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Abstract

Patients admitted to a hospital’s intensive care unit (ICU) often endure prolonged boarding within 

the ICU following receipt of care, unnecessarily occupying a critical care bed, and thereby 

delaying admission for other incoming patients due to bed shortage. Using patient-level data over 

two years at two major academic medical centers, we estimate the impact of ICU and ward 

occupancy levels on ICU length of stay (LOS), and test whether simultaneous “surge occupancy” 

in both areas impacts overall ICU length of stay. In contrast to prior studies that only measure total 

LOS, we split LOS into two individual periods based on physician requests for bed transfers. We 

find that “service time” (when critically ill patients are stabilized and treated) is unaffected by 

occupancy levels. However, the less essential “boarding time” (when patients wait to exit the ICU) 

is accelerated during periods of high ICU occupancy and, conversely, prolonged when hospital 

ward occupancy levels are high. When the ICU and wards simultaneously encounter bed 

occupancies in the top quartile of historical levels—which occurs 5% of the time—ICU boarding 

increases by 22% compared to when both areas experience their lowest utilization, suggesting that 

ward bed availability dominates efforts to accelerate ICU discharges to free up ICU beds. We find 

no adverse effects of high occupancy levels on ICU bouncebacks, in-hospital deaths, or 30-day 

hospital readmissions, which supports our finding that the largely discretionary boarding period 

fluctuates with changing bed occupancy levels.
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1. Introduction

Of the 36 million hospital admissions occurring each year in the United States, more than 

one-quarter involve a stay in an intensive care unit (ICU) (Barrett et al. 2014, Weiss and 

Elixhauser 2014). As the population aged 65 and older increases by more than 50% between 

2015 and 2030 (U.S. Department of Health and Human Services 2015), demand for ICU 

care by the elderly and those with complex medical conditions will continue to rise. A 
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significant component of hospital expenditures, ICU-related costs exceed $130 billion per 

year—or 4% of all US health care costs—with a disproportionate amount spent on patients 

staying longer than 2 weeks (Halpern 2009, U.S. Centers for Medicare and Medicaid 

Services, 2015). Despite a 15% increase in ICU bed capacity from 2000 to 2009, substantial 

variability exists in the number of ICU beds across hospitals, leading to recurrent admission 

delays from lack of bed availability in areas with high ICU utilization and insufficient beds 

(Lucas et al. 2009, Wallace et al. 2015). Although average ICU occupancy was only 68% in 

2005, some hospitals, especially academic medical centers, regularly face occupancy levels 

exceeding 90% (Wunsch et al. 2013), often requiring the rationing of scarce critical care 

beds. Such capacity-constrained systems could benefit from even modest improvements in 

patient throughput, particularly by reducing unnecessary time spent in the ICU.

High occupancy rates engender chronic bed shortages, which are further exacerbated by 

unpredictable patient arrivals from the emergency department (ED), variable ICU length of 

stay (LOS), critical care-level staffing shortages, and insufficient coordination with other 

inpatient units. Although LOS mostly consists of “service time,” when critically ill patients 

are stabilized and treated, many patients experience a subsequent delay in transfer to the 

Medicine wards, which we newly define as ICU “boarding time.” Boarding is a well-

described phenomenon within the emergency department (Chalfin et al. 2007), when 

patients often stay for several additional hours while awaiting hospital admission due to a 

lack of available inpatient beds. However, drivers of excessive boarding within the ICU have 

not been carefully examined.

Boarding patients no longer require critical care-level services but continue to occupy scarce 

ICU beds. Because ICU boarding time is not clinically necessary, its duration is largely 

discretionary: an attending critical care physician requests a patient’s transfer to a bed 

outside the ICU, but the patient continues to board for an unspecified period of time. 

Consequently, many hospitals do not even record ICU boarding times, hindering efforts to 

identify possible causes of such inefficiencies. We postulate that a shorter ICU LOS during 

periods of peak ICU utilization, as previously observed (Chan et al. 2012, KC and Terwiesch 

2009, 2012), may be partially explained by a shorter boarding time as hospital staff 

accelerate patient transfers from the ICU to the wards. Conversely, delayed transfers out of 

the ICU may also stem from understaffed or bed-constrained wards, or prioritization of ward 

beds to non-ICU patients (Johnson et al. 2013, Levin et al. 2003). How the opposing effects 

of such bed shortages materialize when the ICU and wards face simultaneously high 

occupancy levels has not been previously investigated.

Intensive care unit congestion creates bottlenecks for other hospital units, especially the ED 

and post-surgery care area, leading to overcrowding, delays in care, and negative financial 

consequences due to revenue loss from ambulance diversion and patients leaving without 

being seen (McConnell et al. 2005, Pines et al. 2011). In most hospitals, resources within the 

ED and wards are not as advanced as in the ICU, leading to suboptimal care of critically ill 

patients awaiting ICU admission (Renaud et al. 2009). ICU patients already face the highest 

mortality rate in the hospital (10–38% nationwide) and admission delays have been linked to 

higher in-hospital mortality of critically ill patients (Chalfin et al. 2007). Identifying 
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opportunities to increase system efficiency can help decrease congestion, reduce admission 

delays, and improve the quality and quantity of care delivered.

Our study is motivated by our clinical observations at two independent hospitals that 

following receipt of care, ICU patients often face excessively long wait times for transfer to 

the wards. Regularly caring for high numbers of ward-ready patients is clinically frustrating, 

uses limited ICU resources inefficiently, and exacerbates admission delays for incoming 

patients. We aim to provide insights into drivers of such inefficiencies and identify 

opportunities for improvement. We highlight key operational targets for improved efficiency 

(e.g., targeted boarding times, bed prioritization during occupancy surges) to help alleviate 

admission delays, decrease wasted ICU resources, and improve a hospital’s ability to 

accommodate more ICU admissions, improving patient care while simultaneously 

increasing revenue (Kim et al. 2016). Our study offers three contributions:

• We extend prior studies that examine ICU length of stay and occupancy levels. 

We separate LOS into a service time and non-essential boarding time, when 

patients await transfer to the wards. Our study is the first empirical analysis of 

ICU boarding times, and our results suggest that the shorter LOS observed 

during high occupancy is explained by an abbreviated boarding period. Hospital 

managers should measure this time interval and other discretionary periods 

during a patient’s hospital stay, and use them as performance metrics to help 

identify opportunities to streamline ICU-ward transitions and increase patient 

throughput.

• In addition to estimating a “speed up” effect when ICU occupancy is high, we 

find a simultaneous “slow down” effect during high ward occupancy, with 

patients enduring up to 67% longer boarding times when wards are full. Ward 

bed availability appears to dominate, with a net 22% longer boarding time 

observed when the ICU and wards are concurrently in the highest quartile of 

occupancy vs. lowest quartile, based on past patient census data. Even when 

wards are partially full (75–85% beds occupied), ICU boarding is significantly 

longer, suggesting that hospital staff may be too conservative with delaying ICU-

ward transfers, creating upstream bottlenecks in the ICU and eventually the 

emergency department.

