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Anthropogenic heat from buildings in Los Angeles County: A simulation 
framework and assessment 
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Lawrence Berkeley National Laboratory, Berkeley, California, USA   
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A B S T R A C T   

Anthropogenic heat (AH), i.e., waste heat from buildings to the ambient environment, increases urban air 
temperature and contributes to the urban heat island effect, which leads to more air-conditioning energy use and 
higher associated waste heat during summer, forming a positive feedback loop. This study used a bottom-up 
simulation approach to develop a dataset of the annual hourly AH profiles for 1.7 million buildings in Los 
Angeles (LA) County for the year 2018 aggregated at three spatial resolutions: 450 m, 12 km, and the census 
tract. Building AH exhibits strong seasonal and diurnal patterns, as well as large spatial variations across the 
urban areas. Building AH peaks in May and reaches a maximum of 878 W/m2 within one of several AH hotspots 
in the region. Among the three major AH components (surface convection, heat rejection from HVAC systems, 
and zonal air exchange), the surface convection component is the largest, accounting for 78% of the total 
building AH across LA County. Higher AH is attributed to large building density, a high percentage of industrial 
buildings, and older building stock. While AH peaks during the day, the resulting ambient temperature increases 
are much larger during the night. During the July 2018 heatwave in LA County, building AH (excluding the 
surface component) leads to a daily maximum ambient temperature increase of up to 0.6 ◦C and a daily minimum 
ambient temperature increase of up to 2.9 ◦C. It is recommended that reducing summer building AH should be 
considered by policy makers in developing mitigation measures for cities to transition to clean energy while 
improving heat resilience.   

1. Introduction 

Heat-related mortality and morbidity are on the rise globally and the 
trend will likely continue with global climate change leading to more 
intense and longer-lasting heat waves (Perkins-Kirkpatrick & Lewis, 
2020; Vahmani, Jones & Patricola, 2019). More than five million people 
die each year globally because of excessive hot or cold conditions based 
on a 20-year study (Xu, Ao, Zhao & Pei, 2021). In the 2018 heat wave in 
Southern California, the UCLA region experienced a record-high tem
perature of 111 ◦F (44 ◦C) on July 6th (Andreatta & Kirksey, 2018) Los 
Angeles also experienced an all-time high nighttime minimum temper
ature of 79 ◦F (26.1 ◦C) for July (Andreatta & Kirksey, 2018). Such 
extreme heat events could result in power outages and adverse impacts 
on public health. It is crucial to investigate strategies to mitigate tem
perature rises, especially during heatwaves. 

AH from the built environment and human activity leads to increased 
air temperature in the urban environment (Block, Keuler & Schaller, 
2004; Vahmani, Luo, Jones & Hong, 2022). This contributes to the urban 

heat island effect which can lead to heat-related fatalities and morbidity, 
and strain on the power grid and other urban infrastructure. 
Human-induced AH comes from four sources (1) buildings, (2) trans
portation, (3) industrial processes, and (4) human metabolism (Sailor, 
2011). The building sector is the major AH contributor, accounting for 
over half of the total AH (Quah & Roth, 2012; Smith, Lindley & Lev
ermore, 2009). Moreover, building AH is more sensitive to local weather 
changes, and as a result more susceptible to climate changes. During 
heat waves, higher outdoor temperatures lead to higher cooling demand 
which increases energy use and associated heat rejection to the ambient 
environment from the heating, ventilation, and air-conditioning (HVAC) 
systems in buildings; the higher heat rejection increases the ambient air 
temperature, forming a vicious loop (Vahmani et al., 2022). This posi
tive feedback can exacerbate heat-related health damage and also 
contribute to power outages that can lead to further health and property 
damage. It is thus crucial to assess building AH and investigate ways to 
reduce it, especially during heat waves in urban areas. 

There are two main approaches to assessing building AH: the top- 
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down inventory and the bottom-up building energy simulation approach 
(Sailor, 2011). The top-down approach uses the energy consumption of 
buildings as a proxy for building heat emissions, assuming building 
energy and anthropogenic heat are equal in magnitude and there are no 
temporal lags between them (Sailor, 2011). The energy data are more 
readily available, making them ideal for large-scale national or inter
national studies. Some re-distribution or downscaling is commonly 
employed, due to low spatial and temporal resolution of the energy data. 
The spatial re-distribution usually uses population or GDP data (Dong, 
Varquez & Kanda, 2017). Sometimes such data are calibrated with other 
datasets such as night light data representing human activities. Tem
poral redistribution from monthly data to daily and hourly usually ap
plies some seasonal-specific load profiles (Sailor & Lu, 2004). The 
top-down approach can produce high-coverage AH datasets; however, 
many studies have questioned the validity of equating energy and 
anthropogenic heat. Using energy consumption to represent building AH 
also neglects the presence of heat emitted from exterior surfaces of 
buildings through heat convection, which is shown in both the current 
study and many other studies as the largest building AH component. 

Bottom-up approaches calculate anthropogenic heat from individual 
buildings using detailed building-physics-based models. The results can 
be aggregated at desired spatial scales. While some studies quantify 
building AH indirectly using simulated energy consumption as in top- 
down studies (Zheng & Weng, 2018), or cooling loads (Kikegawa, 
Genchi, Yoshikado & Kondo, 2003; Wang, Aktas, Malki-Epshtein, Wu & 
Ammar Bin Abdullah, 2022), the majority of the studies directly simu
late AH using building energy models (BEM). These bottom-up ap
proaches require two major inputs, local weather data, and building 
descriptions that capture its physical systems. configurations and oper
ation patterns. The weather data usually come from either measurement 
(in actual meteorological year AMY or typical meteorological year TMY) 
or climate model simulation results using a well-established urban 
microclimate modeling framework, WRF-UCM. WRF-UCM is an urban 
microclimate modeling framework coupling the Weather Research and 
Forecasting (WRF) Model, a state-of-the-art mesoscale climate predic
tion model, and an urban canopy model (UCM). For simulating building 
performance, it is usually too data and computation-intensive to create 
detailed BEMs for each building in a city. Therefore, most bottom-up 

studies adopt a set of prototype building models to represent all the 
buildings in the study area. The computation time is a function of the 
number of weather stations/grid cells, prototype building models, the 
duration and time-step of simulations, and the amount of simulation 
output. Due to the high data demand in building stock and local climate, 
and intense computation requirements, most such studies are only car
ried out in a smaller geographical domain usually up to a city scale, such 
as (Chen et al., 2022; Luo, Vahmani, Hong & Jones, 2020). To cover a 
larger region, tradeoffs need to be made either for the spatial resolution 
of the weather input, the number of prototype building models, or the 
simulation run period. Table 1 compares the domain size, input, and 
output resolutions of eight existing studies and the current study. 

