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characterizing strong radiation damping effects in non-linear Thomson/Compton

backscattering experiments
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3Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
4University California Berkeley, Berkeley, CA 94720 USA. and

5Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
(Dated: May 7, 2018)

A number of theoretical calculations have studied the effect of radiation reaction forces on radi-
ation distributions in strong field counter-propagating electron beam-laser interactions, but could
these effects – including quantum corrections – be observed in interactions with realistic bunches and
focusing fields, as is hoped in a number of soon to be proposed experiments? We present numerical
calculations of the angularly resolved radiation spectrum from an electron bunch with parameters
similar to those produced in laser wakefield acceleration experiments, interacting with an intense,
ultrashort laser pulse. For our parameters, the effects of radiation damping on the angular distribu-
tion and energy distribution of photons is not easily discernible for a “realistic” moderate emittance
electron beam. However, experiments using such a counter-propagating beam-laser geometry should
be able to measure such effects using current laser systems through measurement of the electron
beam properties. In addition, the brilliance of this source is very high, with peak spectral brilliance
exceeding 1029 photons s−1mm−2mrad−2(0.1% bandwidth)−1 with approximately 2% efficiency and
with a peak energy of 10 MeV.

PACS numbers: 41.75.Jv,52.38.Ph,41.60.-m

I. INTRODUCTION

The recent development of ultra-high intensity laser
systems has generated a great amount of interest in a
class of well known theoretical problems involving the in-
teraction of strong fields with relativistic electron beams
that have not been experimentally demonstrated. Rel-
ativistic electron beams are regularly measured in ex-
periments by laser wakefield acceleration [1–4] and are
characterized by being of relatively high current density
in short bunches. In laser wakefield acceleration, oscil-
lations of the electrons in the electromagnetic fields of
electron plasma cavities created by laser driven pondero-
motive expulsion have been shown to result in extremely
bright sources of x-rays [5–10].

Another proposed source of radiation using the wake-
field accelerated electron beam is Thomson or Comp-
ton backscattering from a second laser [11–20]. In
this scheme a counter-propagating laser is used as a
short wavelength undulator for producing high bright-
ness, monochromatic gamma rays. An undulator in a
conventional synchrotron is characterized by a strength
parameter K that characterizes the oscillation amplitude
relative to wavelength. For small K, the radiation is
monochromatic. For large K the radiation is character-
ized by a synchrotron-like spectrum [21]. In the counter-
propagating laser scheme, the field strength parameter
(normalized peak vector potential) a0 = |eF0|/mecω0 is
analogous to K. F0 is the peak electric field strength of a
laser with central angular frequency ω0. For a laser with

a0 � 1 (Iλ2 � 1018 Wcm−2), the radiation is monochro-
matic. For a0 > 1 harmonics in the radiation spectrum
start to appear, and for a0 � 1 the spectrum becomes
broad. For linear polarization of the laser there is also
longitudinal motion due to the Lorentz force, and there-
fore downshifting of the fundamental frequency occurs
[22, 23]. The monochromatic regime using a laser wake-
field accelerated electron bunch has been proposed as a
good source for applications [22, 24–26]. In addition, ex-
periments using this counter propagating geometry with
a very high intensity laser (Fig 1) should be an inter-
esting testbed for studying radiation reaction forces and
non-linear quantum electrodynamics [27], due to the high
field strength in the electron rest frame.

LWFA driver pulse30 fs, ⨠1021 Wcm-2

Focusing 
paraboloid Supersonic gas jet

Relativistic e-, γ Focusing 
paraboloid 

FIG. 1: Schematic of counter-propagating laser-beam inter-
action geometry using laser wakefield accelerated electrons.

The transverse component of the laser vector poten-
tial is Lorentz invariant, so the radiation emission of an
a0 ≤ 1 interaction is very different to an a0 � 1 inter-
action independent of the reference frame (and therefore
electron energy, in the colliding geometry). The emis-
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sion of photons in such processes clearly indicates that a
force should be applied to the electron to conserve mo-
mentum. Conversely, the electric field strength is not a
Lorentz invariant, and hence the electron energy in this
geometry may be crucial to determining whether the field
is quantum electrodynamically strong or not.

In this paper, radiation damping effects on the full
angular and energy distribution of photons produced in
the counter-propagating geometry interaction between a
tightly focused ∼ 1022 Wcm−2 ultrashort pulse with a
electron beam is studied by solving modified classical
equations of motion numerically and generating spectra
with a numerical radiation spectrometer [28]. The layout
of the manuscript is as follows: First we parameterize the
interplay between the field strength a0 and electron en-
ergy γmec

2 in the colliding pulse geometry, and identify
the regime relevant to near term experiments where ra-
diation damping is strong but quantum electrodynamic
effects are relatively small. Next we introduce the numer-
ical model for calculating both the electron dynamics and
radiation spectra. We then proceed to calculate the γ-
ray spectrum with “realistic” conditions, then examine
the effect of radiation reaction on the photon and elec-
tron phase-spaces. Finally, we show that semi-classical
corrections to the radiation reaction force may be observ-
able in experiments.

