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Abstract 
Optical-based remote sensing offers great potential for phenotyping vegetation traits and functions for a range of applications including vege-
tation monitoring and assessment. A key strength of optical-based approaches is the underlying mechanistic link to vegetation physiology, bio-
chemistry, and structure that influences a spectral signal. By exploiting spectral variation driven by plant physiological response to environment, 
remotely sensed products can be used to estimate vegetation traits and functions. However, oftentimes these products are proxies based on 
covariance, which can lead to misinterpretation and decoupling under certain scenarios. This viewpoint will discuss (i) the optical properties of 
vegetation, (ii) applications of vegetation indices, solar-induced fluorescence, and machine-learning approaches, and (iii) how covariance can lead 
to good empirical proximation of plant traits and functions. Understanding and acknowledging the underlying mechanistic basis of plant optics 
must be considered as remotely sensed data availability and applications continue to grow. Doing so will enable appropriate application and 
consideration of limitations for the use of optical-based remote sensing for phenotyping applications.
Key words: Ecophysiology; machine learning; phenology; phenotyping; pigments; remote sensing; solar-induced fluorescence; stress; vegetation indices.

Introduction
Plant phenotyping represents tools that can be used to quantify 
vegetation traits, structure, and function and respective inter-
actions with the environment (Fiorani and Schurr 2013; Watt 
et al. 2020). The ability to phenotype vegetation is important 
for many applications including the evaluation of physio-
logical and biochemical traits, stress responses, growth and 
yield, and parameterization of terrestrial ecosystem models 
(Furbank and Tester 2011; Janni and Pieruschka 2022). 
However, many plant phenotyping methods are labour inten-
sive and time-consuming making large-scale and continuous 
monitoring impractical. Remote sensing offers a powerful 
tool that can complement ground-based methods in meeting 
plant phenotyping needs (Chawade et al. 2019; Machwitz et 
al. 2021). An advantage of remote sensing is that it can be de-
ployed across a suite of platforms that covers a range of spa-
tial and temporal scales potentially enabling high-throughput 
phenotyping capabilities (Fig. 1). At the finest spatial scale, 
handheld devices can be used to measure individual leaves 
with a leaf clip or to measure individual plants and canopies 
from short distances (e.g. 1 m). For larger spatial coverage, 
sensors can be mounted on ground-based platforms including 
vehicles, towers, and gantry systems (Gamon et al. 2006; 

Virlet et al. 2016; Xu and Li 2022; Wong et al. 2023b). There 
are also aerial platforms including aircraft, balloons, and 
unpiloted aerial vehicle (UAV) systems (Chen and Vierling 
2006; Zarco-Tejada et al. 2012; Chapman et al. 2014; Guo 
et al. 2021; Wang et al. 2022a). Finally, at the largest spa-
tial scale, there are satellite platforms (Zhang et al. 2020a). 
This paper will focus on optical-based remote sensing, de-
fined as reflected or re-emitted energy between 400 and 2500 
nm. Note that there are other types of remote sensing systems 
for plant sciences as well, which include thermal (Pineda et 
al. 2021; Farella et al. 2022), LiDAR (Lin 2015; Jin et al. 
2021), and radar (Steele-Dunne et al. 2017; Orynbaikyzy et 
al. 2019).

Optical-based remote sensing captures the amount of 
re-emitted or reflected radiation from a surface relative to 
the total incoming irradiance from a light source (e.g. sun or 
lamp). Depending on surface optical properties influencing 
how light is absorbed, transmitted, and reflected across the 
visible and near-infrared (NIR) spectrum, distinct spectral 
patterns can be attributed to land surface characteristics (e.g. 
vegetation, soil, snow, water, etc.). For vegetation monitoring, 
reflectance spectra are sensitive to leaf biochemistry (i.e. pig-
ments and macronutrients), water content, and structure 
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(Ustin et al. 2004). This enables a mechanistic link between 
spectral reflectance and vegetation properties. Thus, remote 
sensing products can be used to quantify a suite of plant traits 
and functions (Fu et al. 2020). Consideration of spectral data 
in relation to the underlying mechanistic optical properties, 
and respective response to environment is needed during 
phenotyping applications. This paper will contribute to ex-
isting in-depth reviews on the relationship between spectral 
reflectance and leaf biochemistry (Ustin and Gamon 2010; 
Cavender-Bares et al. 2017; Jacquemoud and Ustin 2019; 
Kothari and Schweiger 2022), but focus on phenotyping ap-
plications in plant sciences. Specifically, this paper will discuss 
(i) vegetation optical properties, (ii) applications of vegeta-
tion indices, solar-induced fluorescence (SIF), and machine-
learning approaches, and (iii) considerations of covariance 
and limitations for phenotyping. For both current or pro-
spective users of remote sensing technologies in plant sciences, 
this viewpoint aims to describe the mechanistic basis of plant 
optics to help users determine their needs and provide dir-
ection into future remote sensing research and applications.

