	HyMod	

overestimates	the	recession	portion	of	the	hydrograph	and	baseflows.	Both	models	

overestimate	peak	flows	showing	the	FDC	LSV	Q30th	metric	is	not	sufficient	to	capture	

both	low	and	high	flows.	Further	research	is	required	to	show	if	this	metric	in	combination	

with	another	can	capture	both	high	and	low	flows	or	not.	

	 Figure	4.6	displays	the	predictive	uncertainty	ranges	of	GR4J	model	calibrated	

against	the	SF	Boise	river	watershed	using	Peak	Distribution	(PD)	metric	also	known	as	

Slope	of	Peak	Flow,	and	figure	4.7	displays	predictive	uncertainty	ranges	of	HyMod	model	

for	this	watershed	and	hydrologic	signature.	Figure	4.6	displays	that	the	GR4J	hydrologic	

model	using	Peak	Distribution	metric	over	estimates	base	flow,	whereas	HyMod	is	

representing	base	flow	for	SF	Boise	watershed	closer	to	the	observed	data.	This	behavior	is	

rather	similar	to	that	of	FDC	HSV	Q90th,	except	PD	is	less	successful	in	reducing	the	

uncertainty	range	compared	to	the	unconstrained	uncertainty	ranges	(green	versus	blue).	

Moreover,	uncertainty	ranges	for	peak	flows	are	rather	similar	between	constrained	and	

unconstrained	ranges.	One	might	argue	that	the	PD	metric	would	not	add	much	

information	to	the	calibration	process	and	should	not	be	used.		
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Figure	4.6	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	SF	
Boise	watershed	(USGS	ID	13186000)	using	Peak	Distribution	metric	also	

known	as	Slope	of	Peak	Flow	Metric	(PD).	Prior	channel	inflow	in	blue,	posterior	
channel	flow	in	green	and	observed	data	in	red	
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Figure	4.7	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	SF	
Boise	watershed	(USGS	ID	13186000)	using	Peak	Distribution	metric	also	known	
as	Slope	of	Peak	Flow	Metric	(PD).	Prior	channel	inflow	in	blue,	posterior	channel	

flow	in	green	and	observed	data	in	red	
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Figure	4.8	displays	the	predictive	uncertainty	ranges	of	the	GR4J	model	calibrated	

against	the	SF	Boise	river	watershed	using	1st	Flow	Percentile	Metric	(Q1st)	and	figure	4.9	

displays	predictive	uncertainty	ranges	of	the	HyMod	model	constrained	against	the	stated	

watershed	using	the	same	metric.	Model	simulations	calibrated	with	this	metric	fail	to	

correctly	capture	the	peak	flows.	For	base	flows,	GR4J	shows	some	level	of	constraining,	

but	HyMod	is	not	constrained	for	low	and	base	flows.	Conjunctive	use	of	this	metric	with	

others	might	add	some	information	to	the	calibration	process.

Figure	4.8	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	SF	
Boise	watershed	(USGS	ID	13186000)	using	1st	Flow	Percentile	Metric	(Q1st).	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	

in	red	
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Figure	4.9	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	SF	
Boise	watershed	(USGS	ID	13186000)	using	1st	Flow	Percentile	Metric	(Q1st).	Prior	
channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	4.10	displays	the	predictive	uncertainty	ranges	of	GR4J	model	constrained	

against	the	SF	Boise	river	watershed	using	99th	Flow	Percentile	Metric	(Q99th)	and	figure	

4.11	displays	predictive	uncertainty	ranges	of	HyMod	model	constrained	against	the	stated	

watershed	using	same	metric.	It	is	interesting	how	this	hydrologic	metric	fails	to	capture	

the	peaks	for	GR4J,	whereas	is	basically	focused	on	the	high	flows.	The	model	response	for	

HyMod,	however,	is	much	more	desirable,	which	can	be	attributed	to	the	information	

content	of	the	Q99th	signature	going	hand	in	hand	with	the	information	content	of	the	

HyMod	model.	

Figure	4.10.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	SF	
Boise	watershed	(USGS	ID	13186000)	using	99th	Flow	Percentile	Metric	(Q99th).	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	

in	red	
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Figure	4.11.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	SF	
Boise	watershed	(USGS	ID	13186000)	using	99th	Flow	Percentile	Metric	(Q99th).	

Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	in	red	
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	 Using	performance	evaluation	metrics	of	Likelihood,	Entropy,	NSE,	RMSE,	PBIAS,	

Distance,	Distance,	Mean	Uncertainty	Spread,	Coverage,	and	Threshold,	Tables	4.1	and	4.2	

list	the	posterior	predictively	result	of	GR4J	and	HyMod	hydrologic	models,	respectively,	

which	are	being	constrained	against	SF	Boise	river	watershed	using	different	metrics,	

namely	Runoff	Ratio	(RR),	Base	Flow	Index	(BFI),	Base	Flow	Runoff	Ratio	(BFR),	Slope	of	

Log	FDC	5th	&	95th	Percentile	(SL	FDC	Q5th&Q95th),	Slope	of	Log	33rd	&	66th	Percentile	(SL	

Q33th&Q66th),	Slope	of	Log	FDC	20th	&	70th	Percentile	(SL	FDC	Q20th&Q70th),	FDC	High	

Segment	Volume	more	than	90th	Percentile	(FDC	HSV	Q90th),	FDC	Low	Segment	Volume	

less	than	30th	Percentile	(FDC	LSV	Q30th),	FDC	Medium	Segment	Volume	(FDC	MSV),	Auto	

Correlation	of	Hydrograph	with	1	Day	Lag	(AC),	Peak	Distribution(PD),	Rising	LIMB	

Destiny(RLD),	Declining	LIMB	Destiny(DLD),	1st	Flow	Percentile	(Q1st),	5th	Flow	

Percentile(Q5th),	15th	Flow	Percentile(Q15th),	50th	Flow	Percentile(Q50th),	95th	Flow	

Percentile(Q95th),	99th	Flow	Percentile(Q99th).	

Superior	predictions	are	associated	with	higher	likelihood	and	NSE	values,	and	

lower	RMSE	and	Distance	values.	Distance	is	defined	as	average	distance	of	observed	data	

that	are	not	covered	in	the	uncertainty	range	to	the	upper	(lower)	bound	of	the	uncertainty	

range.	It	is	also	desired	that	a	higher	coverage	of	observed	points	is	obtained	in	a	lower	

entropy.	Entropy	is	a	proxy	measure	of	the	spread	of	the	predictive	range.	As	explained	

earlier,	acceptance	threshold	for	each	hydrologic	signature	is	iteratively	selected	in	this	

study	to	ensure	at	least	90%	of	observation	points	are	covered.	So	a	larger	threshold	is	

indicative	of	sensitivity	of	the	analysis	to	that	specific	hydrologic	signature.	Mean	

predictive	uncertainty	spread	also	informs	the	width	of	the	predictive	uncertainty	ranges.	
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Moreover,	we	have	included	in	this	table	whether	the	posterior	distribution	of	different	

model	parameters	are	significantly	different	from	their	prior	uniform	distribution	or	not,	

using	a	KS	test.	

It	is	noteworthy	in	this	table	that	mean	ensemble	NSE	values	are	negative	for	all	

hydrologic	signatures,	indicating	that	no	single	metric	is	good	enough	to	constrain	the	

hydrologic	models.	Some	metrics	such	as	autocorrelation	(AC)	show	a	very	tight	tolerance	

threshold	(0.01)	which	might	suggest	insensitivity	of	such	metric	to	variation	of	model	

simulations.	This	is	also	reflected	in	the	large	posterior	predictive	uncertainty	range	

associated	with	this	metric.	Even	worse	is	the	Peak	Distribution	(PD)	metric	that	not	only	

bears	the	disadvantageous	properties	of	AC,	but	also	suffers	from	a	lower	coverage	rate	of	

observational	points	in	higher	posterior	predictive	uncertainty	range.	Such	information	can	

help	us	rule	out	metrics	such	as	PD	and	AC	from	the	approximate	Bayesian	analysis.	Also,	

some	metrics	fail	to	constrain	some	specific	parameters.	For	example,	the	50th	percentile	of	

flow	distribution	does	not	constrain	1st	(Max	Capacity	of	Production	Store,	S1max)	and	4th	

(Hydrograph	Time	Base,	UHB)	parameters	of	the	GR4J	model.	The	15th	percentile	of	the	

flow	distribution	also	does	not	constrain	the	4th	parameter	of	the	GR4J	model.	These	two	

hydrologic	signatures,	however,	do	relatively	good	in	terms	of	the	mean	predictive	

uncertainty	ranges,	entropy	and	NSE	compared	to	other	metrics.	The	modeler	should	be	

aware	of	selecting	a	metric	that	is	sensitive	to	the	1st	and	4th	parameters	of	the	GR4J	model	

along	with	these	two	hydrologic	signatures.	

