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Chapter 4

Evolving views of human genetic variation and its relationship
to neurologic and psychiatric disease
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CA, United States
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Abstract

Recent advances in exome and genome sequencing in populations are beginning to define the genetic
architecture of neurologic and psychiatric disease. At the same time these findings are changing our per-
spective of genetic variant contributions to disease, implicating both rare and common genetic variation in
common diseases.Most of what we know about genetic contributions to disease so far comes from analysis
of mutations in protein-coding genes. Since most genetic variation lies in nonprotein-coding regions of the
genome whose presumed function is entirely regulatory, understanding gene regulation in a cell type and
developmental state-specific manner will be important to connect human genetic variation to disease
mechanisms.

THE CONTRIBUTION OF COMMON
VERSUS RARE GENETIC VARIATION

The modern era of neurogenetics was framed by the
discovery of the triplet repeat disorders and of rare
Mendelian forms of both rare and common disorders.
The advent of genetic linkage permitted mapping
(Huntington disease, spinal and bulbar muscular atrophy,
Friedreich ataxia, spinocerebellar ataxia type 1: Harding,
1981; Brzustowicz et al., 1990; Verkerk et al., 1991;
The Huntington’s Disease Collaborative Research
Group, 1993; Orr et al., 1993; Lefebvre et al., 1995;
Campuzano et al., 1996), and eventually cloning rare,
highly penetrant, Mendelian disease genes based on
studying families. This was an exciting time for neuroge-
netics, because for the first time major causal genetic
factors for many neurologic diseases, including Alzhei-
mer disease (AD), Parkinson disease, amyotrophic lat-
eral sclerosis, Huntington disease, as well as dozens of

hereditary ataxias and neurodevelopmental disorders,
were identified (Orr and Zoghbi, 2007) over the course
of the ensuing decade, a process greatly accelerated in
part by the Human Genome Project (Lander et al.,
2001; Venter et al., 2001). Although finding major gene
causes were seminal events in the history of neurology,
the vast majority of these mutations were rare, and, with
a few exceptions, explained only a limited fraction of the
population risk for common diseases, sometimes only in
a handful of families. However, these discoveries opened
a new window through which to build an understanding
of disease mechanisms (e.g., Orr and Zoghbi, 2007; see
also Chapter 9, this volume).

In common neurologic diseases, early successes, such
as the identification of relatively large effect size, com-
mon variants within the apolipoprotein E (APOE) gene
that increase risk four- to fivefold for AD (Strittmatter
et al., 1993; Roses, 1996), suggested that common
genetic variants carrying risk for common disorders
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would have relatively high effect sizes. Had this
been true, the causes of common diseases would likely
be few in number and would have been identified
with relatively small-scale association studies. This is
because the sample size necessary to find genetic risk
factors is based on several factors, including the effect
size of the risk variant, its frequency, and the frequency
of the disorder in the population. Early genomewide
association studies, which look for common variants that
predispose to disease using a case-control design, over-
estimated the effect sizes of contributing loci, and under-
estimated their heterogeneity, leading to several early
failures to identify common loci due to low power.
The APOE4 allele in AD turned out to be an outlier, in
that no comon variants imparting greater than twofold
relative risk for other common neurologic disorders have
been identified. Rather, most common variants imparting
risk for AD, as well as other common neurologic disor-
ders, have a relative risk of< 1.5, the majority below 1.2
(Welter et al., 2014; MacArthur et al., 2017). Appreciat-
ing these challenges has informed study design, leading
to well-powered genomewide association studies
that now have identified many new loci contributing to
common neurologic and psychiatric diseases (Simon-
Sanchez and Singleton, 2008).