Optical Properties of Vegetation
The physiological and structural properties of vegetation may 
affect vegetation optical properties across different regions of 
the spectrum (Gates et al. 1965; Knipling 1970). By under-
standing light absorption and reflectance, spectra can be used 
to infer physiological, structural, and biochemical features of 
vegetation. In addition, depending on the sampling context 
of vegetation such as across genotypes, species, and time (di-
urnal, weekly, seasonal, interannual), the degree of spectral 
variation will vary, which can be represented by the coeffi-
cient of variation of reflectance values (standard deviation 

relative to the mean) at each wavelength. The visible region 
of the spectrum (400–700 nm) is highly sensitive to light ab-
sorption by pigments, especially the chlorophylls, caroten-
oids, and anthocyanins (Blackburn 2007). Chlorophylls (a 
and b) absorb strongly in the blue and red spectral regions, 
while carotenoids absorb strongly in the blue region (Fig. 
2E), and anthocyanins absorb strongly in the green region 
(Gitelson et al. 2001). Carotenoids are a widely distributed 
group consisting of pigments such as xanthophylls (violaxan-
thin, antheraxanthin, and zeaxanthin), lutein, and alpha- and 
beta-carotene (Maoka 2020). Chlorophylls and carotenoids 
are generally present in leaves across their developmental 
stages, whereas anthocyanins may not be present in all plants, 
and generally only in very young developing leaves or senes-
cing leaves (Hoch et al. 2001; Steyn et al. 2002). Therefore, 
with chlorophylls and carotenoids being the most dominant 
pigments strongly absorbing light, typical healthy green 
leaves have distinct spectral features in the visible region with 
low reflectance in the blue and red regions due to high light 
absorbance (Fig. 2E and F). There is also a distinct reflectance 
peak in the green region due to lower light absorption rela-
tive to the blue and red region by chlorophyll a and b, and 
a sharp increase in reflectance beyond 700 nm, often called 
the red edge, where chlorophylls and carotenoids do not ab-
sorb light. Since the visible spectral region is strongly influ-
enced by pigments, this region often shows high variation 
driven by pigment composition and pool size, relative to the 
rest of the spectra (Fig. 2G). During short-term stress events 
(e.g. drought, temperature, and light), variation is observed in 
the blue-green region where the highly dynamic xanthophyll 
pigments are (violaxanthin, antheraxanthin, and zeaxanthin). 
Here, carotenoid interconversion via the xanthophyll cycle 
occurs on the timescale of seconds to minutes, which is often 

Figure 1. Optical-based remote sensing captures reflectance providing insight based on the optical properties of vegetation. This enables potential for 
quantifying vegetation traits, functions, and structure to infer vegetation health and status (examples listed in the box). Sensors can be deployed on 
various platforms with respective spectral, temporal, and spatial resolutions.
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linked to non-photochemical quenching and light-use effi-
ciency (Bilger and Björkman 1990; Demmig-Adams 1990). 
Across genotypes (and species), spectral variance is high in 
the blue and red regions driven by variations in chlorophyll 
and carotenoid pigment composition and pools (Wright et 
al. 2004). There is also high spectral variance across sea-
sons, which encompasses leaf growth, maturity, and senes-
cence—or for evergreen conifers, spring recovery and winter 
downregulation—with the highest variance in the blue, red, 
and red edge driven by major changes in chlorophyll and 
carotenoid pools (Ottander et al. 1995; Wong and Gamon 
2015). Because pigments represent variation across a range of 
stress responses and phenological changes, the visible region 

offers powerful potential in assessing vegetation physiology 
and function tied to the roles of chlorophylls and carotenoids 
in absorbing and dissipating light energy (i.e. the light energy 
balance) (Hüner et al. 1998; Sims and Gamon 2002). This 
is highlighted by relatively high spectral variation, indicated 
by the coefficient of variation, in the visible spectrum across 
genotypes and environmental conditions (Fig. 2C and G).