II. PARAMETERIZING STRONG FIELD
INTERACTIONS

A. Radiation reaction force effects

Although properly described by quantum electrody-
namics, the radiation force has a classical form that
is self-consistent within the limits that the accelera-
tion timescale is much larger than τ0 = 2e2/3mc3 =
6.4 × 10−24 s [29, 30]. It is principally a damping of
motion due to loss of momentum to the radiation. The
Lorentz-Abraham-Dirac equation is a third order differ-
ential equation of motion for a charged particle in the
presence of accelerating forces, and includes the change of
momentum due to the radiation generated by the charge.
The force on an electron is given in covariant form by:

d

dτ
vµ = − e

me
(Fµνvν + τ0D

µ) , (1)

where Dµ is the radiation reaction (damping) force,
Fµν = ∂µAν − ∂νAµ is the electromagnetic field ten-
sor and vν = dxν/dτ = {γc,−γv} is the particle four-
velocity.

The radiation reaction force, according to the Lorentz-
Abraham-Dirac model, is a source of much controversy
precisely because it is a third order differential equation,
which allows for self-accelerating solutions that do not
conserve energy, for example. Various authors have re-
formulated the equation to eliminate the third order term
(See Sokolov [31], Hammond [32] and references within).

These are generally identical to first order in τ0 (and are
therefore basically all equivalent to the Landau-Lifshitz
form of the radiation reaction force [33]), but are other-
wise not identical. The modified force can be written in
the form [30]:

d

dτ
vµ = − e

me

[
Fµνvν − τ0Pµα

d

dτ
(F ναvν)

]
. (2)

where Pµα = ηµα + vµvα/c2 and ηµν is the Minkowski
metric tensor with trace -2. In Ref. [34], several examples
were given, which show that the solutions of the Lorentz-
Abraham-Dirac model and equation 2 are identical in the
classical regime.

One of the interesting phenomena arising from this
laser-electron interaction is that the radiation damping
is theoretically predicted to be so extreme that for a suf-
ficiently intense laser, the electron beam may lose almost
all its energy in the interaction time. In particular, Koga
et al. studied the effect of radiation damping on the ra-
diation spectrum [19]. Di Piazza et al. also studied the
effect of radiation damping on the angular distribution
of radiation [35]. The effects of ‘real world’ conditions on
the radiation spectrum emitted have also been somewhat
previously studied, for example the effects of higher-order
field corrections for tightly focused pulses [36, 37].

Radiation damping can be parameterized by consider-
ing the energy loss of the electron due to the most sig-
nificant damping term [19, 27]. Here we proceed from
equation 2, where ignoring terms of τ20 and higher and
the Schott term, the damping contribution can be writ-
ten in the form [30]:

d

dτ
vµ = − e

me
F ναvν

[
ηαµ − τ0

e

mec2
vνv

µFαν
]
, (3)

The electromagnetic four-force can be written in the
form:

Fανvν = −dA
α

dτ
+ vν∂

αAν . (4)

For the case of a linearly polarized plane wave, Aµ =
<
[
{A0}µeiκαx

α

f(κβx
β/ω0tL)

]
where κα is the four-

wave-vector κα = ω0{1,−k̂/c}, f(καx
α/ω0tL) is a func-

tion describing the temporal envelope and tL is the pulse
duration, interacting with a counter-propagating elec-
tron with initial Lorentz factor γ0 obeying a0 � γ0 �
(a0ω0τ0)−1/2, the zeroth component is well approximated
by:

dγ

dτ
= −γτ0

daµ

dτ

daµ
dτ

, (5)

where aµ = eAµ/mec. The condition on γ is so that
the longitudinal Lorentz force is minimized but radia-
tion damping does not affect the transverse oscillations
of the electron. For a slowly varying gaussian envelope,
i.e. (1/f)df/dτ � κµv

µ with f = exp(−(καx
α/ω0tL)2),
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and averaging over the fast oscillations, we can integrate
to obtain the total energy loss by the particle:

∆γ∞
γ0

=

√
π
2 τ0tLω

2
0γ0a

2
0

1 +
√

π
2 τ0tLω

2
0γ0a

2
0

, (6)

This is similar to the result in Ref. [34], but with a
different definition for the pulse duration because here
tL is close to the full-width-at-half-maximum duration
commonly used in experiments. From this expression, we
can define a parameter ψ = 10

√
π
2 τ0tLω

2
0γ0a

2
0trad, for a

particular characteristic timescale for radiation damping
trad, such that:

∆γ∞
γ0

=
0.1ψ(t/trad)

1 + 0.1ψ(t/trad)
. (7)

which clearly defines strong radiation damping for ψ ≥ 1
and weak radiation damping for ψ � 1. Here we choose
trad = 2π/ω0 – that is to say a laser period – which is
slightly different from the choice of Koga et al. [19], who
chose the pulse duration for trad. However, we have also
added a factor of 10 into ψ, which is such that ψ = 1
corresponds to a 10% energy loss in a single cycle, which
therefore results in a condition similar to that of Koga
et al. [19], since they considered an approximately 10
cycle pulse. In addition, a 10% loss in a single cycle can
reasonably be defined as the threshold of “significant”
damping. Hence:

ψ = 10
√

2π3ω0τ0γ0a
2
0 . (8)

For a 800 nm laser, ψ = 1.2 × 10−6γ0a
2
0. The condition

ψ = 1 leads to the condition for the laser pulse vector
potential, i.e. the strong radiation damping regime is
realized for

a0 > arad =
(

10
√

2π3ω0τ0γ0

)−1/2
. (9)