	
	 	



  

 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
Table	4.1.	Table	of	posterior	predictively	result	of	GR4J	model	constrained	against	SF	Boise	watershed	(USGS	ID	13186000)	in	terms	
	of	Monte	Carlo	simulation	(not	constrained),	and	constrained	against	Runoff	Ratio	(RR),	Base	Flow	Index	(BFI),	Base	Flow	Runoff	Ratio	
	(BFR),	Slope	of	Log	FDC	5th	&	95th	Percentile	(SL	FDC	Q5th&Q95th),	Slope	of	Log	33rd	&	66th	Percentile	(SL	Q33rd	&Q66th),	Slope	of	Log		
FDC	20th	&	70th	Percentile	(SL	FDC	Q20th&Q70th),	FDC	High	Segment	Volume	more	than	90	Percentile	(FDC	HSV	Q90th),	FDC	Low	Segment	
Volume	less	than	30th	Percentile	(FDC	LSV	Q30th),	FDC	Medium	Segment	Volume	(FDC	MSV),	Auto	Correlation	of	Hydrograph		
with	1	Day	Lag	(AC),	Peak	Distribution(PD),	Rising	LIMB	Destiny(RLD),	Declining	LIMB	Destiny(DLD),	1st	Flow	Percentile	(Q1st),	5th	Flow	
Percentile(Q5th),	15th	Flow	Percentile(Q15th),	50th	Flow	Percentile(Q50th),	95th	Flow	Percentile(Q95th),	and	99th	Flow	Percentile(Q99th)		

metrics.	

	
SF	Boise	WatershedGR4J	Hydrologic	Model	

Likelihood	 Entropy	 NSE	 RMSE	 PBIAS	 Distance	 Distance	/NoZero	

Mean	
Uncertainty	
Spread	

Coverage	 Threshold	 Sensitive	Parameters	

Monte	Carlo	 0.03289	 3.32778	 -1.2184	 41.2570	 -20.6036	 0.00000	 NaN	 428.18560	 100.000	 	 	
RR	 0.05974	 3.19503	 -0.2496	 36.1017	 -8.75657	 0.74915	 11.03191	 91.42350	 93.2092	 0.30000	 1,2,3,4,5	
BFI	 0.04086	 2.85226	 -0.1526	 35.5006	 -38.7232	 0.72876	 20.63113	 88.17880	 96.4677	 0.01000	 1,2,3,4,5	
BFR	 0.07006	 3.09660	 -0.2812	 36.5253	 -2.08463	 0.94588	 9.78573	 97.18420	 90.3341	 0.15000	 1,2,3,4,5	
SL	FDC	

Q5th&Q95th	 0.03928	 2.27386	 -0.3469	 37.1779	 -43.9251	 1.63970	 22.42768	 81.11300	 92.6889	 0.01000	 1,2,3,4,5	

SL	
Q33th&Q66th	 0.03047	 3.10872	 -0.9272	 40.9804	 7.32142	 1.05741	 20.21817	 111.19950	 94.7700	 0.02000	 1,2,3,4,5	

SL	FDC	
Q20th&Q70th	 0.07144	 2.9233	 -0.0169	 32.9227	 -26.7784	 0.39993	 18.03143	 103.50120	 97.7820	 0.05000	 1,2,3,4,5	

FDC	HSV	
Q90th	 0.04579	 3.0335	 -0.1933	 33.6260	 -21.7864	 0.26414	 17.86338	 137.28360	 98.5214	 0.03500	 1,2,3,4,5	

FDC	LSV	
Q30th	 0.01814	 2.3876	 -0.1949	 36.3729	 -62.8689	 2.02578	 21.75929	 68.61540	 90.6900	 0.35000	 1,2,3,0,5	

FDC	MSV	 0.08460	 2.6790	 -0.1755	 35.2456	 -28.0266	 1.14889	 13.23579	 82.69250	 91.3198	 0.35000	 1,2,3,4,5	
AC	 0.04498	 3.1648	 -0.2120	 35.1961	 -38.5594	 0.00000	 NaN	 226.43710	 100.000	 0.01000	 1,2,3,4,5	
PD	 0.03179	 4.1244	 -4.2223	 58.8651	 126.433	 0.14744	 6.99298	 292.64960	 97.8916	 0.01000	 1,2,3,4,5	
RLD	 0.03971	 2.6913	 -2.7538	 46.2239	 -10.7259	 0.00000	 NaN	 314.85860	 100.000	 0.02000	 1,2,3,4,5	
DLD	 0.00626	 -2.3855	 -1.1370	 43.4418	 -80.0751	 0.00000	 NaN	 379.49970	 100.000	 0.60000	 1,2,3,4,5	
Q1st	 0.10025	 2.56421	 -0.1277	 34.56335	 -19.8753	 0.88084	 11.74029	 81.96000	 92.4973	 0.10000	 1,2,3,4,5	
Q5th	 0.09383	 2.67980	 -0.0955	 33.96476	 -18.1359	 0.69920	 7.05378	 85.77590	 90.0876	 0.25000	 1,2,3,4,0	
Q15th	 0.10191	 2.69197	 -0.1873	 35.05425	 -15.8295	 0.93288	 12.52531	 92.30010	 92.55200	 0.20000	 1,2,3,0,5	
Q50th	 0.08199	 2.61328	 -0.1009	 34.38038	 -32.8173	 0.99290	 10.33067	 78.89070	 90.38880	 0.30000	 0,2,3,0,5	
Q95th	 0.02693	 3.95883	 -0.8411	 44.33849	 42.75870	 0.76805	 9.84181	 126.41170	 92.19610	 0.10000	 1,2,3,4,5	
Q99th	 0.03199	 3.03875	 -0.0321	 33.58489	 -29.199	 2.15686	 26.70117	 52.37700	 91.92220	 0.02000	 1,2,3,4,5	
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Table	4.2.	Table	of	posterior	predictively	result	of	HyMod	model	constrained	against	SF	Boise	watershed	(USGS	ID	13186000)	in	
terms	of	Monte	Carlo	simulation	(not	constrained),	and	constrained	against	Runoff	Ratio	(RR),	Base	Flow	Index	(BFI),	Base	Flow	Runoff	
Ratio	(BFR),	Slope	of	Log	FDC	5th	&	95th	Percentile	(SL	FDC	Q5th&Q95th),	Slope	of	Log	33rd	&	66th	Percentile	(SL	Q33rd	&Q66th),	Slope	of	
Log	FDC	20th	&	70th	Percentile	(SL	FDC	Q20th&Q70th),	FDC	High	Segment	Volume	more	than	90th	Percentile	(FDC	HSV	Q90th),	FDC	Low	
Segment	Volume	less	than	30th	Percentile	(FDC	LSV	Q30th),	FDC	Medium	Segment	Volume	(FDC	MSV),	Auto	Correlation	of	Hydrograph	
with	1	Day	Lag	(AC),	Peak	Distribution(PD),	Rising	LIMB	Destiny(RLD),	Declining	LIMB	Destiny(DLD),	1st	Flow	Percentile	(Q1st),	5th	Flow	
Percentile(Q5th),	15th	Flow	Percentile(Q15th),	50th	Flow	Percentile(Q50th),	95th	Flow	Percentile(Q95th),	and	99th	Flow	Percentile(Q99th)	

	
SF	Boise	Watershed	HyMod	Hydrologic	Model	

Likelihood	 Entropy	 NSE	 RMSE	 PBIAS	 Distance	 Distance/	
NoZero	

Mean	
Uncertainty	
Spread	

Coverage	 Threshold	 Sensitive	
Parameters	

Monte	Carlo	 0.01247	 1.4011	 -2.3308	 58.15793	 -9.4345	 0.16342	 13.56353	 142.19290	 98.79520	 	 	

RR	 0.01277	 1.2391	 -1.8586	 55.13448	 0.0228	 1.06951	 13.75300	 90.70120	 92.22340	 0.01000	 1,2,3,4,5,6	
BFI	 0.03237	 3.1212	 0.1460	 30.65279	 -11.5655	 1.11008	 13.88357	 59.28280	 92.00440	 0.01000	 1,2,3,4,5,6	
BFR	 0.03092	 3.1703	 -0.6268	 40.60564	 8.4698	 0.78093	 8.07920	 92.42480	 90.33410	 0.05000	 1,2,3,4,5,6	
SL	FDC	

Q5th&Q95th	 0.06128	 3.0885	 -0.3221	 36.45272	 -5.9358	 1.26955	 20.79100	 76.42090	 93.89380	 0.03500	 1,2,3,4,5,6	

