
UC Irvine
ICS Technical Reports

Title
TestTalk, a test description language : write once, test by anyone, anytime, anywhere,
with anything

Permalink
https://escholarship.org/uc/item/3mg729hh

Authors
Liu, Chang
Richardson, Debra J.

Publication Date
1999-02-28

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3mg729hh
https://escholarship.org
http://www.cdlib.org/

TestTalk, A Test Description Language: Write Once,
Test by Anyone, Anytime, Anywhere, with Anything' BA'fi-

Chang Liu, Debra J. Richardson
' tr / /

Department ofInformation and Computer Science ^
University of California, Irvine, Irvine, CA 92697

Technical Report 99-08

February 28, 1999

Abstract

Software tests are intellectual assets, too, and are as valuable as source code to a
software project. Over the long term, maintainable software tests significantly
lower a project's cost. It is very difficult, however, to write maintainable
software tests, especially executable ones. Existing approaches - including
natural language, tables or forms, test scripts, programming languages, and test
description languages - all are problematic, as discussed in this paper. Another
solution is a test description language that provides a mechanism to specify
software tests while separating different concerns of automated software testing.

In this paper, we analyze the current situation of software test description. We
propose a description language just for software testers: TestTalk. We present
examples to illustrate the benefits of TestTalk and discuss implementation
issues of this language. The primary goal of TestTalk is to enable tests to he
written once, and then used by anyone (i.e., they are understandable), anytime
(i.e., theyare maintainable as the software evolves), anywhere (i.e., theycan he
ported to a new platform), and with anything (i.e., they can be used with any
testing tool in any testing environment).

This research was sponsored in partby the AirForce Material Command, Rome Laboratory,
and the Defense Advanced Research Projects Agency under agreement number #F30602-97-
2-0033. The views and conclusions contained herein are those of the authors and should not
be interpreted as representing the official position or policy, either expressed or implied, of
the U.S. Government, AFMC, Rome Laboratory, DARPA, or the University of California,
and no official endorsement should he inferred.

Notice: This Material
may be protected
by Copyright Lawfj z! '^^Jnlversity of California

(Title 17 U.S.C.) irv,ne

wjo.

Liu & Richardson

1 Introduction

Software tests are valuable intellectual assets, especially in long-lived, multi-
version, and multi-platform commercial software. The highly publicized year 2000
(Y2K) software problem [14] provides a good sense of the problems that arise in this
domain as well as how long tests should exist. Updating application software subject
to the Y2K problem would be much easier if original tests were still available and
usable to verify the modified software. Unfortunately, this is too often not the case. .

Tests, especially automated software tests, represent significant investment.
Windows NT 5.0 reportedly will have 48 million lines of source code, while
associated test code consists of 7.5 million lines of source code. In this case, roughly
one seventh of programming resources are spent in test automation work. Window
NT 5.0 is going to be maintained over the next several years; maintainable tests would
make a big difference in long-term costs.

The topic of this paper is software test description. In Sect. 2 and 3, we briefly
survey and evaluate various software test description methods, including natural
languages, structured formats, scripting languages, programming languages, and test
description languages. In Sect. 4, we propose TestTalk, a new test description
language aimed at solving the problems of current methods; we also provide a simple
example to illustrate various features of TestTalk and evaluate TestTalk relative to the
surveyed methods. We summarize our evaluations in Sect. 5 and then conclude and
discuss future plans in Sect. 6.

Let us begin by taking a look at how software tests are currently written and ask
the question, "Will these tests be available and usable when the next Y2K-type
problem strikes?"

2 Software Test Description Practices

A software test^ is the collection of all test artifacts related to a particular test
executionfor the application-under-test (AUT). Tests can be described in a variety of
ways. Necessary information for a test includes input data (and/or test steps) and
expected output (and/or test oracle, a mechanism for determining success or failure);
actual output and execution status information are available (and should be recorded)
after test execution. Other information about a test, such as significance, history,
identification, etc. may also be desirable. This section surveys major software test
description methods. ^

^Henceforth, a test refers to a software test.
^ A few example tests are included in this section; unless stated otherwise, they are

hypothetical.

TestTalk, a Test Description Language: Write Once, Test by Anyone, Anytime, Anywhere...

2.1 Natural Languages

Traditionally, tests are described in natural language (NL). NL descriptions included
in test documents are typically mixed with test requirements/design, strategy,
scenarios, or other information. Sometimes, they are even included in system
requirement specifications; specified scenarios may be used directly as test cases or
test scenarios.

How rich and detailed NL tests are depends on the effort put into the test planning
activity. Tests could be very detailed, where every step is described clearly (side
effects and exceptions might even be documented), in which case a new tester could
easily test according to the document. Tests could also be described in a very skeletal
way, intended to serve merely as quick reminders to "inside" testers.