B. Quantum electrodynamics effects

Quantum electrodynamically strong interactions are
parameterized by a relativistically and gauge invari-
ant parameters χe = ||Fµνvν ||/(cEcr) and χγ =
||Fµν~kν ||/(mecEcr) [38], where ~kν is the four-
momentum of a photon and Ecr = m2

ec
3/e~ = 1.32×1018

Vm−1 is the Schwinger or critical field of quantum elec-
trodynamics. These parameters determine the rates of
photon creation by an electron or an electron-positron
pair creation by high-energy photon in a strong elec-
tromagnetic field, the latter being the Breit-Wheeler
process [39]. The photon emission probability for

χe � 1 is ≈
(
5αm2

e/2
√

3p0
)
χe and for χe � 1 is

≈
[
14Γ(2/3)αm2

e/27p0
]

(3χe)
2/3

, where p0 is the elec-

tron energy and Γ(z) =
∫∞
0
tz−1e−tdt is the Euler gamma

function, and α = e2/4πε0~c = 1/137 is the fine structure

constant [38]. The pair production probability by a pho-

ton for χγ � 1 is ≈
(
3
√

3αm2
e/16
√

2k0
)
χγ exp (−8/3χγ)

and for χγ � 1 is ≈
[
15Γ4(2/3)αm2

e/28πk0
]

(3χγ)
2/3

,
where k0 is the photon energy [38]. Previously it was
shown that extremely high intensity counter propagating
laser pulses could lead to prolific pair production [40–42].

For multi-100 TW lasers, such as the Hercules [43]
or Astra Gemini [44] lasers, with focused field strength
|E| ∼ 10−3Ecr, interaction with GeV energy electron
beams should be sufficient to achieve χe ∼ 1 [45–47].
However the conversion of emitted photons into electron-
positron pairs will be suppressed due to the exp (−8/3χγ)
in the expression for the probability for χγ � 1.

A notable experiment in a similar geometry, using the
46 GeV electron beam from the the Stanford Linear Ac-
celerator (SLAC) colliding with a laser with intensity
of I0 ∼ 1018 Wcm−2, was an important demonstration
of non-linear quantum electrodynamics (multi photon
Breit-Wheeler pair production) [48]. A simplified ver-
sion of the parameter χe for the situation of an electron
beam with energy E = γ0mec

2 colliding with a laser field
with field strength parameter a0 can be written as [47]

χe =
2~
mec2

ω0γ0a0 . (10)

For an 800 nm laser system, this gives χe = 6×10−6γ0a0.
For the SLAC experiment (using a 527 nm laser), the
small a0 (a0 < 1) was compensated by the high beam
energy (γ0 ∼ 105), so that χe ≈ 0.4.

Quantum electrodynamics effects may be considered
significant when the energy of the emitted photons be-
comes of the order of the electron energy, ~ω & γ0mec

2.
For a head-on collision of an electron and a laser pulse,
a characteristic emitted photon energy is ~ω ≈ ~ω0a0γ

2
0

[27], which corresponds to the condition χe ∼ 1. Hence,
quantum electrodynamics effects may be considered to
be strong for a field strength of:

a0 > aQ =
mec

2

2~ω0γ0
. (11)

However, quantum effects in the radiation damping of
electrons becomes noticeable for much lower laser field
strengths. It is well known [38, 47, 49, 50], that the clas-
sical description of an electron radiating in a strong elec-
tromagnetic field overestimates the total emitted power.
It is connected with the fact that in the quantum de-
scription the emitted photon energy may not exceed the
electron energy, whereas the classical approach does not
have such a restriction. This effect can be approximately
taken into account by introducing a function g(χe) into
the expression for the total power of emitted radiation
[47, 49, 50]. g(χe) enters the equation of motion by mod-
ifying the expression for the radiation reaction force as:

d

dτ
vµ = − e

me
F ναvν

[
ηαµ − g(χe)τ0

e

mec2
vνv

µFαν
]
,

(12)
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The strong damping parameter ψ can be modified to in-
clude this quantum effect to obtain a parameter ψQ =
〈g(χe)〉ψ, where 〈g(χe)〉 is the time average of the g fac-
tor. To do this, we make use of a polynomial fraction fit
to data for g(χe) given in Ref [50]:

g(χe) =
(
3.7χ3

e + 31χ2
e + 12χe + 1

)−4/9
, (13)

which for χe → 0, g → 1. The condition χe = 1 cor-
responds to g(χe) = 0.18, but even for χe = 0.1 this
factor has a value of g(χe) = 0.66. The time averaged

field strength parameter a0/
√

2 (for linear polarization)
is used to approximate 〈g(χe)〉 ≈ g(〈χe〉), which is valid
for χe � 1.

a0

γ 0
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FIG. 2: The function ψQ as a function of a0 and γ0 for an
800 nm central wavelength laser. The solid line indicates the
threshold between classical and quantum radiation reaction
forces, and the dotted line indicates the threshold where g(χe)
begins to be significant.

The modified strong damping parameter ψQ for an
800 nm wavelength laser is shown as a function of a0 and
γ0 in figure 2. As shown in Refs [47, 50], for χe ∼ 0.1,
the spectrum emitted should not be changed significantly
in shape, but 〈g(χe)〉 ≈ g(〈χe〉) indicates that the en-
ergy loss of the electron beam due to radiation damping
should be changed by a measurable amount. This is also
consistent with what we observe with our model.