Beyond the visible spectral region, is the NIR region 
(700–1100 nm), where pigments do not absorb light. Here, 
because there are no strong absorption features, most light 
is reflected or transmitted. Light transmission through a leaf 
is impacted by characteristics like leaf thickness, intracellular 
space compactness, and membrane thickness (Asner 1998). 

Figure 2. Examples of leaf pigment and water specific absorption coefficients (A, E), leaf spectral reflectance (B, F), spectra coefficient of variation 
across different scenarios (C, G; drought response between irrigated and terminal drought common beans, genotype differences across a population 
of 300 common beans, seasonal response of lodgepole pine over two years), and variable importance in projection (VIP) from partial least squares 
regression models for plant physiology variables (D, H; Amax: maximum assimilation rate, Car/Chl: carotenoid/chlorophyll pigment pool ratios, gs: 
stomatal conductance, LWP MD: midday leaf water potential, LWP PD: predawn leaf water potential, TotChl: total chlorophyll a and b pools). Left panels 
show full range spectra from 400 to 2400 nm, and right panels show visible and near-infrared regions from 400 to 900 nm. Data sources: pigments 
(Clementson and Wojtasiewicz, 2019), water (Hale and Querry, 1973) and spectra (Wong and Gamon, 2015; Wong et al. 2019, 2023a).
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For example, with thicker leaves and/or more compact leaves, 
transmittance will be lower—leading to higher reflectance 
(Knapp and Carter 1998). Since leaf structure represents a 
physical process, the NIR region generally highlights higher 
spectral variance across genotypes and phenology (Fig. 2C). 
In contrast, there is minimal structural variation within leaves 
during short events like stress indicated by lower spectral 
variation since leaves rely more on immediate pigment dy-
namics than rearranging internal leaf structure. However, 
there may be physical leaf changes from wilting or leaf move-
ment impacting canopy NIR reflectance, detectable at the 
canopy scale (Gamon and Pearcy 1989; Pastenes et al. 2005; 
Sapes et al. 2022).

The shortwave infrared (SWIR) spectral region (1100–
2500 nm) is also sensitive to leaf structure in addition to 
other absorption features. The most pronounced features are 
water absorption within a leaf near 1450, 1950, and 2500 
nm (Allen and Richardson 1968; Gao and Goetz 1994) (Fig. 
2A and C). Thus, when leaf water content decreases, reflect-
ance at these features will increase. However, the use of these 
water absorption features is confounded at remote distances 
due to atmospheric water absorption in the same spectral re-
gions. Due to this, canopy-based measurements from tower, 
airborne, and satellite systems avoid or filter out data in these 
spectral regions. Physiologically, the SWIR region is also sen-
sitive to biochemical (e.g. nitrogen, protein, lignin, and cellu-
lose) (Curran 1989) and phenolic compounds (Kokaly and 
Skidmore 2015).

Variation of leaf spectra enables the inference of vegetation 
traits. These traits, in turn, vary between species and geno-
types, in response to environment over the short- (sub-daily 
to weeks) and long-term (weeks to seasons), and local condi-
tions such as management or resource availability. Therefore, 
by evaluating variation across full spectral data or in specific 
spectral regions, information about leaves and canopies can be 
utilized to infer vegetation dynamics spatially and temporally.

Applications of Plant Optics
Remotely sensed quantification of plant traits often uses ap-
proaches that exploit wavelengths associated with physio-
logical and structural properties, thereby providing a 
mechanistic link between spectra and the estimated trait. 
Depending on instrument specifications, there will be con-
straints on spectral, spatial, and temporal range and reso-
lution. Spectral range represents the portion of the spectrum 
that is observable. Spectral resolution represents the number 
of bands available and respective bandwidths (i.e. full-width 
half maximum [FWHM]). Therefore, both spectral range and 
resolutions for a given sensor can impact which plant op-
tical properties can be observed. The most widely adopted 
sensors are often multispectral in spectral resolution, covering 
only a select few bands typically at coarser FWHM band-
widths. The wavebands can sometimes be selected for specific 
applications to suit user needs. The other type of sensor is 
hyperspectral in spectral resolution, which is often more ex-
pensive compared to its multispectral counterpart, covering 
full range spectra from the visible and NIR (~400 to 1100 
nm) and sometimes including the SWIR (~1100 to 2500 nm) 
at relatively high spectral resolution (<3 nm; i.e. finer FWHM 
and high number of bands). Thus, hyperspectral sensors offer 
the most flexible applications enabling the visualization and 
use of the full spectral dataset to evaluate a suite of vegetation 

traits (as shown in Fig. 2). Ultimately, by accounting for user 
needs and sensor specifications, several approaches have been 
developed to quantify plant traits by exploiting variation in 
spectral reflectance.