SL	
Q33th&Q66th	 0.05135	 3.2371	 -0.8323	 42.08314	 -13.7540	 2.25493	 23.59598	 78.81850	 90.44360	 0.02000	 1,2,3,4,5,6	

SL	FDC	
Q20th&Q70th	 0.04608	 3.3493	 -0.9642	 44.10189	 -15.5147	 1.59213	 24.12632	 86.73800	 93.40090	 0.05000	 1,2,3,4,5,6	

FDC	HSV	Q90th	 0.02675	 2.6630	 -0.0054	 33.12273	 -26.6357	 0.55635	 8.75775	 62.30760	 93.64730	 0.05000	 1,2,3,4,5,6	
FDC	LSV	Q30th	 0.03955	 3.2850	 -1.1278	 45.64067	 -15.1828	 1.38025	 20.57415	 88.93070	 93.29130	 0.02000	 1,2,3,4,5,6	
FDC	MSV	 0.04024	 2.9287	 -0.9780	 45.07757	 -10.5453	 0.69164	 9.18500	 86.67620	 92.46990	 0.07500	 1,2,3,4,5,6	

AC	 0.02090	 2.5722	 0.0339	 32.10763	 -13.3548	 0.59458	 11.80121	 70.90870	 94.96170	 0.01000	 1,2,3,4,5,6	
PD	 0.01538	 1.8337	 -0.6350	 41.37991	 -25.8369	 0.63599	 13.74344	 82.68720	 95.37240	 0.10000	 1,2,3,4,5,6	
RLD	 0.01777	 2.2162	 -1.3448	 48.50053	 -13.6104	 0.46502	 13.92013	 91.33780	 96.65940	 0.05000	 1,0,3,4,5,6	
DLD	 0.01269	 1.3831	 -2.5313	 59.81705	 -8.3371	 0.24481	 14.90054	 131.92860	 98.35710	 1.00000	 0,0,0,0,5,0	
Q1st	 0.05091	 3.2302	 -0.4886	 38.47688	 -2.0288	 0.99807	 12.87965	 91.27790	 92.25080	 0.50000	 1,2,3,4,5,6	
Q5th	 0.06044	 3.2065	 -0.6144	 39.87712	 -5.1489	 0.86835	 18.54519	 92.52100	 95.31760	 0.50000	 1,2,3,4,5,6	
Q15th	 0.06557	 3.1004	 -0.7048	 41.09136	 -5.1135	 1.00860	 11.51070	 90.79330	 91.23770	 0.20000	 1,2,3,4,5,6	
Q50th	 0.03178	 2.9490	 -0.9063	 44.45036	 -7.4692	 0.95250	 10.05357	 89.63520	 90.52570	 0.12500	 1,2,3,4,5,6	
Q95th	 0.01411	 1.6859	 -1.5494	 50.78372	 -13.4298	 1.00007	 15.74246	 98.15460	 93.64730	 0.10000	 1,2,3,4,5,6	
Q99th	 0.01861	 2.3565	 0.0267	 32.66147	 -22.7205	 0.48118	 15.55113	 68.13870	 96.90580	 0.07500	 1,2,3,4,5,6	
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Using	performance	evaluation	metrics	of	Likelihood,	Entropy,	NSE,	RMSE,	PBIAS,	

Distance,	Distance/NoZero,		Mean	Uncertainty	Spread,	Coverage,	and	Threshold	,tables	4.3	

and	4.4	respectively	lists	the	posterior	predictively	result	of	GR4J	and	HyMod	hydrologic	

models	that	been	constrained	against	Skykomish	watershed	with	regards	to	metrics	of	RR,	

BFI,	BFR,	SL	FDC	Q5th&Q95th,	SL	Q33rd	&Q66th,	SL	FDC	Q20th&Q70th,	FDC	HSV	Q90th,	FDC	

LSV	Q30th,	FDC	MSV,	AC,	PD,	RLD,	DLD,	Q1st,	Q5th,	Q15th,	Q50th,	Q95th	and	Q99th.	These	

tables	also	demonstrate	the	Monte	Carlo	simulation	results,	which	are	basically	random	

draws	from	the	prior	distribution	of	parameters	and	correspond	to	the	information	content	

of	specific	models	without	any	constraining.		

Similar	conclusions	as	those	of	Tables	4.1	and	4.2	can	be	drawn	with	this	watershed	

as	well.	What	is	specifically	noticeable	in	Tables	4.3	and	4.4	is	the	difference	between	

constraining	power	of	the	hydrologic	signatures	of	this	study	for	the	GR4J	and	HyMond	

models.	For	GR4J,	all	hydrologic	signatures	except	for	Q1st,	Q15th	and	Q50th	can	constrain	all	

GR4J	model	parameters,	whereas	only	FDC	LSV	Q30th	can	constrain	all	HyMod	model	

parameters.	This	confirms	our	previous	discussion	that	GR4J	model	structure	is	much	more	

flexible	with	little	intrinsic	model	information,	which	responds	to	any	level	of	information	

that	hydrologic	signatures	impose	in	the	calibration	process.	HyMod	model	structure,	on	

the	contrary,	holds	significant	level	of	information,	and	doesn’t	respond	to	little	

constraining	information	that	the	hydrologic	signatures	provide	single-handedly.



  

 

 

Table	4.3.	Table	of	posterior	predictively	result	of	GR4J	model	constrained	against	Skykomish	watershed	(USGS	ID	12134500)	in	terms	of	
Monte	Carlo			simulation	(not	constrained),	and	Runoff	Ratio	(RR),	Base	Flow	Index	(BFI),	Base	Flow	Runoff	Ratio	(BFR),	Slope	of	Log	FDC	5th	&	
95th	Percentile	(SL	FDC	Q5th&Q95th),	Slope	of	Log	33rd	&	66th	Percentile	(SL	Q33rd	&Q66th),	Slope	of	Log	FDC	20th	&	70th	Percentile	(SL	FDC	

Q20th&Q70th),	FDC	High	Segment	Volume	more	than	90th	Percentile	(FDC	HSV	Q90th),	FDC	Low	Segment	Volume	less	than	30th	Percentile	(FDC	
LSV	Q30th),	FDC	Medium			Segment	Volume	(FDC	MSV),	Auto	Correlation	of	Hydrograph	with	1	Day	Lag	(AC),	Peak	Distribution(PD),	Rising	
LIMB	Destiny(RLD),	Declining	LIMB	Destiny(DLD),	1st	Flow	Percentile	(Q1st),	5th	Flow	Percentile(Q5th),	15th	Flow	Percentile(Q15th),	50th	Flow	

Percentile(Q50th),	95th	Flow	Percentile(Q95th),	99th	Flow	Percentile(Q99th)	metrics.	

	
Skykomish	Watershed	GR4J	Hydrologic	Model	

Likelihood	 Entropy	 NSE	 RMSE	 PBIAS	 Distance	 Distance	
/NoZero	

Mean	
Uncertainty	
Spread	

Coverage	 Threshold	 Sensitive	
Parameters	

Monte	Carlo	 0.00613	 4.9485	 -0.3686	 128.8	 -18.89	 0.0210	 15.3659	 526.69030	 99.8631	 	 	
RR	 0.00732	 4.7669	 -0.3345	 127.6	 -9.286	 3.5834	 43.4779	 300.47900	 91.7579	 0.3000	 1,2,3,4,5	
BFI	 0.00625	 4.4539	 -0.2770	 125.3	 -23.86	 4.0212	 52.0760	 299.17980	 92.2782	 0.0200	 1,2,3,4,5	
BFR	 0.00675	 4.7534	 -0.3056	 126.6	 -20.00	 2.93908	 50.6298	 314.78560	 94.1950	 0.5000	 1,2,3,4,5	
SL	FDC	

Q5th&Q95th	 0.01150	 4.6143	 -0.2163	 122.0	 -8.36	 4.1777	 50.6886	 270.75620	 91.7579	 0.0750	 1,2,3,4,5	

SL	
Q33th&Q66th	 0.01067	 4.7123	 -0.2812	 124.5	 -4.02	 4.1645	 55.7109	 304.86010	 92.5246	 0.0500	 1,2,3,4,5	

SL	FDC	
Q20th&Q70th	 0.01027	 4.7157	 -0.2860	 124.3	 -6.038	 3.9691	 60.1468	 351.58140	 93.4009	 0.1000	 1,2,3,4,5	

