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Abstract

Machine Learning, Virtual Reality, and Biomechanical Simulation to Aid

Physical Rehabilitation

by

Michael O. Powell

Physical rehabilitation is a continuum of healing for patients that extends beyond in-

person clinical visits. Physical therapists expect their patients to continue performing

stretches and exercises for weeks or months after the in-person treatment concludes.

However, many patients fail to continue this practice due to the boring, repetitive

nature of these exercises. In this dissertation, immersive virtual reality paired with

biomechanical simulations was explored as a solution to this problem through the de-

velopment of a rehabilitation game designed in collaboration with physical therapists.

While participating in the National Science Foundation Innovation Corps Program with

this work, we learned of another major problem facing physical therapists. Therapists

are having difficulty accurately evaluating their patients on telehealth platforms. We

addressed this problem by developing biomechanical simulations and machine learning

models based on our rehabilitation game to propose new methods for remote patient

evaluation. The findings of this work contribute to future physical therapy tool devel-

opment that can aid therapists and help patients overcome accessibility barriers related

to distance, time, travel, and disease that can prevent a patient from attending a clinic.
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Chapter 1

Introduction

1.1 Motivation

Physical therapy and rehabilitation exercises are critical steps when recovering

from acute bodily injury to muscles, tendons, or bones, as well as joint replacement

surgery. Physical therapy can last weeks or even years, requiring a patient to see a

therapist 2-3 per week. Additionally, patients are expected to continue doing progressive

exercises on their own multiple times a week after in-person sessions are complete. This

long duration and required diligence create many barriers for patients. Insurance only

covers a limited number of sessions so anything beyond the patient has to pay, traveling

to the clinic can be difficult or impossible for some populations, patients may have

difficulty getting enough time off of work to visit their therapist as frequently as they

are supposed to, and many patients don’t continue their at-home exercises thereby

limiting their recovery.
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Physical therapists have attempted to solve these problems, but each solution

has its pros and cons. Some therapists travel to their patients’ home or work but

commute time limits the number of patients they can see per day and drives up their

price. Many therapists are moving to cash based clinics to avoid the issues involved

with insurance. Insurance has limited reimbursement so clinics that accept insurance

cut sessions shorter to see more patients per day to make up for lost revenue. By going

cash based they can charge more per patient but provide longer sessions for a better

quality of care. Another solution is telehealth and it has been widely adopted this past

year with the pandemic. Telehealth helps cut out commute time, helps patients who

can’t travel, and is far more convenient. However, telehealth provides a very limited view

of their patient making it difficult to perform evaluations. Therapists don’t have the

tools they need to get quantifiable metrics they need, and patients often have difficulty

operating the telehealth platform and camera. A better solution is needed to help solve

this problems patients and therapists are facing.

Virtual Reality (VR) has been used to help with various healthcare issues

including treatment for post-traumatic stress disorder, balance improvement through

exercise, alleviation of pain during occupation therapy, and for physical rehabilitation

of older adults with disabilities. Head Mounted Displays (HMD) for virtual reality

have improved greatly in the past two years with faster frame rates to reduce motion

sickness, improved motion tracking for better immersion, and all-inclusive hardware

which eliminates the requirement of a computer to operate the hardware. The entry

price has dropped tremendously, a system can be purchased for under $300, making the
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technology accessible to many in the US. Virtual reality could be the key to solve many

problems found in physical therapy.

This research project tested virtual reality media to determine which type

of virtual reality system to utilize, developed a virtual reality game, and developed

biomechanical simulations to determine in game metrics such as joint angles and torques.

Afterwards, 130 physical therapists were interviewed to determine how our technology

could be used to solve their greatest pain points. Two insights from these interviews

were that telehealth is becoming widely adopted and that current telehealth platforms

lack the tools required for accurate remote evaluation of patients’ range of motion and

strength. The next phase of the the research was to develop machine learning models

to acquire biomechanical measurements that therapists need to evaluate patients that

can be used at real-time. Our hope is to continue this project to develop a telehealth

platform to improve remote evaluation and increase accessibility to rehabilitation care.

1.2 Applications

The motivation touches on the milestones of this work and we believe it can

be applied to a several areas.

• Immersive Rehabilitation Game Design - We used biometric data and user feed-

back to aid in the design process of rehabilitation games along with input from

physical therapists. Creating rehabilitative games requires collaborating with do-

main experts to ensure patient/participant safety. We believe this data and pro-
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cess can help other designers make informed decisions for their own games. These

games can improve recovery and are often more appealing than repetitive exer-

cises. Figure 1.1 shows our work being demonstrated on a television program

about helpful emerging technologies for society.

Figure 1.1: Our work was featured on the Science Channel’s show Crash Test World.
Host Kari Byron is shown trying our one of rehabilitative games using the HTC Vive
headset.

• Low Cost Motion Capture Systems - Typically motion capture systems are expen-

sive and inaccessible to the general public. With our machine learning work we

can provide joint kinematics and dynamics (a common use of motion capture sys-

tems) using only a low cost virtual reality system. This creates new opportunities

for researchers and game designers who can not afford expensive motion capture

systems.
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• Remote Evaluation and Telehealth - This use case was touched on above. It has

the potential to help many physical therapists and those going though a physical

rehabilitation process. With accurate remote evaluation tools physical therapists

will be able to monitor their patients’ recovery and keep them safe from over

extending or over loading their injured joints.

1.3 Contributions of this Work

This dissertation showcases our design and analysis to develop assistive tools

for physical therapists. The contributions of this work are listed below.

• Determining which Immersive Virtual Reality (iVR) media would likely yield the

best experience for users during exergaming.

• Designing a rehabilitation game in collaboration with physical therapists and test-

ing over the course of two months with participants.

• Developing biomechanical simulations to determine joint kinematics and dynamics

during rehabilitation game-play.

• Examining the novelty effect seen when participants try virtual reality for the first

time and how their attitude toward use of new technology changes over time and

with repeated use.

• Developing machine learning models to estimate biomechanical metrics during

game-play for player monitoring and evaluation.

5



This dissertation concludes with a summary of insights, plans for making this

work accessible to physical therapists and their patients, and recommendations for future

research in this endeavour.
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Chapter 2

Background

It’s helpful to get a high-level view of this dissertation to understand why

these topics are covered in the background. The main goal of this work was to create

an accurate and low-cost tool so that physical therapists may properly perform remote

evaluations of their patients to provide better rehabilitative care. Our in-lab research

methods for obtaining biomechanical metrics is outlined in red in Figure 2.1. This

method requires an expensive motion capture system, one example is OptiTrack, that

can be as much as $50,000. The data from this motion capture system can be used

as input into a biomechanical simulation software package, one example is OpenSim.

These software packages often require domain expertise and programming experience

to develop musculoskeletal models. Additionally, the run time for these simulations can

be eight to twenty-four hours to run a single simulation. It is unlikely that a physical

therapist would use this method as it is too expensive and takes too much time to

process. The goal then became to make these biomechanical outputs affordable and to

7



be determined in real-time. It turns out that virtual reality is a great technology to

help with his endeavour. Figure 2.1 shows this low cost method outlined in green.

Figure 2.1: High level view of main research objectives. The red portion shows our in-
lab research methods for obtaining joint angles and torques. The green portion shows
our low-cost method to obtain the same metrics.

This research project requires piecing together current motion capture technol-

ogy, biomechanical simulation software, head mounted display virtual reality systems,

and machine learning methods. The important question to ask is ”why now?” Only re-

cently have all these technology pieces reached a point where the necessary data can be

collected and processed and at an extremely affordable price. The background section

outlines these technologies and why they are important now.

2.1 Virtual Reality for Health Applications

VR offers the unique ability to simulate complex situations that are critical to

producing immersive experiences and is auspicious for improving psychologically-based

health applications [4]. The use of VR intervention has been reported to achieve pain
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relief effects compared to an analgesic during wound treatment [5, 6]. Additionally,

VR has been shown to help with Post Traumatic Stress Disorder [7, 8], Borderline

Personality Disorder [9], Schizophrenia [10], and various phobias [4, 11, 12].

The multi-sensory, auditory, and visual feedback in a virtual environment can

be crafted to persuade users further to comply with exercise protocols through increased

directed stimuli [13]. Thus VR also holds immense potential in physiological rehabilita-

tion as a useful tool for inducing task-based physical exercises [14]. The capabilities of

multi-sensory real-time feedback have shown significant outcomes to achieve compliance

with exercise protocols [13]. Numerous studies have displayed motor improvement in

physiotherapy compared to traditional therapeutic intervention [13, 15, 16, 17, 18]. The

biggest challenges of these studies were found to be technological constraints such as

cost, inaccurate motion capture, non-user friendly systems, and a lack of accessibility

[15, 19, 20]. Thus, there is a need to revisit this examination of VR for health with

modern immersive Virtual Reality (iVR) systems [21].

2.2 Immersive Virtual Reality for Rehabilitation Applica-

tions

Immersive virtual environments can engage users and motivate them to over-

come difficulty using virtual task goals in the context of rehabilitation. This leads

to positive effects such as reduced discomfort, increased compliance, and flexibility

[6, 22, 23, 24]. Moreover, the past five years have seen explosive growth in the field
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of iVR systems, stemming from a projected 200 million head-mounted displays systems

sold on the consumer market since 2016 [21]. This mass adoption has been in part due

to a decrease in hardware cost and a corresponding increase in ease of usability. To

maximize immersion, iVR HMDs may be a promising tool that can fully engross the

user in a virtual world.

Other researchers, e.g., Lindner et al., demonstrated the efficacy of therapist-

guided psychotherapy through a low-cost iVR HMD system [25]. The authors found that

the use of iVR devices successfully provided practical benefits for self-led and therapist-

led intervention [25]. In a review by Won et al., iVR was found to be promising in

assisting with the management of acute and procedural pain for adolescent patients

by the process of neuromodulation through stimulating experiences [26]. In another

survey, Li et al. explored and demonstrated the benefits of iVR applied to rehabilitation,

disability management, surgical training, psychological disease treatment, and analgesic

modality [27]. In Laver et al.’s review for VR therapy with stroke survivors, non-

immersive VR therapy has been shown to improve arm function and activities of daily

living for stroke survivors despite being less effective than conventional therapy [28].

Laver et al. also concluded that researchers designing VR rehabilitation programs should

conduct pilot studies to evaluate usability and validity of the system and evaluate user’s

motivation, engagement and enjoyment.

The success of iVR therapeutic intervention is often attributed to the power of

immersion, or the relationship between presence and emotion in an engaging experience

[8]. Subsequently, a greater immersion corresponds to a better treatment response, and
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therefore, is beneficial to improving therapy experiences through virtual environments

[29]. Providing engaging stimuli through immersive systems is a crucial factor for the

player’s experience [30]. The emotional response generated impacts user engagement

and helps motivate players to continue with the objectives of the virtual experience [31].

Moreover, iVR systems provide a flexible environment for understanding player emo-

tional response through the affordances of multimodal stimuli [32, 33]. Thus leveraging

iVR stimuli to try to instigate a strong emotional response as done in psychotherapy

may produce better results in exercise performance. Biofeedback devices may help us

answer this question given that past studies had shown that biometrics can reliably

record the response of users’ emotional states [34].

2.3 Biofeedback and Physiological Response

Biofeedback devices have gained increasing popularity by using sensors to

gather useful information about health states. For example, the impedance of the sweat

glands, or Galvanic Skin Response (GSR), has been correlated to physiological arousal

[35, 36]. This activity can be measured through readily available commercial GSR sen-

sors, which have been used to measure arousal in media such as television, music, and

gaming [37, 38]. Cameiro et al. analyzed non-immersive VR-based physical therapy

that uses biofeedback to adapt to stroke patients based on the Yerkes-Dodson law [39],

or the optimal relationship between task-based performance and arousal [40]. By com-

bining Heart Rate (HR) with GSR, the authors examined gameplay by quantitatively
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measuring each user to determine where optimal performance is met. Another exam-

ple can be seen with Liu et al, in which the authors were able to achieve 66% average

emotion classification accuracy for users watching movies with only GSR sensors [41].

There is definite potential in evaluating the GSR and HR of each user to determine the

intensity of the stimuli between different systems of VR.

GSR and HR are not the only biometric inputs that could be potentially

leveraged into comparing immersive experiences. Commercially available Electroen-

cephalography (EEG) sensors have shown great promise in capturing brain activity

and even inferring emotional states [42]. Modern EEG sensors implemented through

Brain-Computer Interfaces (BCIs) have successfully estimated user reaction to immer-

sive stimuli during VR gameplay. In a review of over 280 BCI related articles, Al-Nafjan

et al. examined how EEG-based emotion detection is experiencing significant growth

due to advances in wireless EEG devices [43]. Accessible and low-cost BCIs are becom-

ing widely available and accurate in emotion and intent recognition. These are being

used for medical purposes as well as the non-medical domains of entertainment, educa-

tion, and gaming [43]. In comparison with 12 other biofeedback experiments, studies

that used EEG alone were able to reach 80% maximum emotion recognition [44]. Ar-

guably, the most considerable challenges of BCI are costs, the accuracy of sensors, data

transfer errors or inconsistency, and ease of use for devices [43].

Even with these challenges, EEG has been successfully used to understand

conditions like Attention-Deficit/Hyperactivity Disorder (ADHD), Anxiety Disorders,

Epilepsy, Autism, and Stroke [45, 46]. Brain signals that are characteristic of these
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conditions can be analyzed with EEG biofeedback to serve as a helpful diagnostic and

training tool. For example, Lubar et al. used the measurement of brainwave frequency

power during game events to extract information from reactions to repeated auditory

stimuli. This provided the ability to perceive significant differences between ADHD and

non-ADHD groups during this study[47]. By exploring different EEG sensors placements

along a user’s scalp and sampling multiple brainwave frequencies, different wavebands

can be used to infer the emotional state and effect of audio-visual stimuli [48]. In another

example, Ramirez et al. used the Alpha and Beta bands to infer arousal and valence,

which are then respectively mapped to a two-dimensional emotion estimation model

[42]. From these works, we concluded that there is the potential to analyze brainwaves

during iVR stimulus to infer users’ emotional responses.

2.4 Brainwave monitoring

Hans Berger, a founding father of EEG, was one of the first to analyze the

frequency bands of brain activity and correlate it to human function [49, 50]. These

wavebands have been extensively researched throughout the past eighty years, and while

there are mixed opinions, we hope to use past research to contextualize brain activity

during iVR exercise. Specifically, we want to understand the change from resting-state

of the Alpha, Beta, Delta, Theta, and Gamma brainwaves induced by the gameplay.

The Alpha Band (Stress [51]) has been found to occur at frequencies

between 7 to 12 Hertz and is generally associated with a neural activity relating to
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stress and conversely relaxation. Alpha activity is reduced with open eyes, drowsiness,

and sleep [51]. The Beta Band (Focus [52, 53]) occurs at frequencies between 12

to 30 Hertz, and is generally associated with focus, as well as active cognition such

as arousal, anxiety, excitement, and concentration [52]. Increases in Beta waves have

been correlated to active, busy, or anxious thinking and concentration [53]. The Delta

Band (Awareness [54, 55, 56, 57]) occurs at frequencies between 0.5 to 4 Hertz

and is suggested to relate to awareness and sleep [54]. Delta waves have been found

to have the highest activity during deep sleep, where the deeper the sleep, the higher

the activity [55]. Researchers have also reported that this frequency band relates to

memory interaction [56], such as flashbacks and dreaming [57]. The Theta Band

(Sensorimotor Processing [58, 59, 60, 61]) occurs at frequencies between 4 to

7 Hertz and is associated with sensorimotor processing [58]. This includes spikes in

Theta activity for planning motor behavior [59], path spatialization [60], memory, and

learning [61]. The Gamma Band (Cognition [62, 63, 64, 65, 66, 67]) occurs at

frequencies between 30 to 100 Hertz and has been correlated to thought, consciousness,

and meditation [62]. Research has theorized Gamma activity is relational to conscious

perception [63]. By studying meditation and mindfulness training, Gamma activity

appeared elevated when a ”conscious experience” would occur, such as shifting mental

states in meditation [67]. There are mixed opinions on whether Gamma bands are

reliable due to biological artifacts such as eye movement and jaw clenches [64, 65,

66]. However, many researchers argue that Gamma bands show evidence of correlating

perception with careful signal processing [67]. Through combining active EEG sensing
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with VR gameplay, it may be plausible that the success of the VR stimuli in the virtual

experience could be quantitatively measured.