Vegetation indices provide a simple approach by utilizing a 
few select wavebands to exploit a mechanistic optical signal. 
Many vegetation indices have been developed to quantify 
chlorophyll content (Peñuelas et al. 1995a; Gitelson et al. 1996, 
2003; Gitelson and Merzlyak 1997; Datt 1999). Chlorophyll 
is relatively easy to detect because of the strong absorption 
signal (Fig. 2A), thereby enabling vegetation indices to ex-
ploit reflectance in the red or red edge where chlorophylls 
solely and strongly absorb light. Quantifying carotenoids is 
relatively more difficult because of the overlapping absorp-
tion feature with chlorophyll in the blue region. As a result, 
vegetation indices for carotenoid content attempt to use a 
narrow waveband near 500 nm yielding limited performance 
(Blackburn 1998). Instead, the carotenoid:chlorophyll ratio 
is generally more easily assessed by normalizing carotenoid 
absorption with chlorophyll absorption bands (Gamon et al. 
2016; Gitelson 2020). For quantifying macronutrients and 
phenolic contents, approaches exploit spectral reflectance in 
the SWIR, which is directly sensitive and avoids overlapping 
absorption features with pigments. However, in the SWIR re-
gion leaf and atmospheric water absorption must be carefully 
considered, which may limit the wavebands available for use. 
Leaf nitrogen concentration demonstrates high correlation 
with 2054 and 2172 nm linked to absorption characteristics 
of N-containing amide bonds (Kokaly 2001). For phenolics, 
reflectance demonstrates high correlation near 1660 nm 
linked to C–H bonds (Kokaly and Skidmore 2015). In both 
these studies, quantification using these wavebands generally 
performs better with dry leaf material compared to fresh leaf 
material due to the overlapping water absorption features. 
Alternatively, vegetation indices have also been developed to 
empirically estimate biochemical compounds like nitrogen 
content and Rubisco using visible and red-edge wavebands 
by leveraging a tight link with chlorophyll content (Tarpley et 
al. 2000; Cho and Skidmore 2006; Feng et al. 2014; Magney 
et al. 2017).

Beyond estimating pigments, macronutrients and phenolic 
content, vegetation indices have also been applied as proxies 
of vegetation physiology and ecosystem functions. One of 
the most common vegetation indices is the normalized dif-
ference vegetation index (NDVI), based on red and NIR re-
flectance (Tucker 1979). NDVI has been used as a proxy of 
light absorption (i.e. fraction of absorbed photosynthetically 
active radiation [fAPAR]) and leaf area index (LAI) (Myneni 
and Williams 1994; Gamon et al. 1995; Carlson and Ripley 
1997; Myneni et al. 2002; Fensholt et al. 2004). Here, NDVI 
has shown to perform well in applications as a vegetation 
stress indicator and for monitoring phenology (Pettorelli et al. 
2005; Huang et al. 2021). Since NDVI has served as a basis for 
vegetation monitoring, efforts have also sought to expand on 
NDVI by minimizing the influence of background signals (e.g. 
soil, understory) and LAI saturation via the enhanced vege-
tation index (Liu and Huete 1995; Huete et al. 2002; Jiang 
et al. 2008), soil-adjusted vegetation index (Huete 1988), 
and NIR reflectance of vegetation index (NIRv) (Badgley et 
al. 2017). This has led to applications of vegetation indices 
being proxies of photosynthesis (i.e. gross primary product-
ivity) (Sims et al. 2006, 2008; Badgley et al. 2019; Baldocchi 
et al. 2020). For photosynthetic activity, carotenoid sensitive 
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vegetation indices have also shown promise, especially in 
evergreen conifer systems where NDVI has limited seasonal 
variability due to chlorophyll retention (Sims et al. 2006; 
Walther et al. 2016; Magney et al. 2019; Pierrat et al. 2022b). 
These vegetation indices take advantage of carotenoid pig-
ments and their association with photoprotection (Demmig-
Adams 1990), thereby providing a more robust indicator of 
photosynthetic activity beyond chlorophyll content (Gamon 
et al. 1997; Garrity et al. 2011). For example, the photo-
chemical reflectance index (PRI) exploits spectral variation 
near 531 nm, driven by carotenoid pigment interconversion 
via the xanthophyll cycle (Gamon et al. 1992; Peñuelas et al. 
1995b). Because of the functional role of carotenoid pigments 
in photoprotection dynamics, PRI has been used as a proxy 
of light-use efficiency, non-photochemical quenching, and 
photosynthetic activity (Garbulsky et al. 2011; Zhang et al. 
2016). The chlorophyll/carotenoid index, an analogue of PRI, 
exploits phenological variation of chlorophyll:carotenoid pig-
ment ratios to perform as a proxy of phenology and photo-
synthetic activity (Gamon et al. 2016; Wong et al. 2019). For 
estimating plant water concentrations, vegetation indices ex-
ploit water absorption features in the NIR and SWIR (Hunt 
and Rock 1989; Penuelas et al. 1997; Ceccato et al. 2001). 
Overall, there exists a vast number of vegetation indices for 
various applications in monitoring vegetation; here only a 
few major vegetation indices were highlighted. Overall, vege-
tation indices may serve as simple and powerful proxies of 
vegetation traits and functions with a mechanistic link for re-
spective applications (Zeng et al. 2022).