Two example natural language descriptions of the "same" test are provided:
detailed in Fig. 1, skeletal in Fig. 2. The second example could be instantiated very
differently from the first example.

step 1: start the application:
select "start" button;
select "run" menu item;
type "c:\apps\myapp\sut.exe"

-- the path of the exe could be different
step 2: open a file:

select "file" menu;
select "open" menu item;
type "c:\test\suitl\testl\temp.cpp"

-- this file is attached at the end of this test document
click the "open" button

step 3: modify line 3
move cursor to the end of line 3, add "class A { int aa; }"

step 4: compile
select "project" menu;
select "compile file" menu item;

Fig. 1. Example detailed NL test.

add a simple class definition to a source file and compile it.

Fig. 2. Example skeletal NL test.

2.2 Structured Formats

Structured formats - such as tables, forms, graphs, diagrams, and structured natural
language - are another popular informal means of test description. One approach is to
describe partitions of the input domain and expected results with condition-decision
tables [8]. Jorgensen ([10] page 5) provides an approach that explicitly describes test
cases using a form containing several fields, see Fig. 3. The form is well structured,
yet there is no restriction on field contents; any NL description or even a diagram is
acceptable.

Liu & Richardson

Test Case ID

Purpose

Pre-Conditions

Inputs

Expected
Outputs
Post-Conditions

Execution

History

Date Result Version Run By

Fig. 3. Example structured test form.

2.3 Scripting Languages

A convenient means iaf describing automated software tests is to use a scripting
language.Test scripts can be executed automatically. Expect [11] is one such popular
tool used for testing applications with command-line interfaces; it supports describing
tests in Tel scripts [17]. Fig. 4 shows an example Expect/Tcl test, which tests the
UNIX program "echo" with test input data "Hello world". Visual Test [2] is another
popular tool used to test applications with graphical user interfaces; it supports
describing tests in a BASIC-like scripting language. Fig. 5 shows a Visual Test
example, which detects changes in display two seconds after a file is opened.

send "echo Hello world!\n"
expect {
-re "Hello world.*$prompt $" { pass "Echo test" }
-re "$proinpt $" { fail "Echo test" }
timeout { fail "timeout" }
}
"-re" means that the following pattern
is a regular expression.

Fig. 4. Example Expect test script.

TestTalk, a Test Description Language: Write Once, Test by Anyone, Anytime, Anywhere...

Const SCREENS = "Screens.sen"

Const SCREEN1_NAME = "Screenshot 1"
Const SCREEN2_NAME = "Screenshot 2"

Scenario ("Display Chang Detection")
ScreenShotS = SCREENS
Screenl$ = SCREEN1_NAME
Screen2$ = SCREEN2_NAME

Viewport On
Viewport Clear '*** Remove all text from the Viewport

RUN app$, NOWAIT '*** start the application
Play "{ESC}" ' to be safe, get rid of possible dialog window

'Open a source file
Play "%(F0)"
Play "test.txt"
Play "%0"
Play "{ESC}"
hApp = WGetActWnd(O)

'* * * Dump the window
ScnCaptureWindow(ScreenShot$,SCREENIS,hApp,0)

Sleep 2 ' Wait 2 seconds

'*** Dump the window again
ScnCaptureWindow(ScreenShotS,SCREEN2$,hApp,0)

retl = ScnCompFiles(ScreenShotS,SCREENIS,ScreenShotS,SCREEN2$,0)
IF retl <> 0 Then Print "Display change detected!"

Play "%{F4}" •*** close the application
End Scenario

Fig. 5. Example Visual Test script.

2.4 Programming Languages

Another common approach is developing programs to test software, usually coded in
the developer's favorite programming language. Test programs are complete
programs that typically set up the environment for a particular test execution, invoke
the AUT, feed it test input data, compare the output to expected results, and possibly
record the test result. The AUT may be so complex that test code or test hooks must
be embedded to capture enough information. In this case, tests are likely to be written
in the same programming language as the application, because this facilitates
integration and the team is more familiar with the language.

Fig. 6 shows an example test in C++, which tests an editor with a spell-checking
function.

Liu & Richardson

Bool TestCaseTypo()
{

11 Send this key sequence into editor window
KeyC'Thiss is a typo.");
// invoke "Tool/Spell" menu
Key{"&t&s");
pText = GetTypo();
if (strcmp(pText, "Thiss") == 0) {
ReportSuccess("The typo is catched.\n");
return TRUE;

) else {
ReportFailure{"The typo is missed.\n");
return FALSE;

}
}

Fig. 6. Example C++ test.