2.5 Physical Therapy and Telehealth

In the United States, there are over 250,000 physical therapists, and this num-

ber is expected to grow by 47,000 in the next eight years to meet the growing needs of

patients [68]. Telehealth plays an essential role in this growth by connecting patients

to therapists and making care more equitable by helping patients overcome obstacles

related to geography, time, finances, and access to technology [69]. Moreover, telehealth

was determined to be effective in musculoskeletal practices having demonstrated out-

comes and patient satisfaction comparable to in-person care [70]. Cottrell and Russell

outlined considerations to apply when selecting a video conferencing telehealth plat-

form for physiotherapy, which includes: appropriate privacy and security features, easy

usability, clinician control of session beginning, financial cost, interoperability, the num-

ber of connections per session, and additionally built-in features (such as measurement

tools, scheduling, playback, libraries, and questionnaires)[71].

2.5.1 Quantifying Telerehabilitation

During in-person and telehealth sessions, objective assessments that are valid

and reliable are a crucial component to diagnose and treat patients [72]. Some standard

evaluations during an in-person session include palpating a patient’s affected injury,

measuring Range of Motion (ROM) with a goniometer, determining strength using a
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resistive force (manual resistance, bands, or weights), mobility through a timed ”Get

Up and Go”, and balance using the Berg’s balance test. For the purpose of our re-

search, we chose to work on objective tools related to ROM and joint forces that would

aid therapists in their evaluations and monitoring of patients. Possible methods for

measuring or estimating joint angles during videoconference telehealth sessions include

digital goniometers, motion capture systems, computer vision applications, and sensor

fusion techniques using inertial measurement units. However, for our iVR approach

discussed in chapter 3, we aimed to use off-the-shelf systems (only controllers and head-

set) so there is no need for additional equipment. This provides a unique challenge as

an iVR system itself does not provide joint angles; it only provides the position and

rotation of each hand (from the controllers) and the head (from the headset).

2.6 Infrared Motion Tracking and Musculoskeletal Simu-

lation

Motion capture is the most common practice for tracking the skeletal system’s

movements for biomechanical analysis. Reflective markers are placed on a subject which

multiple cameras can track. With multiple views by cameras, the position of each marker

can be determined and used for musculoskeletal simulation to determine body metrics

such as joint angles or accelerations during movements. Within the DANSER lab we

have an 8 camera OptiTrack system that uses the Prime 13W cameras (2.7 inches by

2.7 inches by 2.1 inches) and the accompanying motion capture software, Motive. This
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system is set up in conjunction with our CAVE (projection-based virtual reality display)

that is 9ft by 9ft. Figure 2.2 shows one of the 13W cameras, the CAVE with the 13W

cameras, and a player wearing the reflective markers that the cameras track. Within

this area the cameras can estimate the markers with an error of approximately 0.5mm

and record at a frequency up to 240 FPS. This data can then be used as input for

biomechanical simulations.

Dynamic simulations can aid in analyzing performance as well as estimating

the internal loading of the musculoskeletal system [2]. These simulations are extremely

valuable in the context of rehabilitation and health. It is critical to find a balance for

efficient exercise and speed of recovery, as overexerting strength and ROM may injure

muscles. Finding this balance can be assisted by the use of modeling software such as

OpenSim.

OpenSim is an open-source software system for developing musculoskeletal

models and creating dynamic simulations of various movements [2]. The goal of Open-

Sim is to build a freely available library of movement simulations for the biomechanics

community that has been validated and is ready for treating movement pathologies. The

capabilities of OpenSim are vast and have been used to understand many applications

such as human gait [73, 74, 75], design of assistive devices [76, 77, 78, 79], characteri-

zation of injuries [80, 81], and animal movement analysis [82, 83]. Gait mechanics have

been well explored with OpenSim, but as of now, upper-body contributions are limited.

For our research, we desired to contribute multiple analysis techniques of vari-

ous shoulder movements by utilizing the upper extremity model developed by Delp et al.
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Figure 2.2: [A] shows one of the eight Optitrack 13W cameras located within our lab.
[B] shows the game-play area within the CAVE and four of the 13W cameras are shown
around the top edge of the screens (the blue rings). [C] shows a player playing a virtual
reality game in the game-play area with several silver reflective markers attached to her
upper body that the 13W cameras track.

[2]. We chose this specific model, as it includes all of the large muscle groups and the full

ROM of the shoulder and elbow [2]. This simulation may prove valuable as it provides

shoulder joint torques that can be tracked over an extended period. Torque is important

because it describes the movement and force produced by the muscles surrounding the

18



joint [84, 85, 86, 87]. Prior research has examined the torque of upper-body exercise

for more in-depth injury assessment; for example, Perrin et al. demonstrated that bi-

lateral torque enables clinicians to more accurately set guidelines in the rehabilitation

of varying athletic groups [88]. Another metric to consider is angular momentum [89];

this provides a metric to monitor user movement performance over several exercises,

ensuring safety and preventing overuse. Several other studies have explored the benefits

of quantifying angular momentum for robotic assistance [90], the severity of lower body

gait impairment [91, 92], and how it contributes to whole-body muscle movement [93].

By examining average torque and angular momentum per session, we illustrate each

user’s average forces and amount of movement during gameplay as discussed in chapter

four.

2.7 Machine Learning for Motion Tracking

Machine Learning (ML) is a method of data analysis that uses one or more

algorithms to build a predictive model to estimate outcomes with new unseen input

data [94]. There are many types of ML algorithms available that each utilizes different

types of data and predictions methods. Typically these algorithms perform regression,

clustering, visualization, or classification and can use probabilistic methods, rule-based

learners, linear models (e.g., neural networks or support vector machines), decision trees,

instance-based learners, or a combination of these [95, 96]. There are pros and cons to

each and there is no universal best method for all data sets [97]. Instead, the type of
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input data needs to be taken into consideration, determine what type of prediction you

want (e.g. binary classification, mulitclass classification, regression, ect.), identify the

available types of models, and finally consider the pros and cons of those models. Some

elements to consider with models are accuracy, interpret-ability, complexity, scalability,

time to train and test, prediction time after training, and generalizability (the model

produces acceptable results with unseen data) [98, 99, 100, 101, 102].

In our research, we use motion capture data to predict the output of biome-

chanical simulations (joint angles and torques). This means we have a supervised multi-

ple regression task since our input and output data is already known, numeric and there

are multiple input variables. Linear regression and decision trees are commonly used

algorithms for these types of tasks. A decision tree is a simple flow chart structure made

of nodes, branches, and leaves to go from an observation and traverse the corresponding

nodes and branches to end up at a conclusion(also known as a leaf) [103, 104, 105]. This

is a straight forward predictive model that has evolved in the ML community through

many iterative steps and with each iteration results are typically improved. First, there

is Bagging where multiple base learners (e.g. decision trees) with varying structure are

built that can come to different predictions but in the end majority voting is used for the

final conclusion [106]. The next step was Random Forest, where only a random subset of

input features is used to build a collection of decision trees that then uses Bagging [107].

Boosting was the next evolution where weak models (e.g. regression or shallow decision

trees) are built sequentially so that each new learner gives more weight to data that

has been poorly predicted by the previous learners [108]. This method weights the data
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differently for each model so that each model performs better with that specific data

compared to the rest of the models and in the end the weighted predictions are combined

for the final output. Gradient Boosting came next and instead of adapting weights of

the data, the algorithm tries to optimize an arbitrary differentiable loss function so that

as sequential trees are added to the existing trees the loss is reduced (following the

gradient) [109]. And finally, Extreme Gradient Boosting (XGBoost) builds upon all of

these methods.

With the progression of computational power, memory, and cloud computing

over the last decade, the number of machine learning applications continues to soar.

With more groups looking to learn from ever-growing data sets, experts are looking to

improve machine learning algorithm performance. One new algorithm to come out in

the last five years is XGBoost. XGBoost was created at the University of Washington

and has been one of the most widely used machine learning algorithms since being

presented at a conference in 2016 due to its speed and performance [110]. XGBoost is a

scalable decision tree ensemble algorithm that uses a gradient boosting framework but

improves through system optimization and algorithmic enhancements [111]. For system

optimization, XGBoost uses parallelization, tree pruning, and has cache awareness to

help with training speed. Parallelization creates multiple branches of a tree in parallel to

build tress quickly [112]. Rather than evaluating regularization at each node, the entire

tree is built to max depth then walking from the bottom up determine whether each node

and child are valid. This saves time and computation compared to top-down tree pruning

[113, 114]. Cache awareness is used by buffering gradient statistics into each thread
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making efficient use of hardware resources [115]. The algorithmic enhancements include

regularization (prevents overfitting by penalizing more complex models using LASSO

and Ridge regularization), sparsity awareness (learns best missing values depending

on training loss), weighted quantile sketch (finds optimal split point among weighted

dataset using weighted quantile sketch algorithm), and cross-validation is built in at

each iteration [110, 111]. For our research, we used XGBoost to predict biomechanical

simulation outputs from iVR motion capture. This will be further discussed in chapter

six.
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Chapter 3

Comparing Virtual Reality Media

3.1 Introduction

There are many types of VR systems that fall into the categories of fully

immersive (headsets or room-scale systems), semi-immersive (typically a mixture of

physical and virtual environments such as a cockpit with screens instead of windows

for simulating flying), and non-immersive (laptops and other two dimensional screens).

Before designing and building a physical rehabilitation game, we wanted to determine

which VR system would give players the best experience for recovery. Examining other

studies, we determined that a fully immersive game would likely yield the best expe-

rience, but we still needed to decide if a room-scale system or a head-display system

would be better. The study aimed to compare user experience between these two sys-

tems to help guide our future development. Our lab often works with users possessing

cognitive disabilities to create rehabilitative experiences focused on their capabilities.
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To ensure that the results are generalizable for users of varying cognitive abilities, we

recruited forty users with and without cognitive disabilities, recognizing that both the

iVR environments and games can be cognitively challenging for some users.

This study compared the Mechdyne Flex CAVE and the HTC Vive Pro 2018

HMD. We utilized an in-house customizable iVR exercise game that rewards users with

and without a disability to overcome difficulties in exercising the weaker side of their

upper body. We record each user’s game behavior, physical movement, biosignals,

and subjective response of gameplay and system use during gameplay. Through the

differences in immersive experience between these two mediums, we aim to understand

the effects of room-scale versus HMD based physical exercise.

Specifically, the goals of this study were:

1. To compare gameplay effects of the immersive exercise experience between the

room-scale and HMD iVR mediums with natural arm movements.

2. To identify insights in system usability for users with varying cognitive abilities.

3. To examine the feasibility of the two iVR systems for exercise and healthcare.

3.2 System and Experimental Design

This study uses Project Star Catcher (PSC) [23, 22], an iVR experience de-

signed to encourage upper-extremity physical exercises through motivating users to

catch shooting stars in a cosmic virtual environment with their weaker arm. PSC uses a

customizable mix of auditory, visual, and haptic stimuli as score incentives to motivate
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users to exercise. The game requires users to follow different arm positions and vary

the range of motion in order to succeed in a star catch. The user receives three times

as many points when using their weaker, weight constrained, non-dominant arm, but

may also use their strong arm for fewer points. To perform well in the game, the user

must use a large amount of full-body movement, including side stepping and reaching in

many directions, and should comply with weak arm usage. Adults with developmental

disabilities previously tested PSC. Our prior study showed that these users were able to

understand and achieve the objectives of the game [23]. To ensure that the participants

were challenged and understood the rule of the games, a weighted arm strap was utilized

to examine weak arm compliance with the protocol from our previous exploration of

PSC [23].

In this study, users were recorded playing PSC with both systems: EEG, GSR,

and HR were collected at runtime as well as post gameplay surveys, as seen in Figure

3.1. The order of which system was played was counterbalanced (some users were tasked

to the HMD first, and some to CAVE first) to prevent bias. We carefully designed the

experiment so that users were exposed to a similar level of difficulty in both systems and

similar features (e.g., soundtrack and screen brightness). In the CAVE, four walls are

used to project multiple views at 90-degree offsets, whereas the HTC Vive implemented

the native SteamVR camera allowing for a 360° view. From the viewpoint of user

behaviors, the HMDs and the CAVE have many similarities; however, they are quite

different in the level of immersion (i.e., users can still notice the outside world with

the CAVE, while in the HMDs, they are completely isolated from the external visual
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stimuli). Additionally, the Vive HMD has more weight compared to the CAVE’s motion

capture markers.

Figure 3.1: System Diagram and Experimental Protocol: Sensor placement (top left),
Systems (top right), and experimental protocol (bottom).

3.2.1 Participants

Our participant cohort includes a mix of adults with Developmental Disabil-

ities (DD) and college students. This study was approved by the Institutional Review

Board (IRB) from the University of California - Santa Cruz (UCSC) Office of Compli-

ance and Research Administration. For our volunteers with DD, three female and ten

male users (ages ranged from 20 to 30) were recruited from the Santa Cruz Hope Ser-

vices Day-Center and provided consent that had been vetted by their medical caregiver

as understandable. Hope Services is Silicon Valley’s leading provider of services to peo-

ple with DD, such as intellectual disabilities, cerebral palsy, epilepsy, autism, and Down
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syndrome [116]. While they vary in their medical diagnosis, they all have a minimum

cognitive ability specified by Hope Services’ medical professional as likely to be able to

comprehend the experimental protocol. Due to HIPPA regulation, we were not provided

information on their diagnoses and the severity of their conditions. However, this infor-

mation was available to our Hope Services collaborators during recruitment and formed

the basis of their selection as volunteers. We shared our initial experimental protocol

and questionnaires with Hope Services. We adapted our study protocol to ensure that

these users could accurately reflect their feedback and participate in gameplay between

the CAVE and HTC Vive. Additionally, a caregiver was present during all trials to help

explain the study, the game, and survey questions as well as monitor safety, comfort,

and provide further feedback about the participants. These thirteen users were selected

by Hope Services medical professionals to ensure that they could articulate opinions

about system preference and gameplay experience.

We also recruited 27 college students without any visible disabilities (12 male

and 15 female with ages ranging from 19 to 28), who also provided written consent to

participate. These students were recruited by flyers, word of mouth, and emails sent to

the student body at UCSC. Through this diverse group of study participants, we were

able to gather a mixed set of data between the CAVE and HTC Vive systems for the

same iVR exercise game.

3.2.2 Data Collection

The following data was collected during the study:
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1. HR - Polar OH1 Sensor [117]: an armband with an embedded optical sensor was

utilized to wirelessly collect beats per minute by sampling HR activity at 1Hz.

2. GSR - Neulog GSR sensor NUL-217 [118]: a USB-200 logger sensor module was

used to measure GSR at 5Hz sampling rate in micro-Siemens by attaching Velcro

strap electrode points to the skin between the index and ring finger.

3. EEG - InteraXon Muse 2 - Brain Sensing Headband [119]: collects filtered brain-

wave data of the prefrontal cortex. The application that communicates with the

device uses a Cooley-Tukey FFT to extract waveband power from brain activity

[120]. While this headset is relatively low resolution compared to other clinical-

grade EEG systems, researchers have used Muse in understanding mindfulness

[121], mental states [122], and event potentials [123].

4. iVR - The CAVE (Mechdyne Flex 1) and HTC Vive Pro 2018 systems. The

room-scale CAVE system and HMD HTC Vive Pro implemented the Unity Game

Engine to run the same iVR experience through PSC. PSC collected player data at

90Hz of motion capture pose and game behavioral events such as star catches [23].

Motion tracking was achieved with the CAVE through Natural Point Optitrack

Motion Capture System [124], while the HTC Vive utilized its native lighthouse

localization system for outside-in tracking [125].

5. Questionnaires - Modified Jennett et al. survey [126]: users completed the survey

about user experience twice, once for each system. The users also completed a

third survey that compared their preference of the two systems.
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HR, GSR, and EEG measurements were chosen to give further insight into

users’ physiological responses to the gaming environment and provide quantifiable data

beyond the game performance. The sampling frequency between all the sensors was not

equivalent. As a result, data were exported to Comma Separated Values (CSV) files post

hoc and synchronized for each baseline and gameplay using Python scripts. A custom

MATLAB script was implemented to collect all sensor data in a single nested struct for

comparison, while also running raw sensor data through a smooth-data moving window

filter. Statistical significance between systems was determined in MATLAB through

Wilcoxon signed-rank tests, which is a non-parametric statistical method to compare

two related groups by mean rank difference [127, 128].

Figure 3.2: System Gameplay: a) A user catches a shooting star with the HTC Vive.
b) A user prepares to catch a shooting star with the CAVE. c) The PSC virtual
environment.