Bottom-up studies can analyze the relationship between energy use 
and AH of buildings, and can further examine building AH components 
and diurnal profiles. AH from buildings can be grouped into three major 
components: (1) building envelope surface convection, (2) HVAC 
operation through heat rejection and relief air, and (3) zone air ex
change through exfiltration and exhaust. Hong et al., 2020 conducted a 
simulation study on the AH and energy consumption for 16 commercial 
prototype buildings at 4 climate zones and 2 vintages. They found the 
annual AH to energy consumption ratio differs both by building types, 
vintages, and climate zones. The ratio ranges from 0.9 to 25.2 and for the 
majority of buildings, AH is larger than building energy consumption. 
Alhazmi et al., 2022 evaluated the increased anthropogenic heat caused 
by the introduction of an office building relative to just the terrain, by 
excluding terrain AH in the absence of buildings and considering the 
shade from the building. They found building AH can be as high as 3–4 
times the energy consumption for a 6-story office building. 

These bottom-up studies have also identified major AH components 
and compared their relative magnitude. Chen et al., 2022 evaluated the 
building AH in Boston, MA using a bottom-up approach and prototype 
building models. They found that the surface component produced the 
majority of building AH. The ratio between surface, HVAC, and zone AH 
is 5:4:1 for residential buildings and 7:1:2 for commercial buildings. 
Hong et al., 2020 examined the ratio by building prototypes and found 
that while surface convection components accounted for 50% of build
ing AH on average, they range from 13% to 90% across different 
building types and vintages. Alhazme et al. found for a 2-story office 

Table 1 
Comparison of domain size, input resolution, and output resolution among the existing studies.   

Domain Size Weather Data Resolution Number of Prototype Building Models Output 
Resolution 

Location Size 
(square 
mile) 

Source Grid 
size 

Number of 
grid points 

Residential Commercial Institutional Industrial other Duration and 
resolution 

(Chen et al., 
2022) 

Boston 90 WRF-UCM 1 km  5 11    annual, hourly 

(Alhazmi, Sailor 
& Anand, 
2022) 

4 major cities 217 TMY – 4  3    annual, hourly 

(Luo et al., 2020) LA City 502 WRF-UCM 500 
m  

3 8 1  1 a summer 
heatwave, 
hourly 

(Hong, Ferrando, 
Luo & 
Causone, 
2020) 

4 major cities 139 TMY3 – 4  16    annual, hourly 

(Zheng & Weng, 
2018) 

LA County 4060 TMY3 – 7  16    annual, hourly 

(Nie, Sun & Ni, 
2014) 

1 1.5 TMY – 1 1 2 1   annual, hourly 

(Zhou, Weng, 
Gurney, Shuai 
& Hu, 2012) 

Indianapolis 
City 

368 unspecified – 1 22 8    Noon of June 
16, 2001 

(Kikegawa et al., 
2003) 

Otemachi 
area, Tokyo 

0.1 1d UCM 10 
km      

1 summer, 
hourly 

Current study LA County 4060 WRF-UCM 12 
km 

62 9 24 12 9  annual, hourly  

Y. Xu et al.                                                                                                                                                                                                                                       
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building, the AH from building surfaces is twice that of AH from HVAC 
operation and argued that since surface convection is the largest 
contributor of building AH, focusing only on the energy-related AH 
might not capture the whole picture of building AH and its impact on the 
ambient environment (Alhazmi et al., 2022). Table 2 compares the 

compositions of the three major AH components and the building 
AH-to-energy ratios of five existing studies and the current study. 

This paper presents a bottom-up simulation approach and applies it 
to develop a dataset of AH from buildings in LA County. Detailed 
analysis was conducted to understand the spatiotemporal characteristics 

Table 2 
Comparison of the relative contributions of the three AH components and the AH-to-energy ratios, among the existing and this studies.   

Building subsector AH from Surfaces (%) AH from HVAC (%) AH from Zone (%) AH-to-energy ratio Time range 

(Chen et al., 2022) Commercial 50 40 10  Annual 
Residential 70 20 10  

(Alhazmi et al., 2022) Commercial (office) 69 31  2.1–4.44 Annual 
(Luo et al., 2020) Commercial and residential  86.5 13.5  Summer heatwave 
(Hong et al., 2020) Commercial 50 (12.7–90.4) 47.2 2.8 (0.2–11.2) 2.5 Annual 
(Zhou et al., 2012) Commercial and residential    5.8–16.5 1 day in summer 
Current study Commercial 43.3 44.7 12 5.5 (1.3–13.8) Annual 

Residential 78.7 10.4 10.9 2.1 (0.7–5.6) 
Industrial 65.5 9 25.5 3.7 (0.6–10.0) 
Institutional 48.8 46.8 4.4 2.2 (1.1–3.6)  

Fig. 1. The 62 WRF grid cells with buildings. The black lines represent the boundary of LA County. The scattered dots represent buildings.  

Y. Xu et al.                                                                                                                                                                                                                                       
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of building AH and its impact on the urban environment. The AH dataset 
was created using physics-based bottom-up building energy models with 
the EnergyPlus simulation engine (U.S. Department of Energy, 2022). 
From the simulation results, we examined both the magnitude and 
timing differences between energy use and anthropogenic heat for 
different building types. Existing studies mostly focused on the magni
tude of the difference except for (Dhakal, Hanaki & Hiramatsu, 2004) 
but they only analyzed office buildings while the current study covers a 
wider range of building types. 

The current study made the following contributions to the existing 
body of knowledge:  

• The dataset contains a rich high-resolution annual hourly AH from 
all buildings in LA County in 2018, representing 1.7 million build
ings, as compared with the existing bottom-up studies that either 
cover a smaller domain up to a city, with coarse weather input or 
consider fewer building types or vintages in the building stock. 
Furthermore, most existing studies analyze only the commercial 
building stocks, the current study covers buildings in residential, 
commercial, institutional, and industrial sectors and also considers 
different building vintages. 

• The dataset aggregates the AH from buildings at three spatial reso
lutions: the 450 meter (m) x 450 m grid, the 12 kilometer (km) x 12 
km grid, and the census tract. With the metadata, it can be aggre
gated to other spatial resolutions of interest to users.  

• Hourly local weather data from WRF-UCM simulations were used as 
inputs to the building simulation models. The weather inputs are 
validated with measured weather station data.  

• Building AHs from three components were characterized and 
analyzed in detail across building types and vintages in LA County.  

• Seasonal and diurnal patterns of the building AH among 450 m grid 
cells in LA County were identified; the correlations between building 
AH and building characteristics such as building type, vintage, and 
density were evaluated.  

• Interactions between building AH and ambient temperature were 
modeled and evaluated by incorporating AH data (HVAC and Zone 

components) in high-resolution (450 m) WRF-UCM simulations of 
urban climate in LA County. 