2.5 Test Description Languages

Notations and languages have also been designed to formally describe test input
domains. Formal test grammars [3], [7] are very expressive in specifying the input
domain for an AUT, but can not be used to specify other test concerns such as
expected behaviors. Several testing tools, including TAOS [18], support input
grammar specification and generate random input data based upon the grammar. The
DGL (Data Generation Language) system [15] supports test generation from
enhanced context-free grammars. Grammar-based techniques are most useful when
the input has complex forms (such as the input to a compiler).

Other languages have been designed specifically with testing in mind. Both TSL
(Test Specification Language) [16] and TDD (Test Data Description) [22] support
specifying categories, or characteristic properties, of the inputs that are partitioned
into symbolic values, or choices, which are then combined to form test cases (see [4]).
As an example. Fig. 7 shows a TDD specification of a property trans-kind with
four choices corresponding to four types of transactions. These would be combined
with choices for other input categories. As with most test description languages, TDD
does not specify tests directly but rather an input partition, or "a symbolic description
of the desired test input", which must be converted into actual test input data by the
tester.

Prop trans_kind =
{read, write, create, delete}

Fig. 7. Example TDD description.

The test template framework (TTF) [21] takes a different approach to specifying
tests. TTF uses Z [23] to specify the valid input space and then applies test heuristics
partition the space. Using TTF, test data must be selected manually. TTF is
particularly useful when the requirements have been formally specified in Z, in which
case it supports formal documentation of tests derived from formal specifications.

Specification-based testing automatically derives tests from formal specifications.
Techniques have been proposed for deriving important specification-based tests [20],

TestTalk, a Test Description Language: Write Once, Test by Anyone, Anytime, Anywhere... 7

[5], [9], [4] and for deriving oracles for test result checking [19], [22], [6]. We do not
evaluate these approaches here, because the languages are not specifically geared
toward test description and the capabilities depend on whatever other tool support is
developed (which is often by researchers other than the language developers).

3 Evaluation of Current Practices of Software Test Description

Here we evaluate the various methods of test description described in Sect. 2. We
have selected a set of criteria we feel are important for describing software tests,
including:
Z Writability/readability: Test description methods should facilitate both the writing

and reading of tests.
• Understandability: Tests should be understandable. In particular, it should be easy

to understand what the test should do; this includes clearly delineating test input
and/or steps and expected output and/or oracles.

• Test data and oracle provision/automation: To execute a test, actual test data must
be provided or possible to generate from what is provided. Likewise, test results
can only be checked if test oracle information or expected outputs are provided
along with a mechanism for checking against test output. The automation of both
aspects is critical, especially when tests must be rerun expeditiously.As recognized
in a landmark testing paper, "For all but very small systems, automated tools are
required to do an adequate job" of testing [1],

Z Maintainability: Methods should facilitate maintaining tests over time as the
application evolves. It is useful to separate test maintainability into two aspects:
test sensitivity to implementation change, and test sensitivity to requirement
change.

Z Portability: It shouldbe easy to take tests to another platform when the application
is ported. This includes a change in hardware platform or software platform,
including operating system or the automated testing environment.

Z Regression testability: Regression testing is a critical and very expensive process
that affects maintainability and portability. Although a test may be insensitive to
requirement, implementation,or platform change, it may require rework to execute
it in the face of evolution.

Z Manageability: Test management involves the organization of tests for the test
process, which includes documentation and reporting.

Z Measurability: Test adequacy measurement determines how well testing has been
carried out and when the process is complete according to some adequacy criteria.

Table 1 in Sect. 5 summarizes our evaluation for both current methods and TestTalk,
our new approach, which we are designing as an answer to the problems outlined
here.

3.1 Natural Languages and Structured Formats

Both natural languages and structured formats are informal approaches for describing
tests. As such, they have many similarities with respect to their benefits and

8 Liu & Richardson

drawbacks. As discussed previously, the quality and richness of an informal test
depends entirely on the writer, as does the clarity and granularity of details.

3.1.1 Writability, Readability and Understandability
Tests in natural language (NL) are very expressive; a tester can write whatever she
can imagine. This is the power of NL, yet it is inherently ambiguous, which can lead
to misunderstandings between writer and reader.

Obviously, NL tests might be considered easiest to understand, since they are
closest to natural communication. Whether or not a test can be easily understood,
however, depends on the quality of the test description, which varies dramatically.

Although structured formats can make a group of tests and their relationships
easier to understand, structured tests remain subject to the same problems as NL tests
because the fields within the format are still informally described. In addition, the
understandability gained by using a structured approach does not scale up because
structures larger than a few pages can not be fully grasped.