FDC	HSV	Q90th	 0.00615	 4.7920	 -0.3609	 129.3	 -7.071	 2.4617	 45.4060	 303.82510	 94.5783	 0.0200	 1,2,3,4,5	
FDC	LSV	Q30th	 0.00626	 4.3344	 -0.1926	 121.2	 -34.24	 5.3590	 61.5442	 246.39860	 91.2924	 0.1000	 1,2,3,4,5	
FDC	MSV	 0.00802	 4.8017	 -0.2785	 124.5	 -5.998	 2.9942	 36.4498	 325.36630	 91.7853	 0.2500	 1,2,3,4,5	

AC	 0.00368	 4.7488	 -0.4321	 130.1	 -15.89	 0.1519	 23.1257	 425.74510	 99.3428	 0.0100	 1,2,3,4,5	
PD	 0.00563	 4.6762	 -0.2852	 126.3	 -25.45	 3.4596	 69.4207	 286.06080	 95.0164	 0.0200	 1,2,3,4,5	
RLD	 0.00454	 4.9624	 -0.6780	 137.7	 -5.714	 0.4020	 35.8089	 438.38060	 98.8773	 0.0100	 1,2,3,4,5	
DLD	 0.00349	 5.6284	 -0.8686	 145.3	 18.51	 0.2485	 47.7773	 456.62340	 99.4797	 0.0100	 1,2,3,4,5	
Q1st	 0.00627	 4.7876	 -0.3258	 127.6	 -25.52	 3.1454	 57.4358	 328.48780	 94.5235	 1.0000	 0,2,3,4,0	
Q5th	 0.01318	 4.5239	 -0.2339	 122.7	 -7.577	 4.3705	 50.5105	 285.75820	 91.3472	 0.2500	 1,2,3,4,5	
Q15th	 0.00789	 4.7225	 -0.2981	 125.6	 -11.74	 3.5147	 56.5455	 321.20960	 93.7842	 0.6000	 1,2,3,0,5	
Q50th	 0.00806	 4.7281	 -0.2856	 125.2	 -8.525	 3.6178	 39.5584	 301.38490	 90.8543	 0.4000	 1,2,3,0,5	
Q95th	 0.00761	 4.7721	 -0.2295	 123.2	 -15.24	 4.8371	 51.2038	 242.01210	 90.5531	 0.0350	 1,2,3,4,5	
Q99th	 0.00769	 4.6925	 -0.3714	 130.5	 -8.126	 4.3310	 49.2737	 256.57120	 91.2103	 0.0200	 1,2,3,4,5	
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Table	4.4.	Table	of	posterior	predictively	result	of	HyMod	model	constrained	against	Skykomish	watershed	(USGS	ID	12134500)	in	
	terms	of	Monte	Carlo	simulation,	and	Runoff	Ratio	(RR),	Base	Flow	Index	(BFI),	Base	Flow	Runoff	Ratio	(BFR),	Slope	of	Log	FDC	5th	&	
	95th	Percentile	(SL	FDC	Q5th&Q95th),	Slope	of	Log	33rd	&	66th	Percentile	(SL	Q33rd	&Q66th),	Slope	of	Log	FDC	20th	&	70th	Percentile		

(SL	FDC	Q20th&Q70th),	FDC	High	Segment	Volume	more	than	90th	Percentile	(FDC	HSV	Q90th),	FDC	Low	Segment	Volume	less	than	30th	
Percentile	(FDC	LSV	Q30th),	FDC	Medium	Segment	Volume	(FDC	MSV),	Auto	Correlation	of	Hydrograph	with	1	Day	Lag	(AC),	Peak	
Distribution(PD),	Rising	LIMB	Destiny(RLD),	Declining	LIMB	Destiny(DLD),	1st	Flow	Percentile	(Q1st),	5th	Flow	Percentile(Q5th),	15th		

Flow	Percentile(Q15th),	50th	Flow	Percentile(Q50th),	95th	Flow	Percentile(Q95th),	99th	Flow	Percentile(Q99th)	metrics.

	
Skykomish	Watershed	HyMod	Hydrologic	Model		

Likelihood	 Entropy	 NSE	 RMSE	 PBIAS	 Distance	 Distance	/NoZero	

Mean	
Uncertainty	
Spread	

Coverage	 Threshold	 Sensitive	
Parameters	

Monte	Carlo	 0.00366	 4.16518	 -0.81430	145.5624	 -17.8967	 3.71691	 52.20835	 309.32930	 92.88060	 	 	

RR	 0.00367	 4.07712	 -0.79250	144.7629	 -17.4885	 5.32452	 53.71583	 288.29800	 90.08760	 0.30000	 1,0,0,4,5,0	
BFI	 0.00372	 4.16459	 -0.85050	146.7863	 -18.1970	 5.15014	 51.81352	 292.24810	 90.06020	 1.00000	 0,0,3,4,0,6	
BFR	 0.00370	 4.17384	 -0.74436	143.2728	 -17.5396	 5.43605	 54.53967	 284.61360	 90.03290	 0.50000	 0,0,3,4,5,6	
SL	FDC	

Q5th&Q95th	 0.00388	 4.17404	 -0.80545	144.9365	 -17.9017	 5.16608	 54.68563	 293.24410	 90.55310	 5.00000	 0,2,0,0,5,0	

SL	Q33th&Q66th	 0.00402	 4.22279	 -0.65742	139.3486	 -18.2613	 5.19290	 57.64282	 288.13480	 90.99120	 3.00000	 0,2,3,0,5,0	
SL	FDC	

Q20th&Q70th	 0.00591	 4.76967	 -0.49286	131.4471	 -19.7995	 5.69433	 57.28845	 276.12190	 90.06020	 1.00000	 1,2,3,4,5,6	

FDC	HSV	Q90th	 0.00419	 4.23316	 -0.55059	136.0249	 -18.7675	 5.04750	 55.52254	 268.88730	 90.90910	 1.00000	 1,2,3,0,5,6	
FDC	LSV	Q30th	 0.00596	 4.86351	 -0.86499	143.8571	 -18.9501	 5.75596	 58.88171	 287.11840	 90.22450	 1.00000	 1,2,3,4,5,6	
FDC	MSV	 0.00389	 4.20040	 -0.72639	142.3941	 -18.2757	 4.77147	 55.85071	 293.04910	 91.45670	 2.00000	 0,0,3,0,0,0	

AC	 0.00357	 4.09507	 -0.83450	146.6738	 -18.4333	 5.07922	 56.55279	 294.49750	 91.01860	 1.00000	 0,0,0,4,0,6	
PD	 0.00365	 4.17592	 -0.90330	149.2085	 -17.8467	 5.37421	 53.91932	 287.58220	 90.03290	 3.00000	 0,0,0,0,5,0	
RLD	 0.00381	 4.15291	 -0.79366	144.5296	 -18.2352	 5.23937	 53.89907	 290.49120	 90.27930	 0.50000	 0,2,3,0,5,0	
DLD	 0.00388	 4.13022	 -0.73833	142.9001	 -18.0247	 5.31073	 54.02443	 285.87780	 90.16980	 0.40000	 0,2,0,0,0,6	
Q1st	 0.00365	 4.16459	 -0.85700	147.1575	 -18.4490	 5.18808	 57.58929	 291.95570	 90.99120	 1.00000	 0,2,3,0,5,0	
Q5th	 0.00380	 4.24209	 -0.77902	144.2077	 -18.3300	 5.25483	 57.28546	 288.92080	 90.82690	 1.00000	 0,0,3,4,0,0	
Q15th	 0.00366	 4.16364	 -0.92517	149.2760	 -17.8255	 5.15936	 56.92439	 292.45740	 90.93650	 1.00000	 1,0,3,4,0,0	
Q50th	 0.00373	 4.16115	 -0.85088	146.3977	 -18.0336	 4.57981	 55.56634	 297.04560	 91.75790	 1.00000	 1,2,0,0,5,0	
Q95th	 0.00377	 4.21364	 -0.83975	146.9802	 -18.1268	 4.78327	 50.92856	 290.72200	 90.60790	 1.00000	 0,0,0,4,5,0	
Q99th	 0.00396	 4.16767	 -0.64495	140.2647	 -18.8332	 5.46443	 56.37318	 269.01710	 90.30670	 1.00000	 1,2,3,0,5,6	

56 



  

 

59 

Using	performance	evaluation	metrics	of	Likelihood,	Entropy,	NSE,	RMSE,	PBIAS,	

Distance,	Distance/NoZero,	Mean	Uncertainty	Spread,	Coverage,	and	Threshold	,tables	4.5	

and	4.6	respectively	list	the		posterior	predictively	result	of	GR4J	and	HyMod	hydrologic	

models	that	has	been	constrained	against	the	Henry	Fork	watershed	in	regards	to	metrics	

of		RR,	BFI,	BFR,	SL	FDC	Q5th&Q95th,	SL	Q33rd	&Q66th,	SL	FDC	Q20th&Q70th,	FDC	HSV	Q90th,	

FDC	LSV	Q30th,	FDC	MSV,	AC,	PD,	RLD,	DLD,	Q1st,	Q5th,	Q15th,	Q50th,	Q95th	and	Q99th,	as	well	

as	unconstrained	model	simulations	derived	through	Monte	Carlo	sampling.	