C. Parameter regimes involving χe and ψQ

The counter-propagating geometry laser-electron
beam experiment is an excellent testbed for studying
quantum electrodynamics and strong radiation damping
effects. This is because of the ability to choose between
strongly radiation damped behavior (ψQ & 1), or fields

that are quantum electrodynamically strong (χe & 1),
or a situation where both ψQ & 1 and χe & 1 simulta-
neously; conditions where even more exotic effects may
occur. These are controlled through variation of the laser
field strength, a0, central frequency, ω0, and the electron
beam energy, γ0mec

2. We can compare the requirements
for a0, ω0 and γ0 for the interaction to be in the strong
radiation damping regime or quantum electrodynamics
dominant regime relevant to experiments using 30 fs
class lasers.

Table I shows parameters for different scenarios for
strongly radiation damped (ψQ & 1) and quantum elec-
trodynamically strong (χe & 1) physics in a non-linear
Thomson/Compton scattering geometry for an 800 nm
laser pulse with intensity IL colliding with an electron
beam with energy Eb. (a) corresponds to the SLAC ex-
periment [48]. (b) corresponds to near term experiments
using intense 30 fs lasers such as Hercules [43] or As-
tra Gemini [44] and a laser wakefield generated electron
beam. (c) corresponds to an ‘ideal’ experiment using
two laser beam lines (as Astra Gemini has) with the cur-
rent maximum experimentally demonstrated laser inten-
sity [51] and laser-wakefield accelerated electron beam
energy [52]. The SLAC experiment is shown for compar-
ative purposes only since the quasi-static field approxi-
mation is not valid for this case [53].

TABLE I: Different scenarios for strong radiation damping
(ψQ & 1) and QED strong (χe & 1) physics in a non-linear
Thomson scattering geometry for 800 nm wavelength laser
pulses with intensity IL colliding with an electron beam with
energy Eb.

Eb / GeV IL / Wcm−2 a0 arad aQ χe ψ ψQ

(a) 46.6 1 × 1018 0.5 2.5 1.2 0.43 0.045 0.018

(b) 0.2 5 × 1021 50 46 420 0.12 1.2 0.74

(c) 1 2 × 1022 100 21 84 1.2 23 3.7

In the first case (a) the laser vector-potential is of the
order of both arad and aQ. Case (b) corresponds to a
situation where there will be strong radiation damping
but quantum effects will be weak, aQ > a0 > arad. In
case (c) the laser is sufficiently intense for both radiation
damping and quantum recoil to be manifest, a0 > aQ >
arad.

Since our model is classical – that is to say involving
equations of motion only – it is restricted to the param-
eter range where χ2 � 1 [47]. For the parameters de-
scribed here, χ2 = 0.014 and so the classical approach is
reasonable. This also motivates the use of the descrip-
tion of this process as “non-linear Thomson scattering”
rather than “Compton” scattering. We also calculate the
electron spectrum after the interaction in the presence of
radiation damping with and without the g factor, show-
ing that quantum modifications to radiation losses may
be measurable.
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III. THE MODEL AND NUMERICAL
METHODS

The spectral intensity of radiation emitted by a num-
ber NP of accelerating point charges can be expressed,
in the far-field, as [21]:

d2I

dωdΩ
=
µ0e

2c

16π3
ω2

∣∣∣∣∣

∫ ∞

−∞

NP∑

j=1

ŝ× βjeiω(t−n·rj/c)dt

∣∣∣∣∣

2

,

(14)
where the unit vector ŝ is in the direction of observation,
at a distance far compared with the scale of the emission
region. This can be written alternatively in terms of
proper time, τ :

d2I

dωdΩ
=
µ0e

2c

16π3
ω2

∣∣∣∣∣
NP∑

j=1

∫ ∞

−∞
ŝ× vje

iκαx
α
j dτ

∣∣∣∣∣

2

, (15)

where vj is the momentum part of the jth particle’s four-
velocity defined as:

vαj =
dxαj
dτ

. (16)

To numerically integrate the equations of motion for
charged particles, both xα and vα have to be recorded at
a number of discrete points. To then perform the spectral
integration numerically, equation 15 can be reduced to
the summation:

d2I

dωdΩ
=
µ0e

2c

16π3
ω2

∣∣∣∣∣
NP∑

j=1

Nτ∑

n=0

ŝ× vnj e
iκαx

α,n
j ∆τ

∣∣∣∣∣

2

, (17)

One of the advantages of using proper time rather than
‘laboratory’ time for numerical calculations is that the
time resolution is effectively adaptive; as the particle
gains inertia and is therefore accelerated at a decreased
rate for a similar force, the time step-size increases. Nu-
merically calculating this integral by ‘brute force’ has
the problem that the exponent is a fast oscillating func-
tion, and therefore without resolving ω the integral will
in general not converge without a numerical timestep of
∆τ � 1/ω [54–56]. Since we are interested in γ-ray pho-
tons in excess of an MeV energy generated from a few
fs interaction, the ratio of the necessary time step to the
integration timescale is computationally unfeasibly large.
Recently, methods for overcoming this limit by using in-
terpolation have been developed [28, 57, 58]. Here we use
the method we previously developed [28], and the reader
is directed towards that paper for further details of the
numerical calculation.