• Additional strengths of our findings are rooted in the granularity of the datasets, 

which include detailed administrative timestamps and hourly census reports at 

two large academic medical centers. Unlike prior studies (KC and Terwiesch 

2009, 2012), our research focuses on the Medicine ICU, using data from two 

institutions with similar staffing models and admission policies. Compared to 

other ICUs (e.g., Surgery, Cardiothoracic), the Medicine ICU typically cares for 

emergent, nonelective admissions with a wider range of diagnoses and 

comorbidities, allowing our results to generalize to a wider range of patient 

populations.
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2. Related Literature

Identifying how patient care is impacted by concomitant workload, including bed utilization 

levels, is needed as hospitals increasingly face bed and staffing shortages, adding to existing 

pressure to rapidly turnover beds (Halpern 2011). The effects of bed capacity strain on 

decisions pertaining to ICU admission, critical care treatment, and discharge have been 

examined in related studies.

2.1. Admission Practices

Many ICU patients first seek medical care in the ED, a hospital area that similarly faces 

resource constraints, variable patient severity, and downstream bottlenecks affecting bed 

availability. As ICU patients often require immediate care, a priority triage policy is a 

widespread practice in most hospitals. In one empirical study, Kim et al. (2014) find that the 

likelihood of ICU admission drops significantly when the ICU is crowded, even among 

high-severity patients. The study cohort is ED patients, and may therefore overestimate 

congestion costs as patients can receive some critical care services within the ED itself. In 

particular, non-ED ward patients who clinically deteriorate and require ICU care have worse 

prognoses, on average, than patients admitted from the ED to the ICU (Liu et al. 2012, Town 

et al. 2014). Our study’s patient cohort includes both locations of origin (ED and wards) 

prior to ICU admission, an important distinction as hospital resources and staffing differ by 

location.

Although current state legislation requires fixed nurse-to-patient ratios, a dynamic nurse 

staffing policy could improve patient care and minimize the probability of excessive delays 

for patients (De Vericourt and Jennings 2011). Dobson et al. (2010) develop a preemptive 

priority queuing model to examine scheduled and unscheduled admissions of surgery 

patients who subsequently require ICU care. Reducing wait times before ICU admission not 

only improves operational performance and throughput, it also benefits patients directly. One 

observational study finds that timely ICU admission reduces 28-day mortality by 30% 

(Edbrooke et al. 2011). Other studies demonstrate that delaying ICU admission can prolong 

ICU length of stay (Chalfin et al. 2007) and increase the risk of death (Cardoso et al. 2011). 

Thus a vicious cycle is born: chronic bed shortages contribute to admission delays and 

longer wait times, which can increase LOS, further exacerbating bed shortages.

2.2. Treatment Decisions

Recent empirical studies suggest that patients receive differential care during busy periods. 

Kuntz et al. (2015) estimate an occupancy “tipping point” of 92.5% in German hospitals, 

whereby in-hospital patient mortality significantly increases above this value, perhaps due to 

increased cognitive load or exhaustion among providers. KC and Terwiesch (2009) examine 

the impact of hospital “load” (bed utilization) and “overwork” (a measure of high average 

load prior to admission) on LOS for Cardiothoracic Surgery patients, and find that high 

contemporaneous load results in a shorter stay. In a related study, KC and Terwiesch (2012) 

find that when bed occupancy is high, Cardiothoracic ICU patients are discharged early to a 

lower acuity unit, improving bed availability but increasing the risk of ICU “bounceback.” 

Chan et al. (2014) show that decreasing ICU LOS in times of congestion improves bed 
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availability but at the cost of higher readmissions, ultimately increasing physician and nurse 

workload. In these studies, only total ICU length of stay is measured (in an integer number 

of days), which presumes that active care occurs throughout this period. In our setting, like 

in many hospitals (Peltonen et al. 2015), patients board in the ICU before transferring to the 

wards. We therefore separate LOS into service and boarding periods to examine which, if 

any, segment of patient care is accelerated in times of congestion.

While ICU service time should, theoretically, reflect each patient’s clinical needs, boarding 

time is largely discretionary. In systems with discretionary tasks, changes in capacity can 

paradoxically increase congestion (Hopp et al. 2007). These authors note that queue pooling 

with discretionary service times can negatively impact system performance, an observation 

corroborated with real-world data from the ED. Dedicated staffing of ED physicians to 

separate patient queues can reduce LOS, as physicians directly observe their current 

workload (Song et al. 2015). In the ICU, however, LOS typically spans several days or 

weeks—as compared to hours in the ED—precluding a single physician from caring for an 

ICU patient for the entire duration of a multi-day stay.

The relationship between hospital workload (i.e., number of patients seeking medical care) 

and providers’ decisions to perform discretionary tasks is examined by Freeman et al. (2017) 

in a UK maternity unit. The authors find that during periods of high workload, patients not 

requiring complex care are less likely to receive an epidural and subsequently experience a 

shorter LOS. In a related study, Ibanez et al. (2017) find that experienced radiologists use 

more discretion when deciding what sequence to complete a set of tasks. The authors note 

that batching tasks based on similar criteria may improve throughput, perhaps due to 

reduced cognitive load of the physicians. In our ICU setting, we examine how a shorter LOS 

attributed to high workload (i.e., bed occupancy level), as observed in other studies, could be 

explained by a speed-up of the discretionary boarding time. Although we do not examine 

physician- or nurse-specific effects of accelerating ICU boarding due to data limitations, our 

consistent finding of accelerated boarding during periods of congestion warrant further 

investigation into human drivers of such behavior.

2.3. Discharge Policies

Similar to admission or staffing practices, studies have examined varying discharge policies 

in times of capacity strain. Shi et al. (2015) develop a stochastic queuing model of hospital 

inpatients with dynamic discharge policies, which reduce admission delays and ED wait 

times in times of peak utilization. A priority ICU discharge policy based on readmission and 

mortality probabilities is also considered by Chan et al. (2012), although the model does not 

include boarding ICU patients.

To the best of our knowledge, no prior studies have empirically examined simultaneous 

occupancies in a focal ICU and downstream wards, and the interaction between them. 

Measuring concurrent workload is fundamental to understanding the network of servers 

constituting patient flow through a hospital. When allocating scarce inpatient beds, bed 

management teams must weigh competing interests: elective admissions from clinics and 

outside hospitals vs. unpredictable demand from the ED, ICUs, and internal wards (Bekker 

and Koeleman 2011, Jweinat et al. 2013). Despite partial automation of this process, many 
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institutions’ bed management decisions remain decentralized, with wards often self-

regulating patient inflow (admissions/transfers) based on expected outflow (discharges) 

(Schmidt et al. 2013).

3. Setting and Hypotheses

3.1. Patient Flow Process

In a typical US hospital setting, patients admitted to the ICU arrive from the ED or inpatient 

bed, including the Medicine wards (Figure 1). In our dataset, about half of all Medicine ICU 

patients are admitted directly from the ED. Once an available ICU bed is assigned, “service 

time” commences during which patients are resuscitated, stabilized, and receive active 

management of their critical illness. Service terminates if a patient dies, or survives and is 

deemed clinically ready for a lower level of care and staff request transfer from the ICU to 

the wards, known as a “booking.” Per hospital policy, physicians do not preemptively 

request ward transfer before the patient is clinically ready. While waiting for transfer, 

patients experience ICU “boarding” when they physically remain in the ICU bed but no 

longer receive high-intensity services. In our setting, patients experience an average service 

time and boarding time of 3.3 days and 15.1 hours, respectively, both with high variability. If 

a patient clinically deteriorates and requires reinitiation of critical care-level interventions, 

service time commences again until the physician requests a new booking time in the future; 

we only consider these final booking times in our analysis.