The AH dataset can also be used in similar analysis at other spatial 
resolutions (census tract, for example), to train statistical or machine 
learning models for predicting building anthropogenic heat, and to 
inform urban planning or emergency response strategy through a 
dashboard visualizing districts or census tracts with the highest AH from 
buildings that may lead to urban overheating risk and public health 
issues. 

2. Input data and methods 

This section describes the data collection, pre-processing, and 
modeling approaches implemented in the current study. 

2.1. The study domain 

Los Angeles County has an area of more than 4000 mailes2 and is one 
of the most populous areas in the U.S. (U.S. Census Bureau, 2022), 
hosting a population of about 10 million in 88 cities including the city of 
Los Angeles. The county has a warm and dry climate (mostly in climate 
zone 3B). The adjacency to the Pacific Ocean on the southwest side 
makes the county a transportation hub. It also creates locally different 
weather with higher humidity and lower temperature variation than the 
inland area. 

2.2. The data and simulation workflow 

Fig. 1 shows the study domain with 62 WRF grid cells of 12 × 12 km 
size which have buildings. LA County has about 1.7 million buildings. It 
is too compute-intensive to create and simulate detailed BEMs for each 
of the buildings in the county. Instead, 54 prototype building models (18 
building types and 3 vintages, Table 4) were used to represent the LA 
County building stock based on the building’s use type and vintage. 
Fig. 2 illustrates the data and simulation workflow which uses a bottom- 
up modeling approach to simulate AH from buildings in LA County and 

Fig. 2. Data and simulation workflow.  

Y. Xu et al.                                                                                                                                                                                                                                       
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produce an hourly building AH dataset. A GeoJSON file was compiled 
with building geometry and characteristics such as building type, total 
floor area, number of stories, and vintage (construction year). The 
climate data were generated from simulations using WRF version 4.2.1 
for each of the 62 grids. Next, each building was mapped to a climate 

grid based on the closest distance between the building footprint poly
gon’s centroid and the grid cell centroid. 

The 54 prototype building models were simulated with EnergyPlus 
for the 62 WRF grid cells, resulting in 1667 valid pairs of prototype-WRF 
grid cells, using weather files (in EnergyPlus epw format) generated 
from the WRF simulated climate data. The EnergyPlus simulations 
produce annual hourly heat emission and energy consumption for each 
of the prototype-WRF grid pairs, which were used to scale up the results 
for the entire LA building stock based on the total floor area of buildings 
by use type and vintage in each WRF grid cell. A validation step was 
performed by comparing the simulated annual building energy use with 
other pre-simulated model output for the same climate region, and 
against a few measured data sources including the CEC Electricity by 
County database (California Energy Commission, 2020) and the Energy 

Table 3 
Heat Emission Output Variables from the EnergyPlus Simulation.  

Heat Emission 
Component 

EnergyPlus report variable Variable in the 
dataset 

Zone air exchange Environment: Site Total Zone Exfiltration 
Heat Loss [J](hourly) 

emission. 
exfiltration 

Environment: Site Total Zone Exhaust Air 
Heat Loss [J](hourly) 

emission. 
exhaust 

HVAC operation SimHVAC: Air System Relief Air Total 
Heat Loss Energy [J](hourly) 

emission.ref 

SimHVAC: HVAC System Total Heat 
Rejection Energy [J](hourly) 

emission.rej 

Surface convection Environment: Site Total Surface Heat 
Emission to Air [J](hourly) 

emission.surf  

Table 4 
Sources of prototype building models used in the current study.  

Prototype Building Models Information Sources 

single-family, multi-family CBES (https://CBES.lbl.gov), generated 
based on California Title 24 building 
energy efficiency standards. 

heavy and light manufacturing facilities Adapted from the warehouse models 
generated by the OpenStudio Standard 
Gem. 

nursing home Adapted from Sun et al. (2020) 
hospital, small hotel, large hotel, small 

office, medium office, large office, full- 
service restaurant, stand-alone retail, 
midrise apartment, primary school, 
warehouse, college, supermarket 

OpenStudio Standard Gem, generated 
based on ASHRAE 90.1 building energy 
efficiency standards. 

religious worship Prototype models were developed based 
on CBECS data (Ye et al., 2019).  

Fig. 3. Location of urban weather stations, within Los Angeles County, used in the validation of WRF-UCM results (a), comparison of ground-based observations and 
WRF-UCM simulated daily maximum (b), and daytime mean air temperatures (c). 

Fig. 4. Building type composition of the compiled LA County building 
stock data. 

Y. Xu et al.                                                                                                                                                                                                                                       
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Atlas (UCLA California Center for Sustainable Communities, 2020). 
Finally, the AH data was incorporated in a high-resolution (450 m) 
WRF-UCM modeling framework to analyze the impact of building AH on 
urban climate. In the end, the AH results were aggregated into three 
spatial resolutions for buildings in LA County. 

2.2.1. Building energy modeling 
A physics-based approach using the EnergyPlus (U.S. Department of 

Energy, 2022) simulation engine was adopted to model energy use and 
heat emissions of buildings. EnergyPlus is the U.S. Department of 
Energy’s flagship building energy software for simulating the dynamic 
energy and environmental performance of buildings. Building AH is 
calculated using five output variables (Table 3) representing the 
different nature of heat emitted from buildings, following the approach 
of Hong et al., 2020. Each component of heat emissions is calculated 
with physics-based heat and mass balance equations. The five outputs 
are aggregated into three major AH components: (1) surface convection 
- convective heat transfer from the building envelope (exterior walls, 
roofs, windows) to the urban canopy (hereafter referred to as envelope 

convection); (2) HVAC operation - heat rejection via cooling towers 
and/or air-cooled condensers, and through relief air from the HVAC 
systems; (3) Zone air exchange - air mass flow exchange with the 
ambient air through active exhaust (from kitchen and bathroom fans or 
window openings) and passive exfiltration (from wall cracks or leaks). 

Most of the 54 prototype models in the current study were generated 
from the OpenStudio Standard Gem (NREL 2022) covering various 
building types, and vintages for climate zone 3B, to which LA County 
belongs. Table 4 lists the building prototypes and their information 
sources. The single- and multi-family building models were generated 
using the CBES tool (Hong et al., 2015). The nursing home models were 
adapted from Sun, Specian and Hong (2020) for normal operating 
conditions. The heavy and light manufacturing facility models were 
adopted from the warehouse models with their electricity and gas use 
equipment adjusted to match the statistical ranges of energy use in
tensity (EUI) from the Manufacturing Energy Consumption Survey 
(MECS) data (U.S. Energy Information Administration, 2021). 

The simulated energy results from the prototype building models 
were benchmarked against the simulation results from ResStock and 
ComStock, which is a trusted source of the U.S. building stock perfor
mance database. 