Recently, remote sensing retrievals of SIF have opened a 
pathway for a more direct measure of chlorophyll fluores-
cence emissions to serve as an indicator of photosynthetic 
activity (Frankenberg et al. 2011; Joiner et al. 2011; Porcar-
Castell et al. 2014, 2021). To retrieve a SIF signal, specialized 
instruments with very high spectral resolutions (~0.3 nm 
FWHM) in the red or far-red regions are needed to em-
ploy the Fraunhofer line depth principle to differentiate SIF 
from reflected radiation (Plascyk 1975; Meroni et al. 2009; 
Mohammed et al. 2019). A key strength of SIF is that it is 
based on a re-emitted signal from chlorophylls. Because of 
this, SIF represents a more physiologically direct signal linked 
to the light reactions of photosynthetic activity, resulting in 
a strong relationship to gross primary productivity across 
many environmental conditions (Sun et al. 2023a, b). In con-
trast, vegetation indices are based on light reflectance driven 
by variation in pigment pools to serve as proxies of physi-
ology and function, which can be prone to decoupling de-
pending on environmental conditions (Bannari et al. 1995). 
In phenotyping applications, SIF has demonstrated great po-
tential for assessing photosynthetic performance of vegeta-
tion across different environmental conditions (Camino et al. 
2019; Fu et al. 2021; Krämer et al. 2021; Wang et al. 2022a; 
Wong et al. 2023b).

Beyond the use of specific wavebands for vegetation in-
dices, full hyperspectral data may be utilized to exploit 
subtle variations across the visible, NIR, and SWIR to pre-
dict plant traits and functions. This often requires complex 
analysis such as machine-learning models with physiological 
validation data for model calibration. Different machine-
learning approaches have been utilized including principal 
components analysis, spectral decomposition analysis, sup-
port vector machine, random forest, convolutional neural 
networks, and partial least squares regression (PLSR), all of 

which have performed well (Cheng et al. 2020; Hennessy et 
al. 2020; Burnett et al. 2021; Zhang et al. 2021; Pierrat et 
al. 2022a). These machine-learning approaches utilize dif-
ferent algorithms with respective assumptions, data trans-
formations, and model fittings to weigh spectral importance 
in a predictive model. For plant trait and function predictions, 
PLSR is often used due to its simpler approach and outputs 
of the model spectral weights via variable importance in pro-
jection (VIP), which is useful for interpretability of spectral 
features. As machine learning uses full hyperspectral data, it 
considers information from all spectral regions and respective 
leaf optical properties to enable model prediction for specif-
ically calibrated plant traits and functions. For example, like 
vegetation indices, hyperspectral data has been used to pre-
dict foliar pigment and macronutrient content such as chloro-
phyll, carotenoid, nitrogen, protein, and carbon content (Feng 
et al. 2008; Zhang et al. 2008; Serbin et al. 2014; Singh et al. 
2015; Zhao et al. 2016; Ely et al. 2019; Sonobe et al. 2020; 
Shi et al. 2022). Models, such as PLSR, have also been cali-
brated to predict plant functions such as maximum carboxyl-
ation rate (V

cmax), maximum electron transport rate (Jmax), 
stomatal conductance, and water potential (Silva-Perez et al. 
2018; Wu et al. 2019; Meacham-Hensold et al. 2020; Wong 
et al. 2023a). These models have demonstrated generally 
good performance with respect to calibration for detecting 
variation across several environmental conditions including 
drought, nitrogen deficiency, and phenology and between spe-
cies and genotypes—highlighting promise in remotely sensed 
phenotyping applications.