Patients exit the ICU upon physical transfer to the wards, where they complete their stay 

until hospital discharge, death, or ICU “bounceback,” if they require critical care services 

again prior to discharge. In our data, 7% of patients bounceback to the ICU and are 

considered new ICU arrivals. Due to their advanced health, ICU patients are more 

susceptible to dying in the hospital. In our setting, 22% of patients die during the current 

hospital stay, of which more than half die within the ICU; these latter patients are excluded 

from our analysis as their ICU length of stay is truncated at time of death. Of those who 

survive and are discharged, 26% are readmitted to the hospital within 30 days, some of 

whom may require an ICU stay, which we also consider a new arrival.

3.2. Data Summary

Our dataset includes patient-level timestamps for all Medicine ICU (MICU) patients 

admitted to two hospitals over approximately a 2-year period (n = 2557). Our study settings 

are informed by firsthand clinical experience within the ICUs at both hospitals. Data 

elements were electronically queried from the hospitals’ bed management systems and 

electronic health records and manually validated using internal ICU and departmental logs. 

Key variables and patient characteristics are summarized in Table 1.

Hospital A is a tertiary and regional academic medical center in the Northeastern United 

States, which provides critical care services for patients within a 51-bed Medicine ICU, 

along with five other ICUs (Surgery, Neurosurgery, Cardiothoracic Surgery, Pediatrics, and 

Neonatal Medicine), which we exclude in our analysis. Hospital B is a large tertiary 

academic medical center in an urban Northeastern US city with a 14-bed Medicine ICU and 
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five other adult ICUs (Surgery, Neurosurgery, Cardiac, Cardiac Surgery, Cardiothoracic 

Surgery), which we also exclude. The Medicine wards consist of 436 beds at Hospital A and 

624 beds at Hospital B. For simplicity, we refer to the Medicine ICU simply as the ICU in 

our setting.

In contrast to KC and Terwiesch (2009, 2012) who examine the Cardiothoracic ICU setting, 

we focus on Medicine ICU patients, including all unplanned and emergent admissions, who 

exhibit a broader range of diagnoses, disease acuity, and complex comorbidities, leading to a 

highly variable LOS for this cohort. ICUs in other disciplines often include a large 

percentage of elective admissions, with routine ICU utilization for post-operative or post-

procedural monitoring. Admission, discharge, and bounceback decisions within these other 

ICUs, such as a Cardiothoracic ICU, are typically made by the attending surgeon or outside 

cardiologist. In contrast, throughout a Medicine ICU stay, the attending ICU physician is the 

primary decision-maker. In both hospitals included in our dataset, the Medicine ICU is 

staffed by attending physicians with additional care provided by trainees or mid-level 

providers (e.g., clinical fellows, senior resident physicians), with a fixed patient-to-nurse 

ratio of 2:1, in line with hospital policy.

Our patient-level dataset includes patients admitted at Hospital A from 2010 to 2011 and at 

Hospital B from 2012 to 2014. We observe dates and exact times for ICU bed assignment, 

booking, and transfer to the wards (Figure 1). Patients who died within the ICU itself are 

excluded from the regression models, as they did not have a booking or transfer time to the 

wards. Average ICU service time is shorter at Hospital A than Hospital B (2.6 days vs. 4.1 

days, p < 0.0001), in part because lower acuity patients, who typically have shorter service 

times, are instead admitted directly to the wards at Hospital B. In-hospital mortality is also 

lower at Hospital A than Hospital B (14% vs. 33%, p < 0.0001), reflecting the higher acuity 

patient composition at Hospital B.

We include additional patient covariates, including origin prior to ICU admission (ED or 

other unit), patient age, health insurance status (Medicare, Medicaid, or other), and primary 

diagnosis-related group (DRG) code, using major diagnostic categories (Appendix Table 

A1). Also available for Hospital B is a severity-of-illness score for each patient, based on a 

validated, widely used metric called the University HealthSystem Consortium (now Vizient) 

risk-adjusted mortality model. The severity score ranges from 0 to 1, corresponding to a 

patient’s probability of dying during the hospitalization, calculated using the primary 

diagnosis and comorbidities (e.g., respiratory failure, sepsis diagnosis, hypotension) present 

at admission.

For both hospitals, we observe hourly census counts of patients in Medicine ICU and ward 

beds, which we convert to bed utilization percentages, normalized based on historic levels at 

each hospital (Figure 2). Average bed utilization is 91% in the ICU and 82–89% in the 

Medicine wards. For each patient, ICU and ward “occupancy” refers to the proportion of 

beds within the Medicine ICU and wards, respectively, occupied at the time that a patient 

completes service before transfer out of the ICU. Table 2 presents correlations between key 

variables, which help motivate our hypotheses.
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3.3. Hypotheses Formulation

Intensive care unit length of stay depends on clinical factors such as patient age, illness 

severity, diagnostic category, and the presence of multiple chronic conditions. Additional 

system-level factors, such as ICU crowding, may also impact LOS as prior studies have 

demonstrated (Chan et al. 2012, KC and Terwiesch 2009, 2012). Similar to these studies and 

other large cross-sectional studies (Wagner et al. 2013), we hypothesize that as occupancy in 

the Medicine ICU increases, overall LOS decreases. When the ICU is crowded, physician 

and nursing staff may try to free up beds for incoming patients by accelerating patient 

transfers, resulting in a reduced LOS for existing ICU patients.

As the Medicine wards directly receive patients transferred out of the ICU, we conjecture 

that increased ward occupancy creates downstream bottlenecks, thereby increasing ICU 

length of stay (Johnson et al. 2013). Our clinical observations at both hospitals suggest that 

as the Medicine wards become full, hospital staff tend to delay patient transfers from the 

ICU and instead prioritize beds for incoming patients from the ED, clinic, or other hospitals, 

often leading to a longer LOS for ICU patients. Despite ICU stays being more costly and 

higher sources of revenue for the hospital, there are external pressures affecting patient 

throughput management. For instance, expediting ward admission for waiting ED patients 

has been associated with improved patient satisfaction (Bartlett and Fatovich 2009, Ng et al. 

2010).

We empirically test these two relationships—and the simultaneous effect of high occupancy 

in both areas—using more robust specifications and hourly census measures, an 

improvement over prior models, using only midnight census counts, considering the frequent 

changes in patient occupancy throughout the day (e.g., in a typical day, eight patients are 

newly admitted to the Medicine ICU at Hospital A).

We define TotalLOSi as the total ICU length of stay for patient i, and OccupancyICUi and 

OccupancyWardi as the fraction of occupied beds within the ICU or Medicine wards, 

respectively, at the time patient i completes ICU service. Our first hypothesis to test is:

HYPOTHESIS 1. Higher ICU occupancy is correlated with shorter ICU lengths of stay; higher 
ward occupancy is correlated with longer ICU lengths of stay.