These	tables	also	confirm	our	previous	findings,	with	a	distinct	difference	in	how	

GR4J	model	parameters	are	sensitive	to	different	hydrologic	signatures.	In	this	watershed,	

GR4J	model	parameters	actually	show	a	higher	level	of	sensitivity	to	calibration	against	

different	hydrologic	metrics,	compared	to	the	Skykomish	watershed.	HyMod	model’s	

performance	seems	to	be	more	stable	across	different	watersheds.	This	points	out	to	an	

interesting	finding	that	the	quest	for	sufficient	hydrologic	signatures	not	only	is	model	

dependent	but	also	watershed	dependent	to	some	extent.			



  

 

Table	4.5.	Table	of	posterior	predictively	result	of	GR4J	model	constrained	against	Henry	Fork	watershed	(USGS	ID	02143000)	in	
terms	of	Monte	Carlo	simulation	(not	constrained),	as	well	as	Runoff	Ratio	(RR),	Base	Flow	Index	(BFI),	Base	Flow	Runoff	Ratio	
(BFR),	Slope	of	Log	FDC	5th	&	95th	Percentile	(SL	FDC	Q5th&Q95th),	Slope	of	Log	33rd	&	66th	Percentile	(SL	Q33rd	&Q66th),	Slope	of	Log	
FDC	20th	&	70th	Percentile	(SL	FDC	Q20th&Q70th),	FDC	High	Segment	Volume	more	than	90th	Percentile	(FDC	HSV	Q90th),	FDC	Low	
Segment	Volume	less	than	30th	Percentile	(FDC	LSV	Q30th),	FDC	Medium	Segment	Volume	(FDC	MSV),	Auto	Correlation	of	Hydrograph	with	1	
DayLag	(AC),	Peak	Distribution(PD),	Rising	LIMB	Destiny(RLD),	Declining	LIMB	Destiny(DLD),	1st	Flow	Percentile	(Q1st),	5th	Flow	Percentile	

(Q5th),	15th	Flow	Percentile(Q15th),	50th	Flow	Percentile(Q50th),	95th	Flow	Percentile(Q95th),	99th	Flow	Percentile(Q99th)	metrics.	

		

Henry	Fork	Watershed	GR4J	Hydrologic	Model		

Likelihood	Entropy	 NSE	 RMSE	 PBIAS	 Distance	
Distance	
/NoZero	

Mean	
Uncertainty	
Spread	

Coverage	 Threshold	
Sensitive	
Parameters	

Monte	Carlo	 0.24191	 2.14773	 -0.95434	 5.65359	 37.86578	 0.00000	 NaN	 57.14850	 100.00000	 		 		
RR	 0.34134	 0.91536	 0.10523	 4.58868	 -0.635927	 0.07527	 1.02563	 7.90380	 92.66160	 0.07500	 1,2,3,0,5	
BFI	 0.24927	 1.03648	 -0.04823	 4.93045	 -18.19707	 0.11940	 2.30714	 8.55070	 94.82480	 0.01000	 1,2,3,4,5	
BFR	 0.46248	 0.66418	 0.13128	 4.53957	 -15.3241	 0.18360	 1.89941	 6.55170	 90.33410	 0.15000	 1,2,3,0,0	
SL	FDC	

Q5th&Q95th	
0.31939	 0.91999	 0.01920	 4.78789	 -8.930315	 0.14992	 1.71635	 7.76900	 91.26510	 0.02000	 1,2,3,4,5	

SL	
Q33th&Q66th	

0.29651	 1.35369	 -0.02569	 4.90313	 7.076422	 0.13056	 2.25970	 9.57350	 94.22230	 0.01000	 1,2,3,4,5	

SL	FDC	
Q20th&Q70th	

0.36055	 1.17782	 -0.12092	 5.03507	 5.372624	 0.05817	 1.02134	 11.50980	 94.30450	 0.01000	 1,2,3,4,5	

FDC	HSV	
Q90th	

0.05216	 2.06876	 -1.51166	 7.60886	 150.4614	 0.09045	 3.88596	 13.80700	 97.67250	 0.02000	 1,2,3,4,5	

FDC	LSV	
Q30th	

0.23755	 1.07090	 0.05447	 4.71728	 -32.99666	 0.07578	 0.78850	 9.89500	 90.38880	 0.45000	 1,2,3,0,5	

FDC	MSV	 0.45738	 0.72021	 0.12530	 4.54243	 -13.16349	 0.10190	 1.06323	 8.02220	 90.41620	 3.00000	 0,2,3,0,5	
AC	 0.10939	 1.20878	 -3.59604	 7.41008	 55.14792	 0.00000	 NaN	 51.28240	 100.00000	 0.02000	 1,2,3,4,5	
PD	 0.16031	 1.82251	 -0.16353	 5.11481	 53.33856	 0.17034	 9.01573	 11.10750	 98.11060	 0.02000	 1,2,3,4,5	
RLD	 0.15199	 2.50386	 -1.45160	 6.46637	 103.5701	 0.00664	 0.93318	 26.46750	 99.28810	 0.01000	 1,2,3,4,5	
DLD	 0.09956	 -0.70015	-0.84096	 5.69105	 -66.80629	 0.00402	 14.66938	 51.61550	 99.97260	 0.30000	 1,2,3,4,5	
Q1st	 0.29458	 0.98825	 0.05315	 4.72491	 -31.18262	 0.08457	 0.87744	 10.61380	 90.36140	 1.00000	 1,2,3,0,5	
Q5th	 0.42131	 0.83215	 0.10389	 4.60027	 -20.57927	 0.06938	 0.89534	 9.01950	 92.25080	 0.50000	 0,2,3,4,5	
Q15th	 0.43969	 0.84452	 0.12265	 4.55804	 -16.10641	 0.15626	 1.78328	 7.63400	 91.23770	 0.40000	 1,2,3,4,0	
Q50th	 0.44348	 0.74681	 0.12780	 4.55046	 -19.38730	 0.18659	 2.19110	 6.20100	 91.48410	 0.30000	 1,2,3,0,5	
Q95th	 0.28558	 1.05998	 0.09816	 4.62495	 -6.284200	 0.15883	 3.35288	 6.22380	 95.26290	 0.02000	 1,2,3,4,5	
Q99th	 0.08618	 1.71115	 -0.58659	 6.09107	 70.29356	 0.14608	 6.06241	 11.57110	 97.59040	 0.02000	 1,2,3,4,5	
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Table	4.6.	Table	of	posterior	predictively	result	of	HyMod	model	constrained	against	Henry	Fork	watershed	(USGS	ID	02143000)	in		
terms	of	Monte	Carlo	simulation	(not	constrained),	as	well	as	Runoff	Ratio	(RR),	Base	Flow	Index	(BFI),	Base	Flow	Runoff	Ratio	(BFR),		
Slope	of	Log	FDC	5th	&	95th	Percentile	(SL	FDC	Q5th&Q95th),	Slope	of	Log	33rd	&	66th	Percentile	(SL	Q33rd	&Q66th),	Slope	of	Log	FDC	20th	

	&	70th	Percentile	(SL	FDC	Q20th&Q70th),	FDC	High	Segment	Volume	more	than	90th	Percentile	(FDC	HSV	Q90th),	FDC	Low	Segment	Volume	
	less	than	30th	Percentile	(FDC	LSV	Q30th),	FDC	Medium	Segment	Volume	(FDC	MSV),	Auto	Correlation	of	Hydrograph	with	1	Day	Lag	(AC),	
Peak	Distribution(PD),	Rising	LIMB	Destiny(RLD),	Declining	LIMB	Destiny(DLD),	1st	Flow	Percentile	(Q1st),	5th	Flow	Percentile(Q5th),	15th	

	Flow	Percentile(Q15th),	50th	Flow	Percentile(Q50th),	95th	Flow	Percentile(Q95th),	99th	Flow	Percentile(Q99th)	metrics.