3.2.3 Experiment Design

Our experimental protocol consisted of four stages that were completed one

time on each system, followed by a final set of surveys. This order can be seen in Figure

3.1 and is described in detail below:
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1. Equipment Preparation: The HR monitor was placed on the dominant arm, and

two GSR electrodes were positioned on the middle two fingers for the participant’s

dominant hand. The EEG sensors was set on the forehead located on the AF1,

AF7, TP9, and TP10 prefrontal cortex positions. A weighted arm strap (selected

to be approximately 3% of the participant’s body mass) was fixed to their non-

dominant wrist to challenge and remind the user to catch stars with their non-

dominant arm. Finally, either the HTC Vive controllers or Optitrack markers

for the CAVE were given to the user depending on the counterbalanced system

starting order.

2. Baseline: Before any gameplay, the participant was asked to stand still with their

arms at their side and eyes closed for 15 seconds, followed by 15 seconds with

their eyes open. We recorded sensor data during this step in order to determine

changes from resting-state to gameplay.

3. Tutorial: The evaluator then started the tutorial game, began to give scripted

verbal instructions on how to play, and answered any participant questions. The

evaluator administered the tutorial for approximately 60 seconds to ensure the

user had grasped the concepts of the game.

4. Gameplay: After the tutorial, the evaluator set up the game, let the participant

know they had 90 seconds to play the game, would no longer receive feedback or

verbal instructions, gave a count down, and began the game. After the 90 seconds

of gameplay, the evaluator gave a verbal countdown to warn the participant the
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test was ending.

5. Change Systems and repeat (i)-(iv): Next, the participant was outfitted with the

other game system. There was another baseline measurement, tutorial stage, and

gameplay identical to the previous ones.

6. Surveys: The evaluator then removed the game system and provided a chair for

the user to sit while filling out the surveys.

Between each stage was a transition period of about 1-3 minutes of rest time.

A table comparing baseline biometric state indicated that this rest period was adequate

with no significant differences of biometric measurements between recordings, as shown

in Table 3.1.

3.3 Results

Session data was post-processed using the Mathworks MATLAB 2018b Statis-

tics and Machine Learning Toolbox [129]. We examined each of the user’s recorded

metrics between systems and groups for box-plot distribution, significance, and similar

metrics. Significance was determined through a Wilcoxon signed-rank test, a confi-

dence statistic used to compare non-parametric data such as the samples obtained in

our study [130]. The intent of this data collection was to determine the physical and

biometric performance between each system and user group in the context of feasibility,

immersion, and potential for iVR exercise experiences. These results indicate that both

systems are useful in obtaining high levels of compliance with game goals during physical
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exercise. We define compliance as the rate of catches with the weighted non-dominant

arm over the total amount of catches. From these metrics, the HTC Vive was found to

be significantly more effective than the CAVE in inducing more significant movement

of the non-dominant limb, a greater resting-state change in biometric response, a more

significant emotional response, and an increased immersion. These findings are partic-

ularly exciting as prior studies that have explored CAVE and HMDs have not found

significance in their task-based comparisons [131, 132, 133, 134, 135]. We discuss these

findings in the following subsections.

3.3.1 Physical Movement and Gameplay

Recording runtime motion capture and behavioral game datum served to help

understand the physical performance of the users across different cognitive abilities

between the two iVR systems. As we are interested in how the users with and without

cognitive impairments differ in their gameplay behaviors, we separated the users into

two groups. Physical displacement of each user’s non-dominant arm, dominant arm,

and head positions are shown in Figure 3.3. For both user groups, the HTC Vive

induced significantly more gameplay movement of all tracked limbs when compared to

the CAVE. The user group with disabilities also had more movements when they were

using HTC Vive than the cohort without disabilities.

To examine compliance, we set the game mechanics so that users achieve higher

scores when performing successful catches with the non-dominant arm than when using

the dominant arm. We define compliance as the total catches with non-dominant weight-
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constrained arm over total star catches. This can be seen in Figure 3.4 along with a

successful star catch rate and game score. Both user groups had a significantly higher

catch rate (successful movement completion) on HTC Vive, yet did not hold significant

differences in compliance between the two systems. The groups differed in game scores,

where users without disabilities had a significantly higher score with HTC Vive than

with the CAVE, but users with disabilities do not have significant differences in scores

between the two systems.

PSC varies the difficulty of star catches by movement speed through spawn-

ing bronze, silver, and gold stars as slow, medium, and fast respectively. For example,

bronze stars are the easiest to catch as they move three times slower than gold, but

the reward is also three times less in score. Figure 3.5 highlights successful star catches

in terms of difficulty. As expected, both groups completed significantly more easy and

medium catches with HTC Vive. However, users with disabilities did not have a signif-

icant difference in hard gold catches between systems. The group without disabilities

caught more stars than users with disabilities across all difficulties, which was expected.

To summarize, both groups performed significantly better on HTC Vive in

terms of physical movements and successful star catches, yet groups differed in strategies

where the users with disabilities did not significantly overcome challenges associated

with hard catches between the two systems.
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Figure 3.3: Player movement of users with disabilities (row one) and without disabil-
ities (row two). Wilcoxon significance level between CAVE and VIVE is indicated in
asterisk notation and “ns” indicates not significant (highlighted in red). Note that
Non-Dominant Displacement indicates the total movement of the weighted arm during
Project Star Catcher Gameplay between systems.

3.3.2 Biofeedback Responses

Three sets of biofeedback data were collected during and before gameplay to

infer physiological activity: Heart Rate (HR) as a measurement of physical intensity,

Galvanic Skin Response (GSR) as a marker of arousal, and brainwave activity (EEG)

as inferences for stress (Alpha power), focus (Beta power), awareness (Delta power),

motor activity (Theta power), and cognitive state (Gamma power). For the context of

the study in this chapter, these physiological effects from biometric activity are used to

contextualize resting-state change induced from gameplay between the two systems. A

pre-gameplay baseline was recorded before every user trial to determine and normalize

possible abnormalities produced from daily living – for example, if a user was overstim-

ulated by an intense conversation before testing, this stimulation would be offset by
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Figure 3.4: Gameplay score and success rates of users with disabilities (row one) and
without disabilities (row two). Wilcoxon significance level between CAVE and VIVE is
indicated in asterisk notation and “ns” indicates not significant (highlighted in red).

examining the difference in the gameplay and baseline states. We were careful to not

unnecessarily converse with users during the study to avoid individual differences due

to protocol deviation. The results showed that the HTC Vive produced considerably

more biometric changes compared to the CAVE, with noticeable differences between

the two user groups. The Wilcoxon significant levels between pre-gameplay states of

both user groups are shown in Table 3.1, and indicate no significant difference between

pre-gameplay states between systems, with the exception of the gamma band for the

group without disabilities.

Figure 3.6 shows the resting-state change of HR and GSR induced by gameplay

with PSC. Users without disabilities had significantly higher HR and GSR when using

the HTC Vive, which may indicate higher intensity in physical activity and arousal. On

the other hand, users with disabilities had no significant differences between the two
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Figure 3.5: Successful star catches with difficulty of users with disabilities (row one) and
without disabilities (row two). Wilcoxon significance level between CAVE and VIVE is
indicated in asterisk notation and “ns” indicates not significant (highlighted in red).

systems, yet HR tended to remain at a definite increase from the resting-state baseline,

and much of the GSR distribution for the CAVE indicated a decrease of arousal from

resting-state. This may indicate that users with disabilities were either overstimulated

before playing PSC with the CAVE or that the CAVE was ineffective in stimulating

arousal for these users. Table 3.1 suggests similar pre-gameplay states, so it was more

likely that the CAVE itself induced this negative change in arousal. For the cohort

without disabilities, both systems produced an increase in all biometric recordings from

resting-state, and the HTC Vive had a significantly higher increase of intensity and

arousal than the CAVE from the HR and GSR readings. Interestingly, brainwave ac-

tivity represented an inverse outcome between the two user groups.

The resting-state change of the different EEG brainwave bands induced by

gameplay with PSC is displayed in Figure 3.7. Both user groups had significantly higher
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Beta and Gamma power when using the HTC Vive against the CAVE, which may indi-

cate an elevated level of focus and cognitive processing. The groups differed where the

cohort with disabilities had significantly higher Alpha, Delta, and Theta (stress, aware-

ness, and motor processing) power. Furthermore, the group with disabilities generally

experienced negative resting-state change on CAVE for Alpha, Beta, Delta, and Theta

bands, which may imply the users did not remain focused and lost awareness as well as

a motor activity when compared to resting-state. This negative resting-state change is

consistent with the change seen with CAVE for HR and GSR; however, all brainwave

bands were significantly higher on HTC Vive inversely to the relationship seen between

the two groups in Figure 3.6.

In general, these biometric recordings suggest that the HTC Vive induced

higher focus and cognitive processing than the CAVE for both groups. Unlike the

group without disabilities, users with disabilities had significant increases in all bands

of brain activity. Conversely, the CAVE induced a lower power from resting-state change

for the beta, delta, theta, and gamma bands, unlike the HTC Vive, which resulted in

all significantly higher powers than resting-state. This differs from the group without

disabilities, where all brain activity remained at a positive change regardless of the

iVR system medium. This outcome is especially interesting as it may indicate that

iVR system mediums have a more considerable effect on the mental state for adults

with cognitive impairment. To further understand these results, each user was queried

for subjective response in our immersion and system preference questionnaires – it is

through this medium that we hope to reinforce and better understand the physical and
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with disabilities without disabilities

data type CAVE mean (std) VIVE mean (std) sig CAVE mean (std) VIVE mean (std) sig

HR [bpm] 104.9 (38.97) 116.6 (29.74) ns 94.5 (24.53) 91.1 (21.11) ns
GSR [uS] 2.49 (1.330) 2.54 (1.195) ns 3.18 (2.322) 3.14 (2.123) ns

Alpha [bels] 0.70 (0.396) 0.60 (0.253) ns 0.66 (0.139) 0.63 (0.143) ns
Beta [bels] 0.52 (0.361) 0.44 (0.331) ns 0.50 (0.221) 0.39 (0.201) ns
Delta [bels] 0.98 (0.503) 0.95 (0.403) ns 0.75 (0.325) 0.75 (0.278) ns
Theta [bels] 0.54 (0.418) 0.43 (0.283) ns 0.41 (0.195) 0.40 (0.180) ns

Gamma [bels] 0.34 (0.367) 0.17 (0.394) ns 0.30 (0.323) 0.10 (0.279) ***

Table 3.1: Biometric baselines taken at resting-state between two user groups for both
systems. “sig” indicates Wilcoxon significance level in asterisk significance notation,
with “ns” indicating no significance. No significant difference was found between pre-
gameplay states for all groups with the exception of the Gamma band for the non-
disabled group.

biometric performance of our users.

3.3.3 Response for Immersion, Emotion, and System Preferences

In this study, we used two surveys to collect subjective responses between the

HTC Vive and the CAVE from our two user groups. The immersion questionnaire

was adapted from an extensively explored survey by Jennett et al, which measures

immersion and presence in games [126]. For the group with cognitive disabilities, pre-

experimental trials were run to understand the feasibility of the original immersion

survey and help us modify the survey. These trials were useful as they provided us with

some insights. Generally, users would lose interest in the high number of questions in the

original survey. Additionally, the phrasing of most of the original questions was often too

complicated for users to comprehend fully and required the Hope Services Caretakers

to intervene and give further explanations and provide examples. Lastly, many of the

users were not always able to communicate their responses verbally – usually giving a
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Figure 3.6: HR (in beats per minute) and GSR (in micro-Siemens) resting-state change
from gameplay of users with disabilities (row one) and without disabilities (row two).
Wilcoxon significance level between CAVE and VIVE is indicated in asterisk notation
and “ns” indicates not significant (highlighted in red).

thumbs up, down, or sideways. With this trail-testing in mind, we condensed the Jennet

et al. survey to ten simplified questions in collaboration with healthcare professionals.

Furthermore, a checkbox emotion question and system preference survey were created to

enable more significant user input from the group with disabilities. Our final version of

the questionnaires consisted of one survey with ten immersion questions on a subjective

scale, one question on intense emotions felt, and a second survey with three questions

on system preference and a section for additional comments. Through this process, we

were able to gather more significant input from both user groups for comparison with

the biometric and game datum collected.

The immersion survey results, as seen in Figure 3.8, indicates response on

statements querying presence (Q3-4 & Q8), engagement (Q1-2 & Q9-10), and effort

(Q5-7) concerning gameplay between the two systems and groups. Questions Q8-10
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Figure 3.7: EEG brainwave power in bels from resting-state change induced during
gameplay for users with disabilities (row one) and without disabilities (row two). Note
that stress, focus, awareness, motor, and cognition are represented by the alpha (α),
beta (β), delta (δ), theta (θ), and gamma (γ) band powers. Wilcoxon significance
level between CAVE and VIVE is indicated in asterisk notation and “ns” indicates not
significant (highlighted in red).

have reversed scales to ensure respondents read the survey carefully. A majority of

users from both groups indicated that presence, engagement, and effort was higher on

HTC Vive than CAVE. The groups differed in agreement, where higher percentages of

users with disabilities felt they ”lived in the game world,” were distracted ”from my real

life,” and ”put a lot of effort into the game.” Interestingly, the majority of the disabled

cohort found the game to be not challenging (Q9), unlike the non-disabled cohort, even

though their physical performance was, on average less than the non-disabled group (as

seen in Figures 3.3 and 3.4). The disabled group responses to immersion questionnaires

were nearly identical between all users regardless of system, which may indicate a lack

of comprehension of the survey questions regardless of our modifications or that users
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generally responded positively to all survey questions. There are slight differences in

the distribution, which may indicate that HTC Vive was received better in comparison

to the CAVE (Q1, Q7 & Q10). This was not the case for the non-disabled cohort, where

users had significantly higher agreement rates with the HTC Vive than the CAVE. These

immersions were most likely influenced by the emotional response felt during gameplay.

Figure 3.8: Subjective rating questionnaire responses for the between user groups and
systems. For Q1-7, strongly agree is the desired outcome. For Q8-10, Strongly disagree
is the desired outcome. Disabled user responses were modified to 3 point scale as
recommended by healthcare professionals from Hope Services, CA, to increase accuracy.
* = ”Not at all” to ”a lot,” ** = ”Very poor” to ”very well,” *** = ”Not at all” to
”very challenging.”

Self-reported emotions felt during gameplay can be seen in Figure 3.9. At

the end of each session, users were tasked with checking off any intense emotions they

believed to have felt during the three minutes of playtime between the systems. The

emotions cover a wide range of feelings from ”Happy/Joyful” to ”Neutral (no emotion)”

to ”Angry/Hateful/Disgust.” For the purposes of visualization, such emotions are orga-
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nized subjectively from top-down positive to negative in Figure 3.9. All users from each

group reported feeling at least one intense emotion from gameplay between each system.

The non-disabled group generally reported more feelings of positive emotion with the

HTC Vive, and CAVE was shown to receive higher responses for negative emotions such

as angry and embarrassed. Conversely, minimal difference between the two systems on

self-reported emotion was found for the disabled group – where CAVE had a slightly

higher emotion response rate than HTC Vive by one or two users. The ratio of intense

feelings for users with disabilities was also significantly higher than their non-disabled

cohorts, which may be in line with the increased disabled group brainwave activity,

as seen in Figure 3.7. These near-identical distributions in emotions felt between the

systems may indicate that the majority of users with disabilities may just be answering

these surveys identically. This behavior, however, was not seen in the preference survey

between systems for the group with disabilities.

Figure 3.9: Self-reported emotions strongly felt between the two different systems and
user groups.

At the end of the experiment and after the two immersion/emotion surveys, a

preference survey was given to each user asking which system was preferred and why.
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Users were also given the option to fill out checkboxes on indications such as comfort,

ease of use, and engagement as well as an input field for additional comments. Figure

3.10 showcases these final preference results. The majority of both groups preferred

HTC Vive over the CAVE; however, 100% of users without disabilities preferred HTC

Vive, unlike the 62% of the cohort with disabilities. These groups appeared to generally

differ in system preference by emotion and comfort with CAVE when compared to ease

of use and immersion with HTC Vive. For the group with disabilities, the users who

chose the CAVE indicated the most active reasoning was ”it made me feel relief,” ”it

was easier to use,” and ”it was more comfortable,” whereas the users with disabilities

who chose HTC Vive indicated top reasoning to be ”it was funner to use,” along with a

near-identical indication of greater comfort, ease of use, immersion, and relief. The users

without disabilities’ top reasonings for unanimously choosing HTC Vive over CAVE was

”it was easier to use,” ”it felt more immersive,” and ”it was funner to use.”