∂TotalLOSi
∂OccupancyICUi

< 0,
∂TotalLOSi

∂Occupancy Wardi
> 0

Some recent studies posit that total LOS, especially when measured in an integer number of 

days, is an overly crude metric to use when examining the subtle effects of capacity strain on 

patient outcomes (Howell 2011, Mathews and Long 2015). We seek to build upon previous 

clinical observations by separating ICU length of stay (TotalLOSi) into the elements 

commonly considered by hospital management: a clinical portion, denoted in our study as 

service time (Servicei), and a discretionary portion defined as boarding time (Boardingi). At 

both hospitals under consideration, service time commences upon physical ICU bed 

assignment and continues until a bed transfer request is made by the attending ICU 
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physician. At this point, boarding time immediately begins and then ends once the patient is 

physically transferred out of the unit. For each patient i:

TotalLOSi = Servicei + Boardingi (1)

Our empirical framework specifically tests for early termination of service time during 

periods of capacity strain. It is possible that clinicians may prioritize patients for early 

discharge during periods of bed capacity strain, may ration existing beds in anticipation of 

new patient arrivals, and/or may down-triage existing ICU occupants as a means to combat 

cognitive overload caused by an excessive number of high-acuity patients. Any of these 

behaviors could lead to reduced ICU service time when ICU occupancy levels peak. We 

therefore examine whether ICU service time varies with crowdedness in both the ICU and 

wards (Hypothesis 2a), which would support the notion that patients receive different quality 

of care when bed capacity is strained.

HYPOTHESIS 2A. Higher ICU occupancy results in a shorter service time, and higher ward 
occupancy results in a longer service time.

∂Servicei
∂OccupancyICUi

< 0,
∂Servicei

∂OccupancyWardi
> 0 (2)

One alternative explanation—consistent with our clinical experience—is that the boarding 

portion of LOS is accelerated as the ICU becomes congested. When available ICU beds are 

scarce, staff may transfer patients out of the ICU more quickly and, conversely, higher ward 

occupancy may delay transfers, leading to longer ICU boarding times. While ICU service 

completion is determined by the attending ICU physician, boarding time is more 

discretionary, potentially affected by a host of external factors including operational or 

staffing constraints, ward bed availability, and competing priorities for ward bed assignment 

(e.g., to offload the ICU, ED, or post-anesthesia care unit; to receive more elective 

admissions or direct admissions from the clinic). This conjecture is supported by the hospital 

management literature that examines how bed assignment and rationing in times of 

congestion are employed as a means to maintain patient throughput (Jweinat et al. 2013, 

Reddy et al. 2015). Our study is the first to empirically measure ICU boarding in a large 

ICU patient cohort. Unlike prior studies (Chan et al. 2012, KC and Terwiesch 2009, 2012), 

we test whether patients experience reduced ICU boarding times (Hypothesis 2b) during 

peak ICU occupancy and, conversely, increased ICU boarding times during peak ward 

occupancy.

HYPOTHESIS 2B. Higher ICU occupancy results in a shorter boarding time, and higher ward 
occupancy results in a longer boarding time.

∂Boardingi
∂OccupancyICUi

< 0,
∂Boardingi

∂OccupancyWardi
> 0 (3)
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In contrast to the Surgical and Cardiothoracic ICUs examined in other studies, the Medicine 

ICU cares for critically ill patients with a wider range of diagnoses and acuity levels. 

Medicine ICU physicians and nurses, therefore, face not just changing occupancy levels, but 

also fluctuating distributions of overall patient acuity. One mitigating concern is that higher 

(or lower) acuity patients may not be initially admitted to an ICU that is already caring for 

sicker patients. If this were true, we would expect a negative (or positive) correlation 

between a patient’s severity score at time of admission—computed as the predicted 

probability of in-hospital death—and that of other patients. However, we see no evidence to 

support this, as illustrated in Figure 3a for 1123 patients treated at Hospital B. Our clinical 

experience supports the observation that if a bed is available, then a patient will be admitted, 

regardless of the existing composition of patients in the unit. In testing Hypotheses 2a,b, we 

include a variable to control for the individual patient’s severity, as well as average severity 

of other patients concurrently treated in the ICU. Figure 3b illustrates how average severity 

in the unit varies with occupancy.

Previous studies show conflicting results regarding the impact of ICU congestion on patient 

health outcomes. KC and Terwiesch (2009) find that after Cardiothoracic Surgery, an 

abbreviated LOS and early discharge, due to ICU congestion and increased demand for beds 

from other possible admissions, can increase patient mortality. Baker et al. (2009) and Town 

et al. (2014) both find a higher risk of readmission during periods of high patient volume, 

potentially related to early discharge from the ICU. However, in a large database analysis, 

Iwashyna et al. (2009) find that mortality risk does not differ based on daily census at time 

of ICU admission. All of these studies treat ICU LOS as one homogeneous measure. In 

contrast, our clinical observations suggest that patients often board in the ICU while 

awaiting transfer due to lack of bed availability on the wards. To examine whether a speed-

up of care for some patients, resulting from high concurrent occupancy within the ICU, 

adversely affects patient outcomes, we test the following three hypotheses:

HYPOTHESIS 3A. Higher ICU occupancy increases ICU bouncebacks.

∂Bouncebacki
∂OccupancyICUi

> 0 (4)

HYPOTHESIS 3B. Higher ICU occupancy increases in-hospital mortality.

∂Deathi
∂OccupancyICUi

> 0 (5)

HYPOTHESIS 3C. Higher ICU occupancy increases hospital readmissions.

∂Readmissioni
∂OccupancyICUi

> 0 (6)
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If higher ICU occupancy leads to abbreviated ICU service times, then we would expect these 

patients to be more likely to revisit the ICU during their current hospital stay (Hypothesis 

3a), have a higher risk of in-hospital death after ICU transfer (Hypothesis 3b), and/or be 

readmitted to the hospital within 30 days of discharge (Hypothesis 3c).

Patient severity-of-illness may, of course, affect the likelihood of an ICU bounceback, 

hospital readmission, or death, possibly confounding our coefficient estimates if certain 

patients are selected for early ICU discharge when occupancy is high. Unsurprisingly, 

severity-of-illness at ICU admission was significantly higher among patients who died 

within the current hospital stay than for those who survived (mean 0.22 vs. 0.11, p < 

0.0001). Severity-of-illness was modestly higher among those patients who later 

experienced an ICU bounceback (mean 0.15 vs. 0.12, p = 0.08); and there was no significant 

difference in severity among those patients who survived the initial hospital stay and were 

readmitted to the hospital within 30 days (mean 0.11 vs. 0.11, p = 0.95). In the full 

regression models, we control for severity-of-illness at time of admission when testing 

Hypotheses 3a–c.

4. Empirical Specifications

4.1. ICU Length of Stay

Our first model considers total ICU length of stay (TotalLOSi) as the dependent variable to 

examine its relationship with ICU and ward occupancy levels (OccupancyICUi and 

OccupancyWardi), controlling for individual patient characteristics (Xi): age (Agei); severity 

level at ICU admission defined as the predicted mortality probability (Severityi) for Hospital 

B only; indicator if the patient arrives to the ICU from the emergency department (EDi); 

health insurance type (Medicaidi, Medicarei, or Otheri); and categorical variables for 

primary diagnosis-related group code (DRGi).

We additionally control for non-medical, operational factors: hospital where patient is 

admitted (HospitalAi or HospitalBi); average severity level of other patients concurrently 

treated in the ICU (OtherSeverityi); and month (Monthi), day of week (Weekdayi), and time 

of day (Dayshifti) at completion of ICU service. For each set of regressions, we present 

nested models with base results that include only the control variables. Because TotalLOSi is 

positive and highly skewed, we use the natural logarithm and obtain the following model 

specification to test Hypothesis 1:

ln TotalLOSi = λ0 + λ1OccupancyICUi
+ λ2OccupancyWardi + βXi + εi

(7)

We specify two similar models to separate total ICU length of stay into service time 

(Hypothesis 2a) and boarding time (Hypothesis 2b):

ln Servicei = σ0 + σ1OccupancyICUi
+ σ2OccupancyWardi + βXi + εi

(8)
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ln Boardingi = τ0 + τ1OccupancyICUi
+ τ2OccupancyWardi + βXi + εi

(9)

Patients who die within the ICU have censored service times, typically experience no 

boarding times, and do not transfer to the wards. We therefore exclude this cohort in the 

preceding models.