3.1.2 Test Data and Oracle Provision/Automation

It is possible for testers to describe actual test data and expected results in natural
language and structured formats, although whether or not they do and how
consistently depends on their effort. It is somewhat more common in structured
formats. Informal tests can not be executed in their natural form, nor is there any
capability for automatically using eitherdata or expectedresults. To take advantage of
any test automation tool, testers have to rewrite tests in the form supported by some
tool. This is not an easy job but rather is similar to implementing a requirement
specification. For the Expect tool [11], for instance, the tester must understand each
informal test and write it in the Tel scripting language.

3.1.3 Maintainability, Portability, and Regression Testability
NL or structured tests are insensitive to application implementation change, since
usually implementation details such as size and position of a window are not
described in exact detail in test documents. However, when the application
requirement changes, whetheror not it is easy to change tests accordingly depends on
the quality of the original tests. Informal tests are easy to transport to another
hardware platform and/or operating system because platform-specific details are
usually described conceptually so as to be applicable on any platform.

A significant amount of work is often required before informal tests can be
executed; tests must be reworked before retesting the application. Thus, informal tests
have low regression testability.

3.1.4 Manageability, Measurability and Automation
The quality of tests in natural languagesand structured formats determines the process
issues. If tests are described separately and relationships among them are explicitly
specified, test management is facilitated. Tests that are described in a confusing
manner and intermingled, on the other hand, lead to impossible management either
manually or automatically.

TestTalk, a Test Description Language: Write Once, Test by Anyone, Anytime, Anywhere... 9

In general, it is extremely difficult to measure test adequacy with informal tests,
because there is no formal notion of adequacy or relation to typical test adequacy
criteria.

3.2 Scripting Languages and Programming Languages

Test scripts and test programs are very similar; the major advantage is that they are
automated. We have done a detailed investigation of the harmful effects of using
programming languages for describing software tests [13].

3.2.1 Writability, Readability and Understandabiiity
Writing tests in programming languages is as difficult as programming, because it is
just that. A test that only needs five minutes to run manuallymay take much longer to
fully develop, especially for testers who are not very familiar with special test hooks
and test libraries. Tests are easier to write in scriptinglanguages than in programming
languages, although scripting languages are usually less expressive. Part of the
additional cost of writing a test script or program involves testing and debugging it.
Defects found in automated tests are often in the test itself and not in the AUT. These
defects are categorized as "test bugs", as opposed to "product bugs", and significant
resources are needed to fix test bugs plus deal with the false failure alarms.

3.2.2 Test Data and Oracle Provision/Automation

Although test scripts and programs provide test data, they are nontrivial to discover in
the code. The test data or steps are often mingled with other worries in scripting and
programming languages (such as memory allocation, data structure and exception
handling), thus it is often difficult to understand what is being tested. Furthermore,
one test may be divided into several procedures or functions or distributed in several
files because of the nature of the language, making it even harder to understand.

Test oracles tend to be even more disguised in test scripts and programs, embedded
with other actions. It is likely arduous to discover which outputs or behaviors are
checked and against what expected output or property. When an automated test
"passes", it is hard to tell if this means every outcome is correct or only part of the
outcome has been checked. The test might check only an external result or only some
internal data structure, which are very different behaviors.

Test scripts and code provide automated support for test data and oracles (test
result checking), which makes their repeated use expedient (as long as no changes are
required).

3.2.3 Maintainability, Portability, and Regression Testability
Software test scripts or programs typically compare exactactual output to expected

output, and thus are very sensitive to the application evolution of any sort - that is,
implementation, requirement, or platform changes. Suppose there is a slightchange of
order, size, or position of a GUI objectin an application's interface, often a test script
or program that should still report success will go awry. Likewise, when an AUT
switches platform and/or operating system, for example from Unix to Windows,

10 Liu & Richardson

existing tests probably will not work (test programming in pure Java may improve
this situation). Moreover, if testers switch testing tool, such as switching from in-
house test automation to a commercial test environment, tests would have to be
receded.

After a large number of tests have been coded, it is both costly and time-consuming
to modify all tests in the face of such evolution. Thus, although rapid testing is
supported by test scripts and programs (perhaps the primary reason testers use this
approach for tests that need to be repeated frequently), the modifications required to
cope with application change inhibits their regression testability.

3.2.4 Manageability, Measurability and Automation
Automated test scripts or programs inhibit test management, primarily because scripts
and programs are difficult to analyze and understand by tools other than the language
translator. Sometimes several test cases are included in one script or program. It is
hard to separate them into independent tests, let alone manage them. Likewise, it is
difficult to analyze test scripts or programs for test data adequacy, unless the tests are
executed in an environment that captures execution statistics that can be analyzed for
coverage of test criteria,

3.3 Test Description Languages

3.3.1 Writability, Readability and Understandability
Existing test description languages are mostly partition description languages. They
are relatively simple, making tests easy to write, read, and understand.