The ability of spectra via vegetation indices and full 
hyperspectral analysis to phenotype vegetation traits and 
functions enables potential applications in areas such as re-
search, management, and plant breeding (Sishodia et al. 2020; 
Guo et al. 2021; Ustin and Middleton 2021). In addition to 
phenotyping traits, spectral information can also be used for 
discriminant classification. For example, species identification 
may exploit species-specific spectral differences based on pig-
ment pools and structure for producing species identity maps 
(Adam et al. 2010; Li et al. 2021). Within species, applica-
tions may include disease detection based on physiological 
and structural response of vegetation to disease, ultimately 
reflected by spectra (Zhao et al. 2016; Zarco-Tejada et al. 
2018; Gold et al. 2020; Zhang et al. 2020b; Calamita et al. 
2021; Hornero et al. 2021). Genotypic responses to envir-
onment may also be captured to help identify stress-tolerant 
genotypes (Sinha et al. 2020; Chai et al. 2021; Crusiol et al. 
2021; Wong et al. 2023a). Beyond phenotyping applications, 
spectra may also provide insight into biodiversity and trait 
evolution (Cavender-Bares et al. 2016, 2017; Meireles et al. 
2020).

Covariance and Considerations
Optical-based remote sensing offers great potential for 
phenotyping applications. However, much work remains to 
advance these techniques for reproducibility, interpretation, 
and reporting for robust applications. Ultimately, these 
challenges emphasize the importance of understanding the 
underlying properties contributing to optical signal as well 
as respective limitations. A major aspect of optical remote 
sensing is covariance between observable vegetation traits 
and less observable plant traits and functions, because of 
the lack of a direct observable spectral feature (Wright et al. 
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2004; Kokaly et al. 2009; Ollinger 2011). As discussed in 
Section “Optical Properties of Vegetation”, the main spec-
tral features are pigments (chlorophyll and carotenoids) in 
the visible, leaf and canopy structure in the NIR, and water 
absorption in the SWIR regions. Thus, using certain com-
binations of spectral features, vegetation indices offer a way 
to predict plant traits and functions directly and indirectly 
(proximally). Direct predictions are typically limited to pig-
ments because of their role in light absorptance (Gitelson 
et al. 2001, 2003; Gitelson 2020). However, remote quan-
tification of pigments still relies on empirical relationships, 
which could limit wider use spatially and temporally across 
different vegetation types. Even widely used vegetation in-
dices are prone to limitations due to decreased sensitivity 
and saturation. For example, NDVI is often used as a proxy 
of LAI or absorbed radiation because of covariation with 
chlorophyll content (Myneni and Williams 1994; Gamon et 
al. 1995; Carlson and Ripley 1997). Yet despite this, NDVI 
may saturate in dense ecosystems (i.e. high LAI) because 
strong light absorption by chlorophylls leads to minimal 
variation in red reflectance and thus decreases NDVI’s sen-
sitivity (Sellers 1985; Gitelson et al. 2003). Vegetation in-
dices linked to plant function like PRI performed as a proxy 
of light-use efficiency because of covariation with the xan-
thophyll cycle (Gamon et al. 1992; Peñuelas et al. 1995b). 
However, across seasons, the underlying mechanisms driving 
the PRI signal shifts to reflect the more dominant changes in 
canopy structure and chlorophyll:carotenoid pigment pool 
ratios (Sims and Gamon 2002; Wong and Gamon 2015). 
This may limit general use because of varying empirical re-
lationships dependent on spatial, temporal and vegetation 
dynamics. SIF bypasses the limitation of relative reflect-
ance signals since SIF captures chlorophyll fluorescence 
emissions in radiance units, which will not saturate even in 
high canopy chlorophyll content systems (Porcar-Castell et 
al. 2021; Sun et al. 2023a, b). However, since chlorophyll 
fluorescence (and SIF) only represents one of three pathways 
for quenching absorbed light energy (Maxwell and Johnson 
2000; Baker 2008), there may be decoupling between fluor-
escence and photosynthetic activity during periods of high 
stress (e.g. drought and heatwave) when photochemical and 
non-photochemical quenching pathways become limited or 
saturated (Porcar-Castell et al. 2014; Magney et al. 2020; 
Maguire et al. 2020; Marrs et al. 2020; Martini et al. 2022; 
Pierrat et al. 2022b).