Additionally, about 50% of participants wrote in or verbally addressed addi-

tional comments about system preference. A word cloud of these comments can be seen

in Figure 3.10, where the largest words indicate the most reoccurring topics of discus-

sion. Only four of the users with disabilities who preferred the CAVE left additional

comments and indicated they enjoyed wearing the motion capture hat, unlike the HTC

Vive HMD. For other users, comments were left about navigation, perception, latency,

and freedom of movement appearing best on HTC Vive against the CAVE. Participants

felt PSC was more stimulating on the HTC Vive than CAVE as the colors were crisper,

the depth perception felt more viable, and the controls were more natural, according to
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them. One user even indicated the preference of blocking reality out with HTC Vive,

unlike the CAVE, as that they felt the HTC Vive was “more immersive [because] my

virtual self was already in there [the game].”

Figure 3.10: System preference between the two user groups with reasoning for
preference.

To conclude, the HTC Vive is the preferred system between both user groups.

The HMD based system was perceived to have a higher sense of immersion, ease of

use, and enjoyment of gameplay than the room-scale alternative. These responses are

in line with both the physical performance of each user group as well as the biometric

response. The significantly higher brainwave activity among users without disabilities on

HTC Vive is in line with the self-reported levels of immersion, where they saw significant

increases in arousal and physical activity and subsequently unanimously preferred the

HTC Vive. The responses of users without disabilities tended to be emotionally based,
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with a significantly higher distribution of these users’ self-reported intense emotions felt.

Lastly, users generally scored higher, moved more, and caught more stars on the HTC

Vive against CAVE – this can be explained by users feeling the HTC Vive was “more

fun.”

3.4 Discussion

This study explored the experience of adults with varying cognitive abilities

when using room-scale and HMD based iVR systems for gamified physical exercise. A

mixture of motion capture, game behavior, and biofeedback, along with questionnaire

data, was collected. The HTC Vive, a widely adopted commercial iVR HMD system,

showed significant benefits of use when compared to the CAVE during physical exercise

with the game we built. This section highlights our findings.

3.4.1 Key Findings Between the Two User Groups

We explored two user groups in this study: adults with cognitive disabilities

and college students, in an attempt to make sure that our results and the design im-

plications for our findings can be generalized across cognitive abilities. Through our

testing of these systems, the data we collected helped us address our study goals to

formulate the following interpretations:

• Users with cognitive disability were more emotionally receptive to iVR

exercise. All bands of brainwaves were seen to be significantly different between
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the systems, which may have influenced the noticeably higher self-reported emo-

tions by the group with disabilities. From the immersion survey, we saw a similar

response for virtual presence, engagement, and effort given during gameplay. This

may indicate that our game was a successful experience in inducing immersion

regardless of the system. Furthermore, the preference survey indicated that it

was, by a majority, guided by emotion. For the users who chose the CAVE over

the HTC Vive, the top reason was due to feelings of relief. Additional comments

indicated users enjoyed the way the motion capture hat felt and looked in compar-

ison to the HTC Vive HMD. These users chose the CAVE even though they often

overcame greater difficulty, caught more stars, and had higher movement with

the HTC Vive. From an engagement and immersion perspective, designing future

experiences for adults with cognitive disabilities may be improved by expanding

on this emotive perspective. PSC uses score and sensory feedback as a motivator

to keep the user engaged over their exercise sessions [23]. Another one of our

previous studies has explored iVR games to strictly follow exercises by protecting

a “cute” virtual butterfly in “Project Butterfly” (PBF) [136]. With therapeutic

goals in mind, designing iVR experiences like PSC and PBF where the user is in

complete control of the environment and is guided by emotive based incentives can

be an excellent approach for iVR physical exercise experiences. The physical tasks

require only user movements, and the objectives of the game are simple enough

to start and interact with the environment without reading an instructional guide

on controls or game objectives. As a result, emotive task-based iVR experiences
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for exergaming will most likely increase the adherence, engagement, and success

of an exercise protocol.

• Users without disabilities were more physiologically receptive with iVR

exercise. These users physically performed in all areas of gameplay with more

significant movements, successful catches, difficulty overcome, higher game scores.

Arousal and physical intensity were seen to be significantly higher on the HMD

when compared to the room-scale medium, unlike the user cohort with disabili-

ties. Resting-state change of brain activity was insignificant on three out of the five

wavebands, where only beta and gamma were found to have a significant change

with the HTC Vive. Subsequently, all 27 of these participants unanimously pre-

ferred the HTC Vive. Unlike the cohort with disabilities, whose preference was

primarily driven by elements such as the feeling of the motion capture hat and

other emotive reasoning, the group without disabilities valued the HMD’s ease of

use, control, and increased immersion for completion of exercise tasks. For these

users, the higher physical performance with HTC Vive impacted immersion, emo-

tion, and system preference, as shown by the apparent significant differences for

HMD questionnaire responses. HTC Vive is the clear winner here when compared

to CAVE.

• Both cohorts performed better with HMD based iVR exercise. Our user

groups shared many similarities. The HMD system induced more significant phys-

ical movements, difficulty overcome, brainwave activity of the beta (focus related),

47



and gamma (cognitive processing related) bands, and they both subjectively re-

ported higher levels of immersion, engagement, and effort during gamified exercise

with HTC Vive. The majority of both groups preferred the HTC Vive over the

CAVE, even though the CAVE provided an untethered physical medium for ex-

periencing the virtual world. HMDs enable a full virtual immersion where users

preferred this medium because the experience felt “more immersive [because] my

virtual self was already in there [the game].” This detachment from reality proved

to result in higher engagement, which may have attributed to a better physical

and biometric performative response. Based on our results, we can conclude that

for future experiences employing gamification for task-based exercise goals, HMD

based systems of iVR (which are significantly cheaper and more portable than

the room-sized versions) are the apparent decision to maximize performance and

engagement.

3.4.2 Has Modern Commercial HMD Based iVR Surpassed the Re-

search Grade Room-Scale Medium in Healthcare Context?

This study has shown that HMD based VR is a better medium compared to

the room size version for maximizing physical performance, immersion, engagement,

and effort of task-based exercises. Research has shown that the full exclusion of the

real world provided by the HMD enables higher immersion, which is a powerful tool

to distract users from pain and discomfort [5, 6]. Applying these immersive effects to

overcoming adversity and difficulty in exercise is useful. In a past study with stroke
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survivors, PSC has shown that the gamification with iVR of physical therapy can in-

crease compliance by nearly 40% compared to traditional therapies with the HTC Vive

[23]. Subsequently, from the perspective of accessibility, accuracy, and affordability of

exercise-based healthcare, HMD based commercial iVR systems may have finally sur-

passed the alternative and more costly room-scale mediums.

The CAVE does not exclude reality from the virtual world, as the user’s phys-

ical body itself becomes a part of the visual iVR experience. Researchers have argued

that this nature of the CAVE – to be able to include multiple people in a space with

their physical presence – can be advantageous for collaborative task-based needs [134].

However, we argue that modern commercial HMD based systems have fully surpassed

the advantages the CAVE with regard to multi-user applications. For a fraction of the

price, multiple HTC Vive-like HMD systems can be purchased and may enable multi-

user interaction via virtual avatars from any location through the internet. The cost

of an installation of a CAVE and its lack of mobility makes the CAVE less flexible

compared to the HTC Vive. New inverse kinematic techniques are being developed

and shared across the research community, with integration for mass-produced systems

like the HTC Vive to show full-body motion capture approximation and ease of imple-

mentation [137]. Furthermore, there is a vested interest in producing full-body motion

capture by industry competitors for the future of iVR interaction with HMDs [138, 139].

In summary, iVR HMDs are gaining popularity: the cost of headsets are decreasing,

systems are becoming ever more mobile and untethered through new inside-out sensor

fusion tracking techniques, and new input mediums such as hand tracking, eye track-
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ing, voice control, and even more are being integrated [21]. We should also note that

the integration of these features into a volumetric space like the CAVE would cause a

significant increase in cost compared to the HMD medium.

3.4.3 Considerations and Limitations

This study was one of the first to compare room-scale and HMD based iVR

through game performance, biofeedback, and questionnaires for exergaming with adults

of different cognitive abilities. However, some limitations need to be considered.

Past studies with the PSC iVR framework have shown great potential to in-

crease compliance for adults with physical disabilities [23, 136]. Nevertheless, these users

have not been explored with CAVE in this study due to resource constraints. Future

studies should explore a higher number of users of varying physical and cognitive ability

to dive deeper into these immersive effects between the iVR mediums. Additionally,

more systems should be explored beyond the Mechdyne CAVE Flex and the HTC Vive

Pro 2018, especially with the deluge of mixed reality devices hitting the market such

as Magic Leap, Microsoft Hololens, and more. While these are costly devices at the

current moment, a similar trend with iVR technology may occur in the near future.

Furthermore, this study was not conducted in a clinical setting and did not

utilize clinical-grade biometric sensors. Due to the physical constraints of the CAVE,

users were tested onsite at UCSC with only caretakers present, although healthcare

professionals were involved either through remote meetings, check-ins, or email corre-

spondence rather than onsite at a therapy clinic. For our vision of the future, we hope to

50



integrate these immersive experiences in each user’s household, which will require this

detachment from the clinical setting. With cost and user experience in mind, we chose to

work with commercially available biometric sensors to collect biofeedback. This resulted

in a lack of resolution from the biometric collection, where brainwave sampling was lim-

ited to the prefrontal cortex as opposed to clinical full head caps. In addition, heart rate

was only collected through a single site optical sensor as opposed to clinical multi-site

sticktrode locations. While these devices did not have the best resolution or sampling

sites, the alternative would have been introducing higher setup times and discomfort for

our users through costly sticktrodes, electrogels, and other materials required by these

clinical-grade biometric sensors. It should be noted that other researchers are reporting

success in using these commercially available sensors by implementing computational

and sensor fusion techniques for better analysis [140, 121, 122, 123].

With these limitations in mind, we are preparing future experiments to address

these challenges with various local healthcare organizations in Santa Cruz, California.

The framework shown in this chapter for analyzing game performance, biometric re-

sponse, and survey collection will be utilized in these upcoming studies to personalize

and adapt the healthcare experience for users of varying abilities.

3.5 Conclusion

Modern iVR systems are becoming ever more prevalent in the consumer mar-

ketplace, thus it is critical to compare room-scale and HMD based iVR mediums. This
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study is one of the first to compare these iVR systems in the context of physical exercise.

Our findings suggest that HMDs have finally caught up to and may have even surpassed

CAVEs with our exercise game for both adults with and without disabilities. We also

highlight a pipeline for multi-modal exercise analysis from game behavior, physical

movement, and biometric response. These insights may be useful to future developers

and engineers from system design, user experience, and data analytics perspective.

With a high number of VR systems commercially available and emergent im-

mersive accessories being created, there are numerous platform options for experimen-

tation by healthcare researchers. In the future, we hope to refine comparison mea-

surements between iVR systems and address different populations of all abilities in

iVR health applications. More studies must be conducted in comparing these systems,

especially with the goal of addressing a greater variety of healthcare issues. One pos-

sible future application for healthcare is where users connect virtually with therapists

for evaluation, perform gamified task-based objectives to meet exercise goals, and use

analytics to adjust the difficulty and speed of prescribed exercises.

Over fifty years ago, Ivan Sutherland demonstrated the first iVR HMD to

the world [141]. For Ivan Sutherland, his vision of the future of iVR was one of an

ultimate display: “the ultimate display would, of course, be a room within which the

computer can control the existence of matter. A chair displayed in such a room would

be good enough to sit in. Handcuffs displayed in such a room would be confining, and

a bullet displayed in such a room would be fatal. With appropriate programming, such

a display could literally be the Wonderland into which Alice walked” [142]. Modern
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iVR systems are enabling deeper and more rich experiences of presence into the virtual

world [21]. These elements of the ultimate display that influenced modern iVR as we

know it appears to be near at hand [143]. Given this progress of immersive mediums

into the virtual world, we ask what would the ultimate iVR system be for exergaming

and health?

The study presented in this chapter supports that a modern HMD such as

the HTC Vive is more engaging and produces better physical exercise performance

than the more expensive room-scale CAVE medium. Through Project Star Catcher

and its framework, we have explored the effects of the virtual world for individuals

with and without disabilities [23]. Through our comparative study, we have seen that

modern HMDs have a vast potential for physical exercise games for users of mixed

abilities. In addition, through integrating biofeedback and motion capture analytics,

iVR healthcare experiences can be personalized to match the needs and motivations of

the user. With growing advances in artificial intelligence and machine learning, perhaps

future iVR exergames can learn from both the users and therapists to best prescribe

and augment VR stimuli for exercise. We envision this medium to be one that adapts

the virtual world to the run-time emotional and physical state of each user to create a

profound and maximally engaging experience. This chapter of research was published

in the journal ACM Transactions on Computing for Healthcare and titled “On Shooting

Stars: Comparing CAVE and HMD Immersive Virtual Reality Exergaming for Adults

with Mixed Ability” [144].
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Chapter 4

Virtual Reality for Physical Therapy

4.1 Introduction

Our previous work showed that we should design a rehabilitation game for a

head-mounted display system considering user performance and physiological response.

Our goal for this game was to make exercise more entertaining and engaging since

many patients stop their at-home exercises once the accountability of in-person ther-

apy sessions ceases. This means these patients never fully recover as rehabilitation is

seen as a continuum of recovery and maintenance by physical therapists. We designed

and created the game while collaborating with physical therapists to ensure patient

safety. This chapter examines an iVR-based experience for upper-extremity rehabilita-

tion called “OpenButterfly,” where users follow movements to protect a virtual butterfly.

OpenButterfly enables a dynamically controllable environment for individual exercise

by utilizing motion capture, a biomechanical model of torque and angular momentum,
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and a biometric pipeline for brainwave, heart-rate, and skin conductance analysis.

The goal of this study was to evaluate our iVR therapy system over the course

of 8 weeks. Our target users are those recovering from musculo-skeletal injuries who

have completed conventional therapy and need to continue therapy exercises without

the monitoring of a therapist. We performed our study in a lab setting to evaluate

user performance and experience through musculoskeletal simulation, game analytics,

questionnaires, and biofeedback response. We coined this new system of rehabilitation

as OpenButterfly. OpenButterfly is a heavily modified version of Project Butterfly by

Elor et al. [136]. We also developed a new game tool to easily record and implement

custom exercise movements into the game, run repetitive personalized exercise sets with

individual users, and have developed a pipeline for multi-modal analysis. Specifically,

the goals of this study were to evaluate the following:

1. User performance using game play analytics.

2. Forces and total movement during gameplay sessions using biomechanical simula-

tion.

3. User experience by measuring physiological response to gameplay and gather user

feedback.

Through this work, we hoped to highlight methodologies for other researchers

interested in diving deeper into the rehabilitation process with immersive virtual envi-

ronments, biomechanical analysis, and biofeedback.
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4.2 Experimental Design

Our target user group consisted of outpatients recovering from shoulder in-

juries that were pre-cleared for participation. Additionally, these users were patients

who failed to complete their at-home exercises, which, as explained prior, can lead to

incomplete recovery and increase the risk for re-injury. To recruit study participants, a

survey was emailed to interested university students with general questions about their

desire to participate in the study, if they had a relevant injury, if they participated in

physical therapy, and what stage of recovery they were currently in. Follow up inter-

views were conducted with respondents to get more information about their injury and

long term recovery goals to determine if they met the user group criteria. After such

screening, five students (one female, four males) with ages ranging from 21 to 28 were

chosen, and each student provided informed written consent to participate in both stud-

ies. All participants were continuing normal daily living activities but claimed to have

limited strength, and/or a limited range of motion. This study received IRB approval

from the Office of Research Compliance at the University of California - Santa Cruz. To

document user participation, we established a data-collection pipeline and methodology.

4.2.1 Methodology and Data Collection

The effects of OpenButterfly were examined during an eight week period

through a multimodal analysis of biomechanical, biometric, and gameplay responses.

To enable such an analysis, we designed the OpenButterfly pipeline, as shown in Figure
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4.1, and applied the analysis after testing individual users per exercise session. Our

user testing protocol can be seen in Figure 4.1. The sessions consisted of the following

methodology stages:

1. Preparation: The study administrators sanitized the iVR equipment, made sure

all biometric sensors were fully charged and ran a session of OpenButterfly with

all sensors active to ensure data communication quality.

