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We investigate the problem of oscillatory flow of a homogeneous fluid with viscosity ν
in a fluid-filled sphere of radius a that rotates rapidly about a fixed axis with angular
velocity Ω0 and that undergoes weak longitudinal libration with amplitude εΩ0 and
frequency ω̂Ω0, where ε is the Poincaré number with ε � 1 and ω̂ is dimensionless
frequency with 0 < ω̂ < 2. Three different methods are employed in this investigation:
(i) asymptotic analysis at small Ekman numbers E defined as E = ν/(a2Ω0); (ii)
linear numerical analysis using a spectral method; and (iii) nonlinear direct numerical
simulation using a finite-element method. A satisfactory agreement among the three
different sets of solutions is achieved when E 6 10−4. It is shown that the flow
amplitude |u| is nearly independent of both the Ekman number E and the libration
frequency ω̂, always obeying the asymptotic scaling |u| = O(ε) even though various
spherical inertial modes are excited by longitudinal libration at different libration
frequencies ω̂. Consequently, resonances do not occur in this system even when ω̂

is at the characteristic value of an inertial mode. It is also shown that the pressure
difference along the axis of rotation is anomalous: this quantity reaches a sharp peak
when ω̂ approaches a characteristic value. In contrast, the pressure difference measured
at other places in the sphere, such as in the equatorial plane, and the volume-integrated
kinetic energy are nearly independent of both the Ekman number E and the libration
frequency ω̂. Absence of resonances in a fluid-filled sphere forced by longitudinal
libration is explained through the special properties of the analytical solution that
satisfies the no-slip boundary condition and is valid for E� 1 and ε� 1.

Key words: geophysical and geological flows, rotating flows

1. Introduction
Gravitational interaction between a non-spherical planet and its parent star or moons

results in non-uniform rotation of the planet that produces a Poincaré force driving
fluid motion in the interior of the planet (see, for example, Dermott 1979; Tilgner
2007). For many planets, the non-uniform component of its angular velocity is usually
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small and, hence, the corresponding Poincaré force would also be weak (for example,
Margot et al. 2007; Noir et al. 2009). As a consequence, fluid motion in the interior
of a non-uniformly rotating planet forced by the Poincaré force would be weak
and, hence, insignificant. However, it would become very strong and, hence, highly
significant if the weak Poincaré force resonates directly with any inertial modes, which
are the eigenfunctions of a rapidly rotating fluid system.

The significance of resonance may be illustrated by looking at some general
properties of non-uniform-rotation-driven flow u. Suppose that a fluid-filled,
axisymmetric container rotates rapidly but slightly non-uniformly in the form of
precession or libration or both. In a rotating frame of reference attached to the
container (Greenspan 1968; Tilgner 2007), which we shall adopt throughout this paper,
fluid motion driven by weak non-uniform rotation is governed by the dimensionless
equations of motion and continuity:

∂u
∂t
+ 2ẑ× u+∇p= E∇2u+ ε

(
∂Ω̂

∂t
× r

)
, (1.1)

∇ ·u= 0, (1.2)

where r is the position vector, p is a reduced pressure, u is the fluid velocity, Ω̂ is the
dimensionless angular velocity which is time-dependent with |Ω̂ | = O(1), ẑ is a unit
vector parallel to the axis of the primary rotation, E is the Ekman number with E� 1
and ε is often referred to as the Poincaré number with ε� 1.

In order to understand both the stability of spinning spacecraft with fluid payloads
and planetary precession, the most extensively studied problem of non-uniform-
rotation-driven flow is concerned with fluid motion in a precessing cylinder (see, for
example, Wood 1966; Gans 1970; Manasseh 1992; Kobine 1995; Meunier et al. 2008;
Liao & Zhang 2012). We use the problem of fluid motion in a precessing cylinder to
illustrate the fundamental differences between the resonant and non-resonant responses
in non-uniformly rotating fluids. When the excitation frequency ω̂ is at a characteristic
value ωnk of a cylindrical inertial mode unk and the Poincaré force ε[(∂Ω̂/∂t) × r]
is not orthogonal with the mode unk (i.e.

∫
V[(∂Ω̂/∂t) × r] · unk dV 6= 0 where

∫
V dV

denoting the integration over the cylinder), resonances take place and are marked by
the properties that the amplitude of the precessing flow |u| reaches a sharp peak and
obeys the asymptotic scaling (for example, Gans 1970; Manasseh 1992; Meunier et al.
2008)

|u| = O(ε/
√

E) for E� 1 at resonances. (1.3)

At non-resonances, however, the flow amplitude is characterized by the asymptotic
scaling (see, for example, Wood 1966; Kobine 1995; Meunier et al. 2008)

|u| = O(ε) for E� 1 at non-resonances. (1.4)

The above asymptotic scalings at E� 1 can be, in fact, deduced from the governing
equation (1.1) without having to solve the complicated mathematical problem. For
simplicity, let the Poincaré force ε[(∂Ω̂/∂t) × r] = εf (r)eiω̂t with i = √−1 and
|f | = O(1), and let the fluid response u = A unkeiω̂t by assuming that a single inertial
mode unk with amplitude A would be excited either resonantly or non-resonantly.
At non-resonances, the Poincaré force εf directly drives a weak flow A = O(ε),
as clearly seen from (1.1), for which the viscous effect in connection with E∇2u
is passive and plays a non-essential role at E � 1. At resonance, when ω̂ is at
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a characteristic value ωnk of a cylindrical inertial mode and the Poincaré force εf
resonates with unk, the dynamics becomes more complicated. In this case, the Poincaré
force εf drives a time-dependent flow whose growing amplitude must be contained
by active viscous effects that take place mainly in the Ekman boundary layer whose
thickness is O(

√
E) and whose flux into the bulk fluid is O(A

√
E). Equation (1.1)

then leads to a balance between the flux momentum from the boundary layer into the
bulk fluid and the Poincaré force

A
√

E ∼ ε|f | at E� 1, (1.5)

which gives rise to the resonant scaling |A | = O(ε/
√

E) (see, for example, Gans 1970;
Meunier et al. 2008; Liao & Zhang 2012).

In an important and highly influential work of rotating fluid experiments, Aldridge
& Toomre (1969) studied the problem of flow in a fluid-filled sphere forced by weak
longitudinal libration. They considered a homogeneous fluid of viscosity ν in a sphere
of radius a that rotates rapidly about a fixed axis with the primary angular velocity
Ω0ẑ and, at the same time, undergoes weak longitudinal libration with the amplitude
εΩ0 and the frequency ω̂Ω0, where ε� 1 and ω̂ is the dimensionless frequency with
0 < ω̂ < 2. The instantaneous or overall angular velocity Ω of the spherical container
is of the form

Ω = ẑΩ0[1+ ε sin(ω̂Ω0t)], (1.6)

where Ω0 is the mean rate of rotation and ẑ is a unit vector in the direction of
rotation. Owing to the non-uniform rotation, the Poincaré force [(∂Ω/∂t) × r] drives
an oscillatory fluid motion in the fluid-filled sphere. In their laboratory experiments,
Aldridge & Toomre (1969) measured the dynamical response of the fluid in the form
of pressure variation along the rotation axis to various libration frequencies ω̂. They
demonstrated that the axisymmetric spherical inertial mode, which is described by the
eigenfrequency ωnk, the eigenfunction velocity unk and the pressure pnk with n being
the axial wavenumber and k the radial wavenumber, can be excited when the libration
frequency ω̂→ ωnk. This excitation is clearly reflected in the measurement that the
pressure difference amplitude along the axis of rotation reaches a sharp peak when
the libration frequency ω̂ approaches the eigenfrequency ωnk (see figures 3 and 7 of
Aldridge & Toomre 1969). This well-known experimental observation was interpreted
theoretically, like that in a precessing cylinder, as being resonance with the inertial
mode unk when ω̂ = ωnk (Greenspan 1968).