2.2.2. WRF climate modeling 
The Weather Research and Forecasting (WRF) model version 4.2.1 

(Skamarock et al., 2019) was configured over the Los Angeles metro
politan area to simulate the spatiotemporal variations of urban climate 
at 12 km resolution for all 365 days in 2018 to provide weather data for 
the building energy modeling. The WRF model is a state-of-the-science, 
fully compressible, non-hydrostatic, mesoscale numerical weather pre
diction model with customizable physical parameterization configura
tions. We configured WRF with the Rapid Radiative Transfer Model 
(Iacono et al., 2008) for shortwave and longwave radiation; the 
Mellor-Yamada-Janjic scheme (MYJ) for Boundary Layer Scheme 
(Janjić, 1994; Mesinger, 2010); the Thompson scheme (Thompson, 
Field, Rasmussen & Hall, 2008) for microphysics; and the Eta Similarity 
scheme (Monin & Obukhov, 1954) for the surface layer. High-resolution 
National Land Cover Data (NLCD) (Homer, Fry & Barnes, 2012) is used 
to represent land use and land cover. The ERA5 global reanalysis 
(Hersbach et al., 2020) data were used as the initial and boundary 
conditions. 

The WRF model was further coupled to a single-layer urban canopy 
model (UCM) (Kusaka, Kondo, Kikegawa & Kimura, 2001; Yang et al., 
2015) to account for urban canopy processes and the interactions be
tween urban surfaces and atmospheric dynamics. The 

Fig. 5. The ratio of total building floor area in each of the four building subsectors across the 450 m grid cells in LA County.  

Fig. 6. Year-built distribution of the four building subsectors in the compiled 
LA building stock data. The dashed line indicates the year 1980. 

Y. Xu et al.                                                                                                                                                                                                                                       
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UCM-parameterized wind profile and radiation processes (e.g., shad
owing, reflection, and trapping) inside street canyons, account for the 
three-dimensional nature of buildings, and resolve wind profiles within 
street canyons (Chen et al., 2011). The urban morphological parameters 
(e.g., building height and road width) are defined based on the National 
Urban Database and Access Portal Tool (NUDAPT) (Ching et al., 2009) 
dataset. Furthermore, the NLCD impervious surface data (Wickham 
et al., 2013) were used for an accurate representation of urban fractions. 
The described WRF-UCM configuration is validated over Los Angeles 
County against ground-based observations of air temperatures which 
shows the model reproduces variations of the near-surface air temper
ature with a root-mean-square error (RMSE) of 1.1 ◦C (Fig. 3). 

WRF-UCM with the same configuration is used a second time to 

simulate the impacts of AH on outdoor air temperature at 450 m reso
lution for July only by comparing two scenarios, with and without 
incorporating spatially distributed hourly AH data. 

2.3. Input data summary 

2.3.1. Building stock 
After the data cleaning and tidying steps, 1.7 million buildings were 

identified with a footprint and relatively complete data. Fig. 4 shows the 
contribution of each major building type’s total building area (sum of 
areas of all floors in a building) to the compiled building stock data. 
There are over 100 distinct building use types listed in the LA County’s 
tax assessor dataset. The types with less than 3% of the building stock 
are grouped into “other” in the pie chart. Close to half of the building 
stock is single-family homes, followed by multi-family buildings. 
Warehouses, light manufacturing facilities, retail stores, and offices each 
have about 5% of the building stock. 

Fig. 5 shows the ratio of building area in each of the four building 
subsectors. Most climate grid cells are dominated by residential build
ings. Industrial buildings are concentrated near Los Angeles downtown, 
major airports (LBA, LAX, Goodyear Blimp Base Airport), and major 
roads (CA 60, interstate 5). Commercial and industrial-dominated grids 
are scattered throughout the county. 

The LA County building stock is old. Fig. 6 shows the distribution of 
the construction year of major building types in the county. For four 
building subsectors, about 75% of the buildings were built before 1980. 
Industrial buildings are slightly newer, with a median construction year 
of 1970, about 10 years newer than the other three types. Based on the 
data summary and California building energy efficiency standards Title 
24′s three-year release cycles, the following three vintages were selected 
to group the building stock: (1) before 1980 (no efficiency re
quirements), (2) around 2004, and (3) after 2013. From the vintage map 
in Fig. 7, we can see that the majority of the grid cells, especially the 
central area of the county, are dominated by old buildings. Newer 
buildings are mainly near coastal areas or major roads. 

The overall building area ratio (the total building floor area divided 
by the area of the climate grid cell) is shown in Fig. 8. The highest 
building coverage is around Los Angeles downtown in the center, 
Hollywood in the central west, Long Beach along the west coast, and 
Hermosa Beach along the south coast. 

Fig. 7. The ratio of the total building area in each building vintage across the 450 m grid cells in LA County.  

Fig. 8. Building floor area ratio across the 450 m grid cells in LA County.  
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2.3.2. Weather data 
The weather data were provided at the 12 km x 12 km grid cells. 

Fig. 9 shows the annual average temperature, relative humidity, and 
wind speed in LA County. The weather condition in LA County exhibits 

clear coastal-inland differences, where the coastal area is cooler, more 
humid, and windier than the inland area. A windy area is also present 
near the mountainous region in the northeast of the county. 

Fig. 10 shows that the WRF climate data for July 2018, with a 

Fig. 9. Maps of the annual average temperature (left), relative humidity (middle), and wind speed (right).  

Fig. 10. Outdoor dry bulb temperature, relative humidity, and wind speed of grid cells with valid building data (Left). WRF grid cell IDs and location (Right).  

Table 5 
Percentages of the three building AH components, among four major building sectors and across the county. “< 1980″, “2004″, and “2013″ corresponding to three 
building vintages.  

Building Use Type Surface Convection AH (%) HVAC AH (%) Zone AH (%) 

vintage vintage vintage 

< 1980 2004 2013 < 1980 2004 2013 < 1980 2004 2013 

residential 73.4 80.7 83.9 14.8 9.8 4.5 11.8 9.5 11.6 
commercial 48 39.9 42.2 38.7 49.4 45.8 13.3 10.7 12.1 
industrial 70 58.9 68.8 6.2 13.4 6.3 23.8 27.8 24.8 
institutional 41.3 40.9 38.2 50.4 55.7 57.9 8.3 3.4 3.9 
residential (all vintages) 78.7 10.4 10.9 
commercial (all vintages) 43.3 44.7 12 
industrial (all vintages) 65.5 9 25.5 
institutional (all vintages) 48.8 46.8 4.4 
The average across all prototypes 55.9 31.6 12.5 
Across LA county 78.2 10.8 11.0  
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heatwave starting on July 6, has a visible peak, highlighted by the 
dashed line. There are also some interesting coastal and inland differ
ences. The yellow lines show the weather trends for coastal grids such as 
34, 35, and 36. They exhibit a low variation in temperature and a high 
variation in relative humidity (RH). On the contrary, the pink lines of 
inland grids (with IDs above 120) display high variations in temperature 
and low variations in RH. 