Based largely on extrapolation from these experi-
ences, the prevaling genetic model over the last
two decades has been that rare disorders are caused by
rare alleles of major effect size (monogenic), whereas
genetic risk for common diseases is primarily borne by
common genetic variation (>1% in the population; poly-
genicity). However, genomewide analyses of common
variation so far indicate that common variants, while
contributing substantially, cannot alone account for all
of the heritability of common diseases (Manolio et al.,
2009; Geschwind and Flint, 2015). In parallel, advances
in technology that have facilitated high-throughtput
analysis in large populations, such as microarrays
and next-generation sequencing (Metzker, 2010), have
further informed this issue in several major ways
(McCarthy and MacArthur, 2017).

The first is the finding that rare variants (<1%
frequency in the population) comprise the majority of
human genetic variation. Rare loss-of-function variants
have been found in more than 90% of genes in the
genome, with only a small fraction of the human popu-
lation sequenced (Keinan and Clark, 2012; Tennessen
et al., 2012;Dewey et al., 2016; Lek et al., 2016). Second,
rare, very rare, and ultra-rare frequency variants (<1%,
<0.1% and < 2.5 ! 10–6, respectively) contribute to
common diseases, ranging from AD (Steinberg et al.,
2015) and frontotemporal dementia (Coppola et al.,
2012) to autism spectrum disorder (ASD: Sanders
et al., 2012; Leppa et al., 2016). Some of these rare

variants have a very large estimated effect size, and are
therefore considered causal, while others have small to
intermediate effect sizes, thus acting as risk factors for,
rather than causes of, disease, contributing to a contin-
uum of risk. Even rare de novo (noninherited, typically
germline) genetic variation is more common than previ-
ously thought, with each person on average harboring
nearly one de novo protein-coding mutation (Samocha
et al., 2014; Auton et al., 2015). The third observation
is that, similarly to common variants, evidence is accu-
mulating that rare variants are likely to contribute to nor-
mal variation in cognitive and behavioral phenotypes in
the population (Stefansson et al., 2014; Ulfarsson et al.,
2017), consistent with small to intermediate effects on
disease risk for many.

This appreciation that rare genetic variation occurs
more frequently and contributes more to common dis-
ease than was previously thought means that risk for
most common neurologic diseases is likely imparted
by all classes of variants, common and rare, inherited
and de novo. A corrollary of this is that the relative con-
tribution of each class is likely to vary quite subtantially
by disorder (Geschwind and Flint, 2015); variants that
cause disorders related to aging are likely under different
evolutionary constraints than those that occur in child-
hood. Thus, whole-genome analysis at single base pair
resolution will be necessary to fully understand genetic
risk for common neurologic disorders, and since we need
to have power to detect effects for very rare variants,
large population-scale studies will be needed. Moreover,
as noted above, since rare loss-of-function variants
are not rare as a class when combined, caution is
warranted when assigning pathogenicity to newly iden-
tified singleton protein-disrupting variants. Guidelines
for interpretation of causality identified by sequencing
have recently been published (MacArthur et al., 2014;
see also Chapter 2, this volume) which will no doubt
evolve andmature over the next decades as our databases
of whole-genome sequence grow to encompass entire
populations connected to medical records.

Why does the frequency of genetic
variation matter?

Defining common or rare risk contributions to disease is
not simply an esoteric issue. As outlined above, it clearly
informs the design of studies attempting to discover
genetic risk factors for neurologic disorders. But, it
also has functional implications that impact treatment
development (Gandal et al., 2016) and genetic testing
(e.g., Chapter 2, this volume; Fogel and Geschwind,
2015). Allele frequency in the population is related to
the population history and the degree of natural selection.
Rare variants are new and mostly under purifying
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selection, whereas common variants are old and either
neutral or under positive selection. Because of this, dif-
ferent biologic pathways may be affected by different
forms of variation. For example, in AD, rare Mendelian
forms involve genes involved in amyloid processing or
beta-amyloid itself, whereas common variants implicate
largely neural-glial/immune genes such asCR1, or genes
involved in trafficking, such as CLU (Harold et al.,
2009), suggesting innate immune pathways that were
not originally implicated by rare Mendelian acting vari-
ants. Similarly, rare and common variations appear to
impact different pathways in certain neurodevelopmental
disorders (Parikshak et al., 2013). An important experi-
mental challenge is to understand where pathways impli-
cated by common and rare variants defining common
variant contributions to disease diverge or intersect; in
some cases the intersection may be at the gene level
itself, rather than broad pathways. Rare variants in genes
also implicated by genomewide association studies
(Guerreiro et al., 2013; Jonsson et al., 2013) may also
act as risk factors. The contributions of rare genetic var-
iants also highlight the need for broad population genetic
screening, rather than relying only on patient cohorts, to
fully understand how disease risk impacts human biol-
ogy and have an unbiased estimate of the true relative risk
that the variant imparts for the disorder.