Machine-learning approaches, while taking advantage of 
the full spectrum, offer a more ‘direct’ prediction of plant 
traits and functions via model calibration, but these ap-
proaches remain tied to covariance. A useful output is the 
variable importance in projection (VIP) from PLSR, which 
can identify the spectral weighing of a model (Fig. 2D and 
H). Often, the visible spectral region is an important factor, 
because of the roles and high variance of chlorophyll and ca-
rotenoid pigments, leading to strong covariation with many 
vegetation functions (Fig. 2D and H). The NIR region gen-
erally shows relatively lower VIPs because it represents leaf 
and canopy structure, which is generally less dynamic than 
pigments when looking at a single species as is the case in 
Fig. 2. In some instances, structure may have a role in cap-
turing phenology and developmental stages (Baldocchi et al. 
2020; Noda et al. 2021) or during stress events that lead to 
wilting (Sapes et al. 2022). The inclusion of the SWIR re-
gion in machine-learning models is less explored because of 

instrument limitations in spectral range. Recent studies have 
shown that the addition of SWIR leads to negligible improve-
ment in predicting photosynthetic parameters and biochem-
ical content (Ely et al. 2019; Meacham-Hensold et al. 2020). 
For traits linked to plant water status like water potential 
and stomatal conductance, SWIR may improve model per-
formance (Junttila et al. 2022; Wong et al. 2023a). Machine-
learning approaches enable use of the full spectrum, which 
can maximize variation to predict plant traits and functions. 
This often leads to high covariation of predicted plant traits 
and functions with pigments because of how dynamic pig-
ments are in response to environment. Beyond environmental 
response, pigment composition and pool size may vary 
across genotypes, species, developmental stages, and leaf age. 
Because of a machine-learning model’s sensitivity to pigment 
covariation for predicting traits and functions, much work is 
needed to explore general applications and performance of 
models across species, local site conditions, and time.

In addition to underlying mechanisms influencing vegeta-
tion optical properties, consideration of external influences of 
spectra must also be considered. This is especially important 
since a key component of remote sensing is to measure vege-
tation from a distance to enable more practical applications. 
At remote distances, atmospheric water vapour absorp-
tion overlaps with leaf water absorption features, requiring 
careful consideration of the SWIR region (Gao 1996; Sims 
and Gamon 2003). Canopy structure may also influence spec-
tral properties due to light transmission and reabsorption 
within a canopy. This may lead to background signals from 
understory and soil contributing to a spectral signal (Colwell 
1974). Canopy structure is an important consideration for 
physiological-driven indicators such as PRI (Hilker et al. 
2008; Yang 2022) and SIF (Biriukova et al. 2020; Porcar-
Castell et al. 2021). There may also be physical attributes 
from sun-sensor geometry influencing a spectral signal, but 
this influence may be minimized by keeping observations 
near solar noon and at nadir sensor positions or applying 
bidirectional reflectance distribution function corrections 
(Schaaf et al. 2002; Jacquemoud et al. 2009; Hao et al. 2022). 
Despite these challenges, their impacts on spectral signal may 
be minimized with standardized data collection protocol. 
Machine-learning approaches and some vegetation indices 
may inherently account for some of the canopy structure in-
fluences due to the inclusion of NIR wavebands for normal-
ization (Zarco-Tejada et al. 2013; Wang et al. 2017). SIF has 
also seen improvements upon consideration of canopy struc-
ture (Braghiere et al. 2021). Ultimately, many of these consid-
erations and their effects on optically phenotyping traits and 
functions must be further explored to gain insight into the 
robustness of remote sensing-based phenotyping for general 
applications.