3. Results 

This section summarizes and analyzes the simulated AH data at the 
450 m grid cell resolution over LA County. Data of the other two reso
lutions can be found in the dataset made available to the public (See 
Section 6). 

3.1. Relationship between building energy use and anthropogenic heating 

This section compares the magnitude, temporal profiles, and effect of 
building vintages (indication of energy efficiency level), which ad
dresses the research question of whether building energy consumption 
can be directly used to represent building AH, a common practice in 
many top-down building AH studies (see Section 1). 

3.1.1. AH-to-energy ratio 
In majority of cases, building AH is larger than its energy con

sumption, with the AH-to-energy ratios varying widely from 0.6 to 13.8. 
Residential buildings and warehouses have the highest heat-to-energy 
ratios, especially for the newest single-family homes, their annual heat 
emission is about 14 times the annual energy consumption. This is likely 

Fig. 11. Annual total anthropogenic heat (lighter colored bars) and energy consumption, both normalized by the total building floor area, of electricity and gas 
(darker colored bars) among the prototype models, averaged across different weather inputs at different grid cells. The dots are the AH-to-energy ratios for each 
prototype building. 
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due to the high contribution of surface AH component (see Section 33), 
which is less related to the occupant’s energy-using behavior. When 
excluding the largest AH component from the building surface convec
tion, the ratios become much smaller, ranging from 0.3 (Heavy 
Manufacturing pre-1980) to 1.9 (Medium Office 2013). Among the 
prototype buildings, industrial and commercial buildings have the 
highest heat emission and energy use intensity among the prototype 
building models. This analysis extends (Hong et al., 2020) by including 
residential and industrial prototype buildings and an older pre-1980 
vintage.1 Heavy manufacturing facilities, full-service restaurants, and 
supermarkets are the buildings with the highest heat emissions. These 
buildings tend to have high energy consumption as well. 

3.1.2. Diurnal AH profiles 
When the surface component is excluded from the total AH, the 

remaining annual building AH is more similar to its energy consump
tion. However, by comparing the diurnal profiles of the non-surface AH 
with the energy consumption (Fig. 12), we can see that there is a clear 
shape difference in residential buildings where the energy consumption 
has two peaks, one around 8am and one around 8pm while building AH 
has only one peak around 3pm. The diurnal profile shapes are more 
similar in non-residential buildings such as manufacturing facilities and 
retail stores. For large offices and warehouses, the HVAC + Zone AHs are 
flatter than the energy consumption. In terms of the variability due to 
weather conditions, residential buildings have similar weather vari
ability in energy consumption and HVAC + Zone AH, while for non- 
residential buildings, AHs tend to have larger weather-induced vari
abilities than energy use. 

3.1.3. Building vintage 
To compare building anthropogenic heat and energy use among 

different building vintages, we examined the distribution of the changes 
in anthropogenic heat or energy use from the pre-1980 vintage to the 
2004 (or 2013) vintage (Fig. 13). A negative value suggests a decrease in 

anthropogenic heat or energy use in the newer buildings. The variability 
within each boxplot is due to differences in the input weather files. For 
residential buildings and hospitals, newer buildings show reductions in 
both anthropogenic heat and energy use compared with older buildings. 
Specifically, compared with the pre-1980 vintage, single and multi- 
family buildings have a 5–10% reduction in building AH and a 
25–50% reduction in their energy consumption in the 2004 and 2013 
vintage. For full-service restaurants and small offices, newer buildings 
have lower energy consumption but higher anthropogenic heat 
compared with their pre-1980 counterparts. For supermarkets, retail 
stores, large offices, large hotels, and manufacturing facilities, newer 
buildings lowered energy consumption in both 2004 and 2013 vintages 
but only the 2013 vintage saw anthropogenic heat reduction. The dif
ferences in the effect of newer buildings on energy and AH likely stem 
from the differences in the type of energy efficiency upgrades. For 
example, the newer full-service restaurants have better lighting and 
appliances and achieve major reduction in lighting energy and elec
tricity and gas equipment consumption; while the main contributor to 
the increased AH in newer full-service restaurants is the increased 
maximum flow rate of the exhaust fan. 

3.2. Components of building anthropogenic heat 

Buildings produce anthropogenic heat in three major channels: sur
face convection, HVAC operation through rejection and relief air, and 
zone air exchange through exfiltration and exhaust. Building surface 
convection is the major contributor to building AH across all building 
sectors except for commercial buildings where HVAC and surface con
vection are comparable. In residential buildings, close to 80% of the AH 
is from surface convection. The surface-HVAC-Zone AH ratios are 
similar between the residential sector and the whole of LA County as it is 
the dominant building use type (see Table 5). 

3.2.1. Building vintage 
On average, newer buildings, although consuming less energy due to 

higher energy efficiency level, have slightly relative higher HVAC 
contribution in total AH. Although vintage is secondary as compared 
with building type in determining the AH percentage composition. The 
contribution of the HVAC component in total AH is increased in newer 

Fig. 12. Diurnal profile of prototype non-surface component building anthropogenic heat vs energy consumption for residential buildings (top row) and non- 
residential buildings (bottom row). The total building non-surface AH is the sum of the HVAC and zone AHs. Different lines represent results from different 
weather inputs. 

1 GJ/m2 is used as the unit of measure following Hong et al. 2022 for an 
easier cross comparison. Note that GJ/m2 can be converted to kWh/m2 by 
multiplying 277.78 
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vintages for commercial and institutional buildings and decreased for 
residential buildings. Across different building types, warehouses have 
the largest percentage of surface AH, while large offices lead in HVAC 

AH, and full-service restaurants have the highest percentage of AH from 
zone air exchange. 

Fig. 13. Distribution of building anthropogenic heat and building energy consumption difference between the 2004 and pre-1980 vintage (red) and difference 
between the 2013 vintage and pre-1980 vintage (blue), for residential (a), commercial (b), industrial (c), and institutional buildings (d). 
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3.2.2. Diurnal profile across seasons 
This section breaks down the seasonal diurnal profiles into the three 

AH components and compares them side-by-side with three relevant 
weather variables (Fig. 14). The surface component peaks at noon and 
drops below zero at night, resembling the diurnal profile of solar radi
ation. The HVAC and Zone AH components are more correlated to 
temperature and wind speed. Although the outdoor temperature peaks 
around noon, the indoor is not heated up right away. This time lag is due 
to the thermal mass, building insulation level, air tightness, etc., and as a 
result, the peak cooling loads and associated HVAC energy use and AH 
are about two hours after the outdoor temperature peak. Zone anthro
pogenic heat follow the overall urban temperature curve but also re
sembles the wind speed pattern in the dips in the morning. The dip 
around noon time matches the infiltration schedule of the 
manufacturing facilities, which are among the highest heat emission 
building types (See Fig. 11). Zone exhaust and exfiltration-induced AH is 
highest in colder months like spring and winter, as opposed to HVAC and 
surface AH which are larger in summer. The zone’s anthropogenic heat 
is larger in spring than in winter, likely due to higher wind speed. 