The particle trajectories were calculated in the pres-
ence of four-potentials, Aµ = {A0 = φ/c,A1, A2, A3},
representative of a spatio-temporally Gaussian laser
pulse with no interaction between electrons. The laser
pulse propagated in the +x̂3 direction with four-potential
described by:

Aµ = <
[
{A0}µ(xα)eiκαx

α

f(καx
α/ω0tL)

]
, (18)

where {A0}µ(xα) is the spatial distribution of four-
potential, in this case κα = {ω0, 0, 0, ω0/c} is the laser
four wavevector, f(καx

α/ω0tL) is a function of time de-
scribing the temporal envelope. The spatial-temporal
distribution of a tightly focused pulse that satisfies the
vacuum Maxwell’s equations is in general very compli-
cated, but is easier to formulate in terms of potentials
than fields. That is because it is possible to have a purely
transverse (to propagation) vector potential and satisfy
the vacuum Maxwell’s equations, something that is not
possible with fields. These can be formulated by using
the Lorentz-invariant Lorenz gauge condition ∂µA

µ = 0.
Using a slowly varying envelope approximation, and us-
ing a transverse vector potential linearly polarized in the
x̂1 direction with propagation in the x̂3 direction, this
can be approximated as {A0}0 = −(ic/ω0)∂{A0}1/∂x1
[59]. Here, vector and scalar potentials with corrections
to the basic Gaussian optics formulation were introduced
up to order θ0

2, where θ0 = 2c/ω0w0 is the asymptotic
divergence angle of a Gaussian laser beam with a waist
of w0. This yields potentials:

{A0}1 =

[
1 +

θ20
2

(
1− iζ
1 + ζ2

)(
1−

(
1− ζ2

2 (1 + ζ2)

)
ρ2
)]

Ψ0 ,

(19)

{A0}0 = iθ0ξ1e
−i tanh−1 ζ

[
{A0}1 − θ02

(
1− ζ2

1 + ζ2

)
Ψ0

]
,

(20)
and {A0}2 = {A0}3 = 0, where

Ψ0 =
e−i tanh

−1 ζ−(1+iζ)ρ2

√
1 + ζ2

, (21)

ρ =
√
x12 + x22/w0, and ζ = x3θ0/w0. w0/θ0 is the

Rayleigh range of the laser. Higher order corrections to
the field structure could be employed to account for ex-
tremely tight focusing, but here we restrict our numeri-
cal calculations to foci with w0 > λ, where λ is the laser
wavelength; these corrections in θ0

2 are of magnitude
(1/π2)λ2/w2

0, so these corrections are up to 10 % of the
zero order fields and can’t be considered negligible, but
the next order corrections are θ0

4 and therefore of less
importance.

An electron beam was modeled using NP particles ini-
tiated with a momentum p0 in the −x̂3 direction in front
of the laser. In order to simulate a more realistic beam,
rejection sampling against a Gaussian probability dis-
tribution function was used to generate a beam with a
spread in momentum, σp, and position, σx which statis-
tically approximated the phase space distribution:

fe(x,p, t) = exp

[
− x2

2σ2
x

− p2

2σ2
p

]
, (22)

where x2/σ2
x = x21/σ

2
x1

+ x22/σ
2
x2

+ x23/σ
2
x3

and p2/σ2
p =

p21/σ
2
p1 + p22/σ

2
p2 + (p3 − p0)

2
/σ2

p3 The root-mean-square



6

normalized emittance of the bunch is therefore given by
ε = σp1σp2σp3σx1

σx2
σx3

. Although the particle tracking
routine could easily calculate a much larger bunch, due to
the computational demands of the numerical spectrom-
eter for a full angular sweep, the number of electrons in
the bunch was limited to NP = 500. Radiation from
individual electrons was summed incoherently.

A gaussian temporal envelope is used in all cases,

f = e−(καx
α/ω0tL)

2

. The pulse duration is tL = 65 ω0,
where ω0 is the laser angular frequency, which in the
case of a typical 0.8 µm laser is 2.36× 1015 s−1, yielding
tL = 27.5 fs at 1/e2 radius, or 32 fs full-width-at-half-
maximum, of intensity. The electron beam parameters
were varied, with p0 corresponding to a beam energy
typically of 204 MeV (γ0 = 400). The linearly polarized
laser, with normalized vector potential of a0 = 50 corre-
sponding to a peak laser intensity of 5.3 × 1021 Wcm−2

was focused to a spot with waist w0 = 2.55 µm, or
w0 = 20c/ω0. The electron beam parameters are compa-
rable those routinely achieved in laser wakefield acceler-
ation experiments and are summarized in table II.

TABLE II: Emittance parameters of the electron beam used
in the numerical model. (a) Finite momentum spread case,
(b) Zero momentum spread case.

σx1 σx2 σx3 σp1 σp2 σp3

A 3c/ω0 3c/ω0 9c/ω0 mec mec 10mec

B 3c/ω0 3c/ω0 9c/ω0 0 0 0

IV. NUMERICAL RESULTS

In this section we detail ‘real world’ numerical cal-
culations of a backscattering experiment applicable to
near term experiments using current laser systems and
laser wakefield accelerated electrons. By ‘real world’, we
mean that the calculation of the radiation spectrum in-
cludes the effect of a Gaussian shaped bunch of electrons
with normalized emittance (longitudinal and transverse)
comparable to that produced in laser-wakefield accelera-
tion interacting with a tightly focused laser, that radia-
tion reaction forces are included, and that the radiation
spectrum is calculated directly from the electron trajec-
tories. However, the self-consistent absorption of laser
pulse photons is not included. The energy radiated by a
109 electron beam will later be shown to be 0.3 J, which
is a non-negligible 2% of the pulse energy of the laser
considered here. Including the depletion of laser energy
would modify the spectrum of photons slightly, but is
likely to be less important than the other effects we con-
sider here.