In each regression model, we break ICU and ward occupancy into four quartiles based on 

historical bed utilization at each hospital, to capture non-linear effects on service or boarding 

time. We include an interaction term, defined as “surge occupancy,” for simultaneously high 

occupancy in the ICU and wards (both in the highest quartile of historical levels, normalized 

by hospital).

4.2. Patient Outcomes

Patients who are transferred out of the ICU before they are clinically ready due to bed 

shortages may experience subsequent clinical deterioration, requiring additional care with a 

return to the ICU, or bounceback, as observed in other patient populations (KC and 

Terwiesch 2012). We specify a logistic regression model for the probability of ICU 

bounceback during the current hospital stay to test our Hypothesis 3a:

ln
P Bouncebacki

1 − P Bouncebacki
= α0 + α1OccupancyICUi

+ α2OccupancyWardi + βXi

+ εi

(10)

In serious cases, patients who receive abbreviated or suboptimal care during periods of high 

ICU occupancy may be at increased risk of dying within the hospital (Hypothesis 3b) which 

we test, using a similar logit model:

ln
P Deathi

1 − P Deathi
= δ0 + δ1OccupancyICUi

+ δ2OccupancyWardi + βXi + εi

(11)

Finally, we test whether high ICU occupancy increases the probability of being readmitted to 

the hospital within 30 days, (Hypothesis 3c), assuming the patient survives the initial 

hospitalization:
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ln
P Readmissioni

1 − P Readmissioni
= ρ0 + ρ1OccupancyICUi

+ ρ2OccupancyWardi + βXi

+ εi

(12)

Odds ratios eα1, eδ1, or eρ1 exceeding 1 would lend support to a hypothesis that patients 

completing ICU service during a period of high ICU occupancy are more likely to 

experience an ICU bounceback, inhospital death, or hospital readmission within 30 days, 

respectively. We examine these particular metrics, as ICU bouncebacks measure the level of 

rework if initial service times are abbreviated; 30-day readmissions are common hospital 

performance measures due to recent changes in Medicare reimbursement rates; and all three 

outcomes clearly capture patient well-being.

5. Results

5.1. ICU Length of Stay

Consistent with prior studies (Chan et al. 2012, KC and Terwiesch 2009, 2012), we find that 

higher ICU occupancy is associated with shorter total LOS. In particular, during the highest 

quartile of ICU occupancy, total LOS is 14% to 19% shorter than when occupancy is in the 

lowest quartile (Table 3, models 2–4). Conversely, higher Medicine ward occupancy is 

correlated with a longer total ICU LOS: ward occupancy in the third highest quartile 

corresponds to a 10% longer ICU LOS than during the lowest quartile; during the highest 

quartile, LOS is 18% longer. Total ICU LOS averages 3.1 days (Hospital A) or 4.9 days 

(Hospital B), suggesting that a 10% increase in LOS amounts to nearly one-half day. Both of 

these findings offer support to Hypothesis 1.

Patients admitted to the ICU who originate in the ED have a 21% shorter LOS than those 

from other hospital areas, with an average LOS of 79 hours vs. 110 hours (p < 0.0001). ICU 

patients arriving from non-ED locations have higher mortality than those from the ED 

(Delgado et al. 2013), possibly due to under-triage of the original admission condition, 

progression or complications of the original condition, or delayed recognition of impending 

clinical deterioration. One DRG classification related to organ transplant surgery 

(representing 3% of ICU patients at Hospital A and 14% at Hospital B) is associated with 

substantially longer LOS (258 hours vs. 86 hours, p < 0.0001). This is clinically sound, as 

patients undergoing organ transplantation who decompensate enough to warrant an ICU stay 

will likely require an extensive stay in the ICU because of comorbidities, 

immunosuppression, and other factors.

5.1.1. Service Time—When LOS is split into service and boarding periods, we find no 

support for Hypothesis 2a. ICU and ward occupancy have no statistically significant effect 

on ICU service time, whether occupancy is grouped by quartile (Table 4, models 2–4) or 

measured as a continuous variable. We do find that patients treated at Hospital A have a 

Long and Mathews Page 13

Prod Oper Manag. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



substantially shorter service time, consistent with our summary statistics and clinical 

observations that Hospital B typically admits critically ill patients with higher severity-of-

illness, in part due to a smaller unit size (14 beds). As expected, ICU patients arriving from 

the ED have significantly shorter service time as they tend to be lower acuity than those 

arriving from other locations within the hospital.

5.1.2. Boarding Time—Upon examining the relationship between bed occupancy and 

ICU boarding time, we find strong support for Hypothesis 2b. Across both hospitals, we 

observe an increasing marginal effect of occupancy on boarding time as either the ICU and 

wards become full (Table 4, model 3). During the highest quartile of ICU occupancy (>95% 

beds occupied at Hospital A; 100% beds occupied at Hospital B), boarding time is 67% 

shorter compared to the lowest quartile (<88% occupied beds at Hospital A; <86% beds 

occupied at Hospital B). In other words, when available ICU beds are scarce, patients 

experience minimal boarding and very efficient transfers out of the ICU.

Conversely, we observe longer ICU boarding times as ward occupancy rises, across all 

quartiles. Ward occupancy in the second, third, and fourth quartiles correspond to 27%, 

48%, and 67% longer boarding times, respectively, relative to the lowest quartile, controlling 

for concurrent ICU occupancy levels (Table 4, model 3). The increasing magnitude 

demonstrates that patients board in the ICU for longer periods of time as ward beds become 

increasingly scarce. Average ICU boarding times by ward occupancy are as follows: 10.4 

hours (first quartile), 13.9 hours (second quartile), 16.6 hours (third quartile), and 19.2 hours 

(fourth quartile).

Based on hourly census reports, ICU and ward occupancy levels are mildly positively 

correlated (ρ = +0.25 at Hospital A; ρ = +0.11 at Hospital B). Prior studies that ignore 

concurrent ward occupancy may therefore mis-estimate the impact of ICU census alone on 

LOS (Appendix Figure A1). The coefficient for ICU occupancy becomes more statistically 

significant once ward occupancy is controlled for, highlighting that ICU and ward 

occupancy levels are positively correlated, but have opposing effects on ICU boarding time. 

Including all control variables, bed occupancy levels, and an occupancy interaction term, we 

obtain an adjusted R2 = 0.20, in line with other empirical models of ICU length of stay (KC 

and Terwiesch 2009, Kim et al. 2014).

5.1.3. Surge Occupancy—Including an interaction for simultaneously high ICU and 

ward occupancy (both in the fourth quartile), results in a net 22.1% longer boarding time (p 
= 0.03) compared to when both areas are in the lowest quartile of occupancy (Table 4, model 

4). Although high ICU occupancy may induce shorter boarding times, a lack of available 

ward beds appears to dominate, resulting in a net longer ICU stay. In our hospital settings, 

approximately 5% of patients complete service during periods of surge occupancy, with the 

surge lasting an average duration of 6.2 hours.