For understanding the physical implication of librationally driven flow in planets
and moons, this classical problem, or an extension of the problem, has been also
studied by various authors. Rieutord (1991), Tilgner (1999) and Calkins et al. (2010)
studied numerically the response to longitudinal libration in spherical systems in which
coupling between the librating container and its interior fluid is purely viscous. In
particular, Rieutord (1991) showed that the pressure variation along the axis of
rotation reaches a peak when the libration frequency approaches to the frequency
of an inertial mode ωnk, with a focus on how a sizeable inner core in spherical shells
may alter the pressure difference on the rotation axis. Recently, Zhang, Chan & Liao
(2012) showed that resonance can take place in a latitudinally librating spheroidal
cavity. The amplitude of the librating flow is |u| = O(ε/

√
E) at E � 1 when the

libration frequency ω̂ is at the characteristic value ωnk of a particular inertial mode
while |u| = O(ε) away from resonance. Note that the form of the Poincaré forcing,
ε(∂Ω̂/∂t × r), is different between the longitudinal and latitudinal libration.
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Experimental and numerical studies have also focused on the strongly nonlinear
properties of longitudinally libration-driven flow when the Poincaré number ε becomes
sufficiently large (Noir et al. 2009) or when the containers are non-axisymmetric and,
hence, the topographical coupling between the container and fluid becomes significant
(Chan, Liao & Zhang 2011; Zhang, Chan & Liao 2011; Cébron et al. 2012; Noir et al.
2012). In particular, Cébron et al. (2012) shows that the nonlinear flow, due to the
topographical effect of non-axisymmetric geometry, may generate elliptical instabilities
through the nonlinear interaction among different inertial modes. Moreover, Busse
(2010) and Calkins et al. (2010) showed that longitudinal libration can drive a weak
mean flow in librating spheres, which is confirmed by in the laboratory experiments
of Noir et al. (2010, 2012) and Sauret et al. (2010). It is of significance to note that
the responses in axisymmetric containers did not correspond to that of a global scale
resonance with strong velocities being excited throughout the fluid shell (Noir et al.
2012). Thus, a significant problem exists in relating the interpretation of Aldridge &
Toomre (1969) to the results in more recent studies.

In the present study, we revisit the problem of fluid oscillation in a fluid-filled
sphere forced by weak longitudinal libration. Three different but complementary
approaches, asymptotic analysis at E � 1, linear numerical analysis and nonlinear
direct numerical simulation, are adopted. The primary objective of this study is
to clarify the two important questions of the problem. Does resonance, like that
in a precessing cylinder or a latitudinally librating spheroid, occur in longitudinally
librating spheres when the libration frequency ω̂ is at the characteristic value ωnk of a
spherical inertial mode? If the resonance cannot occur, then what is the implication of
a sharp peak for the pressure difference amplitude measured along the axis of rotation
at ω̂ = ωnk? We shall show that the flow amplitude |u| in longitudinally librating
spheres always obeys the asymptotic scaling |u| = O(ε) at E� 1 at or near or away
from a characteristic value ωnk, indicating the absence of resonance in this problem.
We show that although the pressure difference along the axis of rotation attains a sharp
peak when ω̂→ ωnk, the pressure variation at other places, such as in the equatorial
plane, is nearly independent of both the Ekman number E and the libration frequency
ω̂. We also develop an asymptotic theory that helps explain the result of the linear and
nonlinear numerical analysis.

In what follows we shall begin by presenting the mathematical formulation of
the problem in § 2. An asymptotic solution at ω̂ = ωnk for E� 1 is derived in § 3,
providing the mathematical reasoning of why resonance cannot occur in the present
problem. Linear numerical analysis using a spectral method is discussed in § 4 while
nonlinear direct numerical simulation using a finite-element method is presented in § 5.
A comparison among the three different sets of results is presented in § 6. Finally, a
brief summary and concluding remarks are given in § 7.

2. Mathematical formulation

Consider a viscous, homogeneous fluid of viscosity ν and density ρ confined in
a spherical cavity. Suppose that the spherical container rotates rapidly with a non-
uniform angular velocity Ω given by (1.6). In a frame of reference attached to
the container, librationally driven flow in the spherical cavity is governed by the
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dimensional equations (see, for example, Greenspan 1968):

∂u
∂t
+ u ·∇u+ 2Ω0(1+ ε sin ω̂Ω0t)ẑ× u+ 1

ρ
∇p

= ν∇2u+ r× d
dt
[Ω0(1+ ε sin ω̂Ω0t)ẑ], (2.1)

∇ ·u= 0, (2.2)

where ε � 1, u is the three-dimensional velocity field u = (ur, uθ , uφ), with
corresponding unit vectors (r̂, θ̂ , φ̂), in spherical polar coordinates (r, θ, φ) with θ = 0
at the axis of ẑ and r = 0 at the centre of the sphere. The centrifugal force is combined
with other conservative forces to form the reduced pressure p. The final term on
the right-hand side of (2.1) is known as the Poincaré force which drives librational
flow against viscous dissipation. The libration amplitude Ω0ε controls the degree of
nonlinearity of the problem and will be assumed to be small.

Employing the radius of the sphere a as the length scale, Ω−1
0 as the unit of time

and ρa2Ω2
0 as the unit of pressure yields the dimensionless equations:

∂u
∂t
+ u ·∇u+ 2(1+ ε sin ω̂t)ẑ× u+∇p= E∇2u+ εω̂(r× ẑ) cos(ω̂t), (2.3)

∇ ·u= 0, (2.4)

where the Ekman number, E = ν/Ω0a2, provides the measure of relative importance
between the typical viscous force and the Coriolis force, and the Poincaré number
ε quantifies the strength of the Poincaré forcing. Librationally driven flow on the
bounding spherical surface, S , of the container is at rest, requiring that

r̂ ·u= 0 and r̂× u= 0 at r = 1. (2.5)

When ε is sufficiently small with |u| = O(δ) � 1, (2.3) may be linearized by
omitting the square or products of small terms, u ·∇u= O(δ2) and

|ε sin(ω̂t)ẑ× u| = O(δε), (2.6)

which yields the governing equation for weak libration

∂u
∂t
+ 2ẑ× u=−∇p+ E∇2u+ εω̂(r× ẑ)eiω̂t, (2.7)

∇ ·u= 0, (2.8)

where only the real part of the complex solution is taken as the physical solution.
The weakly librating flow (ε � 1), defined by (2.7)–(2.8) subject to the no-

slip boundary condition (2.5), is first solved asymptotically for E � 1 and, then,
numerically using a spectral method. To validate the linear approximation and compute
the pressure field directly, the fully nonlinear problem, defined by (2.3)–(2.4) subject
to the boundary condition (2.5), is also solved by numerical simulation using a finite-
element method.