3.3.2 Test Data and Oracle Provision/Automation

Test description languages are not occupied with test data, rather they support
partitioning the input domain. The step to provide final test input data is left to the
tester, which may not be easy. Nor do test description languages deal with test oracles
or expected results

Most of the test description languages are accompanied by tool support. Some
include execution support for test input (such as TDD); some do not (such as TTF).

3.3.3 Maintainability, Portability, and Regression Testability
Test descriptions are free of implementation details, thus they are not sensitive to
implementation evolution. For application requirement changes, maintainability
depends on the language used and its closeness to the requirement specification. Test
descriptions are platform-independent (hardware and operating system, at least) and
thus have high portability. Porting to another test tool can be costly, but the
organizationand formality of the description language will facilitate this.

3.3.4 Manageability and Measurability
As discussed above, testdescriptions specify inputpartitions rather thantests directly.
Other tools are needed to derive or generate tests from the partition, yet this makes

TestTalk, a Test Description Language: Write Once, Test by Anyone, Anytime, Anywhere... 13

4.2 Overview of TestTalk Language

A TestTalk description consists of the following definition sections: setting, dialect,
transformation rule set, scenario / action list, oracle, and test suite. These sections can
be provided in any order and can be scattered in different locations and files, as long
as the TestTalk parser and translator can locate them. Each section has a name. There
can be more than one definition section of a type as long as their names differ. The
complete language reference can be found at [12], Here, we briefly introduce the
purpose of different sections of a TestTalk description. The example in the next
section will show the value of tests written in TestTalk.

A setting definition section defines the "one-for-all" testing environment. It
includes information like the executable file name and path for the AUT, the dialect
name for describing tests, and generated file names. Whenever the AUT advances to a
new revision or platform or testers switch test tool, a new setting should reflect the
new environment.

A dialect definition section defines a dialect used in scenarios, test cases, action
lists, or oracle definitions. A dialect consists of a collection of verbs or predicates,
which are the vocabulary of a customized TestTalk.

A transformation rule set definition section defines how scenarios, test cases,
action lists, or oracles in a certain dialect should be transformed into executables or
other useful formats for test automation. The target content of these transformation
rules is an arbitrary value that is interpretable in the chosen test environment, where
the tests are finally carried out.

Scenario/Acrion Lwr sectionsdefine steps to carry out tests.
Oracle definition sections define test oracles using a dialect
A test suite definition section defines a set of test cases that are logically related.

These test cases are grouped together to achieve a certaincoverage or to checkcertain
aspects of the AUT.

With information from all these TestTalk definition sections, the TestTalk parser
and translator generates executable tests from test descriptions. We will show a
simple example in the next section.

4.3 The Calculator Example

A simple calculator problem demonstrates both the simplicity and the power of
TestTalk. Fig. 8 shows a brief description of the functional part of the calculator.
Input/output formats are not specifiedin this description.

This is a simple calculator with an internal stack. The calculator can do
arithmetic (+, *,/) on integers. The stack can store as many numbers as
the computer memory can possibly hold.

Fig. 8. A brief descriptionof a simple calculator with stack

The first implementation, calc.vl, has a command-line interactive interface. A
typical scenario ofcalc. vl appears inFig. 9 (showing exact input and output): (1+3)
is calculated, the result is pushed onto the stack; (5+7) is calculated, the result is

14 Liu & Richardson

pushed onto the stack; the depth of stack is queried; (pop + top) is calculated; the
depth of stack is queried again.

% calc.vl

>1

Answer: 1
>+

Answer: 1

>3

Answer: 4

>push
Answer: 4

>5

Answer: 5

>+

Answer: 5

>7

Answer: 12

>push
Answer: 12

>depth
the depth of stack: 2
Answer: 2

>pop

the number popped from stack: 12
Answer: 12

>+

Answer: 12

>top
the number at the top of stack: 4
Answer: 16

>depth
the depth of stack: 1
Answer: 1
>

Fig. 9. A typical scenario.

Fig. 10 provides the TestTalk scenario definition for the scenario in Fig. 9. start,
Feed, and Quit are vocabulary defined in the dialect section that appears in Fig. 11.
The tester of the calculator defines the dialect simpleCalcWithStack so that
he/she can easily describe tests, including the term Feed, start and Quit are
defined in the dialect Core, a more general dialect reusable for other applications,
which defines vocabulary for launching and halting an AUT. The fact that a dialect
can include another dialect gives testers great convenience to further customize
TestTalk based on other testers' work.