Figure 4 shows the predicted mean ICU service time and ICU boarding time by ICU and 

ward occupancy quartiles, across both hospitals. As demonstrated in the empirical results, 

occupancy appears to have no statistically significant effect on ICU service time, but does 

strongly relate to ICU boarding time, with ICU and ward occupancy levels exhibiting 
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opposing effects. Predicted boarding ranges from approximately 6 hours (when ICU 

occupancy is at its highest and the wards are not full) up to 21 hours (when ward occupancy 

is at its highest and the ICU is partly full).

5.1.4. Dayshift and Weekday—Time-of-day or day-of-week may affect a patient’s 

service time or boarding, due to differences in nursing shift changes, transport services, or 

competition for beds from other hospital areas. Although 51% of patients arrive to the ICU 

during the dayshift (7am to 7pm), approximately 92% of patients complete service during 

this window, and these latter patients experience 30% longer service times and 35% longer 

boarding times, compared to those booked during the nightshift, controlling for bed 

occupancy and patient characteristics (Table 4). Our results also show that patients 

completing ICU service on a weekday (between Monday and Friday) experience no 

difference in ICU service time, but do endure 10% longer boarding times than those ending 

on weekends.

One potential explanation for these findings is that more scheduled and elective hospital 

admissions occur during the dayshift and on weekdays. Hospital staff may reserve ward beds 

in anticipation of these admitted patients, resulting in longer boarding times for ICU patients 

awaiting transfer to the wards. We see some evidence of this in our estimate for weekday 

dropping in magnitude and significance when ward occupancy levels are controlled for 

(Table 4, models 2–3). We note that OccupancyWard and Weekday have a positive 

correlation coefficient of +0.18, and this effect is robust across other (log-linear) 

specifications.

5.1.5. Hospital-Specific Effects—We include a HospitalA dummy variable in the 

previous regressions (Tables 3–4) and we also split the data into separate regressions for 

each hospital (Table 5). At Hospital A, the magnitude of the association between ICU or 

ward occupancy and boarding time is greater than at Hospital B (Table 5, model 4). Hospital 

A has a substantially larger Medicine ICU (51 beds) than at Hospital B (14 beds) with more 

daily ICU admissions. Additionally, patients at Hospital A have a lower overall mortality 

rate and spend nearly two fewer days in the ICU, leading to more daily patient discharges at 

Hospital A. Hence, more opportunities to speed up boarding times may exist at Hospital A if 

more patients complete service and are ready for transfer each day.

5.1.6. Severity-of-Illness—We add the patient Severity control variable (Table 5, 

models 4–6) for Hospital B only. Unsurprisingly, we find that severity is strongly related to 

ICU service time: an increase in patient severity score of 0.10 (equivalent to a 10 percentage 

point increase in predicted inhospital mortality) corresponds to a 16.3% longer ICU service 

time (Table 5, model 4). We find no statistically significant relationship between severity and 

boarding time, consistent with our clinical observations that accelerated boarding times are 

largely driven by bed availability in the ICU and on the wards.

Conversely, average severity-of-illness of other patients in the ICU has no impact on the 

index patient’s service time, supporting the notion that ICU care is not adversely affected by 

either the number or severity of neighboring patients. Boarding time, however, is 

substantially longer when average severity of other ICU patients is high (Table 5, models 5–
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6). Given that boarding appears to be largely discretionary, it is not surprising that this 

segment of care is prolonged when neighboring patients may require more intensive nursing 

support. Nevertheless, our estimates for ICU and ward occupancy levels continue to hold, 

with even higher magnitudes once OtherSeverity is included. Finally, we test an interaction 

between OtherSeverity and high ICU occupancy (we use the third quartile because Hospital 

B’s ICU is at 100% occupancy in both the third and fourth quartiles), but find no significant 

effect on service or boarding times (Table 5, model 6).

5.2. Patient Outcomes

Our empirical study provides no evidence to support Hypotheses 3a, 3b, or 3c. In particular, 

ICU and ward occupancy are not associated with a higher ICU bounceback probability 

(Table 6). Other model specifications, including a probit regression or linear probability 

model, show no relationship between ICU occupancy and bounceback probability. 

Consistent with our prior findings, patients admitted to the ICU from the ED are less likely 

to bounceback to the ICU after transfer to the wards (OR = 0.51, p < 0.001) reflecting our 

clinical observation that ICU patients admitted from the ED tend to be less critically ill and 

undergo shorter ICU stays than non-ED patients (Table 6, models 7–10). Patients with 

higher severity-of-illness at the time of initial ICU admission are also more likely to 

bounceback to the ICU, controlling for other covariates (Table 6, models 11–12).

Among patients who survive their initial ICU stay and subsequently transfer to the wards, 

about 11% die during the current hospitalization, either on the wards or another hospital 

area. Several patient characteristics (ED origin, insurance status) are associated with a risk of 

in-hospital death (Table 7). As expected, patient severity-of-illness is highly correlated with 

in-hospital death (OR = 25.12, p < 0.0001), providing validation for this metric (Table 7, 

models 11–12). We find no adverse effect of ICU occupancy on mortality. We do, however, 

find that higher ward occupancy corresponds to a lower risk of in-hospital death, with a 

more pronounced effect at Hospital B. To test whether this relates to prolonged boarding 

times, we include a control for Boarding, but find that ward occupancy is still negatively 

associated with in-hospital mortality. One conjecture based on our clinical experience at 

Hospital B is that during periods of high ward occupancy, ICU patients who are not expected 

to survive may be transferred to a hospice facility instead of being directly admitted to the 

wards (or, equivalently, when ward occupancy is low, terminally ill patients are cared for on 

the wards instead of going to hospice). Although patients transferred to hospice typically die 

shortly thereafter, they are recorded as a “discharge” in our dataset.

Upon examining 30-day hospital readmissions (among those patients who survive the initial 

hospitalization), we again find no relationship between ICU or ward occupancy and 

readmission probability (Table 8). We do find that older patients and those on Medicaid or 

Medicare insurance are more likely to be readmitted to the hospital within 30 days (Table 8), 

a well-documented finding in the medical literature (Hines et al. 2014). Once we control for 

patient severity (Table 8, models 11–12), these results are no longer significant, although the 

sample size is reduced to only those patients at Hospital B who survive the index 

hospitalization.
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As a robustness check, we consider models that control for ICU Service and Boarding times. 

For each outcome (ICU bounceback, death, and 30-day readmission), the addition of these 

variables has no effect on our initial estimates (Tables 6–8). Altogether, these results support 

our finding that occupancy levels only impact ICU boarding time—which has minimal 

clinical impact on patients’ functional status—and do not accelerate critical care service 

time, as previously claimed.

5.2.1. DRG Code—While running the preceding logistic regressions for patient 

outcomes, some observations are dropped because the categorical variable DRG perfectly 

predicts the outcome; an additional three observations are dropped because of missing DRG 

codes. In particular, all 79 patients in DRG classes MDC13 (Female Reproductive System), 

MDC14 (Pregnancy and Childbirth), MDC15 (Newborn and Neonates), MDC20 (Alcohol/

Drug Use or Induced Mental Disorders), and MDC24 (Multiple Significant Trauma) do not 

experience an ICU bounceback. These variables perfectly predict the “failure” outcome and 

are therefore omitted, resulting in n = 2475 observations for both hospitals.