3. Asymptotic analysis
The existing theory of the problem was based on the pressure expansion (see

(6.2)–(6.4) in §6 of Greenspan (1964) and (2.14.5)–(2.14.8) in Greenspan (1968)).
Consequently, the no-slip velocity condition cannot be explicitly enforced. Owing to
the appearance of the singular terms such as 1/(ω̂ − ωnk) in the pressure-expansion
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theory, it suggests that resonance with the inertial mode unk would take place as the
libration frequency ω̂ approaches the characteristic value ωnk of the inertial mode.

With the availability of the explicit expression for both the velocity unk and the
pressure pnk for any spherical inertial modes (Zhang et al. 2001), our asymptotic
analysis will be based on the velocity–pressure expansion such that the no-slip
condition can be explicitly enforced. In the present velocity–pressure formulation, it is
the resulting solvability condition, which is explicitly independent of E without having
any singular terms such as 1/(ω̂−ωnk), that will determine the amplitude of a librating
flow at ω̂ = ωnk. We shall start with a brief argument of why resonance mathematically
cannot occur in the present libration problem.

3.1. Why resonance cannot occur
A subset of the spherical inertial modes which are azimuthally axisymmetric (because
of spherical geometry) and equatorially symmetric may be excited by the Poincaré
force (εω̂)(r × ẑ) cos(ω̂t). Any axisymmetric mode in this subset is described by its
velocity unk, the pressure pnk and the eigenfrequency ωnk. According to Zhang et al.
(2001), the pressure pnk for the subset is expressible as

pnk(r, θ)=
k∑

i=0

k−i∑
j=0

Ckijr
2(i+j)σ 2i

nk (1− σ 2
nk)

j
sin2jθcos2iθ, (3.1)

for k = 2, 3, 4, . . . , where the term with i + j = 0 should be excluded, and Ckij is
defined as

Ckij = (−1)i+j[2(k + i+ j)− 1]!!
2j+1(2i− 1)!!(k − i− j)!i! (j!)2 , (3.2)

along with

(2j− 1)!! = (2j− 1) . . . (3)(1), (−1)!! = 1, 0! = 1. (3.3)

An arbitrary normalization is used to keep the expression as simple as possible. In
(3.1), the half frequency σnk, i.e. σnk = ωnk/2, is the solution of

k−1∑
j=0

{
(−1)j[2(2k − j)]!

j![2(k − j)− 1]!(2k − j)!
}
σ

2(k−j)
nk = 0, (3.4)

where k varies over all positive integers with k > 2. There exist 2(k − 1) distinct real
roots to (3.4) within −1< σnk < 1. Since it is σ 2

nk that appears in (3.4), we shall always
have a pair of +|σnk| and −|σnk| as solutions to (3.4). Therefore, it suffices to focus on
only the inertial modes with +|σnk|. Different positive roots of (3.4) can be arranged,
with the aid of subscript notation, according to the size of σnk,

0< σ1k < σ2k < σ3k, . . . , < σnk < · · · , (3.5)

where n, the first index, is restricted by n 6 (k − 1), and σnk denotes the nth positive
smallest root to (3.4) for given k. The first fundamental inertial mode having the
simplest spatial structure is given by k = 2 and n = 1. Note that the index notation
used in Aldridge & Toomre (1969) is slightly different: our ωnk corresponds to
their ω(k−1)n. For example, the three fundamental inertial modes in our notation
are ω12, ω13 and ω23 which in their notion are ω11, ω21 and ω22. Physically, the
subscript n represents roughly the degree of the complexity in the axial direction
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along the rotation axis while the index k reflects the radial structure in the direction
perpendicular to the rotation axis.

Once the half frequency σnk of an inertial mode is found from (3.4), the explicit
expression for the three velocity components for unk are

r̂ ·unk(r, θ)=−i
k∑

i=0

k−i∑
j=0

Ckij

r
[σ 2

nk(i+ j)− i]

× [r2(i+j)σ 2i−1
nk (1− σ 2

nk)
j−1

sin2jθcos2iθ ], (3.6)

θ̂ ·unk(r, θ)=−i
k∑

i=0

k−i∑
j=0

Ckij

r
[jσ 2

nkcos2θ + i(1− σ 2
nk)sin2θ ]

× [r2(i+j)σ 2i−1
nk (1− σ 2

nk)
j−1

sin2j−1θcos2i−1θ ], (3.7)

φ̂ ·unk(r, θ)=
k∑

i=0

k−i∑
j=0

Ckij

r
σ 2i

nk (1− σ 2
nk)

j−1
r2(i+j)jsin2j−1θcos2iθ, (3.8)

where k > 2 with n = 1, 2, . . . , (k − 1), and the terms with i + j = 0 in (3.6)–(3.8)
should be excluded. Note that unk(r, θ) satisfies the condition r̂ · unk = 0 at the
bounding surface S of the spherical container. The analytical expression (3.6)–(3.8)
represents all possible non-geostrophic inertial modes that may be excited by weak
longitudinal libration.

Mathematically speaking, there exist the two conditions that must be satisfied in
order that the Poincaré force, εω̂ cos(ω̂t)r × ẑ, can resonate with an inertial mode
(ωnk,unk, pnk) defined by (3.4) and (3.6)–(3.8). The first condition is that the libration
frequency ω̂ must be equal or close to the frequency of the inertial mode, i.e. ω̂ = ωnk.
Obviously, this condition can be readily met by tuning the size of ω̂ in experiments
or in any asymptotic or numerical analysis. In addition, the Poincaré force, in order to
resonate with the inertial mode (unk, pnk, ωnk), must satisfies the second condition∫ 1

0

∫ π
0

∫ 2π

0
u∗nk · [(εω̂) cos(ω̂t)r× ẑ]r2 sin θ dφ dθ dr 6= 0, (3.9)

where u∗nk denotes the complex conjugate of unk defined by (3.6)–(3.8).
Unlike resonances in a precessing cylinder (for example, Gans 1970; Meunier et al.

2008), the second condition cannot be met in the present libration problem because∫ 1

0

∫ π
0

∫ 2π

0
u∗nk · (r× ẑ)r2 sin θ dφ dθ dr

= i
ωnk

∫ 1

0

∫ π
0

∫ 2π

0
u∗nk ·∇(|r× ẑ|2)r2 sin θ dφ dθ dr

= i
ωnk

∫ π
0

∫ 2π

0
[(r̂ ·u∗nk) |r× ẑ|2]r=1 sin θ dφ dθ = 0 (3.10)

for all possible n and k, where we have made use of ∇ · u∗nk = 0 and the boundary
condition r̂ · u∗nk = 0 at r = 1. Here [f ]r=x denotes that the function f evaluated at r = x.
In deriving (3.10), we have made use of the inertial-mode equation satisfied by ωnk

and unk. Note that a similar equation to (3.10) can be also derived for other axially
symmetrical containers such as a longitudinally librating cylinder.
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According to our mathematical analysis, the Poincaré force due to spherical
longitudinal libration is unable to resonate with any inertial mode unk given by
(3.6)–(3.8) in a sphere. Physically, this non-resonant response stems from the spatio-
temporal structure of the Poincaré force. All of the geostrophic modes are temporally
non-oscillatory and, hence, cannot be resonantly excited by the oscillatory Poincaré
force. All of the axisymmetric inertial modes are spatially non-geostrophic and, hence,
cannot be resonantly excited by the spatially geostrophic Poincaré force. In contrast to
the problem of a precessing cylinder in which |u| = O(ε/

√
E) at resonances, we would

therefore expect that the amplitude of fluid motion in longitudinally librating spheres is
always |u| = O(ε) at E� 1 for any characteristic frequency ωnk.