3.2.3. Spatial distribution 
This section compares the spatial distribution of four snapshots of 

building anthropogenic heat in summer at noon and night on a weekday 
and a weekend day, for the surface component and non-surface com
ponents (Fig. 15). The similarity in the spatial layout of hot spots among 
the four daytime maps suggests that non-time-varying factors like 
building type and vintage composition, location which are indicative of 
the climate condition, are more decisive in the rankings of anthropo
genic heat than temporal factors. The anthropogenic heat from surface 
convection has a very clear day-night difference, echoing the diurnal 
profiles in Fig. 14. The surface-AH component has a larger day-night 
difference than the non-surface AH. Among the four weekday- 
weekend pairs, non-surface AH during the weekend night is larger 
than weekday night, especially around Beverly Hills and along West 
Hollywood, suggesting heavier human activity during weekend nights. 

3.3. Correlation of peak building anthropogenic heat with the building 
stock characteristics 

By comparing the maps of building anthropogenic heat and building 
stock in Section 2.3.1, we can see a strong correlation between building 
floor area ratio and anthropogenic heat. The industrial regions also 
collocate with higher anthropogenic heat regions. A more systematic 
regression analysis was conducted to examine the correlation between 
building stock characteristics and building anthropogenic heat, using 

the specification in Eq. (1). 

AHij = α +
(
γ0jrcomi + γ1jrresi + γ2jrindi

)
+ μjFARi

+
(
λ0jvin04i + λ1jvin13i

)
(1)  

AHi,j is the annual peak anthropogenic heat flux of the jth component 
(overall, surface convection, HVAC, and zone) for 2018, for the i th 450 
m grid cell. rcomi, rresi, and rindi are the ratios of building floor area that 
are commercial, residential, or industrial in grid cell i. The ratio of 
institutional buildings is left out as a reference group to prevent multi
collinearity in model fitting. FARi is the total building area divided by 
the total grid area for grid cell i. vin04i and vin13i are the ratios of 
buildings built around 2004 or 2013 in grid cell i. The pre-1980 vintage 
ratio is left out as a reference group to prevent multicollinearity. 

The estimated regression coefficients specified in eq (1) are shown in 
Table 6. For the overall and surface anthropogenic heat, higher indus
trial and commercial building ratios, and large building floor area ratios 
are associated with higher anthropogenic heat. Compared with institu
tional buildings, a higher residential ratio is associated with lower 
anthropogenic heat. Specifically, holding other factors constant, when 
one grid cell has one percent higher industrial buildings and one percent 
lower institutional buildings, the former tends to have 44.6 W/m2 

higher peak building anthropogenic heat than the latter. When other 
factors are the same, one grid cell has one percent more residential 
buildings and one percent fewer institutional buildings than another 
grid cell, the annual peak building anthropogenic heat is likely to be 
14.1 W/m2 lower than the latter. One percent higher floor area ratio is 
associated with 208.8 W/m2 higher building anthropogenic heat. 
Compared with pre-1980 buildings, newer buildings tend to have lower 
anthropogenic heat. Specifically, holding other characteristics the same, 
when one grid cell has one percent higher 2004-vintage buildings and 
one percent lower pre-1980 buildings, the former is likely to have 11.7 
W/m2 lower annual peak building anthropogenic heat. When the former 
has one percent higher vintage-2013 buildings and one percent lower 
pre-1980 buildings than the second grid, the former tends to have 14.7 
W/m2 lower annual peak anthropogenic heat. Note that the coefficients 
only provide a summary of the data and should not be interpreted as 
causal. 

Unlike the other three components, a higher ratio of industrial 
buildings is associated with lower HVAC-related anthropogenic heat, 
probably because the HVAC conditioning needs in industrial buildings 
are overshadowed by the industrial process needs, lighting, etc. For the 
Zone air exchange-resulted anthropogenic heat, the association between 
the anthropogenic heat and the ratio of commercial and residential 
buildings, and the 2004 vintage ratio are not statistically significant. 

Fig. 13. (continued). 
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3.4. Correlation between HVAC and zone building anthropogenic heat 
and outdoor air temperature 

HVAC-resulted building anthropogenic heat is linearly correlated 
with outdoor air temperature between 20 ◦C and 30 ◦C (Fig. 16). When it 
is 20 ◦C outside, the HVAC-induced AH is minimal as it’s around the 
comfortable temperature and little cooling or heating is required by 
buildings; it increases when outdoors is colder or hotter. However, when 
the daily peak outdoor air temperature is above 32 ◦C (close to LA’s 
summer design day outdoor air temperature of 32.2 ◦C/90 ℉), the 
anthropogenic heat starts to plateau, which is likely a result of cooling 
demand exceeding cooling capacity on sweltering days during heat 
waves. 

In summer, the plateau behavior at high temperatures exhibits het
erogeneity among different building types (Fig. 17). Residential build
ings all have the plateau behavior while non-residential buildings show 
more irregularity and flatter AH-temperature curves. The changepoint 
temperatures for residential buildings are all around 32 ◦C but pre-1980 

residential buildings have higher HVAC-induced AH than newer ones 
due to the higher cooling loads thus energy use of the energy-inefficient 
older homes. 

Zone air-exchange-resulted anthropogenic heat decreases with out
door air temperature (Fig. 18). In summer, outdoor air temperature is 
usually higher than indoor temperature. The indoor-outdoor air ex
change makes buildings absorb heat (or emit negative heat). When 
outdoor temperature increases, the indoor-outdoor temperature differ
ence increases, and the absorbed heat increases, which is equivalent to 
the emitted negative heat decrease. In winter, indoor air temperature is 
usually higher than the outdoor air temperature, and buildings release 
heat through indoor-outdoor air exchange. When the outdoor air tem
perature increases, indoor-outdoor temperature decreases, causing a 
reduction in the heat released through air exchange. In both situations, 
an increase in outdoor air temperature leads to a decrease in anthro
pogenic heat. 

