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Abstract

Rationale and Objectives: We investigated the feasibility of utilizing convolutional neural 

network (CNN) for predicting patients with pure Ductal Carcinoma In Situ (DCIS) versus DCIS 

with invasion using mammographic images.

Materials and Methods: An IRB-approved retrospective study was performed. 246 unique 

images from 123 patients were used for our CNN algorithm. In total, 164 images in 82 patients 

diagnosed with DCIS by stereotactic-guided biopsy of calcifications without any upgrade at the 

time of surgical excision (pure DCIS group). A total of 82 images in 41 patients with 
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mammographic calcifications yielding occult invasive carcinoma as the final upgraded diagnosis 

on surgery (occult invasive group). Two standard mammographic magnification views (CC and 

ML/LM) of the calcifications were used for analysis. Calcifications were segmented using an open 

source software platform 3D Slicer and resized to fit a 128 × 128 pixel bounding box. A 15 hidden 

layer topology was used to implement the neural network. The network architecture contained five 

residual layers and dropout of 0.25 after each convolution. Five-fold cross validation was 

performed using training set (80%) and validation set (20%). Code was implemented in open 

source software Keras with TensorFlow on a Linux workstation with NVIDIA GTX 1070 Pascal 

GPU.

Results: Our CNN algorithm for predicting patients with pure DCIS achieved an overall 

diagnostic accuracy of 74.6% (95% CI, ±5) with area under the ROC curve of 0.71 (95% CI, 

±0.04), specificity of 91.6% (95% CI, ±5%) and sensitivity of 49.4% (95% CI, ±6%).

Conclusion: It’s feasible to apply CNN to distinguish pure DCIS from DCIS with invasion with 

high specificity using mammographic images.

Keywords
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INTRODUCTION

Ductal Carcinoma In Situ (DCIS) is considered the earliest form of breast cancer, defined by 

the presence of abnormal cells limited to the mammary ducts within the breast, without 

extension beyond the basement membrane. DCIS may be subdivided into three pathologic 

subtypes: high, intermediate, and low. Although pathologic grade at time of diagnosis is a 

factor in patient management, no conclusive data regarding progression of DCIS to invasive 

carcinoma has been clearly established. Surgical management remains the standard of care 

for patients with DCIS, regardless of grade (1).

Although the incidence of DCIS has continued to increase with more patients undergoing 

screening mammography, there has been no subsequent decline in the rate of invasive 

carcinoma (1). The risk of overdiagnosis and treatment of DCIS must be weighed against the 

risk to observation alone in this patient population. Currently, there are two large clinical 

trials, in the US and Europe aimed at identifying potential low risk DCIS and comparing the 

necessity of surgical management versus observation (1,2). Recent studies have shown that 

there is still approximately 20% risk of upgrade upon excision in women diagnosed with 

"low risk" DCIS based upon the eligibility criteria of each of these clinical trials, 

respectively (1,2). In order to safely manage patients with DCIS by observation alone, 

alternate methodology is needed for more appropriate patient selection.

Mammography is used as the primary screening modality in the detection of breast cancer 

and microcalcification is the commonest mammographic feature of DCIS, visualized in 

approximately 80%—90% of cases (3). Little research has been done to evaluate the use of 

mammography in the detection of intratumor heterogeneity, (4) however there has been 

growing interest in radiomics in recent years with the advances in machine learning. 
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Recently a subset of machine learning named Convolutional Neural Networks (CNN) has 

made great strides in medical imaging analysis. Compared to traditional machine learning, 

which primarily relies on human extracted feature analysis, neural networks depend on the 

input of raw data and allow the computer to automatically construct predictive statistical 

models through increasingly complex layers and self-optimization processes (5).

The purpose of this study is to determine the feasibility of utilizing CNN for predicting 

which patients have pure DCIS versus DCIS with invasion using mammographic images.

MATERIALS AND METHODS

An IRB-approved retrospective query was performed on patients at our institution from 

January 2015 to January 2018. Inclusion criteria include all patients who underwent 

stereotactic guided biopsy and subsequent surgical excision after identification of 

calcifications on a diagnostic mammogram with two standard magnification views 

(craniocaudal [CC] and mediolateral/lateromedial [ML/LM]). In total, 123 patients were 

identified, representing 246 unique images mammographic images. Of these, 164 images in 

82 patients represented pure DCIS group (DCIS by stereotactic-guided biopsy of 

calcifications without any upgrade at the time of surgical excision). A total of 82 images in 

41 patients represented occult invasive group (occult invasive carcinoma as the final 

upgraded diagnosis on surgery).