3.2. Asymptotic analysis at ω̂ = ωnk

Prior to presenting the detailed mathematical analysis, it is profitable to look at the
physical picture of the problem. When the sphere is slightly librating with a moderate
frequency ω̂� E1/2, the resulting fluid motion far away from the spherical bounding
surface S moves like an oscillatory solid-body rotation, −iεr× ẑeiω̂t, after the spin-up
time scale E−1/2. Since the container and the fluid is coupled purely by viscous
processes, the fluid motion in the vicinity of S would vary rapidly and form a
thin viscous boundary layer. The presence of the viscous boundary layer not only
ensures that the interior oscillatory solid-body rotation satisfies the no-slip condition
on S but also produces Ekman boundary pumping to drive the secondary oscillatory
interior flow which would be dominated by a single inertial mode unk if ω̂ = ωnk,
as demonstrated by Aldridge & Toomre (1969). Our analysis will concentrate on the
three fundamental inertial modes with ω12 = 1.309, ω13 = 0.9377 and ω23 = 1.6604,
even though the asymptotic solution would also be applicable to other higher modes.

It is the viscous boundary layer ũ(r, θ) that couples the oscillating solid-body
rotation −iεr × ẑeiω̂t and the inertial mode unk together and, consequently, the three
key elements of the solution should not be treated separately. This physical picture
suggests the following asymptotic expansion for E� 1 at ω̂ = ωnk:

u(r, θ, t)= [−iεr× ẑ+Ankunk(r, θ)+ û(r, θ)+ ũ(r, θ)]eiω̂t, (3.11)

p(r, θ, t)= [iε |r× ẑ|2+Ankpnk(r, θ)+ p̂(r, θ)+ p̃(r, θ)]eiω̂t, (3.12)

where unk(r, θ) and pnk(r, θ) represents the axisymmetric inertial mode defined by
(3.6)–(3.8) and (3.1), Ank denotes the complex coefficient to be determined, and û
and p̂ are the interior perturbation produced primarily by the influx from the viscous
boundary layer described by ũ and p̃. Note that the interior perturbation û(r, θ)
satisfies |û(r, θ)| � |Ankunk(r, θ)| and, thus, can be neglected in the leading-order
equation. We impose that

(−iεr× ẑ+Ankunk + ũ)S = 0 (3.13)

on the bounding surface S such that the no-slip boundary condition is satisfied.
Inserting the interior part of the expansion (3.11)–(3.12) into (2.7)–(2.8) yields

iω̂û+ 2ẑ× û=−∇p̂, (3.14)

∇ · û= 0, (3.15)

subject to the boundary condition

r̂ · û=√E
∫ ∞

0
r̂ · [∇ × (r̂× ũ)] dξ, (3.16)
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where ξ = √E(1 − r), the stretched boundary-layer coordinate for the boundary
layer flow ũ. Homogeneous differential equations (3.14)–(3.15) together with the
inhomogeneous boundary condition (3.16) requires the solvability condition,∫ π

0

{
p∗nk(r = 1, θ)

∫ ∞
0

[
1

sin θ
∂

∂θ
sin θ(θ̂ · ũ)

]
dξ
}

dθ = 0, (3.17)

which determines the amplitude Ank for the inertial mode (unk, pnk) forced by libration.
It is essential that the solvability condition (3.17) is independent of the Ekman number
E and that the vanishing of the right-hand side of (3.17), in comparison to that of the
precession problem, is equivalent to a physical statement for the absence of resonance.

The next major task is to derive the boundary flow ũ needed in the solvability
condition (3.17). By virtue of the properties of a viscous boundary layer in rapidly
rotating spheres, we can derive a fourth-order differential equation from (2.7)
governing the boundary-layer flow on S ,(

∂2

∂ξ 2
− iω̂

)2

ũtang + 4 (ẑ · r̂)2 ũtang = 0, (3.18)

where ũtang denotes the dominant tangential component of ũ, which can be readily
solved subject to the following four conditions,

(ũtang)ξ=0 = (iεr× ẑ−Ankunk)r=1, (3.19a)(
∂2ũtang

∂ξ 2

)
ξ=0

= iω̂ (iεr× ẑ−Ankunk)r=1+ 2(ẑ · r̂)r̂× (iεr× ẑ−Ankunk)r=1, (3.19b)

(ũtang)ξ→∞ = 0, (3.19c)(
∂2ũtang

∂ξ 2

)
ξ→∞
= 0, (3.19d)

such that the no-slip condition (3.13) is explicitly enforced at the boundary S . The
fourth-order differential equation (3.18) together with the four boundary conditions
determines the solution of the spherical Ekman boundary layer.

The solution to (3.18) that satisfies the four boundary conditions is

ũtang = −1
2 [ε sin θ(iφ̂ − θ̂)+Ank (unk − ir× unk)r=1]eγ+ξ

− 1
2 [ε sin θ(iφ̂ + θ̂)+Ank (unk + ir× unk)r=1]eγ−ξ , (3.20)

where

γ + =−
√

2
2

[
1+ i(ωnk + 2 cos θ)
|ωnk + 2 cos θ |

]
|ωnk + 2 cos θ |1/2, (3.21a)

γ − =−
√

2
2

[
1+ i(ωnk − 2 cos θ)
|ωnk − 2 cos θ |

]
|ωnk − 2 cos θ |1/2, (3.21b)

where Ank is still unknown. In (3.20), there exist two critical colatitudes at which the
boundary-layer solution breaks down as it thickens to O(E2/5), as discussed by Roberts
& Stewartson (1965). However, it is generally believed that the effect of this type of
singularities is not significant since the mass flux from the critical region is much
smaller than that from the rest of the boundary layer (Roberts & Stewartson 1965;
Busse 1968; Hollerbach & Kerswell 1995; Tilgner 1999).
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After making use of the boundary layer solution (3.20), the solvability condition
(3.17) becomes

0=Ank

∫ π
0

∂p∗nk(r = 1, θ)
∂θ

[θ̂ ·unk(r = 1, θ)+ iφ̂ ·unk(r = 1, θ)]

×
[

1

|ωnk + 2 cos θ |1/2
(

1− i(ωnk + 2 cos θ)
|ωnk + 2 cos θ |

)]
sin θ dθ

+Ank

∫ π
0

∂p∗nk(r = 1, θ)
∂θ

[θ̂ ·unk(r = 1, θ)− iφ̂ ·unk(r = 1, θ)]

×
[

1

|ωnk + 2 cos θ |1/2
(

1− i(ωnk − 2 cos θ)
|ωnk − 2 cos θ |

)]
sin θ dθ

− ε
∫ π

0

∂p∗nk(r = 1, θ)
∂θ

[
1

|ωnk + 2 cos θ |1/2
(

1− i(ωnk + 2 cos θ)
|ωnk + 2 cos θ |

)]
sin2θ dθ

+ ε
∫ π

0

∂p∗nk(r = 1, θ)
∂θ

[
1

|ωnk − 2 cos θ |1/2
(

1− i(ωnk − 2 cos θ)
|ωnk − 2 cos θ |

)]
sin2θ dθ. (3.22)

This expression determines the amplitude Ank of the inertial mode after evaluating
several integrals there.