2. Baseline: All biometric sensors were placed on the user in the exercise area. The

administrator instructed the user to remain still and relax. After a 15 second

period of adjustment, a 30-second baseline was recorded to mark each users’ resting

state for every session.

3. Rest: The user was instructed to relax for 90 seconds before performing the exer-

cise with OpenButterfly. This was done before every new exercise was prescribed.

4. Exercise: Users completed 60 seconds of gameplay using OpenButterfly with the

iVR headset and biofeedback/biomechanical data recording system. Upon com-

pletion of one set, the Rest stage was repeated.

5. Survey: After all exercises were completed, users filled out a brief survey indicat-

ing preference, pain, immersion, and self-reported advancement toward long term

recovery goals. Such survey questions can be seen in Table 4.3.

Two researchers were always present to monitor user experience and followed

a strict written protocol when interacting with users. This ensures a consistent method
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of tracking progression in the course of the eight weeks. Below is the list of equipment

that we used in the study. Every sensor was chosen with accessibility and cost as a

factor.

1. HTC Vive: Through Vive and the Unity Game Engine, motion capture and game

data are recorded during runtime at 90 Hz using a data exportation method de-

veloped in previous studies by Elor et al. [136, 23].

2. OptiTrack: A motion tracking system of 10 reflective markers was recorded at 120

Hz using 8 Optitrack 13W cameras [145].

3. InteraXon Muse 2 - Brain Sensing Headband [119]: Muse is a commercially avail-

able headband that records EEG on the pre-frontal cortex (TP9-10, AF1-7) with

dry contact electrodes. The headset has built-in internal noise suppression with

2uV RMS noise floor and a 50 or 60Hz regional notch filter. Muse was connected

wirelessly to the Muse Monitor app on a mobile device and employed a Cooley-

Tukey FFT [146] to extract brainwave band power in bels. Muse has successfully

been used in other studies to infer mental state, analyze event potentials, and

record biofeedback [122, 123, 121]. Foreheads were sterilized with saline wipes

before gameplay.

4. Neulog GSR logger sensor NUL-217 [118]: The NUL-217 is a GSR logging sen-

sor that measures the conductivity of the skin between the fingers. The logger

connects to a USB-200 Module and records GSR in micro Siemens with a 10nS

resolution at a max sample rate of 100Hz. The two finger electrodes were sterilized
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HR [Polar OH1]

GSR [Neulog NUL-217]

EEG [InteraXon Muse 2]

Game Data[Unity/Vive]

Motion Capture [Optitrack/Vive]

Video Capture [Webcam]

Immersion/Emotion [Jennet et al] Biomechanical
Results

Biometric 
Results

Gameplay and Data Extraction Processing

Analysis

(I) Preparation

Switch
Exercise

10 Min 

5 Min

30 Sec

90 Sec

60 Sec

Session Start

Session End

(IV) Exercise

(V) Surveys

(III) Rest

(II) Baseline

OpenButterfly Protocol

Figure 4.1: OpenButterfly Protocol & Data Pipeline Illustration for both Pilot [A]
and Revised [B] Studies. OpenButterfly Protocol indicates the general outline for each
experimental session. As shown in Gameplay and Data Extraction, the HR, GSR, and
EEG were independently collected for a baseline, and then collected with game data,
motion capture, and video capture during gameplay. Our survey was administered at
the end of each session. After each session, we compiled all the data files through
synchronization achieved via Python. MATLAB R2018B [1] was used to run statistical
analysis on biometric data, and OpenSim [2] utilized the tracking data to calculate
shoulder joint kinematics and dynamics.

with saline wipes before gameplay.

5. Polar OH1 - optical heart rate sensor [117]: the Polar OH1 is a 6 LED optical

heart rate sensor that is used with an armband to record beats per minute through

Bluetooth at 1Hz sampling frequency.

These devices are easy to set up for a user at home and are a more affordable solution

compared to clinical grade sensors; i.e. these biofeedback sensors do not utilize single-use

components, unlike more conventional systems that may use EEG gels or sticktrodes.
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4.2.2 Game Mechanics

Our game, titled “OpenButterfly”, consists of a virtual butterfly that moves

within reach of the participant to guide the user through their required movements.

OpenButterfly gameplay can be seen in Figure 4.2. It is an adaption of Project Butterfly

by Elor et al, previously designed for upper-extremity impairments for older adults while

using a soft robotic wearable [136]. Specific new contributions to the OpenButterfly

software includes a new system that records and prescribes custom exercise movements,

runs automated repetitive personalized exercise sets with individual users, and provides

increased stimuli for movement guidance. These contributions were designed through

feedback sessions with collaborating physical therapists across Santa Cruz, California.

To guide movements, projectile crystals emanate from a 15m distance and

move on a collision path with the butterfly. Users were informed that the goal of the

game is to protect the butterfly from these crystals. The player holds an orb in their

hand that they can place over the butterfly to protect it. The crystals explode when

they hit the orb, letting the player know they successfully protected the butterfly and

earned a point.

For prescribing custom movements, the path of the butterfly can be predeter-

mined and set using a simple interface. The therapist can enter the ”Path Development”

game mode, where they see the butterfly in their hand. When the trigger is pressed, they

can move the butterfly in any path they desire at any speed. These movements can be

saved and accessed through internal comma-separated value files. Through these move-
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ment files, the butterfly will follow recorded exercises that are automatically normalized

to each user’s arm length, target arm, and prescribed speed of movement. These im-

plementations were done through utilizing the Unity3D Game Engine’s Microsoft .NET

File I/O C# Libraries [147].

Our study examined this new game mode by recording and prescribing seven

new exercises in collaboration with therapists. The distance of the butterfly from the

user is scaled based on arm length, which was measured for each participant at the

beginning of the study using the relative position of the game controllers to the headset.

Thus the game automatically scales exercise paths to the user’s arm length – a feature

requested by our collaborating physical therapists. Such game paths can be seen in

Figure 4.3. These changes were done as a means for therapists to adjust the game

to fit their users’ needs and to enable dynamic customization and calibration. While

some of the game’s stimuli have been explored by Elor et al. through Project Butterfly,

OpenButterfly was one of the first studies to examine these new exercise features when

applied to iVR therapy over the course of eight weeks.

4.2.3 User Feedback

At the end of each session, participants were asked several Likert scale ques-

tions about their iVR experience that day. These questions were taken from a Jennett

et al. survey for immersion in games [126] and was modified to focus more on user

engagement. Such survey questions can be seen in Table 4.3. The surveys were utilized

to track self-perception for users at the end of each session. These questions were used
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Figure 4.2: A view of OpenButterfly gameplay. The protective transparent blue orb is
outlined in white. The purple arrow shows the next incoming crystal cluster that heads
towards the butterfly. To earn points, users need to place the orb over the butterfly to
protect it from the crystal. Each crystal that is blocked earns a point.

Figure 4.3: The “Path Development” custom game mode for therapist movement im-
plementation. The right picture showcases a researcher using the iVR control to trace
the path of the butterfly. The left picture indicates the movement’s path, traced in red,
so the researcher can see where exactly the path is located.
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Figure 4.4: OpenButterfly Movements and OpenSim Outputs are shown above. The
pilot study included the movements with the red background, while the revised study
included both the red and green background movements. The movements are: FAR
= Forward Arm Raise, SAR = Side Arm Raise, HA = Horizontal Abduction, EXR =
External Rotation, ABR = Abducted Rotation, MXDPR = Mixed Press, and MXDCR
= Mixed Circles. The white dotted line shows the path the butterfly traveled for each
movement. On the graphs, the blue line shows the relevant angular displacement of
the shoulder, and the red shows the torque placed on the shoulder throughout the
movement.
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to evaluate if the users would remain engaged, entertained, and immersed over the eight

week period. Additionally, an exit interview was conducted at the end of the eight weeks

to determine what modifications users would want to help improve rehabilitation. This

enabled us to establish a mixed-method approach of gameplay, biomechanical, biomet-

ric, and survey responses for OpenButterfly.

4.2.4 Data Processing

Each of the biosensors, the Optitrack motion capture system, and HTC Vive

produced their own output files with their respective recording frequency. Approxi-

mately 1,200 data files were produced during the Pilot and Revised Study. Python

[148] scripts were written to structure the file management system and then sync all the

files for each user session. OpenSim [2] simulations were ran using the motion tracking

files from the Optitrack system, generating approximately another 1,100 files. Statisti-

cal analysis was then conducted on the data files using MATLAB [1]. The full pipeline

for collecting and processing our data can be seen in Figure 4.1.

4.3 Pilot Study

The goal of the pilot study was for participants to perform common daily

movements with an incremental and gradual amount of weight increase on their arms.

The movements chosen were Forward Arm Raise (FAR), Side Arm Raise (SAR), and

Horizontal Abduction (HA). These movements are simple single plane movements. We

were careful to start with low-intensity movements to ensure participant’s safety. Addi-
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tionally, we hypothesized that participants would initially be unable to have full ROM

through each exercise, but would be able to progress to full ROM with a small amount

of wrist weight by the end of the pilot study.

4.3.1 Protocol of the Pilot Study

The pilot study was performed for the first four weeks. Each week consisted

of two sessions where users performed 30-45 minutes of exercise (time includes rest).

During each session, exercises were performed in the following order: FAR, SAR, and

HA in order for a total of three rounds. The first round was played without weight for

a warmup, and the subsequent two rounds were performed with the appropriate weight

per user. Additionally, users had a 90-second rest between exercises, and each exercise

was performed for 60 seconds at ten repetitions per minute. Aspects of this protocol

are highlighted in Figure 4.1.

Full ROM for these movements was attained before adding weight to the user’s

wrist. The weight was added in small increments to elicit a strength progression, and

users’ average weight per session can be seen in Table 4.1. Weight was only increased

when participants could comfortably perform two consecutive rounds of all three exer-

cises for a given weight. To account for the participant’s responses being influenced by

the novelty of the VR game and or headset, an initial session was performed to introduce

the game mechanics and enable the participants to be familiar with the OpenButterfly

environment and movements.
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4.3.2 Results of the Pilot Study

The averages of collected data can be seen in Table 4.1. The most prominent

observation was that all users were able to complete the entire ROM of each exercise

quickly, indicated by the high compliance rate, which allowed us to begin using weight

early on in the study. To understand user engagement, effort, and immersion we em-

ployed a modified survey from Jennet et al. [126]. Table 4.3 shows the questionnaire

asked at the end of each user testing session. Generally, users agreed that the game

was engaging; they put a lot of effort into participating and felt immersed throughout

gameplay sessions.

All elements of player behavior and biometric events (with the exception of

user jaw clenches) were found to be significant, as seen in Table 4.1 A-s1 to A-s5. Users

were able to acclimate to a 100% increase in weight resistance while moving their weak

arm at a total average of 30m of distance per session. Additionally, users were able to

successfully protect the butterfly at a compliance rate of a mean 96%, where compliance

is defined as the time protecting the butterfly divided by the total time of the exercise

session. In terms of both compliance and arm travel distance, these results held a

low range of standard deviation, indicating that user performance was fairly constant

between all users for these sessions. From the biometric data starting at a resting heart

rate, the exercise sessions induced an average mean increase of 11.78 beats per minute,

indicating increased physiological intensity from the exercises (shown in Table 4.2 [A]).

Galvanic skin response was also found to be at a positive increase for all pilot protocol
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sessions, with a mean 1.47 micro Siemens resting-state change indicating arousal from

gameplay, as shown in Table 4.2. For brainwave activity, the pilot protocol generally

held a mean increase of all wavebands for alpha, beta, delta, theta, and gamma powers

– this may confirm that users were mentally stimulated and physiologically challenged

during gameplay.

4.3.3 Influence on the Revised Study

One thing that we learned from the pilot study is that the exercises of the Pilot

Study were effective in increasing general strength, as can be seen in Table 4.1 where

average weight between each session increases consistently. However, our users had a

more substantial initial ROM than we anticipated. For our revised study, we needed to

help our users progress more in ROM than the exercises in the Pilot Study required.

We performed ROM expansion by adding two common adduction/abduction

movements: External Rotation (EXR) and Abducted Rotation (ABR), as well as two

multiplanar movements: Mixed Press (MXDPR) and Mixed Circles (MXDCR). These

movements can be seen in Figure 4.4 in the green region. Since these new movements

focused more on stretching, no weight was used while performing these four movements.

In the Pilot Study, the first round was always played without weight as a

warmup. Since the new stretching games were played without weight, we decided to do

two rounds first of the non-weighted movements followed by two rounds of the weighted

movements. This is further explained in the Revised Protocol Section.
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4.4 Revised Study

Learning from the pilot study results, we modified our game to have a more

appropriate protocol for our users. To address insufficient ROM exercises, new exercises

were created, as shown in Figure 4.4 (EXR, ABR, MXDPR, MXDCR). These move-

ments require a greater ROM at different angles than the pilot games. FAR, SAR, and

HA games were kept to specifically address increases in strength by still utilizing the

wrist weight progression protocol.

4.4.1 Revised Protocol

The revised study lasted four weeks, with twice a week sessions consisting of

30-45 minutes of exercise. During each session, two rounds of EXR, ABR, MXDPR, and

MXDCR were performed with a one-minute rest between each exercise. Each movement

was performed for 60 seconds at a slow tempo to allow for stretching at the limit of

each subject’s ROM. These exercises were always performed without any wrist weight

as stretching was the goal, not strength.

Afterward, two rounds of FAR, SAR, and HA were performed with a one-

minute rest between each exercise. This followed the same weight increase protocol as

the pilot study to ensure a safe progression in strength exercises.

4.4.2 General Results of the Revised Study

From the revised protocol, users engaged in greater weight resistance than the

Pilot Study [A], and subsequently, there was far more variability between users. Arm
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travel distance was less in total, but the movements were far more complex and slower.

HR and GSR were found to be less than the Pilot Study’s [A] mean resting state change

but still elevated by nearly 10bpm and 1.13 micro Siemens, respectively. The lowered

heart rate may be an artifact of the slower tempo in movement, and declining GSR may

further indicate acclimation to the game with a lowering rate of arousal (however, it was

still elevated far above resting state). Table 4.2 lists these results. As this table shows,

the Revised Study [B] results were significantly different from the Pilot Study’s results

[A] for all data sets. Specifically, the Pilot Results [A] had a greater compliance rate,

weak arm movement, HR change, and GSR change. In contrast, the revised study’s

results show higher levels of brain activity for all wavebands as well as Blinks and Jaw

Clenches. This may indicate that the Revised Study was more mentally stimulating

while both increasing weight resistance and game compliance, as shown in Table 4.1.

4.4.3 Biomechanical Performance

Using OpenSim with the motion tracking data from each session, we were able

to determine the amount of torque placed on the shoulder for each exercise, as shown

in Figure 4.5. We took the integration of torque with respect to time to determine the

amount of angular momentum the shoulder generated from exercise.

While the average torque for each user dropped between the Pilot Study [A]

and the Revised Study [B], the average angular momentum for each user increased

between the studies, as shown in Table 4.2. This decrease in mean torques is a result of

more exercises being performed without weight. For example, 8 of the 14 exercises in
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Table 4.1: OpenButterfly Protocol Pilot Study [A] and Revised Study [B] session av-
erages between all exercises for all users. Parenthesis indicated standard deviation.
Exclamation Mark indicates resting-state change (note all biometric measurements in-
dicate change induced from gameplay compared to baseline measurements).
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Table 4.2: Wilcoxon Significance For Pilot Study [A] Vs. Revised Study [B] Results.
The Protocols Were Found To Be Significantly Different From Each Other At 95% Con-
fidence In All Data Categories. “Sig” Indicates The Significance Level. Superscript (A)
Indicates Resting-State Change (Note All Biometric Measurements Indicate Change In-
duced From Gameplay Compared To Baseline Measurements). Bolded Values Indicate
Significant At 95% Confidence From Wilcoxon Testing. Pilot Study Indicates Higher
Game Performance As Well As GSR And EEG.Revised Study Shows Higher EEG Per-
formance As Well As Blinks And Jaw Clenches. Note That Na And Nb Is The Total
Number Of Samples Found By Number Of Sessions × Number Of Users × Number Of
Exercises
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the Revised Study [B] were played without weight, whereas only 3 out of the 9 exercises

in the Pilot Study [A] were without weight. The increase in average angular momentum

between the Pilot Study [A] and the Revised Study [B] occurs because more games

are played in the Revised Study [B]. Figure 4.5 shows each user’s average torque and

angular momentum for every session.