The spectral intensity d2I/dωdΩ, where differential
solid angle dΩ = sin θdθdφ, was calculated on a grid
consisting of 150 cells in ω over the range 104ω0 < ω <
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FIG. 3: The angularly resolved spectral intensity (d2I/dωdΩ)
due to a 500 electron bunch with γ = 400 and emittance given
in table II scattering from a laser pulse with a0 = 50 with
higher order field contributions included as in equations 19-
21. In (a) the radiation reaction force is not included, and
in (b) the radiation reaction force is included. The contours
are taken at identical spectral intensity levels for both cases,
normalized to the peak which is 1.6517×10−26 Js−1 at 0.2,
0.3, 0.4, 0.5, 0.6, 0.7 and 0.8.

108ω0, with ∆ω exponentially increasing with ω, 117 cells
in θ over the range 0 < θ < 30 mrad and 26 cells in φ
over the range 0 < φ < π/2 rad. For clarity in the fig-
ures, symmetry is assumed and therefore the full range
−30 < θ < 30 mrad and 0 < φ < π is displayed.

A. The high brilliance synchrotron source

The properties of radiation from backscattering of an
electron with a laser pulse have been extensively studied,
and we can therefore use analytic formulae to predict that
in the interaction of a electron beam with γ = 400 with
a laser with field strength a0 = 50, the synchrotron-like
spectrum will peak in energy at ~ωpeak = 2.56a0γ

2~ω0 =
30 MeV [23]. Using the numerical model, we can more ac-
curately model the properties of the radiation produced
in a high intensity laser interaction with a laser wakefield
accelerated electron beam as a source for applications, in
particular including the effects of radiation damping [19],
non-plane wave laser fields [36] and calculate the full an-
gular distribution of radiation.

Figure 3 shows the spectral intensity of radiation pro-
duced by a 500 electron bunch with γ = 400 scattering
from a laser pulse with a0 = 50. In this example, the
higher order field contributions are included, as in equa-
tions 19-21, as well as beam emittance as given in table II
case A. This represents reasonably “realistic” modeling
of an experiment and results in a well collimated, smooth,
synchrotron-like radiation emission extending up to very
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high energies, with a broad peak at approximately 10
MeV, which is a factor of 3 smaller than the analytic
prediction due to the radiation reaction and finite spot
effects. Because the laser pulse is linearly polarized, as
expected, the radiation is strongly polarized, but also the
angular intensity distribution has a pronounced elliptic-
ity, with the major axis in the direction of polarization.
Linear polarization also leads to higher photon energies
compared with a circularly polarized pulse with the same
pulse energy.

One other notable effect is that of the higher order
terms in the laser fields. These do not significantly
change the spectral shape, but do change the magnitude
non-negligibly. Without the field contributions, the peak
spectral intensity is 1.57×10−26 Js−1, but with them it
is 1.65×10−26 Js−1, which is a 5% difference. Although
the order θ2 pulse potential corrections have been simply
added to the first order potential – so that the energy
in the corrected pulse is higher than the uncorrected –
because the additional potential are ∼ 10% of the first
order potential, adding the corrections only represents a
∼1% increase in pulse energy. The slight increase in pulse
energy alone is too small to account for the increased ra-
diation output alone. Instead it is the additional longi-
tudinal motion due to these potentials that increases the
spectral output.
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FIG. 4: The on-axis peak spectral brilliance
(d2I/dωdΩ/(1000~tLπ(w0/2)2) in standard light-source
units of photons · s−1mm−2mrad−2/0.1% bandwidth) due
to a 100 pC electron bunch with γ = 400 and momentum
spread given by table II scattering from a 30 fs laser pulse
with a0 = 50.

To compare this to other synchrotron light sources,
it is also useful to plot the on-axis spectrum in terms
of the standard units of the synchrotron community,
photons · s−1mm−2mrad−2/0.1% bandwidth. To this,
the spectral intensity is multiplied by a numerical factor
that assumes the 500 electrons are a reasonable statistical
representation of a 100 pC electron bunch that is typical

of laser wakefield experiments [2–4]. Also necessary for
this calculation, the source size of the radiation is taken
to be the laser spot area within the radius of half the
pulse waist, π(w0/2)2. The on-axis radiation spectrum
is shown in figure 4. As well as peaking at high energies,
the peak spectral brilliance is also extremely high, com-
parable to the FLASH free electron laser but at signifi-
cantly higher photon energies [60] and significantly more
brilliant than conventional synchrotrons. The effect of
the high intensity dramatically increases the brilliance of
the source, at the expense of the band-width which at
lower intensity can be extremely narrow, which may be
of more utility for some applications [24–26].

In figure 5 the cumulative photon number,∫ E
0

(dN/dE′)dE′, per electron is shown for this spectrum,
showing that on average each electron interacting with
the laser field emits approximately 200 photons. When
integrated numerically, the total photon energy emitted
by each electron is 3.5 × 10−10 J. This is 10 times more
than the energy of a 200 MeV electron. This result may
superficially appear not to conserve energy, however, the
radiated photon energy is predominantly drawn from
the laser pulse. For a bunch of 109 electrons, which is
of the order 100 pC of charge, the total energy output
would be 0.35 J. For a bunch of this size, depletion
of the laser fields – if treated self-consistently – would
modify the electron dynamics and radiation output, but
should only be a small perturbation (the pulse energy
used here is 19.0 J) and hence would not be expected
to modify this output energy significantly. Ignoring this
correction, the conversion efficiency of laser pulse energy
into γ-rays is 1.8%.
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FIG. 5: The cumulative photon number (
∫ E

0
dN/dE′dE′) per

electron due to a 500 electron bunch with γ = 400 and mo-
mentum spread scattering given by table II from a laser pulse
with a0 = 50.
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FIG. 6: The angularly resolved spectral intensity (d2I/dωdΩ)
due to a zero emittance 500 electron bunch with γ = 400
and no scattering from a laser pulse with a0 = 50. In (a)
the radiation reaction force is not included, and in (b) the
radiation reaction force is included. The contours are taken
at identical spectral intensity levels for both cases, normalized
to the peak which is 2.6872×10−26 Js−1 at 0.2, 0.3, 0.4, 0.5,
0.6, 0.7 and 0.8.