Two important features emerge from the solvability condition (3.22) without having
to solve it. First, the Ekman number E does not enter the solvability condition
(3.22) in the present problem, a signature of the non-resonant response. This differs
fundamentally from the resonant response that arises in problem of precession or
latitudinal libration in an oblate spheroid (for example, Gans 1970; Zhang et al. 2012)
in which the solvability condition explicitly depends on a

√
E term. Second, there

are no singular terms such as 1/(ω̂ − ωnk) in the solvability condition (3.22), which
clearly indicates that the amplitude Ank is proportional to ε, another characteristic of
the non-resonant response.

3.3. Three fundamental modes
There are three fundamental inertial modes, marked by the spatially simplest structure,
in the subset of the inertial modes given by (3.6)–(3.8). The first fundamental inertial
mode, whose pressure is a polynomial of r of degree 4, can be readily obtained by
letting k = 2 in (3.4) which yields

ω12 = 2σ12 = 2
√

21/7≈ 1.3093. (3.23)

On inserting σ12 =
√

21/7 into (3.1) and (3.6)–(3.8), we obtain the exact solution
in closed form for the pressure p12 and the velocity vector u12 in spherical polar
coordinates

p12 = 15
7

[
−r2

(
1+ 1

2
cos2θ

)
+ r4

4
(2+ cos2θ + 7sin2θcos2θ)

]
, (3.24)

r̂ ·u12 = i15
√

3

8
√

7
(r2 − 1)r(1+ 3 cos 2θ), (3.25)

θ̂ ·u12 = i15
√

3

8
√

7
(3− 5r2)r sin 2θ, (3.26)
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φ̂ ·u12 = 15
4
(−1+ 2r2 + r2 cos 2θ)r sin θ, (3.27)

representing the simplest solution of this subset.
On inserting the expressions of u12, p∗12 and ω12 = 2

√
21/7 into the solvability

condition (3.22) and carrying out the relevant integrals, we obtain that

A12 = (0.03416− i0.1364)ε. (3.28)

It follows that the asymptotic solution for the pressure p at E� 1 is

p(r, θ, t)= εr2

{
isin2θ + 15(0.03416− i0.1364)

7

×
[
−
(

1+ 1
2

cos2θ

)
+ r2

4
(2+ cos2θ + 7sin2θcos2θ)

]}
ei2
√

21t/7, (3.29)

while its corresponding velocity u satisfying the no-slip condition is

u(r, θ, t)= ε
{

r sin θ
[

irφ̂ − 1
2
(iφ̂ − θ̂)eγ

+
21ξ − 1

2
(iφ̂ + θ̂)eγ

−
21ξ

]

+ 15(0.034156− i0.13641)
4

[
i
√

3

2
√

7
(r3 − r)(1+ 3 cos 2θ)r̂

+ i
√

3

2
√

7
sin 2θ(3r − 5r3)θ̂ + sin θ(2r3 + r3 cos 2θ − r)φ̂

+ i
2

(
1+ cos 2θ −

√
12√
7

cos θ

)
sin θ(iφ̂ − θ̂)eγ

+
21ξ

+ i
2

(
1+ cos 2θ +

√
12√
7

cos θ

)
sin θ(iφ̂ + θ̂)eγ

−
21ξ

]}
ei2
√

21t/7, (3.30)

where

γ +21 =−
[

1+ i(
√

21/7+ cos θ)

|√21/7+ cos θ |

]
|√21/7+ cos θ |1/2, (3.31a)

γ −21 =−
[

1+ i(
√

21/7− cos θ)

|√21/7− cos θ |

]
|√21/7− cos θ |1/2 . (3.31b)

Note that the Ekman number E does not appear either in the pressure expression (3.29)
or the amplitude of the velocity (3.30), both of which are only valid for E� 1. The
spatial structure of the librating flow u for ε = 0.01 and ω̂ = ω12 = 1.309, computed
from the expression (3.30) but excluding the boundary-layer term, is depicted in
figure 1(a,b), which will be compared with the corresponding numerical solutions.
Since the flow is oscillatory, we have chosen to plot it at the instant when its kinetic
energy reaches the maximum: this instant is identified in both linear and nonlinear
numerical solutions.

For illuminating the non-resonant feature of the problem, we introduce an average
kinetic energy density Ēkin, a quantity measuring the flow amplitude |u| and being
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(a) (b)

(c) (d)

FIGURE 1. (a) Contours of the azimuthal component φ̂ · u and (b) contours of the radial
component r̂ · u for ω̂ = 1.3093 computed from the analytical expression (3.30) in a
meridional plane. Note that the boundary-layer term in (3.30) is not included in the plot
φ̂ · u. (c) Contours of φ̂ · u and (d) contours of r̂ · u for ω̂ = 1.6604 computed from the
analytical expression. The dashed contours are for r̂ · u < 0 (or φ̂ · u < 0) while the solid
contours are for r̂ · u> 0 (or φ̂ · u> 0). All of the solutions are plotted at the instant when the
kinetic energy reaches its maximum for ε = 0.01.

easily comparable to the numerical solutions, defined as

Ēkin =
(

1
2V

)(
1

2π/ω̂

)∫ 2π/ω̂

0

(∫ 1

0

∫ 2π

0

∫ π
0
|Real {u}|2 r2 sin θ dθ dφ dr

)
dt, (3.32)

where V is the volume of the sphere V = 4π/3. The small contribution to Ēkin from
the viscous boundary layer is neglected, implying that the kinetic energy Ēkin would be
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slightly overestimated. Making use of the expression (3.30), we obtain that

Ēkin = ε2

10
+ 3

16π
|A12|2

∫ 1

0

∫ 2π

0

∫ π
0
|u12|2 r2 sin θ dθ dφ dr

=
[

1
10
+ 0.0106

]
ε2 (3.33)

for the first fundamental mode. The first term in the square brackets represents the
contribution from inviscid Poincaré flow in the bulk fluid. The second term represents
the contribution arising from any viscously excited inertial modes.

Two other fundamental modes in the subset have the pressure of a polynomial r of
degree 6 corresponding to k = 3 in (3.1) with its half-frequency being solutions to

33σ 4
n3 − 30σ 2

n3 + 5= 0, (3.34)

which has two positive roots

ω13 = 2σ13 = 2

√
15−√60

33
≈ 0.9377, (3.35a)

ω23 = 2σ23 = 2

√
15+√60

33
≈ 1.6604. (3.35b)

Computed using the solvability condition (3.22) with ω13 = 2 [(15−√60)/33]1/2, we
obtain

A13 = (−0.0084+ i0.0700)ε. (3.36)

The leading-order velocity u satisfying the no-slip condition, the pressure p and the
average kinetic energy Ēkin at the libration frequency ω̂ = 0.9377 are then

u(r, θ, t)= [−iεr× ẑ+ ε(−0.0084+ i0.0700)u13 + ũtang]ei0.9377t, (3.37)

p(r, θ, t)= ε[i |r× ẑ|2+(−0.0084+ i0.0700)p13]ei0.9377t, (3.38)

Ēkin = [ 1
10 + 0.0068]ε2, (3.39)

where (u13, p13) is the exact eigenfunction in closed form given by (3.6)–(3.8) and

(3.1) while ũtang given by (3.20) together with ω13 = 2 [(15−√60)/33]1/2.