For in-hospital deaths, all 89 patients in the following DRG classes do not die: MDC02 

(Eye), MDC09 (Skin, Subcutaneous Tissue and Breast), MDC13 (Female Reproductive 

System), MDC14 (Pregnancy and Childbirth), MDC20 (Alcohol/Drug Use or Induced 

Mental Disorders), and MDC24 (Multiple Significant Trauma). Following this, we obtain n 
= 2465 observations.

Finally, all 18 patients in DRG classes MDC13 (Female Reproductive System), MDC14 

(Pregnancy and Childbirth), MDC15 (Newborn and Neonates), MDC19 (Mental Diseases 

and Disorders), and MDC24 (Multiple Significant Trauma) are not readmitted to the hospital 

within 30 days, resulting in n = 2536 observations. As a robustness check, if the DRG 
categorical variable is entirely omitted, ICU occupancy still has no effect on bouncebacks, 

deaths, or hospital readmission.

6. Discussion

Our study examines how segments of patient care in the clinically diverse Medicine ICU are 

altered at providers’ discretion due to concomitant workload levels, as observed in other 

health care settings (Freeman et al. 2017). By re-examining prior studies that empirically 

investigate the impact of ICU occupancy on LOS, our study demonstrates that occupancy-

driven acceleration of care occurs within a period we newly define as “ICU boarding,” when 

patients await transfer to the wards. Moreover, concurrent ward bed shortages dominate ICU 

occupancy effects, increasing net ICU boarding times. We see no adverse effects of ICU 

occupancy on bouncebacks, in-hospital mortality, or 30-day hospital readmission, consistent 

with our finding that only the discretionary boarding period changes during peak occupancy 

while critical care service time remains unaltered. From a patient’s perspective, this is 

reassuring because hospital staff are not cutting short critical care service but rather reducing 

the largely unnecessary boarding period prior to ward transfer.

The absence of a statistically significant relationship between ICU occupancy and 

bounceback probability differ from prior studies, which may be explained in part by 
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different patient populations. In our setting, 7% of patients bounceback to the ICU, 

consistent with a large meta-analysis (Hosein et al. 2014) estimating a bounceback rate of 5–

6% in the Medicine ICU. In contrast, KC and Terwiesch (2012) observe that 14% of 

Cardiothoracic ICU patients bounceback—more than twice the rate in Medicine ICUs—

highlighting not just different clinical outcomes between the studies but also potentially 

different decision-making processes.

In the Cardiothoracic ICU, 70% of patients are scheduled admissions, whereas virtually no 

Medicine ICU patients are scheduled in our setting. Although surgeons cannot schedule 

surgeries with advance knowledge of occupancy, procedures are often rescheduled due to a 

lack of available inpatient beds. Tagarakis et al. (2011) find that 16% of cardiac surgeries are 

ultimately rescheduled, with more than half due to bed or staffing shortages. Rescheduled 

patients face a higher predicted mortality rate (15% vs. 10%, p < 0.01), resulting in lower 

average acuity for patients who undergo surgery. The shorter LOS observed by KC and 

Terwiesch (2012) in peak occupancy periods may be partly explained by a different patient 

composition. The higher proportion of patients revisiting the Cardiothoracic ICU in KC and 

Terwiesch (2012) could also be partly supply-induced. With a lower average occupancy of 

85%, staff may be more willing to fill available beds with bounceback patients, especially 

because future bed demand for scheduled admissions is known in advance. In contrast, the 

Medicine ICU typically faces internal pressure from the hospital to maintain available beds 

to accommodate spontaneous arrivals of patients requiring ICU care.

One key difference among ICU specialties is whether the attending physician assigned to the 

patient is primarily based within the unit itself. The Medicine ICU, known as a “closed 

unit,” requires decisions pertaining to patient admission and discharge to be made by the 

attending critical care physician. In contrast, Surgery and Cardiothoracic ICUs are typically 

“open units” where the (external) surgeon decides the course of treatment including 

discharge timing. Such a distinction is important when measuring the acceleration or delay 

of patient discharge from the ICU, as open units are subject to additional exogenous sources 

of variation due to surgeon availability and/or competition for beds from other inpatient 

areas. The Medicine ICU, therefore, is an ideal setting for our analysis because of the 

distinct set of physician decision-makers.

Although our study population is limited to the Medicine ICU, our findings may be of 

general interest given the heterogeneity in conditions present and important connection 

between the Medicine ICU and other hospital areas. About half of all Medicine ICU patients 

are admitted directly from the emergency department, and patient transfer delays out of the 

ICU undoubtedly trigger delays for incoming ICU patients, further exacerbating ED 

boarding and eventually ED wait times. Additionally, when bed utilization surges hospital-

wide for clinical reasons, such as the onset of influenza season, the Medicine ICU is 

typically the targetward for these critically ill patients, more so than any other inpatient unit. 

Our observations using this cohort can be applied by hospital leadership and planners to 

improve health care delivery and patient throughput.
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6.1. Implications for Practice

Our empirical results offer support for broader initiatives that hospital managers should 

consider to improve the entire ICU patient flow process, from bed assignment, through 

service and boarding times, to physical transfer to a ward bed. Virtually every large US 

hospital has implemented electronic medical records, making timestamps for bed assignment 

and discharge readily available. However, few hospitals also record timestamps for bed 

requests, precluding hospital managers from examining drivers of long ICU boarding times. 

Given the operational importance of expediting patient transfers from the ICU to the wards, 

hospitals should, at a minimum, measure periods of inefficiency such as ICU boarding time, 

so as to better identify targets for improvement.

Within our two-hospital setting, our study suggests that boarding times can differ by a factor 

of four, and close attention should be paid to simultaneously high occupancy surges within 

both the ICU and wards. Although this condition occurs less than 5% of the time, the 

combination of increased demand for the Medicine ICU and downstream ward beds creates 

the perfect storm—when ICU beds are most needed, boarding time is at its longest. This 

prolonged LOS further exacerbates ICU bed strain, creating delays for incoming ICU 

patients who then contribute to prolonged wait times in the ED. During these periods of 

strained capacity, the hospital could temporarily boost staffing and mobilize nursing teams 

and respiratory therapists to attend to patients who require an ICU bed but are unable to 

immediately receive one. Moving to a flexible-bed model (Best et al. 2015) where ICU 

capacity temporarily increases during high demand would increase throughput and reduce 

rejections of critical care patients from other hospitals due to limited bed availability. 

However, consideration should be given to potential negative effects of extra capacity in a 

connected system of ED, ICU, and ward beds (Berry Jaeker et al. 2013).

Implementing a threshold-based policy to prioritize patients exiting the ICU for a ward bed 

could reduce ICU congestion (e.g., once wards reach 80% occupancy, ICU patients receive a 

ward bed before admitted ED patients). At present, ICU patients board for 4 to 8 hours when 

wards are only partially full and such a priority rule, if feasible, could improve turnover. 

This slow-down of ICU transfers may occur because ward beds are spread across many 

independent units (e.g., Oncology, Cardiology, etc.) that are each behaving myopically 

without considering the aggregate effect on ICU bed strain. Better coordination across the 

ICU and all Medicine wards could streamline transfers out of the ICU, reducing ICU 

admission delays for incoming patients. Delaying ICU admission for some patients while 

simultaneously allowing others to spend needless hours boarding in the ICU is costly, both 

financially and clinically (Shmueli et al. 2003, Sprung et al. 2013).