Fig. 14. Diurnal profile of total building anthropogenic heat (top left), three building anthropogenic heat components (middle), relevant environment, and building 
factors (right column and bottom left). Each color represents a season in 2018. The black line is the average diurnal profile of all seasons. 
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3.5. The impact of anthropogenic heat on the urban temperature rise 

The impact of anthropogenic heat on urban temperature is analyzed 
for July 2018 by comparing the outdoor temperature simulated by WRF- 
UCM at 450 m resolution with and without representing anthropogenic 
heat. July month is selected as it is during summer when outdoor tem
perature increases are more concerning, and a heatwave was observed 
starting on July 6, 2018 (marked by the dash lines in Fig. 10Section 
2.3.2) and lasted for about three days. As WRF-UCM explicitly models 
urban canopy including heat exchange between the building exterior 
surfaces and the urban environment, the AH impacts on urban temper
ature evaluated in this section only include the HVAC and zone AH 
components, excluding the surface AH component. 

Fig. 19 shows the map view of average daily peak AH and AH- 
induced outdoor temperature changes. We can see the impact on daily 
min temperature is more severe and wider spread. The AH-induced 
change in average daily max temperature ranges from 0.2 to 0.6 ◦C. 
The highest increases are near downtown and Norwalk. AH-induced 
daily minimum temperature increase in July can be as high as 2.9 ◦C. 

The highest increases are in neighborhoods around the Santa Monica 
Mountains. 

A positive relationship is observed between building AH and tem
perature increase (Fig. 20). We split the temperature change-AH plot 
into high AH grids and low AH grids (with AH below the 95th percen
tile), as the AH distribution is very right skewed, making it hard to 
examine the relationship. Building AH causes a larger increase in daily 
minimum temperature than in daily maximum temperature. For the 
majority of the grid cells (below the 95th percentile), when the daily 
peak building AH increases by 100 W/m2, the daily max ambient tem
perature increases by 0.02 ◦C, and the daily minimum temperature in
creases by about 0.16 ◦C. For high-AH grid cells, a 100 W/m2 building 
AH increase corresponds to about 0.06 ◦C increase in daily maximum 
temperature and 0.14 ◦C increase in daily minimum temperature. The 
modest correlation between the spatial distributions of AH and changes 

Fig. 15. Building anthropogenic heat snapshots in summer at noon and night on a weekday and a weekend day.  

Table 6 
Regression coefficients of anthropogenic heat on weather and building charac
teristics. Significant codes: p < 0.001 ‘***’, p < 0.01 ‘**’, p < 0.05 ‘*’ The ones 
with “*” are statistically significant.  

Building 
characteristics 

Overall Surface HVAC Zone 

Ratio of industrial 
building 

44.623*** 43.942*** − 4.812*** 7.535*** 

Ratio of commercial 
building 

10.043** 10.446** 2.979*** 0.462 

Ratio of residential 
building 

− 14.067*** − 8.515* − 6.877*** − 0.329 

floor area ratio 208.806*** 183.622*** 41.840*** 12.440*** 
Ratio of building with 

vintage around 2004 
− 11.653*** − 11.472*** − 1.256*** − 0.163 

Ratio of building with 
vintage around 2013 

− 14.735*** − 11.967*** − 4.800*** − 1.501***  

Fig. 16. Scatter plot of daily peak HVAC-induced AH and daily peak outdoor 
air temperature. Each point is a day, with peak AH and peak temperature 
averaged across all 450 m grid cells. 
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in air temperature could, in part, be attributed to the influence of wind. 
The movement of wind carries the heated air from regions with high AH 
to the adjacent downwind areas. 

4. Discussion 

4.1. Major findings 

Building AH and energy consumption differ in multiple aspects. 
Annual total building AH is generally higher than its energy consump
tion. After excluding the surface component, the two become more 
similar but still quite different in their diurnal profile, especially in 
residential buildings, where the number of peaks and their timing differ 
substantially. Newer vintages affect energy and anthropogenic heat 
differently, whereas, in some non-residential buildings, such as full- 

service restaurants and small offices, newer buildings have smaller en
ergy consumption but larger AH than older buildings. 

Building AH has three components: surface, HVAC, and zone. The 
surface AH is the largest component, making up close to 80% of the total 
AH in residential buildings. Its ratio is lower in commercial and insti
tutional buildings, accounting for 40% of the total AH, similar to the 
HVAC component. 

Building anthropogenic heat exhibits substantial seasonal changes 
and diurnal variability as a result of the seasonality of its components. 
The surface and HVAC component is highest in summer, while the zone 
component is highest in Spring. Surface and building total AH peaks 
around noon and are at their lowest during the night, aligning well with 
the diurnal pattern of solar radiation. HVAC and zone AH peaks in the 
afternoon around 3pm, a little later than the temperature peaks around 
1pm. These two components do not perfectly match that of outdoor 
temperature, as they are affected by both the outdoor conditions and 
building characteristics (e.g., thermal mass) and operation schedules. 
Anthropogenic heat emitted from zone air exchange is also affected by 
wind, which explains why it is highest in spring as spring has lower 
ambient temperature and higher wind speed. 

Higher peak building anthropogenic heat is associated with higher 
building density (floor area ratio), higher ratio of industrial or com
mercial buildings, and more pre-1980 buildings. These explain the 
spatial patterns of the AH across LA County. 

Non-surface building AH causes ambient temperature to increase in 
July 2018, a summer month with a heatwave starting on the 6th. The 
average change in daily maximum (daytime) temperature and minimum 
(nighttime) temperature is as high as 0.6 ◦C and 2.9 ◦C, respectively. Our 
analysis also highlights that wind patterns could play an important role 
in distributing the heated air from regions with high AH to the adjacent 
downwind areas. 

4.2. Implications 

The current study shows a large spatial variation in anthropogenic 
heat from buildings, where a small number of grid cells generate much 

Fig. 17. Scatterplot of summer daily peak anthropogenic heat from HVAC and daily peak temperature for major residential buildings (top) and non-residential 
buildings (bottom) which constitute 90% of the building stock in LA County. 

Fig. 18. Scatter plot of daily peak anthropogenic heat from zone air exchange, 
and daily peak temperature (bottom). 
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larger anthropogenic heat than the majority of grid cells. This suggests 
the importance of locating the hot spots and prioritizing interventions 
on them. For the LA County area, policymakers should target dense 
urban regions with a high percentage of industrial or commercial land 
uses. Reducing building AH can be achieved by upgrading energy effi
ciency of buildings to comply with California’s newer building codes 
which will lead to less energy use and associated HVAC AH. However, 
trimming AH in industrial buildings could be challenging as their energy 
demand and resulting AH are heavily driven by the industrial process 
rather than their heating/cooling needs. As a result, it might be worth 
consideration to focus AH-reduction interventions on dense commercial 
or mixed-use neighborhoods around downtown and arrange industrial 
land uses in remote areas so that their AH-induced temperature increase 
would not affect the cooling demand of surrounding buildings. The 
impact of building energy efficiency upgrades on AH and energy are not 
always aligned, especially for non-residential buildings. The current 
study shows the effect of newer building vintages with higher energy 
efficiency levels generally reduces building energy consumption but not 
always on building anthropogenic heat. As a result, policy intervention 
decisions should not be solely based on its effect on energy and GHG 
reduction which is currently the driven goal of clean energy transition in 
cities. Their impact on AH should also be thoroughly evaluated to ensure 
measures and strategies for building decarbonization also reduce 
building AH and urban overheating during summer especially heat
waves in cities in warm and hot climates. 