Similarly, the solvability condition (3.22) with ω23 = 2σ23 = 2 [(15+√60)/33]1/2 =
1.6604, after carrying out the four integrals, gives

A23 = (−0.0057+ i0.0183)ε. (3.40)

The leading-order velocity satisfying the no-slip condition, the pressure and the
average kinetic energy when ω̂ = 1.6605 are then

u(r, θ, t)= [−iεr× ẑ+ ε(−0.0057+ i0.0183)u23 + ũtang]ei1.6604t, (3.41)

p(r, θ, t)= ε[i |r× ẑ|2+(−0.0057+ i0.0183)p23]ei1.6604t, (3.42)

Ēkin = [ 1
10 + 0.0019]ε2, (3.43)

where (u23, p23) is the exact eigenfunction in closed form given by (3.6)–(3.8) and

(3.1) while ũtang given by (3.20) with ω23 = 2 [(15+√60)/33]1/2. The spatial structure
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of the flow u for ω̂ = 1.6604 and ε = 0.01, valid for any E� 1 and computed from
the above analytical expression, is depicted in figure 1(c,d) at the instant when its
kinetic energy reaches the maximum.

3.4. Structure of the asymptotic solution
An advantage of having an explicitly analytical solution for both u and p that satisfies
all of the required boundary condition, such as (3.29) and (3.30), is to provide a
theoretical basis by which to interpret complicated experimental or numerical results.
As clearly indicated in the pressure expressions of the three fundamental modes, the
contribution from the second term whose amplitude depends on the libration frequency
ω̂ is, in general, always small compared with the first dominant term, representing
the inviscid response to libration, whose amplitude is independent of ω̂. The dominant
first term, however, always vanishes on the rotation axis s = 0. In consequence, the
pressure difference measured on the rotation axis s = 0 is strongly dependent on ω̂,
whilst it is nearly constant when evaluated at other locations, such as on the equatorial
plane z = 0 where the first term is dominant. In other words, the theory suggests
that the maximum pressure differences measured in the equatorial plane, for example
between the equator and the centre, would always be given by

1
ε

∣∣∣p(θ = π
2
, r = 1, t

)
− p

(
θ = π

2
, r = 0, t

)∣∣∣
max
= 1+ small perturbations (3.44)

for any values of 0 < ω̂ < 2 at E� 1. Similarly, the analytical expressions for u also
suggest that the contribution from the second term whose amplitude would depend on
ω̂ is always small compared with the first term whose amplitude is independent of ω̂.
The analytical solutions suggest that the scaled average kinetic energy Ēkin/ε

2 of the
librating flow would be always given by

Ēkin

ε2
= 1

10
+ small perturbations (3.45)

for any values of 0 < ω̂ < 2 at E� 1. Those theoretical predictions will be confirmed
by both linear and nonlinear numerical analysis.

4. Linear numerical analysis
The primary purpose of our linear numerical analysis, which is valid for both large

and small Ekman numbers but cannot produce the pressure field directly, is to validate
the asymptotic solution that is valid only for E� 1 as well as to compare with the
nonlinear solution at ε� 1.

In the numerical analysis, we expand the velocity u as a sum of poloidal (v) and
toroidal (w) components by writing

u(r, θ, t)= {∇ ×∇ × [rv(r, θ)] +∇ × [rw(r, θ)]}eiω̂t, (4.1)

where r is the position vector. Obviously, the condition ∇ · u = 0 is automatically
satisfied. Inserting (4.1) into (2.7) and, then, applying r · ∇ and r · ∇ × ∇ onto the
resulting equation, we derive the two independent scalar equations,

(iω̂ − E12)

(
1

sin θ
∂

∂θ
sin θ

∂

∂θ

)
12v + 2Q2w= 0, (4.2)

(iω̂ − E12)

(
1

sin θ
∂

∂θ
sin θ

∂

∂θ

)
w− 2Q2v = 2εω̂r cos θ, (4.3)
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where the differential operator 12 is

12 = 1
r2

∂

∂r
r2 ∂

∂r
+ 1

r2 sin θ
∂

∂θ
sin θ

∂

∂θ
, (4.4)

and the differential operator Q2 is connected with the effects of rotation and is defined
as

Q2 = r cos θ12 +
(

1
sin θ

∂

∂θ
sin θ

∂

∂θ
− r

∂

∂r

)(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
. (4.5)

In terms of v and w, the non-slip boundary condition becomes

v = ∂v
∂r
= w= 0 at r = 1. (4.6)

Equations (4.2)–(4.3) subject to the condition (4.6) are solved numerically by
expanding the velocity potentials v and w in terms of Legendre function Pl(cos θ)
and of the radial functions that satisfy both the central condition at r = 0 and the
no-slip condition r = 1, which are

w(r, θ)=
L∑

l=1

N∑
n=0

wlnrl(1− r)Tn(2r − 1)P2l−1(cos θ), (4.7a)

v(r, θ)=
L∑

l=1

N∑
n=0

vlnrl (1− r)2 Tn(2r − 1)P2l(cos θ), (4.7b)

where Tn(x) denotes the standard Chebyshev function, wln and vln are complex
coefficients to be determined and N and L are truncation parameters whose size is
determined by the size of E (for E = 10−4 we usually take N = L = 50 for better than
1 % accuracy). The Legendre function Pl(cos θ) is normalized such that

1
2

∫ π
0
|Pl(cos θ)|2 sin θ dθ = 1. (4.8)

It should be noted that the selection of l in Pl(cos θ) for the above expansion ensures
the equatorial symmetry of the librating flow obeying the parity

w(r, θ)=−w(r,π− θ) and v(r, θ)= v(r,π− θ), (4.9)

while the factor rl in the expansions is required to remove the singularity at the origin
r = 0. On substitution of the expansions into (4.2)–(4.3) along with an application of
the standard numerical procedure, we are able to derive a system of linear algebraic
equations for the coefficients wln and vln which are then solved numerically by an
iterative method.

It is found that, when E 6 10−4, the linear numerical solutions approach the
asymptotic regime such that they become comparable to the asymptotic solution valid
only for E� 1. In order to compare directly with both the analytical expression and
the fully nonlinear numerical solution, figure 2 shows the spatial structures of u for
ω̂ = 1.3093 (figure 2a,b) and ω̂ = 1.6604 (figure 2c,d) at exactly the same parameters
as those in figure 1. More discussions about the linear numerical solution are presented
in § 7.
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(a) (b)

(c) (d)

FIGURE 2. (a) Contours of the azimuthal component φ̂ · u and (b) contours of the radial
component r̂ · u for ω̂ = 1.3093 computed from the linear numerical solution. (c) Contours of
φ̂ · u and (d) contours of r̂ · u for ω̂ = 1.6604 computed from the linear numerical solution
in a meridional plane. All of the solutions are plotted at the instant when the kinetic energy
reaches its maximum E = 10−4 and ε = 0.01.

5. Nonlinear numerical simulation
We employ a finite-element method based on a three-dimensional tetrahedralization

of the whole sphere with a uniform mesh distribution on a spherical surface without
having the pole singularity and a small number of nodes with a nearly uniform
mesh distribution in the neighbourhood of the centre r = 0 without having the central
singularity. Moreover, the three-dimensional mesh is constructed in a way such that
more nodes placed in the vicinity of the bounding surface for the purpose of resolving
the spherical viscous boundary layer. The detail of the numerical method and its
validation can be found in Chan, Zhang & Liao (2010). An advantage of using a
finite-element method in this particular problem is that the pressure p, in addition to
the velocity u, are obtained directly from numerical simulation. Of course, in principle,
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we can find the pressure p in the linear analysis after obtaining v and w by solving the
equation

2∇ · {ẑ× [∇ ×∇ × (rv(r, θ))+∇ × (rw(r, θ))]} = −∇2p. (5.1)

Evidently, solving the above equation with a complicated v and w is certainly
not straightforward. Moreover, since all of the terms in (2.3) are retained in the
nonlinear problem with no spatial symmetries being imposed, the nonlinear solutions
not only enables us to validate the linear approximation in the asymptotic analysis for
ε � 1 but also would reveal the existence of other possible resonances that are only
connected with the nonlinear effects (see, for example, Noir et al. 2003).