Mammograms at our institution were performed on dedicated mammography units 

(Senographe Essential, GE Healthcare). The views obtained consisted of the standard 

mediolateral oblique and CC views. Additional magnification views were obtained of the 

calcifications in CC and ML/LM projections. All statistical analyses were performed using a 

statistical software program (SPSS Statistics for Windows, Version 24. Chicago: SPSS Inc.). 

A two-sided p value of ≤0.05 was considered significant.

All of the patients in this study underwent stereotactic-guided core needle biopsy with a 

nine-gauge needle. Clinical and pathologic data were collected including patient’s age, size 

of the calcifications’ extent, and pathology result. All statistical analyses were performed 

using a statistical software program (SPSS Statistics for Windows, Version 24. Chicago: 

SPSS Inc.). A two-sided p value of ≤0.05 was considered significant.

DATA AUGMENTATION AND SEGREGATION

The raw magnification views (CC and ML/LM) of each patient’s mammogram was loaded 

into a segmentation program (3D Slicer) (18). Segmentations were manually extracted 

encompassing the regions of the magnification view which contained calcifications. Each 

image was scaled in size based on the radius of the segmentations and resized to fit a 128 × 

128 pixel bounding box. The pathology report was used as the ground truth, from which 

patients were split into pure DCIS and occult invasive group (Fig. 1 and 2).

The entire image batch was normalized by dividing the nonair pixel intensity values by the 

standard deviation and subtracting by the mean. To perform data augmentation, queued 

images were randomly flipped vertically and/or horizontally, rotated by a random angle 
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between +0.52 and −0.52 radians, and randomly cropped to a box 80% of their initial size. 

Due to the nature of obtaining compression for mammograms, a small amount of random 

shear was artificially applied do each input batch in order to simulate differing compression 

force on mammograms. The degree of affine warping, including shear was visually 

inspected on 1000 images to ensure that realistic augmentations were obtained. Finally, to 

simulate the effect of differing radiographic acquisition parameters due to slightly different 

kVp and mA, a random gaussian noise matrix was added to each input batch.

NETWORK ARCHITECTURE

A novel 15 hidden layer customized CNN architecture (Fig 3) was designed to create a 

network architecture that would balance the most current strategies while keeping the overall 

number of trainable parameters as small as possible given the relatively small datasets seen 

in medical imaging. The network was trained from random weight initializations for 

evaluation of calcification types. Originally described by LeCun et al. in 1998 CNNs involve 

applying a series of convolution matrices to a vectorized input image that iteratively 

separates the input to a target vector space (6).

After an initial standard convolutional layer, a series of residual layers are utilized in the first 

portion of the network. Originally described by He et al., residual neural networks are able 

to stabilize gradients during back propagation, leading to improved optimization, and 

facilitating greater network depth (7).

Beginning with the 10th hidden layer, inception V2 style layers are utilized. The Inception 

layer architecture, initially described in 2015 by Szegedy et al., introduced a 

computationally efficient method of allowing a network to selectively determine the 

appropriate filter architectures to an input feature map, leading to improved learning rates 

(8). A fully connected layer with 16 neurons was implemented after the 13th hidden layer 

followed by a linear layer with eight neurons. A final Softmax output layer with two classes 

was inserted as the last layer.

Training was implemented using the Adam optimizer four combined with the Nesterov 

accelerated gradient five described by Dozat (9—11). Parameters were initialized using the 

heuristic described by Glorot et al. (12). L2 regularization was implemented to prevent 

overfitting of data by limiting the squared magnitude of the kernel weights. Dropout was 

also employed to prevent overfitting by limiting unit coadaptation (13). Batch normalization 

was utilized to improve network training speed and regularization performance by reducing 

internal covariate shift (14).

Software code for this study was written utilizing the Python TensorFlow v1.5 library. 

Experiments and network training was performed on an Ubuntu 16.04 workstation with an 

NVIDIA TITAN X Pascal GPU. We gratefully acknowledge the support of NVIDIA 

Corporation with the donation of the Titan X Pascal GPU used for this research.

Softmax with cross entropy hinge loss was utilized as the primary objective function of the 

network to provide a more intuitive output of normalized class probabilities. A class 

sensitive cost function penalizing incorrect classification of the underrepresented class was 
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utilized. Raw logits from the CC and ML/ LM view were summed to and a Softmax function 

was applied to arrive at the predicted class. Area under curve (AUC) was employed as the 

primary performance metric (Fig 4). Sensitivity, specificity, and accuracy were also 

calculated as secondary performance metrics.