In the current LA building stock, residential and industrial buildings 
should focus more on reducing the surface AH, with strategies such as 
cool roofs and cool wall coatings. For commercial and institutional 
buildings, the focus should be on trimming HVAC-resulted AH during 
summer, with interventions that reduce cooling demand such as 
weatherization, shading, and envelope insulation, or cooling system 
efficiency improvement. The increase in ambient temperature causes 
increases in anthropogenic heat from HVAC operation and decreases in 
anthropogenic heat from surface convection and zone air exchange. This 
implies with global warming in the future, the anthropogenic heat from 
the HVAC component might account for a larger portion of the total 
building anthropogenic heat. It might become increasingly important to 
perform interventions reducing HVAC-resulted anthropogenic heat in 
residential and industrial buildings as well. 

4.3. Limitations 

There are limitations and uncertainties associated with the data and 
models used to generate the AH dataset. First, the LA County building 

stock data has some missing data; some buildings do not have the use 
type or have an invalid footprint polygon. Some buildings do not fall 
within the spatial domain covered by the WRF model. A small number of 
buildings are of a special use type that consumes energy mostly for in
dustry processes such as food preparation or outdoor use. These three 
groups of buildings were not included in the modeling. Second, the 
prototype building energy models in EnergyPlus made assumptions 
about the building envelope, construction, and energy systems and their 
energy efficiency levels based on the requirements defined in the Cali
fornia Building Energy Efficiency Standards Title 24 and the U.S. 
nationwide ASHRAE Standard 90.1 for the building’s construction year, 
which may not reflect individual building’s actual energy efficiency or 
operation conditions. Third, the publicly available countywide building 
energy use data, used to quality check the simulated building energy 
use, are limited in their floor area ratio and the aggregation approach 
due to privacy concerns or the data collection process. 

4.4. Future work 

The building anthropogenic heat dataset is generated with a bottom- 
up simulation approach. To expand the analysis to other years or cities, a 
full set of simulations has to be redone. If the weather data is of finer 
spatial resolution (e.g., at 450 m), then the number of simulation runs 
could grow exponentially. Future studies could explore machine 
learning approaches (e.g., surrogate models) to speed up the simulation 
process while preserving the accuracy and flexibility of the simulation 
approach. 

The current study analyzed the anthropogenic heat of the LA build
ing stock under the current climate and building conditions. To provide 
better support for policy making, it would be important to analyze the 
impact of building decarbonization (electrification and energy effi
ciency upgrades) on anthropogenic heat. For long-term planning, it 
should also consider the impact of future climate. When grid cells pro
ducing 100 W/m2 AH experience a 0 ◦C temperature increase and grid 
cells producing 10 W/m2 experience a 3 ◦C temperature increase, there 
could be an equity issue. Future analysis could investigate the source of 
ambient temperature increase variability. 

Future research is also needed for more detailed observations of AH 
and the processes that contribute to it, to help further develop and 
validate the models. 

5. Conclusions 

The current study investigates the building’s anthropogenic heat 

Fig. 19. Average daily max building AH (left), the average rise in daily maximum outdoor temperature due to AH (middle), the average rise in daily minimum 
outdoor temperature due to AH (right), restricted to grid cells with urban land use (land use id in category 23, 24, 25, 26) in central and southern LA County, 
excluding cloudy hours. 
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components, timing, and their correlation with weather and building 
stock characteristics, and how building anthropogenic heat and outdoor 
temperature affect each other. 

Buildings produce anthropogenic heat in three major components: 
through surface convection, through HVAC operation with heat rejec
tion and air relief, and zone air exchange with the outdoor environment. 
These AH components have different magnitude and heat emission 
mechanisms and are affected by different environmental factors. The 
surface component is the largest and is mostly driven by solar radiation. 
HVAC and Zone anthropogenic heat is affected by both weather and 
building characteristics such as envelope, system efficiency, and oper
ation schedules. As a result of this difference in AH producing mecha
nism, sometimes surface convection AH is not counted as part of the 
building anthropogenic heat. 

Cooling and heating demand is the main driver of AH through HVAC 
operations. Daily peak HVAC-induced AH is lowest when the daily peak 
outdoor air temperature is around 20 ◦C; it increases when outdoors is 
colder or hotter. AH through zone air exchange decreases with outdoor 
temperature throughout the year. 

Building anthropogenic heat leads to changes in outdoor air tem
perature. The change has large spatial and temporal variations. Grid 
cells with higher anthropogenic heat have a higher ambient temperature 
increase. For grid cells producing the same anthropogenic heat, the 
experienced temperature difference can differ by as much as 2 to 3 ◦C in 
daily minimum temperature, and up to 0.5 ◦C in daily maximum tem
perature. The building’s anthropogenic heat during the heatwave in July 
2018 can increase the maximum daytime outdoor air temperature by up 
to 0.6 ◦C, and increase the minimum nighttime outdoor air temperature 
by up to 2.9 ◦C. The significant increase in nighttime outdoor air tem
perature during the heatwave can lead to overheating risks and poor 
sleeping quality of residents without air-conditioning, which becomes a 
climate equity issue, especially for underserved communities with 
limited or no air-conditioning. 

6. Data access 

The hourly anthropogenic heat dataset produced in the current study 
has been uploaded to the MSD-Live website for public access; users can 

Fig. 20. July average daily peak AH vs the change in daily outdoor temperature range: AH vs change in daily maximum temperature (left), AH vs change in daily 
minimum temperature (right), for grid cells with building AH below the 95th percentile (top) and above the 95th percentile (bottom) across all grid cells. The plots 
are restricted to urban grid cells in central and south LA County. The temperature change statistics are restricted to non-cloudy hours. 
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download data through this link: https://doi.org/10.57931/1892041, 
or https://data.msdlive.org/records/zxs8c-kpv35. 

The GitHub repository https://github.com/IMMM-SFA/xu_etal_2 
022_sdata holds the data record documentation and data processing 
steps and scripts. 

The WRF-UCM data used in the current study is publicly accessible 
via Globus with a copy stored and minted in the MSD-Live data re
pository (https://doi.org/10.57931/1885756) which could be used to 
reproduce our results. Instructions for downloading the data, as well as 
additional information regarding the dataset and available variables can 
be found at a data landing page (https://tgw-data.msdlive.org). 
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