We expected to see more of a steady increase for torque and angular momen-

tum in each study since the users were lifting the same or more weight than their pre-

vious session. However, we observed that users’ average torque and angular momentum

fluctuated a bit from session to session in the same protocol rather than continuously

increasing. We believe this is important to show as we can see which sessions the users

were not performing as expected. Users told us that some days they would come in more

stiff or sore than other days. This data may be indicative of these cases and theoreti-

cally could be used to help adjust the exercise protocol. These results may be helpful

for other researchers interested in expanding upon this work for a more personalized

and reactive therapy regime. Understanding day to day fluctuation through this data

could lead to new algorithms for a more customizable rehabilitation through adapting

to users’ capabilities. Even if users decline or have a set back (i.e., sore from previous

days activities such as yard work), these insights could be used to tailor the difficulty

to the most important muscle groups for maximizing therapeutic benefit.

From this data, we can also see the most significant changes in torque and

angular momentum come from the different amount of games played; in short, the more

games played, the more angular momentum was gained. This is useful when deciding a
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Figure 4.5: Average torque (top) and angular momentum (bottom) for each session is
shown with each color representing an individual user.

rehabilitation plan as the variables to consider are weight resistance or total movement.

So by utilizing the angular momentum, we can determine the exact amount of motion of

a specific game, no matter the movement path of the arm. Such an analysis of angular

momentum could be used to build a more intelligent progression.

4.4.4 Qualitative Performance

A significant difference between our two studies was found from Wilcoxon

significance testing at 95% certainty for the qualitative user surveys, as shown in Table

4.3. Users reported the Revised Study [B] to be significantly more challenging ([Q7]),

progressive ([Q10,Q11]), and liked ([Q1]) the protocol more than the Pilot Study [A].

Conversely, users reported that they felt the revised protocol provided significantly less

distraction ([Q4]) from their real-life compared to the pilot protocol. These results

may indicate that the protocol choices for the Revised Protocol [B] were successful in

challenging each user from an engagement and effort perspective.
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Table 4.3: OpenButterfly Survey Table. Results Without Asterisks Are In Likert Type
Scale Where One Indicates Strongly Disagree And 5 Indicates Strongly Agree. “Sig”
Indicates Wilcoxon Significance Level. Superscripts Indicate: (A) Scale Of “Not At All”
To “A Lot”, (B) Scale Of “Very Poor” To “Very Well”, (C) Ten-Point Likert Scale For
“Not At All” To “A Lot”, (D) Indicates It Was A Reverse Question And The Response
Average Is Represented In The Inverse To Keep All Values On The Same Scale.

4.5 Discussion

From our multimodal analysis of our eight-week study, we show that Open-

Butterfly accomplishes our goals of increasing ROM and increasing strength. This was

a multi-step process that required two stages to adjust and further customize the game

to the users’ capabilities as rehabilitation necessitates. The Pilot Study [A] was useful

to help determine the capabilities of our users and how to set achievable goals for them.

This stage showed that the users achieved a full ROM for the first three exercises (FAR,

SAR, HA) and were ready to start training with weights very quickly. Starting with

simple movements was a safeguard against exercises that were too advanced for their

state of recovery. The insights from the Pilot Study enabled us to create more complex

movements and continue to work on strength.
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For the Revised Study [B], we created four new movements (EXR, ABR,

MXDPR, and MXDCR) that were performed without weight to target enhanced ROM.

At the same time, the original exercises from the Pilot Study [A] were carried over

to focus on strength building. We saw ROM increased to meet these challenging and

further-reaching movements indicated by the increase in the rate of the compliance re-

covery during the Revised Study [B], as shown in Table 4.1. Also, in Table 4.1, results

from average weight indicated a successful increase in strength. The Revised Study

[B] displayed an improvement where more exercise difficulty was leveraged to safely

challenge the users. Users also enjoyed the new exercises and stated it was similar to

”unlocking a new level in a game.” This is a consideration as we move forward: making

levels that are of different movements so that the game remains challenging and does

not become repetitive.

Additionally, the users’ physiological recordings and self-reported responses

indicated that users were able to remain engaged with the game beyond the novelty

effect period for the course of the eight weeks, as seen in Table 4.1 and Table 4.2. Con-

sequently, technology like OpenButterfly may become a promising tool for addressing

the problem of adherence to a rehabilitation program. The more enjoyable and engag-

ing the program, the more likely users will continue the program. This adherence with

OpenButterfly is particularly exciting, as other researchers may be able to utilize similar

iVR physical therapy experiences for long-term treatment.
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4.5.1 Contributions from OpenButterfly

Through our study, we believe several insights can be useful to game devel-

opers and researchers. First, we learned that the ability to easily and quickly create

custom paths for arm movements during gameplay allowed us to efficiently adjust our

games between the Pilot Study [A] and the Revised Study [B]. This adjustment needed

to occur because all users were able to complete a full ROM with added weight within

a few sessions. The Pilot Study [A] exercises proved valuable as a baseline ROM and

for improving strength. The Revised Study [B] had more complex movements targeting

ROM and kept the now proven original exercises for targeting strength. These game

modifications were guided by our collaborating physical therapists to increase the diffi-

culty of an appropriate progression in strength and ROM. The ability to record custom

motion paths and normalize movements to each user’s arm length and height proved to

be a valuable tool.

Another useful tool was the biomechanical simulation, as it offered more in-

depth analytics into user performance through analyzing performance during a session.

In traditional PT, the therapist can monitor progression through measurements of ROM

and strength, typically pounds lifted or level of a resistance band. Through our study

with OpenSim, we are able to provide this data and, in the future hope to have ev-

erything streamlined so that no matter the movements performed, simple or complex,

we can provide a thorough representation of the amount force placed on the working

joint for a therapist to examine. With further user testing, perhaps researchers can
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build more sophisticated models for simulation that will provide individual muscle for

training and rehabilitation for any of the movements performed in the game. This can

help the therapist target specific muscles to aid in a focused recovery.

Additionally, biometric data from OpenButterfly may help researchers under-

stand users’ physiological responses to the iVR experience. This helps with recovery as

more enjoyable user experience is likely to lead to better adoption of a rehabilitation

program. Our data indicates users had higher brain activity for the Revised Session [B],

which should be further explored in considering rehabilitation monitoring and game

adaption for future studies. These metrics also provide a possibility for determining

how much effort the user is putting into the game on a physiological level. Since this

isn’t a strenuous workout, we want to make sure users are working at an appropriate

level. We learned that the levels we chose were enough to elicit a strength increase

response, but not so much that user is at risk of injuring themselves.

We believe our study has shown this game’s feasibility for helping with the

recovery process, and fellow researchers, developers, engineers, and therapists may find

aspects of our research useful for their endeavors. Collecting HR, GSR, and EEG may

provide a deeper understanding of a user’s engagement and physical effort with iVR

exercises. This can help with game development in creating exciting experiences to

help increase a user’s desire to play the game. Biomechanical simulation can provide

valuable metrics to a monitoring therapist and also give a progress log over an extended

period of time. OpenButterfly itself shows that other games can be created to aid with

recovery, and we suggest from guidance with our collaborating therapists that in future
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games, there is a way for a therapist to dictate the movements of the game easily, so it

is customizable to the user’s needs.

4.5.2 Study Limitations

There are several limitations that may impact generalizabilty of the results.

The study examined five users with Openbuttefly, but in the future iterations we plan to

recruit more users. While the study lasted eight weeks it would be helpful to understand

more long term effect by conducting the study for 12-16 weeks since our goal is adherence

of users. Additionally, we limited the frequency to two sessions per week to ensure

adequate time for recovery, but having the users progress to three and four times per

week could yield better benefits. While our long term goal is at-home use, we conducted

our study in a lab to examine performance and user experience of our system. The next

step would be apply what we learned from our system feasibility study and conduct an

at-home user study.

4.6 Conclusions and Future Work

The purpose of OpenButterfly was to create an effective and feasible iVR

physical therapy game to help users with shoulder injuries through multimodal reha-

bilitation analysis. This was accomplished by working with therapists and enabling

game recordings to mimic movements found in physical therapy targeted at ROM and

strength training. Through OpenButterfly, we present a novel study that is a long-

term, customizable highly immersive virtual reality game for shoulder rehabilitation
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that analyzes physiological response and uses biomechanical simulation to identify the

joint kinetics and dynamics. Working with therapists, we have identified useful tools

and data sensors to aid in developing games targeted at recovery that we believe other

serious game researchers will find helpful. This multimodal rehabilitation analysis will

help with the next iteration of our game to ensure user engagement and that users are

working at an appropriate threshold, not too intense to risk injury but difficult enough

to elicit a physiological adaptation.

We explored two experimental studies: a Pilot Study consisting of three single

everyday movements targeted at a basic ROM and strength, and a Revised Study that

incorporated four new movements aimed at ROM from insights gained from the multi-

modal rehabilitation analysis of the Pilot Study. Our results indicate that users were

able to overcome the novelty effect of iVR through extended exposure to gameplay over

eight weeks. We were also able to measure heart rate, galvanic skin response, and elec-

troencephalography while our users played the game, allowing us to understand their

physical strain and emotional response while playing. With the motion capture data, we

were able to determine the kinematics and dynamics of the shoulder during gameplay

through biomechanical simulation. We believe this data would be useful for physical

therapists as it helps quantify the forces of the joint for an entire session and would

provide a method for remote therapists to quickly understand users’ exercise session.

In the future, we plan to explore the design of new levels within the game that

contain more complex and less predictable movements to challenge users physically

and mentally. Our long term goal is to develop an at-home recovery game that is
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capable of providing meaningful game data remotely to the therapist. Subsequently, we

plan to explore a more complex biomechanics model capable of identifying individual

muscle force contribution to movements. The incorporation of runtime biomechanical

models to identify muscle weaknesses may further aid in custom movements for an

individual user to help maximize their recovery by ensuring the targeted muscles are

being used for a given movement. We hope to deploy this system for at-home use to

make OpenButterfly more accessible for users in need. This work was published in the

journal American Journal of Sports Science and Medicine and titled “ Openbutterfly:

Multimodal Rehabilitation Analysis of Immersive Virtual Reality for Physical Therapy”

[3].
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Chapter 5

The Novelty-Effect of Immersive Virtual

Reality

5.1 Introduction

The previous chapter’s study also allowed for the examination of the Novelty

Effect regarding iVR. The Novelty Effect is when users improve due to interest in the

new technology (iVR in our case) rather than from the intervention itself. This is

important to understand how users will engage with this platform at home over the

long term. If users are only interested because iVR is new and entertaining then that

feeling will wear off over time and adherence will fail once again.

The study reported in this chapter aims to answer the question: Can an iVR

HMD experience maintain engagement beyond the novelty period and show continued

rehabilitative improvement using multi-modal analysis when used as a physical ther-
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apy environment? To answer this question, we expand upon an iVR serious game for

controlled physical exercise. The purpose of the updated design is to investigate im-

provements in physical performance using an iVR system by following protocols that

are similar to conventional physical rehabilitation. Three outpatient physical therapists

with doctorate degrees in physical therapy and over 40 years of combined professional

experience, helped design the protocols used in this study to match exercises used in

clinical settings. Through these three consultants, we learned that the principles of

functional shoulder rehabilitation for late-phase recovery usually extend from 6 to 12

weeks of treatment to “(1) restore full range of motion and flexibility... and (2) increase

strength, power, and endurance with exercises that stress core-based muscle synergy”

[149, 150]. In this study, we extend these principles to stimulate a range of motion in

the first four weeks and increase strength in the last four weeks.

Specifically, the contributions of this study are:

1. A demonstration that our iVR HMD based serious game system can be effective

for physical rehabilitation.

2. An examination of methods towards maintaining engagement and motivation over

extended period of time.

3. An assessment of the feasibility of using biometrics to complement the iVR game.

Please reference the previous chapter for system design and protocol as this chapter

analyzes the same data set collected during the last chapter.
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5.2 Results

Results from session data were post-processed using the Mathworks Matlab

2018b Statistics and Machine Learning Toolbox [129]. We examined user performance

between every session for mean and standard error. In total, we collected 225 session

exercises for the Foundation protocol and 350 session exercises for the Challenge protocol

for every data type. Biometric signals were normalized from each user’s baseline resting

state to examine the changes induced by gameplay.

The game performance data shows general improvements in weight resistance

over time with maintenance of compliance and exercise movement, as shown in Figure

5.1. On average, users were able to handle more weight resistance per exercise than

the initial session, and while the compliance remains almost constant in the Foundation

protocol, it increases significantly in the Challenge protocol. In both protocols, users

were able to perform the same movements with a gradual weight increase.

For physiological performance, PBF was able to record and monitor elevated

HR and GSR measurements when compared to resting-state for all sessions of each

protocol. Figure 5.2 shows the changes from resting baselines and indicates that PBF

always induced an elevated HR (indicating physical engagement) and stimulated GSR

by 1uS or higher (indicating induced arousal). In the Foundation Protocol, users main-

tained a constant level of increased physical activity with a slow decline of arousal. In

the Challenge Protocol, users had increased intensity of physiological activity with a

considerable decline of arousal that eventually stabilized.
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Figure 5.1: Game performance between Foundation Protocol (in red of 225 recorded
exercises) and Challenge Protocol (in green of 350 recorded exercises). Row one shows
compliance, where compliance is defined as the total time protecting the butterfly over
the game’s total time. Row two shows the mean upper-limb displacement between all
exercises required in that session. Row three indicates the mean weight used between
all exercises of that session. Error bars indicate standard error (note the Foundation
Protocol had less variability between users, so error bars appear substantially smaller
than Challenge Protocol due to shared scale).
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Physiological Response
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Figure 5.2: Physiological HR and GSR responses from gameplay are shown. Row one
illustrates mean change from resting state of heart rate. Row two illustrates mean
change from resting state of galvanic skin response. Biometric change is calculated
as the offset between gameplay biometrics against resting-state biometrics. Error bars
indicate standard error.

For brainwave response, neural activities were measures at all sessions and all

protocols, as shown in Figure 5.3. All wavebands were found to be at a positive increase

from resting-state change which indicates that Alpha, Beta, Delta, Theta, and Gamma

waves were elevated during PBF usage. In the Foundation Protocol, all brainwave

responses from users generally increased in the middle of the sessions and began declining

towards the last sessions. In the Challenge Protocol, all brainwave activities had a more

substantial initial session than the Foundation Protocol and generally declined overtime

to nearly the same level as the Foundation Protocol’s last session.

Additionally, Muse [119] holds the capability to detect facial muscle move-

ments to determine a Boolean response of eye blinks and jaw clenches. This data was

recorded during runtime gameplay, and converted to facial movements per second based

on changes from the baseline, as seen in Figure 5.4. While playing PBF, users in the

Foundation Protocol tended to blink less than their resting state for every session (with
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Neural Response
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Figure 5.3: EEG responses between Foundation Protocol (in red of 225 recorded ex-
ercises) and Challenge Protocol (in green of 350 recorded exercises). Rows 1-5 show
Alpha, Beta, Delta, Theta, and Gamma bands resting state change respectively. Error
bars indicate standard error.
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Facial Movement Response
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Figure 5.4: Facial muscle movements recorded with Muse between Foundation Protocol
(in red of 225 recorded exercises) and Challenge Protocol (in green of 350 recorded
exercises). Row one shows the mean resting state change of blinks per second. Row two
shows the mean change of jaw clenches per second from resting state.

the exception of Session #3). Jaw clenches do not vary much between sessions. In

the Challenge Protocol, users tended to blink and clench their jaw much more between

every session than their baseline resting state. Unlike the Foundation Protocol, these

blinks were always at a positive increase when compared to resting state, except for

the first session, and were more rapid. Lastly, jaw clenches tended to decline as time

progressed between sessions.

For user’s self-reported responses, the qualitative survey questions can be seen

in Figure 5.5 (engagement based) and Figure 5.6 (emotion based). For both protocols

on each session, most users agreed that the game remained more engaging than their

traditional therapy routine and that the game provided a distraction for them during

their exercise, as shown in Figure 5.5. Similarly, the majority of users reported a positive

range of emotions for each exercise ranging from Happy/Joyful, Excited/Motivated, and
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Engagement Survey Response

Figure 5.5: Survey responses on engagement from 5 subjects, with 1=strongly disagree
and 5=strongly agree.

88



Emotion Survey Responses

Figure 5.6: The self reported emotions ratios felt by users from post-gameplay survey.