Five-fold cross validation was performed using training set (80%) and validation set (20%). 

In cross validation, the data set is split into five different equal pieces where one of the five 

pieces is used to test the performance of the network and the remaining pieces are used as a 

training set. The piece used for testing is then changed to a different piece and the process is 

repeated until all the pieces have been used as a testing set. Visualization of network 

predictions was performed using the gradient-weighted class activation mapping (Grad-

CAM) techniques described by Ramprasaath et al. (15) (Fig 5).

This study was IRB approved by our institution’s review board on July 18, 17.

RESULTS

The average patient age was 62.1 years (SD, 11.3 years) in the pure DCIS group and 61.0 

years (SD, 11.8 years) in the DCIS with invasion group. The difference in age between the 

two groups was not statistically significant (p = 0.6). The average size of the mammographic 

calcifications ‘extent was larger (2.1 cm, SD, 1.66 cm) in the DCIS group with invasion 

compared to the pure DCIS group (1.54 cm, SD, 1.36 cm). But the difference between the 

two groups was no significant (p = 0.06). The average number of core samples obtained per 

biopsy was 9.6 cores (SD3.5 cores) in the pure DCIS group and 8.9 cores (SD 3.6 cores) in 

the DCIS with invasion group. The number of cores between the two groups was not 

significantly different (p = 0.2).

Based on the initial biopsy pathology result, 65.9% (54/82) of cases were high grade in the 

pure DCIS group. In the DCIS with invasion group, 63.4% (26/41) of cases were high grade. 

The frequency of high-grade cases between the two groups was not significant (p = 0.8). 

Comedonecrosis was present in 41.5% (17/41) of the cases in the DCIS with invasion group 

and 47.6% (39/82) of the cases in the pure DCIS group. The frequency of Comedonecrosis 

cases between the two groups was not significant (p = 0.6).

In total, 246 unique images from 123 patients were used for our CNN algorithm. A total of 

164 images in82 patients diagnosed with DCIS by stereotactic-guided biopsy of 

calcifications without any upgrade at the time of surgical excision (pure DCIS group). In 

total, 82 images in 41 patients with mammographic calcifications yielding occult invasive 

carcinoma as the final upgraded diagnosis on surgery (occult invasive group). The network 

was trained for 300 epochs. The CNN algorithm for predicting patients with pure DCIS 

versus DCIS with invasion achieved an overall diagnostic accuracy of 74.6% (95% CI, ±5) 

with area under the ROC curve of 0.71 (95% CI, ±0.04), specificity of 91.6% (95% CI, 

±5%), and sensitivity of 49.4% (95% CI, ±6%). The "positive class" was defined as pure 

DCIS group in this study and thus specificity represents minimizing the amount of falsely 

labeled pure DCIS cases.
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Generated Grad-CAM maps indicated salient regions to include calcifications and the 

intervening breast parenchyma. Example is shown in Figure 5. The method of visualizing 

the pixels from the input image (Fig 5a) that the network pays attention to is the “guided 

backpropagation” (Fig 4b) showing heterogeneous calcifications. This highlights every pixel 

used in making the decision for each class, whether that pixel was a negative or positive 

predictor. In GRAD-CAM, the areas that are highlighted are the regions that were a positive 

factor in predicting the specific class (Fig 5c). In Guided Grad-CAM (Fig 5d), previous 

methods are combined to highlight pixels the network pays attention to in order to provide 

positive inputs, which include the region of calcifications as well as intervening breast 

parenchyma.

DISCUSSION

In our study, we demonstrated a feasibility of predicting patients with pure DCIS using 

mammography dataset utilizing a novel CNN developed at our institution. For potential use 

in selecting patients for DCIS observation trials, our CNN model was designed to maximize 

specificity in order to limit cases with occult invasive cancers. Our model was able to 

achieve very high specificity of 91.6%.

COMET and LORIS are two large clinical trials aimed at determining patients with DCIS 

diagnosis on core biopsy that may undergo observation rather than surgery. Despite using 

extensive inclusion and exclusion criteria in selecting patient, the accuracy of these trials in 

predicting pure DCIS patients is approximately 40% and 39%, respectively (2). In 

comparison, our CNN algorithm solely utilizing the mammographic image data yielded 

significantly higher accuracy of 74.6%. Potential of combining clinical information used in 

these clinical trials and the results of our CNN algorithm in order to further improve overall 

prediction model is under investigation.