TestTalk, a Test Description Language;Write Once, Test by Anyone.Anytime,Anywhere... 15

Scenario "Typical"
Start $app ;
Feed "1" [1];
Feed "+" [1];
Feed " 3 " [4] ;
Feed "push" [4];
Feed "5" [5];
Feed "+" [5];
Feed "7" [12];
Feed "push" [12];
Feed "depth" [2);
Feed "pop" [12];
Feed "+" [12];
Feed "top" [16] ;
Feed "depth" [1];
Quit $app;

End Scenario

Fig. 10. A TestTalk Scenario Definition.

Dialect "Core"
Action Vocabulary:
Start $app; -- Launch the application
Quit $app; -- Halt the application
CheckWith $1;

End Dialect

Dialect "SimpleCalcWithStack"
Set defaultOracle "check result"
Include Dialect "Core"

Action Vocabulary:
Feed $1 [$2];
-- Feed string $1 as input into the application,
-- and check result with default oracle with
-- a parameter $2

Oracle Vocabulary:
Promptis $1; -- Check if the prompt is $1
Resultis $1; -- Check if result matches $1

End Dialect

Fig. 11. A TestTalk Dialect Definition

Oracles can be invoked explicitly or implicitly. Square brackets within a TestTalk
scenario stand for implicit invocation of the default oracle, where actual parameters
appear between and "]". Fig. 12 defines the default oracle check_result. An
oracle definition can be nested (e.g., check_prompt within check_result), which
allows testers to build sophisticated oracles based on existing oracles and makes it
easier to maintain consistency and clarity of TestTalk descriptions.

Oracle "check_prompt" :
Promptis ">";

End Oracle

Oracle "check_result" $Expected :
Resultis $Expected;
CheckWith "check_prompt";

End Oracle

Fig. 12. A TestTalk Oracle Definition.
The transformation rule set defines how actions are transformed into executable

forms in the target test environment. A rule is defined as "source -> target".
"«" means that all linesbetween that"«" and a at the beginning of a line are the
target.

^Anything between and end of line is comment.

16 Liu & Richardson

The target format of transformation rule set ExpectScriptGenerator, in Fig.
13, is Expect/Tcl script. The right hand side of rule Resultis only checks the
number after string Answer:, any other outputs in Fig. 9 are ignored.

TransformationRuleSet "ExpectScriptGenerator"
HEADER -> «

#!/opt/public/bin/expect -f

Start $app -> «
spawn $app
set timeout 3

expect ?

Feed $1 [$2] -> «
send "$l\\n"
$2

Promptis $1 -> «
expect "$1"

Resultis $1 -> «
expect {

"Answer: $1" {
}
timeout {

puts "failed!\\n"
exit

}
}

Quit $app -> <<

FOOTER -> «

puts " WnSuccessfully reached the end of this test caselWn"

End TransformationRuleSet

Fig. 13. A TestTalk Transformation Rule Set Definition.

The name of default oracle and other environment settings are defined in a setting
section, in Fig. 14.

Setting "Calc.vl AutoTester With Expect"
Set defaultDialect "SimpleCalcWithStack"
Set defaultOracle "check result"

Set app "../calc/calc.vl"
-- name of application executable

Set transformationRuleSet "ExpectScriptGenerator"

-- File name of the generated test program
Set extension ".1.expect"
Set prefix "g"
Set executable yes

End Setting

Fig. 14. A TestTalk Setting Definition.

Using transformation rule set definition ExpectScriptGenerator and the
setting, dialect, and oracle definitions, the TestTalk parser and translator translates the
TestTalk test into an Expect script that can be automatically executed to test
calc.vl.

TestTalk, a TestDescription Language: Write Once, Testby Anyone, Anytime, Anywhere... 17

4.4 Evaluation of the Calculator Example

The real power of TestTalk starts when numbers of tests are large and when
changes occur. Suppose the calculator is a complex program and we have hundreds of
thousands of tests just like this example test. Suppose that the output format of the
calculator is changed. Instead of printing "Answer: <number>" (Fig. 9), the new
versionof calculator simply prints "<number>". If the large number of tests we have
are all written in Expect, we will have to comb through every single one of them and
find all "Answer:" to modify one by one. With TestTalk, we simply change the
transformation rule for Resultis to:

Resultis $1 -> «
expect {

"$1" {
}
timeout {

puts "failed!\\n"
exit

}
}

Voila! All those hundreds of thousands of tests canbe upandrunning in no time.
The same thing can happen a revision of the calculator employs a graphical user

interfaceinstead of a command-line interface. Expect does not work for GUIs, thus a
GUI testautomation tool (such as Visual Test) must be used to automate tests. Again,
all TestTalk tests survive. We need only write a new set of transformation rules to
transform TestTalk tests into forms recognized by the new GUI test automation tool.
Likewise, thecalculator could be transplanted from Unix to another platform such as
Windows NT. Again, allTestTalk tests canbeeasily transplanted by writing a new set
of transformation rules for the new platform.