Relaxed, as shown in Figure 5.6. Q3-4 show the largest differences in survey responses

between protocols. Specifically on Q4, the Foundation Protocol saw a transition from

unanimous disagreement with noticing “the outside world while playing the game” to

a greater majority of neutral as time progressed. The Challenge Protocol was inverse

to this effect, where users eventually became unanimous in disagreeing that they could

notice the outside world during gameplay. In essence, this suggests that users were

much more engaged in the game during the last two sessions of the Challenge protocol.

5.3 Discussion

Through analyzing the data from our two months study, we observed the

following phenomena:
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PBF was able to elicit rehabilitative responses similar to traditional

therapy, including increases in muscle’s strength, control and flexibility. The

results suggest that across all users, their resistance successfully increased throughout

the study, as evidenced by the weight increments that the users were able to cope with.

Heart rate increased for both protocols, which we concluded were due to the increased

weights that require additional muscular efforts. Compliance improved more during the

Challenge Protocol than the Foundation Protocol, which may suggest that users that

were challenged with the complex movements followed the protocol more carefully than

asked to perform simpler movements. During the exit interview, users perceived that

they gained significant strength and stability through playing the game. They felt they

would have been unable to play the game at the beginning of the study using their final

session’s weights, and yet, users were able to perform those exercises with those weights.

Users can remain engaged in physical therapy using PBF and HTC

Vive beyond the novelty effect period. One of the dangers of long-term therapy is

when users get bored and lose interest in the exercises. We did not observe any decrease

of interest and engagement beyond the novelty effect (when users were still new at iVR

games). The greatest changes in all the brainwave bands (which are often associated

with levels of stress [51], focus [52, 53], awareness [56, 57], motor [60, 61], and cognition

[62, 67]) were seen in the transition from the Foundation Protocol to the Challenge

Protocol. This sharp increase in all bands suggests that the additional exercises were

able to engage the users considerably. Additionally, blinks were the lowest for each

protocol’s first session, indicating the user may have been more focused during these
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sessions [151]. This could mean that creating new types of movements after the user

has become accustomed to a set of exercises can stimulate users to remain interested.

When the Challenge Protocol was introduced, jaw clenches were increased from baseline,

possibly indicating greater effort of the participant [152]. The survey responses also

showed that users felt engaged by each protocol. In Q1 (Figure 5.5), users compared

gameplay exercises to their traditional therapy. GSR responses declined over time in

both protocols, and we speculate that this is most likely due to users becoming more

acclimated to the game over time and thus causing drop in arousal. We should note

that at the end of each protocol, GSR’ level stabilizes, indicating a steady state arousal.

The survey results suggests that PBF was more successful in enabling engagement of

physical therapy than traditional interventions. Questions Q2-4 also demonstrated that

the user felt present in the game world, possibly indicating a successful immersion.

Additionally, users stated that they enjoyed the first few sessions, but started to lose

enthusiasm as they felt the Foundation Protocol was too repetitive and straightforward.

With the introduction of new and more complex movements that could not be easily

memorized in Challenge Protocol, the users were excited once again to play the game.

Some users stated that the more complex movements kept them engaged rather than

“zoning out” as they did during the simple movements over time.

iVR games have the potential as a long-term physical therapy tool

that can be used at home. PBF was successful in inducing rehabilitative response

while maintaining extended engagement. The basic version of PBF only requires the

Vive headset and none of the biosensors for remote usage. We argue that this suggests a
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low-cost solution for rehabilitation exercise compared to traditional long term physical

therapy sessions that require users to visit a clinic.

It appears that the differences in the difficulty levels and goals be-

tween the two protocols induced noticeable change in the different brainwave

measures. The most substantial changes were seen in the transition from Foundation

Protocol to Challenge protocol, where new and more challenging games were added

to the already existing games. From the context of Alpha band power (often associ-

ated with stress), these results may indicate that Challenge Protocol has much greater

difficulty than Foundation Protocol, and induced a higher amount of stress when tran-

sitioning to new and more challenging exercises. It appears that Beta (often associated

with focus) spiked higher when difficulty was increased, which was expected as users

must focus harder when the game became more difficult. One take away message from

these two findings is that, if we are to design games whose difficulty levels adapt to

users’ biometric changes, there should be a careful consideration to design how sharply

difficulty levels increase, as increased levels of difficulty induces higher focus, but also

higher stress.

More work needs to be done in establishing dynamic progression of

difficulty, utilizing biomarkers, and testing more users. Progression during the

game was an essential aspect for all users. They related adding new movements to the

game to be like “unlocking a new level.” All participants stated that they would like

to have more levels to advance through and clear goals for each level. This would help

keep things dynamic and avoid boredom due to repetition. Three of the five participants
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would recommend this game to a friend in its current version, while the last two stated

they would recommend the game if more levels, progression, and goals were incorporated

into the game.

It should be noted that future research should explore a more significant num-

ber of users and VR experiences to understand the long-term effects and user response

of iVR physical rehabilitation gaming. As more immersive virtual environments are

crafted for physical rehabilitation, there is a need to establish how such a system can

be tuned to the user’s biometrics to induce a desirable range of activity and understand

how this will compare to conventional physical rehabilitation. In this study, seven differ-

ent movements and one virtual environment were explored for upper extremity physical

rehabilitation. More motions and varied experiences should be investigated to examine

the game design, difficulty, and adaptation to iVR stimuli. We are also mindful that

there were only five users that we followed for two months; however, we believe that

this study is an important step towards gathering insights for future studies.

5.4 Conclusion

This study explored the effects of an immersive Virtual Reality HMD gamified

upper-extremity physical therapy that record both physical and biometric responses

over the course of two months. To provide a more engaging experience, we designed the

study so that users completed their prescribed therapeutic movements by protecting a

virtual butterfly in a dynamic and adaptive virtual environment. Two rehabilitative
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goals were set in the study: recovery of foundational movements and progressing with

more complex motions. The study results suggest that movement improvements over

time can be quantitatively assessed through game logs. The study also concluded that

the biometric responses can complement game data and provide a richer insight on user

engagement. These findings may indicate that long term immersive Virtual Reality

physical rehabilitation is feasible.

In the future, we aim to expand PBF’s capabilities for home health and to run

larger trials for comparison with conventional therapy methods. We would like to dive

deeper into the effects of immersive physio-rehabilitation through controlled trials to

understand how user-perceived confidence and difficulty influences the recovery journey.

Additionally, virtual environments, such as PBF, provide an opportunity to explore run-

time biofeedback with adaptive difficulty using emotion classification, which we also plan

to investigate. Motion capture data with biomechanical simulation may be utilized to

estimate muscle forces for understanding biased movements and how to best prescribe

rehabilitation towards addressing weaknesses. We plan to run biomechanical simulation

for this estimation. The creation of an adaptive, personalized physical therapy game

that adjusts to the user’s mental and physical state in run-time may yield immense

potential. The work examining the Novelty Effect was published in IEEE Transactions

on Games and titled “Gaming Beyond the Novelty-Effect of Immersive Virtual Reality

for Physical Rehabilitation” [153].
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Chapter 6

Machine Learning for Physical Therapy

6.1 Introduction

With the development of Openbutterfly, we were awarded a National Science

Foundation (NSF) grant and entry to the Innovation Corps Program (I-Corps). NSF

aims to support innovation built upon fundamental research that can benefit society.

I-Corps is an NSF program that provides researchers with mentoring and funding to

accelerate innovation tailored to a group of end users who are in need of the newly

developed technology. Through this program, we interviewed 130 physical therapists,

our target end users, across the United States (Fig. 6.1) to learn what their biggest

pain points were in their daily work. One of the most common issues brought up

by physical therapists was the inability to easily get accurate biomechanical metrics

(joint angles and forces) during remote telehealth visits. To address this problem, we

developed machine learning models that can use the internal motion capture of an iVR
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system to output these types of metrics. We believe iVR coupled with our machine

learning models address the issues brought up by physical therapists who were all using

videoconferencing on laptops or phones. These models were built upon our previous

work with Openbutterfly.

Figure 6.1: A map of our physical therapy interviewees during the NSF I-Corps Program.

The COVID-19 Global Pandemic has caused an unprecedented need for the ad-

vancement of telehealth technologies to provide physical rehabilitation care [154]. While

number of telehealth sessions skyrocketed due to the constraints of the pandemic, phys-

ical therapists were challenged with the loss of hands-on-patient evaluation methods

[155, 156]. Moving forward. we can learn from the shortcomings of current telehealth

technologies during the pandemic to design better tools and platforms for therapists
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and patients. Telehealth for physical rehabilitation has many promising affordances as

it provides a more encompassing model of care by increasing accessibility and number

of patient visits through remote interaction [154]. Yet, for physical therapy to be effec-

tively implemented in telehealth during and beyond the COVID-19 pandemic, current

telehealth platforms must incorporate evidence-based movement metrics in a remote

setting [157]. This chapter aims to develop and evaluate the feasibility of a machine

learning pipeline using solely the motion tracking data of a mass-produced commercial

iVR system to predict a user’s joint angles and torques during exercises within virtual

environments.

6.2 Methods

The data used to train, validate, and test our model was collected from our

previous work entitled “OpenButterfly” which was described in chapter four [3]. Open-

Butterfly examined the experience of 5 users as they performed shoulder rehabilitation

in an iVR exergame over the course of two months, with gameplay shown in Figure 6.2.

Our target user group consisted of outpatients recovering from shoulder injuries who

failed to continue their at-home exercises and still possessed limited strength and ROM.

Five users participated in two exercise mocap sessions per week within our lab

in collaboration with two physical therapists. In total, we collected training data on

seven exercises:

• Shoulder Rotation (SR)
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Figure 6.2: A participant is shown playing Project Butterfly using the HTC Vive. The
silver dots on the player’s upper body are the reflective markers of the motion tracking
system, and the blue strap on the arm is a wrist weight to help increase strength. The
right-hand image is a capture from gameplay. The participant protects the moving
butterfly, outlined in green, by placing the blue orb over the butterfly to protect it from
the incoming crystals indicated by the yellow arrow.

• Side Arm Raise (SAR)

• Forward Arm Raise (FAR)

• External Rotation (ExR)

• Abducted Rotation (AbR)

• Mixed Press (MxdPr)

• Mixed Circles (MxdCr)

These exercise movements can be seen in Fig. 6.3 where the path of the

butterfly is shown and this is what the player attempts to follow. SR, SAR, FAR, ExR,

and AbR are all single plane movements that are common rehabilitation exercises while

MxdPr and MxdCr are multi-planar movements meant to help the subject actively
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Figure 6.3: Participants played OpenButterfly while seated with ten motion tracking
markers placed on bony landmarks as shown in the top left. The game incorporated the
seven exercises shown. The dotted line indicates the flight of the butterfly within the
game that the users followed with the controller. Letters A-E indicate the direction of
the movement. The top row of movements was focused on strength and played with a
wrist weight as participants progressed through the protocol. The bottom row of exer-
cises was focused on stretching and was played without weight. The three movements
that describe shoulder motion are in the blue text boxes. SR is primarily an Elevation
Plane movement, FAR and SAR are primarily Shoulder Elevation movements, and ExR
and AbR are primarily Shoulder Rotation movements.

stretch. The first four weeks consisted of games incorporating the movements SR,

SAR, and FAR with each exercise performed three times. The following four weeks

incorporated four new movements ExR, AbR, MxdPr, MxdCr. During this second

phase, all exercises were performed twice during each session. A weighted arm strap

was placed on the user’s wrist for the exercises SR, SAR, and FAR with increasing weight

over the eight week testing period. Our user testing protocol followed this outline for

gathering motion capture and iVR tracking data, where sessions lasted a total of 30-45
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minutes:

1. Ten reflective markers were placed on bony landmarks of the user.

2. A static T-pose was collected at the beginning of the session for scaling the model.

3. The user was seated, and the headset and controllers were then placed on the user.

4. The user then completed 60 seconds of gameplay followed by 90 seconds of rest.

The step was repeated for all exercises for the protocol.

In total, we collected 540 gameplay captures of exercise movement at 60 seconds each.

6.2.1 Motion Capture and Biomechanical Simulation

Optical motion capture systems are considered the gold standard for accuracy

and precision [158], yet these types of systems are expensive and often restricted to

laboratory environments [159]. With this consideration, we utilized optical motion

capture to collect accurate training data from biomechanical simulation (see the top

half of Figure 6.4). To collect the training data, we employed eight Optitrack 13W

cameras to record ten reflective markers at 120 Hz during gameplay to capture the

user’s movements [145]. These marker positions are used as input into OpenSim for the

Inverse Kinematics Tool, incorporating the upper body model created by Saul et al.

[160]. The Inverse Kinematics Tool positions the model to best fit the motion tracking

marker data at each time frame. This is done by finding the model pose which minimizes
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the sum of weighted squared errors of the markers, as shown in Equation 1:

SE =
∑
i∈m

wi ‖xexpi − xi‖2 +
∑
j∈uc

wj(q
exp
j − qj)2 (6.1)

where

SE is the squared error;

m are the set of markers;

uc are the set of unprescribed coordinates;

xexpi is the experimental position of marker i;

xi is the position of the corresponding model marker;

qexpj is the experimental value for coordinate j;

qj is the model value for coordinate j;

wi are the marker weights;

wj are the coordinate weights.

qj = qexpj for all prescribed coordinates j;

To determine the net forces and torques at each joint, we employ the Inverse

Dynamics Tool which uses results from the inverse kinematics and external loads applied

to the model. Specifically, OpenButterfly was designed to examine the shoulder joint;
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therefore, we focus our model training and prediction on this joint. Below are the

classical equations of motion that the Inverse Dynamics Tool uses:

M(q)q̈ + C(q, q̇) +G(q) = τ (6.2)

where

q, q̇, q̈ ∈ RN are the vectors of generalized position, velocities, and accelerations, re-

spectively;

M(q) ∈ RNxN is the system mass matrix;

C(q, q̇) ∈ RN is the vector of Coriolis and centrifugal forces;

G(q) ∈ RN is the vector of gravitational forces;

τ ∈ RN is the vector of generalized forces.

The model’s motion is defined by the generalized positions, velocities, and

accelerations to solve for a vector of generalized forces.

6.2.2 Data Analysis

6.2.2.1 Input Data

During gameplay, the user is seated, and there is minimal movement of the

torso or head so the headset moves very little. Additionally, the non-injured arm was

not used during gameplay. Therefore, this controller and the headset did not provide

valuable input in determining the player’s joint mechanics and dynamics of the moving
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Figure 6.4: Overview of methods to collect data [3], run simulations, and train model.
Red pathway shows standard OpenSim method to generate kinematics and dynamics.
The green pathway shows our steps to train XGBoost models for predicting the OpenSim
results.

arm. Our input features were then the x,y, and z positions along with roll, pitch, and

yaw rotation of the moving controller as well as the weight of the arm strap. In total,

there were 540 game trials, each recorded for 60 seconds at 120 Hz generating a data

set of approximately 3.89 million instances (arm positions). We set aside a set of 54

(10%) randomly selected trials as a test set to test the final models. The remaining 60

second recordings were split into segments of 3 seconds. These shorter segments were

used to prevent the model from learning patterns in the movements since some of the

movements were repetitive. Each segment was then randomly placed into the training

or validation set such that the overall data was split into 80% training, 10% validation,

and 10% test.
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Figure 6.5: Vertical displacement of gameplay controller during each exercise for all
users.
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6.2.2.2 Machine Learning Model and Prediction

There are many types of machine learning algorithms available that each utilize

different types of data and prediction methods. Typically, these algorithms perform

regression, clustering, visualization, or classification and can use probabilistic methods,

rule-based learners, linear models (e.g. neural networks or support vector machines),

decision trees, instance-based learners, or a combination of these [95, 96]. There are

pros and cons to each and there is no universal best method for all data sets [97].

Instead, the type of input data needs to be taken into consideration, determine what type

of prediction is needed (e.g. binary classification, mulitclass classification, regression,

ect.), identify the types of models that are available, and finally consider the pros and

cons of those models. Some elements to consider with models are accuracy, interpret-

ability, complexity, scalability, time to train and test, prediction time after training, and

generalizability [98, 99, 100, 101, 102].

The input and output data is already known, numeric, and there are multiple

input variables making our algorithm selection a supervised multiple regression algo-

rithm. Linear regression and decision trees are commonly used algorithms for these

types of tasks. A decision tree is a very simple predictive model that has evolved in the

machine learning community through many iterative steps including bagging, random

forest, boosting, and gradient boosting [103, 104, 105, 106, 107, 108, 109]. Extreme

Gradient Boosting (XGBoost) builds upon all of these methods and has been one of

the most widely used machine learning algorithms since being presented at a conference
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in 2016 out of the University of Washington due to its speed and performance [110].