Our finite-element code makes use of a semi-implicit time-stepping scheme
with an implicit second-order backward differentiation formula and a second-order
extrapolation for the nonlinear term. With this numerical scheme, the fully nonlinear
equations (2.3)–(2.4) are written in the form

3un+1 − 4un + un−1

21t
+ 2(un ·∇un)− (un−1 ·∇un−1)+ 2[1+ ε sin(ω̂tn+1)] ẑ× un+1

=−∇pn+1 + E∇2un+1 + (ω̂ε)r× ẑ cos(ω̂tn+1), (5.2)

∇ ·un+1 = 0, (5.3)

where tn = n1t for n = 0, 1, . . . with un(r) = u(r, tn). They are solved, starting from
an arbitrary initial condition, to find un+1, pn+1 for given un and pn on modern
parallel computers. It is also noteworthy that, because the coupling between the
oscillating container and the fluid is purely viscous, the three-dimensional simulation is
computationally expensive: it usually takes more than O(E−1/2) dimensionless time
units to reach a nonlinear equilibrium from an arbitrary initial state for E � 1.
Our typical nonlinear simulation uses a spherical finite-element mesh with 302 988
tetrahedral elements and a total of 1 152 054 unknowns.

The structure of the nonlinear librating flow u for ω̂ = 1.3093 and ω̂ = 1.6604
simulated at E = 10−4 and ε = 0.01 is depicted in figure 3, which has the same
parameters as those used in figure 1 for the analytical solution and in figure 2 for the
linear numerical solution. The results of our nonlinear numerical simulation supports
that: (i) the linear approximation is appropriate for ε � 1 at E� 1; and (ii) no other
types of resonances related to nonlinear effects exist when ε � 1. More discussions
about the nonlinear three-dimensional simulations are presented in § 7.

6. Comparison: asymptotic versus numerical solutions
To answer the two questions raised in § 1, it suffices to examine the dynamical

responses of the librating sphere in the neighbourhood of the first fundamental
inertial mode with ω12 = 1.3093. An extensive numerical analysis is carried out in the
neighbourhood of the libration frequency ω̂ = 1.3093 for fixed E = 10−4 and ε = 0.01.
For an easy comparison, the results obtained using the three different methods at the
same parameter are summarized in figure 4.

The solid curve labelled by A in figure 4 shows log10|1p(θ = π/2)/ε|, where

1p
(
θ = π

2

)
=
∣∣∣∣p(θ = π2 , r = 1, t

)
− p

(
θ = π

2
, r = 1

2
, t

)∣∣∣∣
max

(6.1)

represents the maximum pressure difference on the equatorial plane between (θ =
π/2, r = 1) and (θ = π/2, r = 1/2), as a function of the libration frequency ω̂.
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(b)

(c) (d)

(a)

FIGURE 3. (a) Contours of the azimuthal component φ̂ · u and (b) the radial component r̂ · u
for ω̂ = 1.3093 computed from nonlinear numerical solution. (c) Contours of φ̂ ·u and (d) r̂ ·u
for ω̂ = 1.6604 computed from nonlinear numerical solution. All of the solutions are plotted
at the instant when the kinetic energy reaches its maximum E = 10−4 and ε = 0.01.

There is a square on the curve A in figure 4 representing the value computed
from the analytical solution (3.29). The solid curve labelled by C in figure 4 shows
log10|31p(θ = 0)/ε|, where

1p(θ = 0)= |p(θ = 0, r = 1, t)− p(θ = 0, r = 1
2 , t)|max (6.2)

represents the maximum pressure difference on the rotation axis between (θ = 0, r =
1) and (θ = 0, r = 1/2), as a function of the libration frequency ω̂. A factor of three is
included in order to fit the curve into the figure. The detail of the nonlinear numerical
solution used for plotting figure 4 is given in table 1.

Our results reveal that the pressure difference on the rotation axis 1p(θ = 0) reaches
a sharp peak (noting the curve in figure 4 takes the logarithm scaling) when ω̂
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FIGURE 4. The solid curve labelled by A represents log |1p(θ = π/2)/ε| as a function of
ω̂ on the equatorial plane from the result of nonlinear numerical simulation, with the square
on the curve being from the analytical solution. The dashed curve labelled by B represents
the scaled kinetic energy log(Ēkin/ε

2) computed from the linear numerical analysis as a
function of the libration frequency ω̂. On the dashed curve, the square is calculated from
the analytical solution while the circles are calculated from the result of nonlinear numerical
simulation. The solid curve labelled by C represents log |31p(θ = 0)/ε| as a function of ω̂
along the rotation axis from the result of nonlinear numerical simulation, with the square
being computed from the analytical solution and the asterisks showing five solutions of the
nonlinear simulation given in table 1. The parameters for all of the solutions are E = 10−4 and
ε = 0.01 with the pressure difference being evaluated at the instant when its kinetic energies
reach the maximum.

ω̂ |1p(θ = 0)/ε| |1p(θ = π/2)/ε| Ēkin/ε
2

0.9377 9.881× 10−2 7.765× 10−1 9.799× 10−2

1.1235 1.505× 10−2 7.257× 10−1 9.641× 10−2

1.2500 2.223× 10−2 7.604× 10−1 1.007× 10−1

1.3093 1.075× 10−1 8.065× 10−1 1.036× 10−1

1.3190 1.134× 10−1 7.905× 10−1 1.019× 10−1

1.3700 1.456× 10−2 7.565× 10−1 9.776× 10−2

1.5093 3.180× 10−3 7.444× 10−1 9.616× 10−2

1.6604 2.638× 10−2 7.214× 10−1 9.637× 10−2

TABLE 1. Several results of the fully nonlinear numerical simulation for E = 10−4 and
ε = 0.01 in a librating fluid sphere.

approaches the characteristic value of the first fundamental mode ω12 = 1.3093, which
is consistent with the experimental observation (figures 3 and 4 of Aldridge & Toomre
1969). However, the pressure difference on the equatorial plane 1p(θ = π/2), which is
always much larger than that on the rotation axis, i.e.∣∣∣∣p(π2 , 1, t

)
− p

(
π

2
,

1
2
, t

)∣∣∣∣
max

�
∣∣∣∣p(0, 1, t)− p

(
0,

1
2
, t

)∣∣∣∣
max

, (6.3)
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FIGURE 5. Pressure along the rotation axis, p(θ = 0, r), plotted according to the expression
(3.1), for the three fundamental modes ω12 = 1.309, ω13 = 0.9377 and ω23 = 1.6604.

is nearly independent of ω̂ at E� 1 and can always be expressed as 1 minus some
perturbations. This property can be readily explained, as discussed previously, by
looking at the structure of the analytical expressions. It is important to note that
the particular structure of the pressure field given by (3.29) possesses a remarkable
property: measuring the pressure difference 1p(θ = 0) on the rotation axis picks up
weaker signals of the small secondary flow in the form of an oscillatory inertial mode
because the dominant, inviscid, solid body term vanishes on the axis.