	
Henry	Fork	Watershed	HyMod	Hydrologic	Model	

Likelihood	 Entropy	 NSE	 RMSE	 PBIAS	 Distance	
Distance	
/NoZero	

Mean	
Uncertainty	
Spread	

Coverage	 Threshold	
Sensitive	
Parameters	

Monte	Carlo	 0.15838	 1.66111	 -2.477	 8.149	 60.48	 0.0109	 1.66519	 19.56800	 99.3428	 	 	

RR	 0.14952	 0.87103	 -0.970	 6.442	 0.047	 0.0442	 1.00456	 9.82090	 95.5915	 0.0200	 1,2,3,4,5,6	
BFI	 0.17991	 1.50631	 -0.735	 6.204	 59.26	 0.0230	 1.13706	 13.30250	 97.9737	 0.3000	 1,2,3,4,5,0	
BFR	 0.15210	 1.29017	 -4.810	 10.28	 60.19	 0.0851	 0.94770	 15.65610	 91.0186	 0.1250	 1,2,3,4,5,6	
SL	FDC	

Q5th&Q95th	
0.22577	 1.52094	 -0.770	 5.825	 59.16	 0.0727	 0.77951	 11.68180	 90.6627	 0.0750	 1,2,3,4,5,6	

SL	
Q33th&Q66th	

0.21746	 1.50662	 -1.206	 6.175	 63.74	 0.0893	 0.93752	 13.91130	 90.4710	 0.1000	 1,2,3,4,5,6	

SL	FDC	
Q20th&Q70th	

0.19834	 1.70889	 -1.119	 6.240	 65.54	 0.0388	 0.85487	 14.12480	 95.4545	 0.3000	 1,2,3,4,0,0	

FDC	HSV	
Q90th	

0.19775	 1.38054	 0.113	 4.571	 50.04	 0.1487	 2.23590	 8.24360	 93.3461	 0.1000	 1,2,3,4,5,0	

FDC	LSV	Q30th	 0.20461	 1.77862	 -1.034	 6.441	 57.36	 0.0571	 1.01378	 13.16320	 94.3593	 0.0200	 1,2,3,4,5,6	
FDC	MSV	 0.17561	 1.23880	 -1.695	 7.522	 62.66	 0.0957	 0.96626	 13.86970	 90.0876	 5.0000	 1,2,3,4,5,0	

AC	 0.15212	 1.10581	 -1.927	 8.180	 58.44	 0.1784	 4.90023	 10.21900	 96.3582	 0.0750	 1,2,3,4,5,6	
PD	 0.18612	 1.59991	 0.142	 4.477	 48.96	 0.1024	 1.13037	 9.02610	 90.9365	 0.5000	 1,2,3,4,5,6	
RLD	 0.16441	 1.51355	 -2.702	 8.399	 52.97	 0.0605	 2.23403	 16.64070	 97.2892	 0.0100	 1,2,3,4,5,6	
DLD	 0.12450	 1.16496	 -8.285	 14.34	 72.58	 0.4482	 4.90111	 14.25570	 90.8543	 0.2000	 1,2,3,4,5,6	
Q1st	 0.15503	 1.53612	 -2.921	 8.522	 59.94	 0.0756	 1.03818	 16.78320	 92.7163	 1.0000	 0,0,0,4,5,0	
Q5th	 0.22551	 1.57258	 -1.078	 6.428	 61.45	 0.0556	 0.82654	 13.85020	 93.2640	 0.5000	 0,2,3,4,5,6	
Q15th	 0.20963	 1.54835	 -1.341	 6.745	 62.80	 0.0535	 0.86891	 15.59870	 93.8390	 0.6000	 1,2,3,4,5,0	
Q50th	 0.17192	 1.26744	 -1.955	 7.784	 60.53	 0.0803	 1.22224	 14.21360	 93.4283	 0.40000	 1,2,3,4,5,0	
Q95th	 0.12034	 1.47988	 -3.731	 9.336	 30.53	 0.1489	 2.14214	 10.08910	 93.0449	 0.01000	 1,2,3,4,5,6	
Q99th	 0.19001	 1.56169	 0.064	 4.685	 51.74	 0.0725	 3.44246	 9.69850	 97.8916	 0.30000	 1,2,3,4,5,6	
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Chapter	5	

SUMMARY	AND	CONCLUSION	

In	this	thesis,	we	address	an	important	topic	of	characterizing	the	constraining	power	

different	hydrological	signatures	in	an	approximate	Bayesian	computation	framework.	We	

are	specifically	concerned	with	analyzing	how	different	hydrologic	signatures	constrain	

distinct	sections	of	the	model	response,	hoping	to	shed	some	light	on	selection	of	a	set	of	

sufficient	hydrologic	signatures	for	rainfall	runoff	model	calibration.	Although	significant	

strides	have	been	made	in	the	field	of	hydrologic	model	calibration	using	Bayesian	

inference	and	beyond,	the	constraining	power	of	particular	hydrologic	metrics	have	not	

been	analyzed.	We	calibrate	two	parsimonious	rainfall-runoff	models,	namely	GR4J	and	

HyMod,	using	different	hydrologic	signatures	in	an	approximate	Bayesian	computation	

framework	against	three	watersheds	in	the	United	State;	and	compare	the	performance	of	

each	metric	using	goodness-of-fit	metrics	such	as	information	theory,	likelihood,	entropy,	

NSE,	RMSE,	and	percent	bias.	In	more	detail,	posterior	model	parameters	delineated	by	

each	of	the	hydrologic	signatures	are	used	to	run	the	hydrologic	models,	goodness-of-fit	of	

simulations	of	which	shed	light	the	advantages	and	disadvantages	of	using	certain	

hydrologic	signature	in	the	calibration	process.	We	also	further	the	analysis	by	comparing	

the	prior	and	posterior	model	distributions	constrained	with	each	metric	using	Kullback-

Leiber	divergence	metric	and	Two-Sample	Kolmogorov	Smirnov	test	to	identify	which	
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metrics	pose	statistically	significant	change	on	each	of	the	model	parameters.	

In	summary,	the	analysis	shows	that	there	is	no	single	metric	that	can	perform	

satisfactorily	with	a	hydrologic	model,	and	hence	a	combination	of	metrics	with	different	

capabilities	are	required	to	constrain	a	hydrologic	model.	We	have	identified	metrics	such	

as	Peak	Distribution	of	1st	quantile	of	flow	distribution	that	fail	to	constrain	any	specific	

portion	of	the	model	response,	and	hence	are	not	recommended	to	be	used	in	model	

calibration.	We	also	noticed	that	the	impact	of	hydrologic	signatures	on	model	calibration	

is	both	model-	and	watershed-	specific.	For	a	given	watershed,	a	certain	hydrologic	metric	

might	constrain	one	parameter	of	the	GR4J	model,	while	same	metric	might	be	insensitive	

to	the	response	of	another	watershed.	This	is	less	of	an	issue	for	a	more	confined	model	

structure	such	as	HyMod.	Moreover,	some	hydrologic	signatures	perform	superior	in	a	less	

flexible	model	structure	such	as	HyMod,	as	opposed	to	a	more	flexible	model	structure	such	

as	GR4J.	This	points	to	the	intrinsic	information	content	of	the	HyMod	model,	which	in	

conjunction	with	certain	metrics	can	constrain	the	model	response.	This	information	is	

however	lacking	in	a	flexible	model	structure,	such	as	GR4J,	which	doesn’t	provide	the	

extra	help	to	hydrologic	signature	to	constrain	model	behavior.		
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SUPPLEMENTARY	INFORMATION	

In	the	following,	we	show	predictive	uncertainty	range	plots	of	GR4J	and	HyMod	

models	constrained	against	SF	Boise	river	(USGS	ID	#13186000),	Skykomish	river	(USGS	

ID	#12134500)	and	Henry	Fork	river	(USGS	ID	#02143000)	in	a	temporal	span	of	10	years,	

starting	from	January	1,	1948	to	January	1,	1958;	Using	Monte	Carlo	,Runoff	Ratio	(RR),	

Base	Flow	Index	(BFI),	Base	Flow	Runoff	Ratio	(BFR),	Slope	of	Log	FDC	5th	&	95th	Percentile	

(SL	FDC	Q5th&Q95th),	Slope	of	Log	33rd	&	66th	Percentile	(SL	Q33th&Q66th),	Slope	of	Log	

FDC	20th	&	70th	Percentile	(SL	FDC	Q20th&Q70th),	FDC	High	Segment	Volume	more	than	

90th	Percentile	(FDC	HSV	Q90th),	FDC	Low	Segment	Volume	less	than	30th	Percentile	(FDC	

LSV	Q30th),	FDC	Medium	Segment	Volume	(FDC	MSV),	Auto	Correlation	of	Hydrograph	

with	1	Day	Lag	(AC),	Peak	Distribution(PD),	Rising	LIMB	Destiny(RLD),	Declining	LIMB	

Destiny(DLD),	1st	Flow	Percentile	(Q1st),	5th	Flow	Percentile(Q5th),	15th	Flow	

Percentile(Q15th),	50th	Flow	Percentile(Q50th),	95th	Flow	Percentile(Q95th),	99th	Flow	