We opted to use this algorithm because of its ability to accurately train on our type of

data as well as its built in regularization methods (LASSO and Ridge) to make sure our

models didn’t overfit the data.

Six models were trained to produce joint and torque predictions for elevation

plane, shoulder elevation, and shoulder rotation as seen in Table 6.1. Shoulder elevation

describes rotation about the horizontal axis of the glenohumeral joint, elevation plane

describes rotation about the vertical axis of the glenohumeral joint, and shoulder rota-

tion describes rotation about the longitudinal axis of the humerus. The biomechanical

simulation data needed to be interpolated to match the collection frequency of the iVR

system. The number of estimators was set to 5,000 and the max depth to 10 as val-

ues higher than this provided little if any improvement. To prevent overfitting, early

stopping rounds were used for each model, so if the model did not improve within five

epochs, the training would stop and use the best model. Afterward, the models were

used to predict outputs from the unseen test set. The model outputs were then filtered

using a 3rd order low-pass Butterworth filter with a cutoff frequency of 3 Hz to remove

noise from the signal that is not attributed to the player’s movement.
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Model Inputs
[N=7]

Model Outputs
[N=6]

Controller Position x
(m)

Elevation Plane Angle
(°)

Controller Position y
(m)

Shoulder Elevation An-
gle (°)

Controller Position z
(m)

Shoulder Rotation An-
gle (°)

Controller Rota-
tion x (°)

Elevation Plane Torque
(Nm)

Controller Rota-
tion y (°)

Shoulder Elevation
Torque (Nm)

Controller Rota-
tion z (°)

Shoulder Rotation
Torque (Nm)

Arm Strap Weight
(kg)

Table 6.1: Data elements for the machine learning predictive model.

6.2.2.3 Model Evaluation

MAE was used to compare each model’s prediction to OpenSim’s result within

the unseen test set.

MAE =

∑n
i=1 |yi − xi|

n
(6.3)

where

n is number of data points;

y is the prediction of the model;

x is the value obtained from OpenSim.
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Motion OpenSim Angle
(°)

OpenSim
Torque (Nm)

Elevation
Plane

76.9 ±30.3 0.88 ±1.62

Shoulder El-
evation

-23.8 ±48.6 9.16 ±2.37

Shoulder Ro-
tation

35.8 ±28.5 101.9 ±246.9

Table 6.2: Mean and standard deviation for OpenSim results from unseen test data set
that machine learning models are trying to predict.

Motion Kinematics
MAE (°)

Dynamics
MAE (Nm)

Elevation
Plane

0.78 0.06

Shoulder El-
evation

0.65 0.07

Shoulder Ro-
tation

0.43 2.34

Table 6.3: Mean absolute error between model prediction and OpenSim results for each
model’s using the unseen test set.

6.3 Results

The motion capture data from OptiTrack was used to generate joint angles

and torques in OpenSim. The raw vertical displacement of the controller can be seen

for each exercise of all users in Fig. 6.5 and illustrates the different uniformity for each

exercise among users. The averages and standard deviations of joint angles and torques

of OpenSim can be seen in Table 6.2. Six models were trained to predict joint angles

and torques and Fig. 6.6 shows the loss of each of model during training and validation,

with early stopping ensuring the models did not over-train. Examples of these results

can also be found in Fig. 6.8, Fig. 6.9, and Fig. 6.10.

The MAE comparing the OpenSim results and machine learning models for
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the unseen test data set is shown in Table 6.3. Based on examining 1000 trails, we found

that our trained model can generate predictions in runtime at an average rate of 0.74

ms (+/- 0.36 ms) for a single instance of inputs. An example of two models compared to

their corresponding OpenSim outputs can also be seen in Fig. 6.8 for an entire exercise

game of 60 seconds. Additional comparisons are illustrated in Fig. 6.9 and Fig. 6.10

for all six models on randomly selected 10-second windows from the unseen test set.

Absolute error is also included on the figures to help show the difference between the

OpenSim results and model predictions.

6.4 Discussion

This study examined the feasibility and performance of a method for estimating

shoulder joint angle and torque from gameplay with an off-the-shelf iVR system. In

examining the model performance, the MAE was found to be less than 0.78 degrees for

joint angles and less than 2.34 Nm for joint torques indicates that the motion of the

iVR system provides enough input for accurate prediction using the XGBoost algorithm.

Specifically, the controller’s rotation and position, along with the trained arm’s wrist

weight, are the only metrics needed. This high-accuracy prediction is likely because

OpenButterfly was played while seated, so there is minimal torso movement to generate

noise.

Subsequently, our results find that iVR systems paired with XGBoost can

match or exceed accuracy of the previously mentioned studies in the related works (MAE
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Figure 6.6: Loss function for each model during training to show early stopping pre-
venting over-training.

ranging from 0.8 degrees to 8 degrees for stretch sensor and IMU methods) using an off-

the-shelf headset. This is particularly exciting as the widespread adoption of consumer

iVR headsets might also be translated for telehealth, potentially utilizing these findings

to alleviate the loss of in-person evaluation methods through remote estimation of ROM

and joint torques.

Accurate and consistent measurement of ROM is critical to monitoring re-

covery during physical therapy. Measuring upper limb kinematics is one of the most

challenging problems in human motion estimation. The shoulders structure allows

for tri-planar movement that cannot be estimated by simple single plane joint models

[161, 162, 163]. Our method helps address this complex problem with a low-cost solu-
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tion that can be used both in the lab and at a patient’s home. Unlike prior studies, our

approach illustrates that off-the-shelf iVR headsets can be employed for motion analysis

in comparison to the complex IMU-based or optical motion capture methods, which re-

quire accurate placement on limbs typically dependent on anatomical landmarks [164].

This means that patients can provide more frequent measurements from their homes

enabling therapists to have a more detailed remote patient analysis in guiding physical

rehabilitation. This technology empowers patients by allowing them to complete at-

home guided exercises at a time that works with their schedule over a longer duration

and has been shown to aid in recovery over two months [3]. Additionally, our method

can provide dynamic measurements as opposed to static ROM measurements so thera-

pists can monitor smoothness of movement quality as well [165]. These measurements

can be provided in real-time as the models can generate predictions at a rate of 0.74 ms,

potentially enabling synchronous exercise sessions and analysis for physical therapists.

Such metrics could be integrated into dashboards for therapist and patient review, as

shown in Fig. 6.7, or even used for auto-populating assessment documentation. Real-

time metrics can also help with patient safety as the therapist can monitor for incorrect

postures, over rotations, and excessive torques to ensure the patient moves their limbs

within safe limitations. While our training method uses expensive state-of-the-art mo-

tion capture systems and research-grade biomechanical simulation software, none of

this is needed on the therapist’s or patient’s end with our trained model. The model

alone can provide these estimations for users performing physical therapy rehabilitation

exercises in iVR from games to other virtual experiences.
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Figure 6.7: We envision as a user plays our games [left image] the avatar can be skeleton
showing the users movements [center image] and a dashboard showing the kinematics
and dynamics can be running [right image] to show the therapist the relevant metrics
needed for remote evaluation.

6.4.1 Limitations of the Study and Future Work

As with any study, there are several limitations that we must consider, many of

which could be addressed with future in-person studies. First, the sample of participants

to generate training data was small, and each was at similar points in their recovery

from shoulder injuries. Future work should have a more diverse user group to train the

model to account for the variation of capabilities among users. More users would also

allow us to split the data based on the subject so that we can be sure that the algorithm

generalizes to unseen users. Second, only seven exercises were examined, six of which

were single plane movements. More multi-planar movements should be included in the

training data to account for any safe ROM used while playing iVR games. Third,
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Figure 6.8: An example of OpenSim results and machine learning model predictions for
an FAR exercise.
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Predictive Mobility Metrics of Seven Exercises through ROM [°]

Figure 6.9: Randomly selected segments from the test data set showing the outputs
from the traditional method and our method for joint angles for each model with an
example for each exercises. Additionally, the absolute error is shown to help see the
difference between each method. Exercises are visually demonstrated in Fig. 6.3.
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Predictive Strength Metrics of Seven Exercises through Joint Torques [Nm]

Figure 6.10: Randomly selected segments from the test data set showing the outputs
from the traditional method and our method for joint torques for each model with an
example for each exercises. Additionally, the absolute error is shown to help see the
difference between each method. Exercises are visually demonstrated in Fig. 6.3.
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participants played while seated, and the games produced minimal torso movements.

Other games that require participants to do movements like stepping, squatting, or

bending at the waist should further be examined for validating and extending this

model to account for lower-extremity movements. Lastly, only shoulder kinematics and

dynamics were examined. Physical therapists of other specializations would benefit with

systems that could measure other joints including the elbow, wrist, hip, knee, and ankle.

This will likely require input from additional sensor peripherals such as extra controllers

placed on the body or computer vision techniques.

Another consideration is to explore differing populations such as those with

disabilities (e.g. stroke survivors or cognitive disabilities). Our lab has worked with

disability groups within our lab exploring various virtual reality mediums for users with

cognitive disabilities, testing soft exo-suits meant for post-stroke rehabilitation, and

physical rehabilitation games for users with cognitive disabilities [23, 166, 22, 136]. In

the future we will collect motion data of these varying groups to develop more inclusive

patient models.

In this work we presented the results using one machine learning algorithm,

XGBoost. While it performed well in the future we will do a comparison among other al-

gorithms including Artificial Neural Networks (ANNs), Convolutional Neural Networks

(CNNs), Long Short-Term Memory (LSTM), and Random Forests. In this future work

we can compare accuracy of models as well as complexity and training time.

Our lab also aims to make reactive virtual environments by monitoring phys-

iological responses during gameplay using biosensors [144, 3]. Emotion is a crucial
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component to learning, motivation, interest, and attention during rehabilitation. If we

can create a rehabilitation experience that adapts to the user’s current emotional state

we believe we can improve their experience and outcome. These are future goals we are

excited to incorporate into the machine learning model presented in this chapter.

This work suggests that off-the-shelf consumer head-mounted display systems

combined with XGBoost can be used to estimate dynamic joint angles and torques in

the home setting to help therapists gather relevant metrics throughout the rehabilitation

process. These limitations provide a foundation for creating a more generalizable model

and future telehealth solutions to empower physical therapists.

6.5 Conclusion

This chapter demonstrated an effective method for estimating shoulder joint

angles and torques in real-time during gamified exercises using a head-mounted display

iVR system. This method only uses the controllers and headset of intuitive gaming

systems, making it ideal for at-home use since a therapist or expert does not need

to be physically present. This has the potential to help therapists remotely evaluate

a patient and collect metrics that are often difficult to measure with the limited two

dimensional videoconferencing. In closing, we can accurately provide evidence based

physical rehabilitation metrics through iVR systems paired with predictive models to

redefine telehealth. The machine learning related work presented in this chapter has

been submitted to a journal and is currently under review with the title “Predictive
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Shoulder Kinematics of Rehabilitation Exercises through Immersive Virtual Reality”.

Another article outlining telehealth and our 130 interviews is under review for another

journal and titled ”Understanding a Newfound Virtual Reality in Physical Rehabili-

tation: A Qualitative Study on Therapist Impressions of Telehealth and Technology

Needs Amidst the COVID-19 Pandemic.”
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Chapter 7

Conclusion

7.1 Summary

The work presented in this dissertation explores the use of iVR for the benefit

of physical rehabilitation to help determine if current telehealth issues for physical thera-

pists might be solved using 3D HMD rather than 2D media (computers and phones) and

if iVR games might help address adherence independent exercise for patients. From our

work, we believe the inherent motion capture system of iVR coupled with biomechanical

simulations and machine learning will help therapists remotely guide and evaluate pa-

tients. This research produced three published journal articles and two more in review,

all aimed at understanding and designing virtual reality rehabilitation experiences.

The first step was to understand the differences between HMD and room-

scale virtual reality platforms to see if HMD would be a valid option for patients and

therapists. We tested an exercise game with users of mixed abilities on each platform
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and examined their performance, biometric response, and answers to a questionnaire.

With this study, we found that a modern HMD such at the HTC Vive is more engaging

and produces better physical exercise performance than the more expensive room-scale

CAVE platform. This was great to learn as HMD systems are much more affordable

and available. With our platform chosen, we began to work on a virtual reality physical

therapy game.

Our lab began collaborating with physical therapists to learn what is needed

in a rehabilitation game for it to be safe and effective. We limited our study to shoulder

injuries so we could rely on the inherent motion capture system (headset and controllers)

and not have to incorporate additional sensors that would make it more difficult for

therapists and patients to use. Five subjects recovering from shoulder injuries played

our game twice a week for eight weeks to see if their strength and range of motion

improved. Through this work we determined that our game helped the subjects further

recover from their injuries. We also used biomechanical simulations to determine joint

kinematics and dynamics to understand the forces on the body and how they change as

a player progresses through their recovery.

From this data, we were also able to examine long-term gaming effects. This

rehabilitative game was designed to help with long-term adherence since many patients

don’t continue to perform their at-home exercises, limiting their recovery. If we can

create a rehabilitative game that remains engaging for months rather than days, we can

increase the rehabilitation timeline and improve recovery. We learned that our game

kept users engaged after the initial novelty effect and this is likely attributed to having
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users progress from simple to more complex movements.

With our initial rehabilitation game, we were awarded a $50,000 NSF grant to

interview 130 physical therapists to understand how we might use our technology to help

them and their patients. During the COVID-19 pandemic, most physical therapy clinics

either closed down due to social distancing or adapted and used telehealth platforms.

We learned that another important use of our technology was to adapt our research

to help with accurate remote evaluations. Physical therapists had extreme difficulty

getting quantifiable metrics like joint angles and forces using 2D videoconferencing style

platforms. Now that HMD iVR systems are less than $300, we believed this was a viable

option and we had already shown their performance for rehabilitation. These interviews

led to the next step of our research.

Therapists need help with remote evaluations to understand a patient’s current

capabilities and document their progress for safe rehabilitation. Ee used the OptriTrack

motion capture system to record the user’s movements during gameplay in our previous

work. We then determined inverse kinematics and dynamics using our OpenSim model

with the motion capture data. These simulations produce the metrics therapists are

looking for, but the motion capture system and simulation program are not feasible

tools for therapists or patients. Our goal was to produce the simulation results with

only the iVR system and a trained machine learning model. To do this, we used the

position and rotation of the headset and controllers as input to train a model that would

predict the joint angle and torque results of the OpenSim simulation. XGBoost models

were trained and tested, yielding results similar to other standard physical therapy tools
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such as goniometers. With this work, our lab hopes to continue testing these models

and collaborating with physical therapists to produce tools that are needed for more

equitable care.

7.2 Future Work

The COVID pandemic has been a challenging year for all and limited our

ability to collect in-person data. The number of participants for the physical therapy

studies were small and all participants were at a similar points in their recovery process.

In future studies there should be a larger and more diverse user groups to train the

models to help account for variations among users. This group should also include

users with mental and physical disabilities to create a more inclusive model to help

therapists perform remote evaluations. Another limitation is the number of exercises.

The exercises were selected based on feedback about the participants from therapists

collaborating on the project to ensure safety. Future work should incorporate more

movements to see if models and generalize to the many possible positions of the arm.

Our users played seated and produced minimal torso movement. This worked well for

shoulder exercises but other exercise games incorporate core movement which should be

examined to see if models can include these types of exercises. Only shoulder kinematics

and dynamics were examined since this was the type of injury we focused on for our

study. It would be beneficial to see if it is possible to create models to predict whole-

body movement so that other joints can be examined. Additionally, with the rapid
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development of many iVR systems there needs to be testing performed with each system

to determine its performance and capabilities. These future directions will be explored

by the lab once in-person research begins again so that more participants can help train

the models.

We believe that this work will empower therapists and patients alike. Thera-

pists will be able to conduct accurate remote evaluations, guide patients, and monitor

rehabilitation. Reliable telehealth platforms will remove barriers such as distance, trans-

portation, and time off of work needed for in-person physical therapy sessions that limits

many patients. Removing these barriers can help patients participate in more sessions

leading to a more complete recovery. For all of this to happen accurate metrics needed

by therapists need to be on platforms accessible to therapists and patients. iVR is be-

coming more accurate, less expensive, and more accessible making it a great platform to

develop machine learning models on. This work has shown the potential for upper body

metrics and machine learning methods that can be expanded upon for a more inclusive

model and eventually a remote evaluation platform for physical therapists and patients.
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