The dashed curve labelled by B in figure 4 shows log10(Ēkin/ε
2), the scaled

kinetic energies of the librating flow, computed from three different methods, as
a function of the libration frequency ω̂ for E = 10−4 and ε = 0.01. The curve B
represents the kinetic energies computed from the linear numerical analysis while,
on the curve, the square is from the analytical solution and the circles represent
the result of the nonlinear numerical simulations. Apart from some small differences
among the three different solutions, the scaled kinetic energies Ēkin/ε

2 are nearly
independent of the libration frequency ω̂, and can be always expressed as 1/10
plus or minus some small perturbations at any E � 1, reconfirming the theoretical
prediction of the absence of resonance. In addition to the results for E = 10−4, we
have also computed several solutions at E = 10−5. For example, the linear numerical
analysis gives Ēkin/ε

2 = 0.1095 for E = 10−5 and ε = 0.01 at ω̂ = 1.3093 while the
analytical result is Ēkin/ε

2 = 0.1106. When ω̂ = 1.6604, the linear numerical solution
yields Ēkin/ε

2 = 0.1012 for E = 10−5 and ε = 0.01 with the analytical result is
Ēkin/ε

2 = 0.1019. It reinforces the view that the scaled kinetic energy Ēkin/ε
2 to

leading order is independent of the Ekman number E.
It is noteworthy that the higher inertial modes, because of their spatial complexity,

are difficult to measure accurately in any experimental study. Whilst the pressure
difference on the rotation axis may be accurately measured for the first mode
ω̂ = 1.3093 (both figures 3 and 4 of Aldridge & Toomre (1969)), the pressure
difference for the mode with ω̂ = 1.6604 would be difficult to measure accurately.
This can be immediately seen from the spatial variation of the three fundamental
modes, p12, p13 and p23, on the rotation axis, which is shown in figure 5. It clearly
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illustrates that the pressure difference for the first fundamental mode (ω12 = 1.3093)
and the second mode (ω13 = 0.9378) can be readily measured at the rotation axis
either between the pole (θ = 0, r = 1) and the point (θ = 0, r = 1/2) or between
the pole (θ = 0, r = 1) and the centre (r = 0). For the second fundamental mode
(ω23 = 1.6604), however, the pressure difference between the pole (θ = 0, r = 1) and
the centre (r = 0), as depicted in figure 5, will be difficult to measure in typical
laboratory settings. This is why the difference between the pole (θ = 0, r = 1) and the
point (θ = 0, r = 1/2) is shown in figure 4.

Finally, the mean azimuthal flow U(r, θ) can be also obtained by performing the
temporal integration over a period of libration

U(r, θ)= ω̂

2π

[∫ 2π/ω̂

0
uφ(r, θ, t) dt

]
, (6.4)

where uφ(r, θ, t) denotes the azimuthal component of a fully nonlinear numerical
solution u. Figure 6(a,b) unveils the profiles of the mean flow U(r, θ) in a meridional
plane at two different librating frequencies, ω̂ = 1.3093 and ω̂ = 1.6604, for E = 10−4

and ε = 0.01 while figure 6(c) shows U(r, θ) as a function of r at the equatorial
plane θ = π/2. The mechanism of maintaining the mean flow U(r, θ) would be the
combined effect of small viscosity and weak nonlinearity as discussed by Busse (2010)
(see also Calkins et al. 2010; Sauret et al. 2010; Chan et al. 2011). Different profiles
of U(r, θ) shown in figure 6 are attributable to different inertial modes that are excited
by libration at different librating frequencies.

7. Summary and some remarks
We have studied an oscillatory fluid motion in a fluid-filled sphere forced by weak

longitudinal libration, via three different but complementary methods: asymptotic
analysis valid for E � 1, linear numerical analysis using a spectral method and
nonlinear direct numerical simulation using a finite-element method. The explicitly
analytical solution offers helpful insight into the problem, the linear numerical analysis
is computationally inexpensive but does not give the pressure and the nonlinear
numerical simulation is computationally expensive but yields directly both the flow
velocity and the pressure. A satisfactory agreement is achieved among the three
different solutions obtained via completely different ways when E 6 10−4.

Our theoretical and numerical results are consistent with the experimental
observations (Aldridge & Toomre 1969) but suggest a different theoretical
interpretation. It is shown that the amplitude of the flow u forced by libration is nearly
independent of the libration frequency ω̂ and, hence, that resonance cannot occur in
the present problem. Thus, the amplitude of the librating flow in the present problem
is always |u| = O(ε) with its average kinetic energies Ēkin being given by ε2/10 plus
a small perturbation. In comparison, in other non-uniformly rotating problems (for
example, Gans 1970; Meunier et al. 2008; Zhang et al. 2012), resonances do occur
and the flow amplitude obeys |u| = O(ε/

√
E) at E� 1 when ω̂ = ωnk while |u| = O(ε)

away from ωnk. It is also found that the pressure difference amplitude along the axis of
rotation reaches a sharp peak when ω̂ approaches a characteristic value ωnk, similar to
that observed in previous experiments, but that the pressure difference in the equatorial
plane is nearly independent of the libration frequency ω̂. Moreover, no other type
of nonlinear resonances are observed in fully nonlinear, finite-element models in the
weakly nonlinear regimes for ε = O(10−2) with 10−3 < E 6 10−5. It is the special
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FIGURE 6. Contours of the mean zonal flow U(r, θ) in a meridional plane computed from
nonlinear numerical solutions with E = 10−4 and ε = 0.01 for (a) ω̂ = 1.3093 and (b)
ω̂ = 1.6604. Solid contours are for U(r, θ) > 0 while dashed contours for U(r, θ) < 0. (c)
The scaled mean flow U(r,π/2)/ε2 plotted as a function of r in the equatorial plane.

structure of the pressure solution, its dominant term vanishes at the rotating axis, that
leads to a remarkable property: the pressure difference along the rotation axis correctly
and accurately measures the weaker signal of a small secondary flow in the form of
an oscillatory inertial mode. In short, the average kinetic energy Ēkin/ε

2 of the librating
flow is, as shown curve B in figure 4, always given by

Ēkin

ε2
= 1

10
+ small perturbations (7.1)

at or near or away from a characteristic value ωnk while the maximum pressure
difference in the equatorial plane is, as shown curve A in figure 4, always given by

1
ε

∣∣∣p(θ = π
2
, r = 1, t

)
− p

(π
2
, r = 0, t

)∣∣∣
max
= 1+ small perturbations (7.2)
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at or near or away from a characteristic value ωnk for E � 1. For librating
spherical shells with a sizable inner core, the above conclusion needs to be changed
quantitatively, but we expect that the main features such as the non-resonant response
would remain unchanged.

Our findings agree with the axial pressure difference measurements made in
previous studies (e.g. Aldridge & Toomre 1969; Rieutord 1991). However, by using
multiple solution methods, we show that longitudinal libration in a spherical fluid
cavity is never resonant. This implies that longitudinal librating spherical systems, in
particular, is not capable of generating strong geophysical or astrophysical turbulence.
However, other librating systems are indeed capable of generating resonant, turbulent
flows that are likely relevant to natural settings (e.g. Zhang et al. 2012).
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