Only few prior studies have evaluated mammographic image data to predict potential occult 

invasive cancers in patients diagnosed with DCIS. A study by Shi et al. in 2017 

demonstrated that the traditional "handcrafted" computer vision mammographic features 

could be used to predict DCIS upstaging with performance comparable to a radiologist (16). 

In their study of 99 patients (74 pure DCIS; 25 DCIS with occult invasion), the manually 

extracted mammographic features, was able to distinguish DCIS with occult invasion from 

pure DCIS, with an area under the curve for ROC (AUC-ROC) equal to 0.70 (95% CI: 0.59 

0.81). Major drawback of this traditional machine leaning approach is that the process of 

feature engineering is subjective and time consuming and likely not captures all the relevant 

image information.

Due to these limitations above, the same group (Shi et al.) utilized the VGG-16 model 

pretrained on ImageNet (nonmedical images such as animals, plants, instruments) as the 

feature extractor and compared it to their original study (17). In this study, the deep features 

were able to distinguish DCIS with occult invasion from pure DCIS, with an area under the 

ROC curve (AUC-ROC) equal to 0.70 (95% CI: 0.68 0.73). This performance was reported 

comparable to the handcrafted CV features (AUC-ROC = 0.68, 95% CI: 0.66—0.71). They 

concluded that the VGG-16 model pretrained on ImageNet might not be the optimal one to 
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extract the off-the shelf deep features from digital mammograms, although it is well 

recognized as one of the most generalizable models for many different tasks.

In contrast to traditional algorithms that utilize handcrafted features based on human 

extracted patterns, neural networks allow the computer to automatically construct predictive 

statistical models, tailored to solve a specific problem subset (5). The laborious task of 

human engineers inputting specific patterns to be recognized could be replaced by inputting 

curated data and allowing this technology to self-optimize and discriminate through 

increasingly complex layers. In our study, we developed a novel CNN to distinguish pure 

DCIS from DCIS with invasion. We tailored the algorithm to increase specificity during 

training in order to minimize DCIS cases with invasion miscategorized as pure DCIS cases. 

To our knowledge, 246 unique images from 123 patients in our study is the largest study to 

date yielding a reasonable diagnostic accuracy of 74.6% and high specificity of 91.6%.

Our study is limited given the small sample size and the retrospective nature of the study 

performed at a single institution. The performance of CNN has been shown to increase 

logarithmically with larger datasets (16). Larger MRI datasets are likely to significantly 

improve our prediction model. In addition, mammography-based imaging data are more 

robust to data augmentation than are other medical images, because of the typical variance in 

normal biologic breast tissue compression rates and shear rates during image acquisition. 

This enabled us to use more-extensive image warps for data augmentation than typically is 

available, mitigating our small dataset size. Furthermore, potential of combining clinical 

information used in clinical trials (COMET and LORIS) and the results of our CNN 

algorithm in order to further improve overall prediction model is under investigation. In our 

study, ground truth was determined on the basis of pathologic findings, which has intrinsic 

limitations secondary to interobserver variability. We did not conduct interpretation by 

multiple pathologists. Although our algorithm has not been externally validated, a 

prospective validation study is planned in the near future.

Lastly, because training a CNN is an end-to-end process, it does not clearly reveal the 

reasoning behind the final result in a deterministic manner. Many methods have been 

developed to improve human understanding and intuition behind the predictions of a neural 

network; however, this is an ongoing area of research.

It’s feasible to apply CNN to distinguish pure DCIS from DCIS with invasion with high 

specificity using mammographic images. This can potentially aid in appropriate patient 

selection for observation trial in patients diagnosed with DCIS on core biopsy.
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Figure 1. 
Example mammographic cases of pure ductal carcinoma in situ before data augmentation.
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Figure 2. 
Example mammographic cases of ductal carcinoma in situ with invasion before data 

augmentation.
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Figure 3. 
Convolutional neural network architecture for two classification model.
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Figure 4. 
Receiver operating curve analysis for two class prediction model.
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Figure 5. 
Results of class activation mapping on a patient with pure DCIS. Input image showing 

heterogeneous calcifications (a). Guided backpropagation (b), highlighting every pixel used 

in making the decision for each class, whether that pixel was a negative or positive predictor. 

In GRAD-CAM, the areas that are highlighted are the regions that were a positive factor in 

predicting the specific class (c). In Guided Grad-CAM (d), previous methods are combined 

to highlight pixels the network pays attention to in order to provide positive inputs, which 

include the region of calcifications as well as intervening breast parenchyma.
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