Identification of rare structural variants or protein-
disrupting single-nucleotide mutations in a number of
disorders has also identified unexpected links between
clinically and pathologically distinct neurologic and
psychiatric disorders. Examples include theMAPT gene,
which codes for the tau protein, and is implicated in
neurodegenerative syndromes, ranging fromAD, fronto-
temporal dementia, corticobasal degeneration, and pro-
gressive supranuclear palsy (Coppola et al., 2012; Ng
et al., 2015; Lopez et al., 2017). Here, genetic findings
link conditions that are clinically considered to be dis-
tinct and suggest the potential for a common molecular
pathway. Similarly, schizophrenia and ASD, which are
behaviorally defined disorders, share similar rare genetic
risk factors, including copy number variants such as (del)
22q11 and Neurexin 1 deletions (Cantor and Geschwind,
2008; Doherty and Owen, 2014; Fromer et al., 2014;
Iossifov et al., 2014; McCarthy et al., 2014).

Lastly, although common variants are expected to
have quite small individual effects on disease risk, com-
posite risk scores that take into account all variants poten-
tially contributing to disease may provide power to
predict disease risk. Such polygenic risk scores can be
used to explore cross-disorder overlap and have shown
a remarkable intersection between common risk factors
for ASD and schizophrenia, similar to the rare variant
overlap mentioned above (Cross-Disorder Group of the
Psychiatric Genomics Consortium, 2013, St Pourcain

et al., 2017; Weiner et al., 2017). Polygenic risk scores
also provide an avenue for identifying potential etiologic
factors, such as intermediate brain structural, functional,
or cognitive phenotypes (Lancaster et al., 2016; Reus
et al., 2017). For example, common genetic risks for
schizophrenia and bipolar disorder overlap with genetic
factors promoting creativity (Power et al., 2015) and
genetic risk for ASD coincides substantially with factors
that underlie increased educational attainment (Weiner
et al., 2017). Such relationships may also provide a
framework for understanding the biologic factors that
may have led to the persistence of these disease risk var-
iants in the population (predicted by the presence of nat-
ural selection).

EVOLVING VIEWS OF GENOME
FUNCTION

Along with the changing view of genetic variation in
humans, our view of the genome itself and its potential
contribution to disease are also evolving rapidly. Most
of the major advances in this arena have occurred via
exploration of the >95% of the genome that is nonpro-
tein coding (ENCODE Project Consortium, 2012).
These studies have identified multiple new classes of
nonprotein-coding RNA, including multiple small
RNA species, including pi, sno, and miRNAs, tens of
thousands of long coding RNA, as well as, more recently,
RNA transcribed from active enhancers (Deveson et al.,
2017; Ko et al., 2017; Rothschild and Basu, 2017; Xue
et al., 2017). These mRNA do not code for protein and
hence are nonprotein-coding gene products. The primary
role of these RNA species is thought to be regulatory; for
example, miRNA act by repressing transcription or trans-
lation (Ivey and Srivastava, 2015; Xue et al., 2017).
Some lncRNA are thought to act as antisense transcripts,
repressing transcription of mRNA, while others act as
presumed sponges for miRNA (Deveson et al., 2017).
Currently, the functions of most miRNA and lncRNA
are not known, but they play critical roles in gene regu-
lation (Deveson et al., 2017; Xue et al., 2017). Enhancer
RNA are transcribed in parallel with the transcription of
the target genemRNA, and they likely regulate structural
changes that result in proximity between enhancers and
promotors to regulate gene expression (Ko et al., 2017).