4.5 Evaluation of TestTalk

Here we evaluate TestTalk along the same criteria as we evaluated the surveyed
methods of test description in Sect. 3.

4.5.1 Writability, Readability, and Understandabiiity
TestTalk descriptions are fairly easy to write and read. Transformation rule sets
involve testcodeto automate the tests, which might be difficult for some applications.
This is the work, however, testers must do to benefit from test automation. With the
help of TestTalk, they only have to do this difficult job once rather than writing code
for every single automated test.

TestTalk tests are described by dialects, which are defined by testers themselves.
This ensures that TestTalk tests are very easy to understand for those testers as well as
other developers andtesters who have thesame domain knowledge.

4.5.2 Test Data and Oracle Provision/Automation
TestTalk tests have separate and clearly delineated test data and test oracle sections,
which are translated into an automated test including test input and test result
checking via transformation rules.

18 Liu & Richardson ,

4.5.3 Maintainability, Portability, and Regression Testability
For application implementation changes, only affected transformation rules must be
modified; all existing TestTalk tests remain.the same. Since tests are based upon the
application requirement, TestTalk tests may have to be modified in light of
requirementchanges that affect behavior. But because of the high understandabilityof
the TestTalk language and dialects, these changes require minimal effort.

The transformation rule set and setting definition sections greatly enhance
portability of TestTalk tests. When the AUT is transported to a new platform or a new
test tool is used, only a new set of transformation rules and a new setting definition
are required. All TestTalk tests remain unchanged.

4.5.5 Manageability and Measnrability
The fact that all tests are described separately in different TestTalk scenario or test
case definitions makes it easy to use with test management tools. TestTalk does not
yet have built-in test adequacy measurement, yet likewise, the separation of TestTalk
tests makes it easy to integrate with test adequacy measurement tools. Moreover, the
flexibility of the TestTalk transformation rule mechanism makes it possible to
implement mechanisms for test adequacy measurement.

Another benefit of TestTalk is that it is possible to write tests before either the test
hamess or AUT is available. As long as dialects are defined, the TestTalk parser can
check the syntax of test descriptions. When the AUT and test hamess are ready,
automated test execution can start immediately. This enables testers to work in
parallel with programmers, which is very critical to commercial software projects
where time reserved for testing are counted by days rather than months.

5 Summary of Evaluation
Table 1 summarizes the benefits of using TestTalk and compares it with the other
surveyed methods of software test description.

6 Conclusion and Future Work

TestTalk is a software test description language designed for describing automated
software tests in a manner natural to the software testing process rather than the
programming or development process. Software tests in TestTalk are understandable,
complete, maintainable and portable, yet executable.

Test automation alone can not assure software quality. The number of possible
tests for any complex software system is so large that even with automated support,
all of them can not be tested. Test adequacy measurement is an important complement
to test automation. We plan to add support for test adequacy measurement to
TestTalk, using the TestTalk transformation rule mechanism.

A TestTalk test is very readable. Testers can easily embed them into natural
language specifications or test documents, no matter what type of documentation is
being employed. The TestTalk test can be extractedby simple filter and the TestTalk
translator automates the rest. We are currently working on an enhanced HTML
document with a TestTalk tag. We also plan to add features to TestTalk to facilitate its

TestTalk, a Test Description Language; Write Once, Test by Anyone, Anytime, Anywhere... 19

use by specifiers to write requirement scenarios. A scenario specified within software
requirements can often be used for testing purposes and vice versa. If specifiers can
use TestTalk to write scenarios, useless duplication and possible loss of accuracy can
be avoided.

Finally we plan to conduct case studies where commercial software development
teams use TestTalk. Only real projects can prove the utility of a software language or
tool.

Table 1: Evaluation of software test description practices.