In a related paper (Mathews and Long 2015), we use our empirical results to simulate 

different bed allocation policies. Achieving a 2-hour ICU boarding time for all patients 

could reduce ICU admission delays by 25% and decrease ICU occupancy by 10%, helping 

alleviate bottlenecks in other congested areas such as the ED or post-surgical care units. 

With the average daily cost of an ICU bed ranging from $3,000 to $11,000 (Dasta et al. 

2005, Huynh et al. 2013), even a small reduction in ICU boarding times, during which 

hospitals typically do not receive full reimbursement, could generate enormous savings. The 

highest costs and revenue-generating opportunities of an ICU patient’s hospitalization are 
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typically within the first two days (Dasta et al. 2005); utilizing valuable ICU beds by 

patients awaiting transfer to the wards leads to a loss in potential revenue. Alternative 

revenue sources include patient admissions from outside hospitals and elective surgeries 

(Bekes et al. 2004, Kim et al. 1999), but such opportunities require streamlined patient flow.

Intensive care units require the highest degree of clinician training and nursing care in the 

hospital, and these beds should be turned over as quickly as possible. We find that patients 

who complete ICU service between 7am and 7pm experience significantly longer boarding 

times. A discharge policy that triggers a rapid transfer to the wards for patients who have 

finished receiving care will help free up beds for newly arriving patients. Reallocating 

housekeeping and transfer staff to the busier dayshift may also alleviate some congestion 

arising from long boarding times.

Our study has several limitations. First, we control for each patient’s severity-of-illness 

using a validated risk-adjusted mortality model only at Hospital B, limiting our predictive 

power. Moreover, this severity score is static, based on the predicted probability of in-

hospital death at time of ICU admission. Future studies that incorporate a dynamic severity 

score, such as the Rothman Index (Kim et al. 2017), could better measure a patient’s 

evolving health status. Second, we use average severity-of-illness of other patients 

concurrently treated in the ICU, but a combined severity/occupancy metric may better 

capture workload. Third, we do not observe other key variables, including physician 

experience, shift length, or physician/nurse team dynamics, all of which may affect 

providers’ cognitive load and subsequent clinical decision-making (Kuntz et al. 2015). Our 

dataset includes detailed timestamps only for Medicine ICU patients, which represents only 

a portion of most hospital stays. A more comprehensive examination of LOS in the ED and 

wards—as well as time spent waiting to transfer to and from the ICU—is warranted. Fourth, 

our analysis is for only two academic hospitals, and institution-specific bed capacity 

constraints and ICU admission/discharge policies likely exist. Finally, we cannot determine 

whether terminally ill patients are more likely to be transferred to hospice care when few 

ward beds are available, leading to a supposed reduction in the inhospital death rate. Closer 

examination of hospital disposition—and its relationship to ICU and ward occupancy levels

—could be a fruitful area to explore.

6.2. Conclusions

Our study finds that the largely discretionary ICU boarding time following receipt of care is 

accelerated during periods of ICU congestion, but increasingly prolonged as ward beds 

become scarce. Boarding accounts for 15% of total ICU length of stay, reducing throughput 

and contributing to ICU admission delays for other patients. An additional component of 

ICU care is the decision-making by physicians, nurses, and other staff; in future research we 

intend to examine how hospitals can better align incentives to reduce unnecessary time spent 

in the ICU while improving patient care.
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Figure A1. 
Correlation Between Hourly Intensive Care Unit (ICU) and Medicine Ward Occupancy 

Levels [Color figure can be viewed at wileyonlinelibrary.com]

Note: Hospital A has 51 ICU beds + 436 ward beds; Hospital B has 14 ICU beds + 624 ward 

beds.

Table A1

Distribution of Primary Diagnosis Related Group (DRG) Codes, by Hospital

DRG code Description Hospital A (%) Hospital B (%)

001–015 Pre-MDC (Surgical Transplant) 3.1 13.8

020–103 MDC 01: Nervous System 3.5 2.2

113–125 MDC 02: Eye 0.1 1.0

129–159 MDC 03: Ear, Nose, Mouth & Throat 0.8 13.6

163–208 MDC 04: Respiratory System 20.9 4.4

215–316 MDC 05: Circulatory System 7.8 17.4

326–395 MDC 06: Digestive System 11.4 1.3

405–446 MDC 07: Hepatobiliary System & Pancreas 4.6 2.7

453–566 MDC 08: Musculoskeletal System & Connective Tissue 2.4 3.3

570–607 MDC 09: Skin, Subcutaneous Tissue & Breast 0.4 0.0

614–645 MDC 10: Endocrine, Nutritional & Metabolic System 6.7 0.0

652–700 MDC 11: Kidney & Urinary Tract 6.3 6.3

707–730 MDC 12: Male Reproductive System 0.0 22.5

734–761 MDC 13: Female Reproductive System 0.3 0.0

764–782 MDC 14: Pregnancy, Childbirth & Puerperium 0.3 0.0

789–795 MDC 15: Newborn & Other Neonates (Perinatal Period) 0.0 0.2

799–816 MDC 16: Blood, Blood-forming Organs & Immunological 
Disorders

1.5 4.6

820–849 MDC 17: Myeloproliferative Diseases 1.5 0.0

Long and Mathews Page 22

Prod Oper Manag. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://wileyonlinelibrary.com


DRG code Description Hospital A (%) Hospital B (%)

853–872 MDC 18: Infectious & Parasitic Diseases and Disorders 14.9 0.1

876–887 MDC 19: Mental Diseases and Disorders 0.2 0.0

894–897 MDC 20: Alcohol/Drug Use or Induced Mental Disorders 3.9 0.2

901–923 MDC 21: Injuries, Poisonings & Toxic Effects of Drugs 5.8 0.0

927–935 MDC 22: Burns 0.0 0.0

939–951 MDC 23: Factors Influencing Health Status 0.3 1.8

955–965 MDC 24: Multiple Significant Trauma 0.1 0.0

969–979 MDC 25: Human Immunodeficiency Virus Infection 1.3 3.7

981–989 Unrelated Operating Room Procedures 1.7 0.2

998–999 Invalid and Ungroupable DRGs 0.0 0.6

Note: MDC, major diagnostic category.
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Figure 1. 
Intensive Care Unit (ICU) Patient Flow with Average Service and Boarding Times, as well 

as the Fraction of Patients with ICU Bounceback or 30-Day Hospital Readmission
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Figure 2. 
Scatterplot of Each Patient’s Intensive Care Unit (ICU) Service Time (top row) or Boarding 

Time (bottom row) vs. ICU and Medicine Ward Occupancy Levels at Hospital A (a)–(d) or 

Hospital B (e)–(h) [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 3. 
Average Severity-of-Illness of All Other Patients Concurrently Treated in the Intensive Care 

Unit (ICU) vs. (a) Patient Severity-of-Illness at Time of ICU Admission Based on Predicted 

Probability of Death and (b) ICU and Ward Occupancy Quartiles (Hospital B only) [Color 

figure can be viewed at wileyonlinelibrary.com]
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Figure 4. 
Predicted Mean and 95% Confidence Intervals for (a) Intensive Care Unit (ICU) Service 

Time and (b) ICU Boarding Time by ICU and Ward Occupancy Quartiles, Where ICU Q4 & 

Ward Q4 Denotes a Period of “Surge Occupancy” [Color figure can be viewed at 

wileyonlinelibrary.com]

Note: Predictions based on marginal effects from Table 4, model 4.
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