The importance of the contribution of the regulation
of gene (mRNA) expression to disease is underscored
by the observation that the vast majority of common
genetic variation that contributes to disease risk in
humans lies in noncoding regions of the genome and
does not directly affect protein-coding exons (Zhang
and Lupski, 2015). These regions are predicted to have
regulatory functions, which are not limited to regulation
of transcript expression, but may affect splicing as well
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(Li et al., 2016). Analysis of rare variation in noncoding
regions of the genome is in its very early stages and
faces many challenges, so the extent of noncoding rare
variation contributions to disease is not yet as well delin-
eated as it is for common variation. Since regulatory
regions comprise a significant fraction of the genome,
we expect that they will play important roles in disease.
This is supported by the discovery of multiple rare, Men-
delian mutations that affect splicing and are known to
cause neurodegenerative disorders, such as frontotem-
poral dementia (Pickering-Brown et al., 2002). In a
broader sense, variation in splicing, including genes
involved in RNA processing or metabolism, has been
clearly linked to disease mechanisms in multiple neuro-
logic and psychiatric conditions, ranging from ASD to
amyotrophic lateral sclerosis and multiple other neuro-
muscular disorders (Belzil et al., 2013; Nussbacher
et al., 2015; Van Alstyne and Pellizzoni, 2016; Wang
et al., 2016a; Cookson, 2017; Liu et al., 2017).

One crucial mechanism for the regulation of gene
expression and splicing is dynamic control of epigenetic
modifications, which are changes to DNA that do not
change its sequence, but still alter its function (see
Chapter 5, this volume). Dozens of such modifications,
ranging fromDNAmethylation and hydroxymethylation
to histone methylation and acetylation, have been
identified (see Chapter 5, this volume). These form a
combinatorial code that is just beginning to be deci-
phered, but which when measured in a tissue or cell
reveals the local states of regulatory elements, such as
the activity of enhancers and promotors in that cell at that
time. It is presumed that one mechanism via which
disease-related DNA variation acts is by altering these
regulatory relationships, which makes uncovering these
relationships a priority. This priority is further empha-
sized by the observation that many neurodevelopmental
and neurodegenerative disorders involve specific
regional or cell vulnerabilities, highlighting the necessity
of understanding the complexities of cell type and stage-
specific gene regulation (Seeley, 2008; Miller et al.,
2013; Parikshak et al., 2013; Wang et al., 2016b).

Further complicating matters when it comes to gene
regulation is that, rather than being a simple linear
arrangement of regulatory elements, such as an operon,
mammalian chromatin (which consists of DNA and its
protein complexes) exists in a complex three-
dimensional (3D) structure. This 3D structure is modi-
fied by epigenetic changes and this structure plays a
major role in gene regulation by creating boundaries,
and bringing distant regions, such as noncontiguous
enhancers and promotors, in contact to exert effects on
gene transcription in a tissue-specific manner (Dekker
and Mirny, 2016; Won et al., 2016). While the 3D
genome is a relatively new concept, I expect that future

volumes will contain muliple examples of both proximal
and distal (long-range) regulatory variation and its
disease-relevant mechanisms.

Finally, since these complex gene-regulatory pro-
cesses are what translate the DNA sequence into cellular
function, understanding these regulatory relationships at
a cellular level is going to be critical for understanding
the mechanisms of most neurologic disorders. Behavior
and cognition are related to specific circuits and regions,
which consist of specific cell types, and thus the manifes-
tations of neurologic disease, for example, cellular and
regional vulnerability in neurodegenerative diseases,
ultimately depend upon cell type-specific gene regula-
tion. Placing disease-causing genetic variation that
affects either gene product sequence or gene regulation
into this cell type and circuit context remains a critical
challenge for neurogenetics in the decade to come.
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