Evaluation

Criteria

Informal

Languages
Scripting or
Programming
Languages

Test

Description
Languages

TestTalk

Writability/
Readability

High, but difficult
to control quality

Low High Very high

Understandability
Potentially high,
but ambiguous

Low High Very high

Test Input Data
Provision/

Automation

Possible (depends
on effort), more
common in

structured formats:

Not automated

Yes, but

mixed with other

information;

Automated

No, test data

generation left to
tester; Automation

depends on tool
support

Yes,

clearly
separated;
Automated

Test Oracle

Provision/

Automation

Possible (depends
on effort), expected
outputs common in
structured formats;

Not automated

Yes, but mixed

with other

information;
Automated

No;

Not automated

Yes,

clearly
separated;
Automated

Maintainability
Potentially high,
but depends
on quality

Very Low High Very high

Portability
Very high Low Very high Very high

Regression
Testability

Low, and high
rework required

Low, and high
rework required

Medium,

depends on tool
support

High (only
transformation

rules change

Manageability
Depends on quality Very low Possible, depends

on tool support
Very High

Measurability
Depends on quality Low High, for black

box testing
Possible

(future work)

20 Liu & Richardson

References

1. W. Richards Adiion, Martha A. Branstad, and John C. Chemiavsky, "Verification,
Validation, and testing of Computer Software", ACM Computing Surveys, 14(2);159-192,
June 1982.

2. Thomas R. Arnold, "Visual Test 6 Bible", IDG Books Worldwide, November 1998, ISBN"
0764532553.

3. J. A. Bauer and A. B. Finger, 'Test Plan Generation Using Formal Grammars",
Proceedings of the Fourth International Conference on Software Engineering, Munich,
September 1979.

4. Juei Chang, "Automating Specification-based Test Coverage Measurement and Test
Selection", Ph.D. Dissertation, University of California, Irvine, March 1998.

5. Juei Chang, Debra J. Richardson, and Sriram Sankar, "Structural Specification-based
Testing with ADL," in Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA'96), January, 1996, San Diego, California.

6. Laura K. Dillon and Q. Yu, "Oracles for checking temporal properties of concurrent
systems". In Symposium on Foundations of Software Engineering. 140-153. December
1994.

7. A.G. Duncan and J.S. Hutchison, "Using attributed grammars to test designs and
implementations". In Proceedings of the 5"' International Conference on Software
Engineering, April 1981.

8. John B. Goodenough and Susan L. Gerhart, 'Toward a Theory of Test Data Selection",
IEEE Transactions on Software Engineering, SE-1(2);156-173, June 1975

9. P. Jalote, "Specification and testing of abstract data types". Computing Languages, 17: 75-
82. 1992.

10. Paul C. Jorgensen, "Software Testing: A Craftsman's Approach",CRC Press, 1995, ISBN
0-8493-7345-X.

11. Don Libes, "Exploring Expect", O'Reilly, 1995, ISBN 1565920902.
12. Chang Liu, Debra J. Richardson, "TestTalk Language Reference", Technical Report 99-

07, Information & Computer Science, University of California, Irvine, February 1999.
13. Chang Liu, Debra J. Richardson, "Programming Languages Considered Harmful in

Writing Automated Software Tests", Technical Report 99-09, Information & Computer
Science, Universityof California, Irvine, February 1999

14. Robert A. Martin, "Dealing with Dates: Solutions for the Year 2000", IEEE Computer,
March 1997.

15. Peter M. Maurer, "Generating test data with enhanced context free grammars" TF.FF
Software, 7(4):50-56, July 1990.

16. Thomas J. Ostrand and Marc J. Balcer, "The Category-Partition Method For Specifying
and Generating Functional Tests", Communications of the ACM, Volume 31, Number 6,
June 1998.

17. John Ousterhout, 'Tel: An Embedded Command Language", Proceedings of The Winter
1990 USENIX Conference, Washington, D.C., Jan 22-26, 1990.

18. Debra J. Richardson, 'TAGS:Testing with analysis andoracle support". In Proceedings of
the 1994 International Symposium on Software Testing and Analysis, Seattle, August
1994, ACM Press.

19. Debra J. Richardson, S.L. Aha, and T.O. O'Malley, "Specification-based test oracles for
reactive systems". In Proceedings of the M"*" International Conference on Software
Engineering, May 1992.

library

^yijjjveralty of Califofo'̂
IRVINE

TestTalk, a Test Description Language: Write Once, Test by Anyone, Anytime, Anywhere... 21

20. Debra J. Richardson, Owen O'Malley, and Cindy Tittle, "Approaches to Specification-
Based Testing", In Proceedings of the ACM SIGSOFT'89 Third Symposium on Software
Testing, Analysis, and Verification (TAV3), pages 86-96, Key West, Florida, December
1989, ACM SIGSOFT.

21. P. Stocks and D. Carrington, "Test Templates: a Specification-Based Testing Framework",
In Proceedings of the IS"*" International Conference onSoftware Engineering, May 1993

22. Sriram Sankar, Roger Hayes, "Specifying and Testing Software Components using ADL",
SMLITR-94-23, Sun Microsystems Laboratories, Inc., April 1994.

23. J.M. Spivey, "The Z Notation: A Referenee Manual", Prentiee Hall, New York, 1989.

t)