Despite the challenges for the general use of remote sensing 
in plant phenotyping, there lies great potential to advance 
our understanding of remotely sensed signals to improve 
phenotyping applications. As vegetation indices rely on em-
pirical relationships and machine-learning approaches require 
calibration, their robustness and broad applicability remain a 
question. This includes how these models perform across (i) 
years; (ii) environmental conditions (e.g. water and nutrient 
availability); and (iii) other vegetation types. Experiments are 
often performed in controlled conditions inducing single stress. 
In these conditions, plant optics has demonstrated its ability 
to phenotype stresses including drought (Sun et al. 2015; 
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Wong et al. 2023a), disease (Gold et al. 2020; Calamita et al. 
2021), and nutrient deficiencies (Feng et al. 2008; Ely et al. 
2019). However, while stress detection is possible, identifying 
the stress source in uncontrolled conditions proves a major 
challenge (Lassalle 2021). Environmental stress regardless of 
the source (e.g. drought, nutrient, disease) will induce plant 
responses in general, thus complicating stress identification. 
Perhaps with hyperspectral data calibrated to predict a suite 
of plant traits and functions, this could advance stress detec-
tion via the exploitation of how specific plant traits and func-
tions respond to certain stresses (Ghosal et al. 2018; Singh et 
al. 2018). Well-controlled and/or large-scale studies will be 
needed to address these questions. Furthermore, predicting 
plant traits and functions will only provide information on 
the status of the plant, and not necessarily whether the plant 
response is ultimately beneficial. This will require further in-
formation such as growth, biomass, yield, or fitness to help 
assess the full extent of the plant response, especially for 
plant breeding and agricultural needs. It is also important 
to tease apart differences in plant response due to manage-
ment strategy versus changes in plant growth stage. This is 
especially true for vegetation indices which provide a rela-
tive assessment of vegetation status. Thus, including control 
plants (e.g. irrigated, nutrient-rich, disease-free) will assist in 
quantifying the response of vegetation under varying condi-
tions (Christie et al. 2020; Rogers et al. 2021).

An advantage of optical-based remote sensing is that it 
can be used to assess plant traits and functions. This leads 
to complementary applications with other remote sensing 
products including thermal and LiDAR and for extrapolating 
ground-based measurements to larger spatial and temporal 
scales. For example, thermal data provides information about 
canopy temperature and is often used to assess evapotrans-
piration (Chen and Liu 2020). Combining evapotranspir-
ation data with indicators of photosynthetic activity (e.g. 
SIF) could lead to insight on water use efficiency (Cai et al. 
2021). LiDAR enables the 3D measurement of canopy struc-
ture to assess structural information such as biomass, plant 
size, and leaf angles. This information could provide comple-
mentary details on plant structure with trait/functional in-
formation from plant optics (Lin 2015; Jin et al. 2021). In 
addition, leaf angles could help correct and improve spectral 
quality by accounting for variation driven by leaf geometry 
(Behmann et al. 2016). For complementing ground-based 
measurements, which are labour intensive (i.e. time and per-
sonnel), remote sensing offers spatial and temporal extrapo-
lation. Ground-based measurements could be performed less 
frequently or intensively (e.g. measuring a subset). With a 
subset sampling scheme (e.g. measure 10% of plots), ground 
data could be used to calibrate remotely sensed vegetation 
indices or machine-learning models and the remaining plots 
outside of the subset could be remotely assessed, assuming 
good and representative model calibration. Overall, while 
optical-based remote sensing techniques enable applications 
in plant phenotyping, it also provides complementary aspects 
with other remote sensing techniques and more traditional 
plant science methodologies.

Conclusions and Outlooks
The applications of optical-based remote sensing con-
tinue to grow for monitoring and assessing vegetation in 
ecology, plant sciences, and precision agriculture. A vast 

amount of spectral data continue to be collected, improved 
(spatial and temporal resolutions), and made more access-
ible. Recent and future satellite missions including Carbon 
Mapper, Copernicus Hyperspectral Imaging Mission For The 
Environment (CHIME) (Nieke and Rast 2018), Earth Surface 
Mineral Dust Source Investigation (EMIT) (Green et al. 
2020), and Surface Biology and Geology (Cawse-Nicholson 
et al. 2021) will provide spectral and thermal imagery at fre-
quent temporal (weekly to bi-weekly) and high spatial reso-
lutions (<30 m). This will provide ample opportunities for 
vegetation monitoring and revolutionize the potential for 
large-scale and continuous phenotyping applications. Yet 
with all the streams of data, there remains a need to validate 
and understand the mechanisms driving spectral signals. 
Ultimately, optical-based remote sensing models will often be 
based on covariance between pigments and structure to esti-
mate plant traits and functions (Wright et al. 2004; Kokaly 
et al. 2009; Ollinger 2011; Kothari and Schweiger 2022; 
Wang et al. 2022b). This has implications for how robust 
predictions can be across years, species, locations, and en-
vironmental conditions. Thus, understanding how vegetation 
pigments and structure vary spatially, temporally, and envir-
onmentally will provide insight into prediction robustness. 
By predicting several plant traits and functions, optical-based 
remote sensing products may complement each other by pro-
viding information about many processes to gain a better 
overall understanding of vegetation status. Combined with 
other tools, such as thermal, LiDAR, and ground measure-
ments, there is a great potential to complement, benefit, and 
advance applications in ecology, plant sciences, management, 
and plant breeding.
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