Percentile(Q99th).		The	plots	in	this	section	includes	the	plots	that	was	not	analyzed	in	

result	and	discussion	section.		
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Figure	6.1.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	SF	
Boise	watershed	(USGS	ID	13186000)	using	Runoff	Ratio	Metric	(RR).	Prior	

channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	6.2	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	SF	
Boise	watershed	(USGS	ID	13186000)	using	Base	Flow	Index	(BFI).	Prior	channel	

inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	6.3.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
SF	Boise	watershed	(USGS	ID	13186000)	using	Base	Flow	Runoff	Ratio	(BFR).	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	

data	in	red	
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Figure	6.5	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	SF	
Boise	watershed	(USGS	ID	13186000)	using	Slope	of	Log	FDC	5&	95	

Percentile	(SL	Q33th&Q66th).	Prior	channel	inflow	in	blue,	posterior	channel	
flow	in	green	and	observed	data	in	red	
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Figure	6.6.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	SF	
Boise	watershed	(USGS	ID	13186000)	using	Slope	of	Log	FDC	20	&	70	Percentile	
(SL	FDC	Q20th&Q70th).	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	

green	and	observed	data	in	red	
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Figure	6.7.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)	using	FDC	High	Segment	
Volume	more	than	90	Percentile	(FDC	HSV	Q90th).	Prior	channel	inflow	in	

blue,	posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	6.8.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)	using	FDC	Low	Segment	
Volume	less	than	30	Percentile	( FDC	LSV	Q30th)	Prior	channel	inflow	in	

blue,	posterior	channel	flow	in	green	and	observed	data	in	red	

	

Figure	6.9.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)	using	FDC	Medium	
Segment	Volume	( FDC	MSV)	Prior	channel	inflow	in	blue,	posterior	

channel	flow	in	green	and	observed	data	in	red	
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Figure	6.10.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)	using	Auto	Correlation	of	
Hydrograph	with	1	Day	Lag	( AC)	Prior	channel	inflow	in	blue,	posterior	

channel	flow	in	green	and	observed	data	in	red	
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Figure	6.11.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)	Peak	Distribution	(Slope	
of	Peak	Flows)	(	PD)	Prior	channel	inflow	in	blue,	posterior	channel	flow	

in	green	and	observed	data	in	red	
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Figure	6.12.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)		using	Declining	LIMB	
Destiny	(DLD)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	

green	and	observed	data	in	red	
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Figure	6.13.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)	using	1st	Flow	Percentile	
(Q1st)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	

observed	data	in	red	
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Figure	6.14.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	SF	
Boise	watershed	(USGS	ID	13186000)	using	5th	Flow	Percentile	(Q5th)	Prior	

channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	6.15.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
SF	Boise	watershed	(USGS	ID	13186000)	using	15th	Flow	Percentile	(Q15th)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	

data	in	red	
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Figure	6.16.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
SF	Boise	watershed	(USGS	ID	13186000)	using	50th	Flow	Percentile	(Q50th)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	

data	in	red	
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Figure	6.17.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
SF	Boise	watershed	(USGS	ID	13186000)	using	95th	Flow	Percentile	(Q95th)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	

data	in	red	
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Figure	6.18.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)	using	99th	Flow	

Percentile	(Q99th)	Prior	channel	inflow	in	blue,	posterior	channel	flow	
in	green	and	observed	data	in	red	
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	 Figure	6.18.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)	using	Runoff	Ratio	Metric	
(RR).	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	

observed	data	in	red	
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Figure	6.19	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)	using	Base	Flow	Index	
(BFI).	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	

observed	data	in	red	
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Figure	6.20.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)	using	Base	Flow	Runoff	
Ratio	(BFR).	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	

green	and	observed	data	in	red	
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Figure	6.21.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)	using	Slope	of	Log	FDC	
5th	&	95th	Percentile	(SL	FDC	Q5th&Q95th).	Prior	channel	inflow	in	blue,	

posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	6.22.	Predictive	uncertainty	ranges	of	HyModJ	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)	using	Slope	of	Log	FDC	
5&	95	Percentile	(SL	Q33th&Q66th).	Prior	channel	inflow	in	blue,	posterior	

channel	flow	in	green	and	observed	data	in	red	
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Figure	6.23.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	SF	
Boise	watershed	(USGS	ID	13186000)	using	Slope	of	Log	FDC	20	&	70	Percentile	(SL	
FDC	Q20th&Q70th).	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	

observed	data	in	red	
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	 Figure6.24.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	

against	SF	Boise	watershed	(USGS	ID	13186000)	using	FDC	High	Segment	
Volume	more	than	90	Percentile	(FDC	HSV	Q90th).	Prior	channel	inflow	in	

blue,	posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	6.26..	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	
SF	Boise	watershed	(USGS	ID	13186000)	using	FDC	Medium	Segment	Volume	( 
FDC	MSV)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	

observed	data	in	red	
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Figure6.27..	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	SF	
Boise	watershed	(USGS	ID	13186000)	Auto	Correlation	of	Hydrograph	with	1	Day	

Lag	(AC)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	
observed	data	in	red		
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	 	Figure	6.28.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	
SF	Boise	watershed	(USGS	ID	13186000)	Peak	Distribution	(Slope	of	Peak	Flows)	
(	PD)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	

data	in	red	
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Figure	6.29.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	
SF	Boise	watershed	(USGS	ID	13186000)		using	Declining	LIMB	Destiny	(RLD)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	

in	red	
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Figure	6.30.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)		using	Declining	LIMB	

Destiny	(DLD)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	
and	observed	data	in	red	
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Figure	6.31.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)	using	1st	Flow	Percentile	
(Q1st)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	

observed	data	in	red	
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Figure	6.32.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	
SF	Boise	watershed	(USGS	ID	13186000)	using	5th	Flow	Percentile	(Q5th)	Prior	
channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	6.33.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	
SF	Boise	watershed	(USGS	ID	13186000)	using	15th	Flow	Percentile	(Q15th)	Prior	
channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	6.34.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)	using	50th	Flow	Percentile	
(Q50th)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	

observed	data	in	red	
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Figure	6.35.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	SF	Boise	watershed	(USGS	ID	13186000)	using	99th	Flow	Percentile	
(Q99th)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	

observed	data	in	red	
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Figure	6.36	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	Runoff	Ratio	Metric	(RR).	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	

data	in	red	
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Figure	6.39.	.Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	Slope	of	Log	FDC	5th	&	95th	
Percentile	(SL	FDC	Q5th&Q95th).	Prior	channel	inflow	in	blue,	posterior	channel	

flow	in	green	and	observed	data	in	red	
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Figure	6.40.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	Slope	of	Log	FDC	33	&	66	

Percentile	(SL	FDC	Q33th&Q66th).	Prior	channel	inflow	in	blue,	posterior	channel	
flow	in	green	and	observed	data	in	red	
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Figure	6.41.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	Slope	of	Log	FDC	20	&	70	

Percentile	(SL	FDC	Q20th&Q70th).	Prior	channel	inflow	in	blue,	posterior	channel	
flow	in	green	and	observed	data	in	red	
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Figure	6.43.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	FDC	Low	Segment	Volume	less	
than	30	Percentile	( FDC	LSV	Q30th)	Prior	channel	inflow	in	blue,	posterior	

channel	flow	in	green	and	observed	data	in	red	
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Figure	6.45.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	Auto	Correlation	of	

Hydrograph	with	1	Day	Lag	( AC)	Prior	channel	inflow	in	blue,	posterior	channel	
flow	in	green	and	observed	data	in	red	
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Figure	6.46.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	Peak	Distribution	(Slope	of	Peak	
Flows)	(	PD)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	

observed	data	in	red	
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Figure	6.47.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	Reclining	LIMB	Destiny	
(RLD)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	

observed	data	in	red	
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Figure	6.48..	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	Declining	LIMB	Destiny	(DLD)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	in	

red	
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Figure6.49.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	1st	Flow	Percentile	(Q1st)	

Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	
in	red	
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Figure	6.50.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	5th	Flow	Percentile	(Q5th)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	

data	in	red	
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Figure	6.51.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	
against	Skykomish	watershed	(USGS	ID	12134500)	using	15th	Flow	

Percentile	(Q15th)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	
green	and	observed	data	in	red	
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Figure	6.52.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	50th	Flow	Percentile	(Q50th)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	

in	red	
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Figure	6.53	.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	95th	Flow	Percentile	(Q95th)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	

in	red	
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Figure	6.54.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	99th	Flow	Percentile	(Q99th)	

Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	in	
red	
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Figure	6.55.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	Skykomish	watershed	(USGS	ID	12134500)	using	Runoff	Ratio	Metric	