B. On the observation of radiation reaction effects
in the photon distribution

It has been suggested that signatures of the radia-
tion reaction forces may be observed in the photon dis-
tribution emitted in a counter propagating experiment
[19, 35]. The numerical calculations performed here sug-
gest this may be difficult due to the momentum spread
of the electron beam. Figure 6 shows the spectral in-
tensity of radiation emitted under identical conditions to
those of figure 3 except that here the electron beam has
zero momentum spread, as in table II case B. The dis-
tribution has fine features that are smoothed out when
the electron beam has a momentum spread, as would
be expected. To see more clearly the effect of momen-
tum spread on the radiation distribution, figures 7 and 8
show two dimensional slices through the radiation inten-
sity distribution, in the planes parallel and perpendicular
to the laser polarization. In addition, the spectral inten-
sity has been converted into a photon distribution per
electron, ω0d

2N/dωdΩ, which is more likely to be the
form of data obtained in an experiment (i.e. a histogram
of photon hits on an array of single photon counting de-
tectors).

Figure 7 shows the photon distribution from a zero mo-
mentum spread electron beam interaction. (a) and (c)
radiation reaction force is not included, and in (b) and
(d) radiation reaction force is included. (a) and (b) show
the photon distribution in the plane perpendicular to the
laser polarization and (c) and (d) show the photon distri-
bution in the plane parallel to the laser polarization. The

lo
g 1

0

(
E

k
e
V

)

θ/mrad

 

 

!20 !10 0 10 20
2

2.5

3

3.5

4

4.5

5

ω
0

d
2
N

d
ω

d
Ω

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
g 1

0

(
E

k
e
V

)

θ/mrad

 

 

!20 !10 0 10 20

1.5

2

2.5

3

3.5

4

4.5

5

ω
0

d
2
N

d
ω

d
Ω

0.2

0.4

0.6

0.8

1

1.2

1.4

lo
g 1

0

(
E

k
e
V

)

θ/mrad

 

 

!20 !10 0 10 20
2

2.5

3

3.5

4

4.5

5

ω
0

d
2
N

d
ω

d
Ω

0.1

0.2

0.3

0.4

0.5

lo
g 1

0

(
E

k
e
V

)

θ/mrad

 

 

!20 !10 0 10 20

1.5

2

2.5

3

3.5

4

4.5

5

ω
0

d
2
N

d
ω

d
Ω

0.2

0.4

0.6

0.8

1

1.2a! b!

c! d!

FIG. 7: The photon distribution (normalized to the laser fre-
quency, ω0d

2N/dωdΩ) per electron due to a 500 electron
bunch with γ = 400 and zero momentum spread scattering
from a laser pulse with a0 = 50. In (a) and (c) radiation
reaction force is not included, and in (b) and (d) radi-
ation reaction force is included. (a) and (b) show the
photon distribution in the plane perpendicular to the laser
polarization and (c) and (d) show the photon distribution in
the plane parallel to the laser polarization.

angular distribution of photons shows pronounced differ-
ences with and without radiation reaction forces, and the
energy distribution is also dramatically changed, in par-
ticular resulting in a large number of low energy photons
in the damped case compared to no damping. Another
feature is slow oscillations in the spectral intensity with
frequency/energy. These may be due to the short trun-
cated electron bunch and laser pulse in the time domain,
which will result in long wavelength oscillations in the
frequency domain.

When the electron bunch is given the momentum
spread of table II case A, the distinction between the
cases with and without radiation reaction force becomes
significantly less distinct. Figure 8 shows the photon dis-
tribution from this interaction. There is little difference
in the spectral intensity distribution with and without ra-
diation reaction force effects, except that the overall mag-
nitude is reduced, and the peak energy is reduced. Differ-
ences in the angular distribution, however, are small and
are likely to be much smaller than expected shot-to-shot
fluctuations in electron beam emittance. Coupling this to
the intrinsic difficulty of measuring high energy photons
in a collimated beam, it appears to be unfeasible to sug-
gest that radiation reaction effects will be discernible in
experimental measurements in this configuration in the
near term.
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FIG. 8: The photon distribution (normalized to the laser fre-
quency, ω0d

2N/dωdΩ) per electron due to a 500 electron
bunch with γ = 400 and momentum spread given by table II
scattering from a laser pulse with a0 = 50. In (a) and (c) ra-
diation reaction force is not included, and in (b) and (d)
radiation reaction force is included. (a) and (b) show the
photon distribution in the plane perpendicular to the laser
polarization and (c) and (d) show the photon distribution in
the plane parallel to the laser polarization.