(RR).	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	
observed	data	in	red	
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Figure	6.56.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	Skykomish	watershed	(USGS	ID	12134500)	using	Base	Flow	Index	
(BFI).	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	

observed	data	in	red	
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Figure	6.59.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	Skykomish	watershed	(USGS	ID	12134500)	using	Slope	of	Log	FDC	33	
&	66	Percentile	(SL	FDC	Q33th&Q66th).	Prior	channel	inflow	in	blue,	posterior	

channel	flow	in	green	and	observed	data	in	red	
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Figure	6.61	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	FDC	High	Segment	Volume	

more	than	90	Percentile	(FDC	HSV	Q90th).	Prior	channel	inflow	in	blue,	posterior	
channel	flow	in	green	and	observed	data	in	red	
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Figure	6.62	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	FDC	Low	Segment	Volume	less	
than	30	Percentile	( FDC	LSV	Q30th)	Prior	channel	inflow	in	blue,	posterior	

channel	flow	in	green	and	observed	data	in	red	
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Figure	6.64.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	Auto	Correlation	of	

Hydrograph	with	1	Day	Lag							( AC)	Prior	channel	inflow	in	blue,	posterior	
channel	flow	in	green	and	observed	data	in	red	
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Figure	6.66.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	Skykomish	watershed	(USGS	ID	12134500)	using	Reclining	LIMB	
Destiny	(RLD)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	

and	observed	data	in	red	
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Figure	6.67.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	Declining	LIMB	Destiny	(DLD)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	

in	red	
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Figure	6.68.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	against	
Skykomish	watershed	(USGS	ID	12134500)	using	1st	Flow	Percentile	(Q1st)	

Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	
in	red	
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Figure	6.69.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	Skykomish	watershed	(USGS	ID	12134500)	using	5th	Flow	

Percentile	(Q5th)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	
green	and	observed	data	in	red	
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Figure	6.70.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	Skykomish	watershed	(USGS	ID	12134500)	using	15th	Flow	Percentile	
(Q15th)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	

observed	data	in	red	
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Figure	6.71.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	Skykomish	watershed	(USGS	ID	12134500)	using	50th	Flow	

Percentile	(Q50th)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	
green	and	observed	data	in	red	
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Figure	6.72.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	Skykomish	watershed	(USGS	ID	12134500)	using	95th	Flow	

Percentile	(Q95th)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	
green	and	observed	data	in	red	
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Figure	6.73.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	Skykomish	watershed	(USGS	ID	12134500)	using	99th	Flow	

Percentile	(Q99th)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	
green	and	observed	data	in	red	
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Figure	6.74.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	
against	Henry	Fork	watershed	(USGS	ID	02143000)	using	Runoff	Ratio	
Metric	(RR).	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	

and	observed	data	in	red	
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Figure	6.77.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	
against	Henry	Fork	watershed	(USGS	ID	02143000)	using	Base	Flow	

Runoff	Ratio	(BFR).	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	
green	and	observed	data	in	red	
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Figure	6.79.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	Slope	of	Log	FDC	33	&	66	

Percentile	(SL	FDC	Q33th&Q66th).	Prior	channel	inflow	in	blue,	posterior	channel	
flow	in	green	and	observed	data	in	red	



  

 

155 

	
	
	
	

	
	

	
	
	
	
	
	
	
	

	
	
	
	
	



  

 

156 

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

Figure	6.81.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	FDC	High	Segment	Volume	

more	than	90	Percentile	(FDC	HSV	Q90th).	Prior	channel	inflow	in	blue,	
posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	6.83.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	Henry	
Fork	watershed	(USGS	ID	02143000)	using	FDC	Medium	Segment	Volume	( FDC	MSV)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	6.84.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	Auto	Correlation	of	Hydrograph	
with	1	Day	Lag	( AC)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	

and	observed	data	in	red	
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Figure	6.86.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	Reclining	LIMB	Destiny	(RLD)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	

in	red	
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Figure	6.87.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	Declining	LIMB	Destiny	(DLD)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	in	

red	
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Figure	6.88.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	1st	Flow	Percentile	(Q1st)	

Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	
in	red	
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Figure	6.89.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	5th	Flow	Percentile	(Q5th)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	

data	in	red	
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Figure	6.70.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	15th	Flow	Percentile	(Q15th)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	

data	in	red	
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Figure	6.71..	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	50th	Flow	Percentile	(Q50th)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	in	

red	
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Figure	6.72.	Predictive	uncertainty	ranges	of	GR4J	model	constrained	
against	Henry	Fork	watershed	(USGS	ID	02143000)	using	95th	Flow	

Percentile	(Q95th)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	
green	and	observed	data	in	red	
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Figure	6.73	Predictive	uncertainty	ranges	of	GR4J	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	99th	Flow	Percentile	
(Q99th)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	

observed	data	in	red	
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Figure	6.74.	Predictive	uncertainty	ranges	of	HyModJ	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	Runoff	Ratio	Metric	(RR).	Prior	
channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	6.75.	Predictive	uncertainty	ranges	of	HyModJ	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	Base	Flow	Index	(BFI).	Prior	
channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	6.76.	Predictive	uncertainty	ranges	of	HyModJ	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	Base	Flow	Runoff	Ratio	(BFR).	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	in	

red	
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Figure	6.77.	Predictive	uncertainty	ranges	of	HyModJ	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	Slope	of	Log	FDC	5th	&	95th	

Percentile	(SL	FDC	Q5th&Q95th).	Prior	channel	inflow	in	blue,	posterior	channel	flow	
in	green	and	observed	data	in	red	
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Figure	6.78.	Predictive	uncertainty	ranges	of	HyModJ	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	Slope	of	Log	FDC	33	&	66	

Percentile	(SL	FDC	Q33th&Q66th).	Prior	channel	inflow	in	blue,	posterior	channel	
flow	in	green	and	observed	data	in	red	
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Figure	6.80.	Predictive	uncertainty	ranges	of	HyModJ	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	FDC	High	Segment	Volume	

more	than	90	Percentile	(FDC	HSV	Q90th).	Prior	channel	inflow	in	blue,	posterior	
channel	flow	in	green	and	observed	data	in	red	
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Figure		6.82.	Predictive	uncertainty	ranges	of	HyModJ	model	constrained	
against	Henry	Fork	watershed	(USGS	ID	02143000)	using	FDC	Medium	

Segment	Volume	( FDC	MSV)	Prior	channel	inflow	in	blue,	posterior	channel	
flow	in	green	and	observed	data	in	red	
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Figure	6.83.	Predictive	uncertainty	ranges	of	HyModJ	model	constrained	
against	Henry	Fork	watershed	(USGS	ID	02143000)	using	Auto	Correlation	

of	Hydrograph	with	1	Day	Lag							( AC)	Prior	channel	inflow	in	blue,	
posterior	channel	flow	in	green	and	observed	data	in	red	
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Figure	6.86.	Predictive	uncertainty	ranges	of	HyModJ	model	constrained	
against	Henry	Fork	watershed	(USGS	ID	02143000)	using	Declining	LIMB	
Destiny	(DLD)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	

and	observed	data	in	red	
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Figure	6.87.	Predictive	uncertainty	ranges	of	HyModJ	model	constrained	
against	Henry	Fork	watershed	(USGS	ID	02143000)	using	1st	Flow	

Percentile	(Q1st)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	
green	and	observed	data	in	red	
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Figure	6.88.	Predictive	uncertainty	ranges	of	HyModJ	model	constrained	
against	Henry	Fork	watershed	(USGS	ID	02143000)	using	5th	Flow	

Percentile	(Q5th)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	
green	and	observed	data	in	red	
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Figure	6.89.	Predictive	uncertainty	ranges	of	HyModJ	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	15th	Flow	Percentile	(Q15th)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	

in	red	
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Figure	6.90.	Predictive	uncertainty	ranges	of	HyModJ	model	constrained	against	
Henry	Fork	watershed	(USGS	ID	02143000)	using	50th	Flow	Percentile	(Q50th)	
Prior	channel	inflow	in	blue,	posterior	channel	flow	in	green	and	observed	data	

in	red	
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Figure	6.91.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	Henry	Fork	watershed	(USGS	ID	02143000)	using	95th	Flow	

Percentile	(Q95th)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	
green	and	observed	data	in	red	
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Figure	6.92.	Predictive	uncertainty	ranges	of	HyMod	model	constrained	
against	Henry	Fork	watershed	(USGS	ID	02143000)	using	99th	Flow	

Percentile	(Q99th)	Prior	channel	inflow	in	blue,	posterior	channel	flow	in	
green	and	observed	data	in	red	