C. On the observation of radiation reaction effects
in the electron phase-space distribution

In contrast to the photon measurements, it should be
very easy to observe radiation reaction effects in the elec-
trons as measured using a standard scintillating screen
configuration. It is typical in laser wakefield accelerator
experiments to measure either the electron beam profile
using a scintillating screen, or electron forward momen-
tum spectrum using a deflecting magnet and a scintillat-
ing screen [3, 4]. These diagnostics effectively correspond
to the p1-p2 and p1-p3 electron phase-space densities re-
spectively – with a spectrometer, the deflection by the
magnetic field disperses the electrons by p3, but the pro-
jection in p1 is maintained.

Figure 9 shows the p1-p2 phase-space density for the
electron bunch before and after the interaction as two di-
mensional histogram plots. The electrons are deflected
by the laser fields so that the transverse momentum
spread is increased in both cases, consistent with a pon-
deromotive deflection. However, there is little difference
between the cases with and without radiation reaction
forces. This is because the radiation damping effect re-
duces both transverse and longitudinal momenta propor-
tionally (to lowest order the radiation force in equation
2 is dpµ/dτ |fric = −τ0ω2

0γ
2a2pµ), and hence in general

the exit angle of a particular electron θexit ' p⊥/p3 is
not expected to change significantly.

The effect on the electron spectrum is dramatic how-
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FIG. 9: Two dimensional histograms of the p1-p2 phase space
distribution of a 500 electron bunch with momentum spread
according to table II case B before (top) and after (bottom)
interaction with the high intensity (a0 = 50) pulse. In (a)
and (c) there is no radiation reaction, and in (b) and (d) a
radiation reaction model included according to equation 2.
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FIG. 10: Two dimensional histograms of the p3-p1 phase space
distribution of a 500 electron bunch with momentum spread
according to table II case B before (top) and after (bottom)
interaction with the high intensity (a0 = 50) pulse. In (a)
and (c) there is no radiation reaction, and in (b) and (d) a
radiation reaction model included according to equation 2.
Note that the horizontal momentum scale is negative and not
the same for each phase space.

ever, as was also previously shown by Koga et al. [19]. In
figure 10, two dimensional histogram plots of the p3-p1
phase space density of the electron bunch is shown with
and without radiation reaction forces. Under the condi-
tions modeled here, the electron beam loses almost half
its energy when radiation damping is included (and as
expected, it experiences little change in energy without
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radiation damping).
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FIG. 11: Two dimensional histograms of the p3-p1 phase space
distribution of a 500 electron bunch with momentum spread
according to table II case B before (top) and after (bottom)
interaction with the high intensity (a0 = 50) pulse with radia-
tion damping. (a) and (c) use the purely classical expression 2
and in (b) and (d) the radiation reaction four-force is modified
by multiplying by the instantaneous g factor given by equa-
tion 13. Note that the horizontal momentum scale is negative
and not the same for each phase space.

Finally, figure 11 shows two dimensional histogram
plots of the p3-p1 phase space density of the electron
bunch similar to figure 10, but this time the radiation re-
action is shown with and without the factor g(χe) given
by equation 13 included. It can be seen by the plot that
under these conditions the electron spectrum after the
interaction with the g factor differs from the purely clas-
sical result by ∼ 10% relative to the overall energy loss.
There is a smaller energy loss due to the fact that the
expected radiation spectrum is less energetic than the
purely classical result would suggest. This difference be-
tween classical and quantum corrected radiation reaction
may be sufficiently large to be distinguishable over exper-
imental fluctuations if well characterized. The effect of
the addition of g(χe) on the photon spectrum calculated
with classical radiation reaction forces under these con-
ditions is negligible.

V. CONCLUSIONS

The counter-propagating electron beam, ultra-high-
intensity laser interaction is likely to be attempted by

numerous experimental groups in the near future. In ad-
dition to ultimately studying quantum electrodynamic
effects, initial experiments with lower electron beam en-
ergies and laser intensities are likely to be concerned
with the brilliant high energy photon output and clas-
sical forms of radiation forces. From these numerical
calculations, we predict a large flux of photons with en-
ergy in excess of 1 MeV, in a beam collimated within a
10 mrad divergence angle, and with an elliptical angu-
lar distribution due to the linear polarization of the laser
pulse. Each electron should emit ∼100 photons above
1 MeV for a 200 MeV Gaussian electron beam colliding
with a pulse of intensity 5 × 1021 Wcm−2. For a typi-
cal laser wakefield accelerated electron bunch with 100
pC charge [2–4], this should result in ∼ 1011 photons in
a broad synchrotron-like spectrum peaking at 10 MeV
with approximately 2% conversion efficiency of laser en-
ergy into γ-rays, in a beam collimated to less than 10
mrad divergence and with a peak brightness exceeding
1029 photons s−1mm−2mrad−2(0.1% bandwidth)−1.

In addition we show that measurements of the radi-
ation will be unlikely to be able to indicate signatures
of radiation reaction forces, and in particular the abil-
ity to distinguish between different classical or quantum
formulations of the radiation force, due to the effects of
beam emittance and tight laser focusing. However, it
should still be easy to observe radiation reaction effects in
the electron spectrum, where differences compared with
a no-radiation force model is dramatic, even with moder-
ate beam emittance. Including quantum effects using the
g(χe) factor under these parameters causes a sufficiently
reduced damping effect on the electron energy spectrum
to be measurable.

Whether signatures of different classical radiation re-
action force models can be observed in experiment is not
addressed by the results of this paper. However, it is
unlikely, since the primary measurable effect on the elec-
trons is energy loss, which is to low order similar for all
formulations of the radiation reaction force. It is likely
that the differences between models will be hidden by the
effects of beam emittance and laser focusing conditions
also.
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