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ABSTRACT OF THE THESIS

Understanding Border Gateway Protocol Configurations and Policies

by

Thomas Binh-Huy Bui

Master of Science in Computer Science

University of California, Los Angeles, 2018

Professor George Varghese, Chair

We present an object-oriented representation of routing policies to encode BGP-related con-

figuration information. We demonstrate how router policies can be represented as pseu-

docode functions, making it easier to understand a router’s configured policy. We discuss

the C-representation of router policies that allow for the use of symbolic execution to explore

all paths through a single router and produce test announcements. We generate router con-

figurations compatible for Quagga to emulate the network slice, send test announcements,

and observe the resulting routing table. We describe a method to guarantee equivalence

given any two routers’ BGP configurations with functional equivalence.
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CHAPTER 1

Introduction

Network configuration is both error-prone and difficult to debug [FB05] [MWA02]. Since

configuration is decentralized across all devices in a network, problems may propagate across

the network and manifest themselves in a device far from the source of the configuration error.

Furthermore, many configuration errors are latent and only triggered under a certain set of

conditions.

As the state of the network changes or policy is updated, errors can occur quite easily.

These failures can be caused by problems with hardware, software, or configuration. As

many companies shift to providing online services, problems with the network become more

costly. In order to triage configuration errors, network operators must use ad hoc methods

and tools like traceroute and ping to pinpoint an error in thousands of lines of configuration

spread over multiple devices.

Router configuration is expressed in a fairly low-level configuration language, lacking

high-level primitives. Combined with the flexibility of the Border Gateway Protocol (BGP)

to implement different policy, this allows for misconfigurations to take place. Also, there

is no unified router configuration language, so network operators may need to coordinate

routers from different vendors, each with their own configuration language. The complexity

of configuration languages can lead to mismatches between the router’s behavior and the net-

work operator’s intent, resulting in faulty router configurations. Examples of routing faults

include routing loops, blackholes, improper route filtering, route leakage, route instability,

and route hijacking.

Recent work has attempted to provide operators with more sophisticated tools. For

example, automated data plane testing finds the minimal set of test packets needed to check
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desired properties in a network. Data planes are a result of a set of configurations and

an environment [ZKV14]. Thus, data plane testing is reactive; in the face of changes to a

configuration or an environment, it must wait for the produced data plane to manifest itself

before it can detect an error, at which point the error is already live in the network. By

contrast, control plane testing has the advantage of finding latent bugs in a configuration

before they are activated as well as pinning errors to a specific set of announcements.

There have been existing attempts to verify correct behavior of the control plane from

configurations. rcc reads from configurations and checks for common desirable properties

[FB05]. Batfish verifies configuration by modeling the data planes produced from the con-

figurations [FFP15]. While these projects propose tools to verify properties, they can only

verify control plane properties for environments provided during verification. They cannot

test the correct operation of router hardware and software. Although automatic test genera-

tion has been done in the world of software, it has not been done for network routing policy.

There are no automated testing tools that can monitor routing behavior under arbitrary live

environments.

This thesis makes several contributions. First, we present a mechanism to extract BGP-

related information from router configurations and display the policies in a easy to under-

stand, human-readable format. Second, we present a first attempt at automated testing for

a routing protocol, BGP. We use an imperative language data model coupled with symbolic

execution to generate a high coverage set of test announcements which can be injected into

an emulated network to capture routing behavior. Third, we develop a mechanism to per-

form router equivalence checks between two routers, where we define routers to be equivalent

if they have equivalent routing policies with respect to some neighbor mapping.

The rest of the thesis is structured as follows:

• Chapter 2 describes relevant background information, technologies used, and a walk

through of an example Cisco IOS router configuration.

• Chapter 3 discusses the implementation of the internal representation used to express

router configurations.
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• Chapter 4 provides the outputs generated as a result of reading the configurations and

constructing our internal representation.

• Chapter 5 presents use cases of our internal representation. These include the pseu-

docode representation of policies, the injection of control plane packets into a network,

and router equivalence results for a campus network of a large university.

• Chapter 6 concludes.
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CHAPTER 2

Background and Motivation

2.1 Networking Information

A network consists of routers and switches, and these devices are used to send packets from

one location to another. These data packets must follow the rules of the network as defined

by the network’s data plane. The network data plane determines the forwarding of traffic

according to a packet’s header by following the rules of a forwarding table. These forwarding

rules determine the outgoing port on which to send a packet with a particular header. The

network control plane builds the data plane depending on the link failures in the topology,

route announcements received from neighboring nodes, and individual node configurations.

Modifying these router configurations is the current method used by network operators

to steer traffic. These decisions are typically financially motivated. For example, given

two possible routes through two different Internet service providers (ISPs) to the wide area

network (WAN), a network operator would configure routers to prefer a route to the ISP

which charges a cheaper price given equivalent bandwidths. This manual configuration of

routers is possible by modifying attributes of a routing protocol. An autonomous system

(AS) denotes a group of routers under a common network operator. Some examples of

autonomous systems include an ISP, a university or a large company.

Two examples of well-known routing protocols include Open Shortest Path First (OSPF)

and Border Gateway Protocol (BGP). OSPF is a link state routing protocol which computes

best route to a destination by shortest path cost. OSPF typically uses link speed to determine

cost, but this value can be overwritten to manually configure link costs. OSPF is an example

of an interior gateway protocol (IGP), which are used to exchange routing information within
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an autonomous system.

BGP is the most commonly used exterior gateway routing protocol in networking to-

day. It is often used to transmit routing information among autonomous systems. BGP’s

configuration is much more flexible than OSPF, having many modifiable attributes (e.g. lo-

cal preference, AS Path, MED, etc.) This added flexibility comes at the cost of increased

complexity to select the best route.

For example, we examine the local preference and AS Path attributes of two route an-

nouncements for the same prefix. The route announcement with the larger local preference

will be installed in the forwarding table. If the local preferences of the two route announce-

ments are equivalent, the announcement with the shorter AS Path length will be preferred.

Cisco describes their full BGP best path selection algorithm [bgp].

2.2 Example Configuration

In this section, we examine various sections of a router configuration to describe their effect

on router behavior. Assume we are given a simple configuration written for Cisco IOS which

has been taken from the Batfish repository [bat].

This is a relatively small example of a router configuration, whereas real router config-

urations often contain thousands of lines of esoteric directives only known by Cisco CLI

experts. Also, one needs to consult the documentation to understand the semantics of com-

mands based on their context as well as learn the default settings that these configurations

employ. Since our focus is on the BGP route announcements within a network, some of these

lines contain unnecessary information for our model of the network.

We have divided the example configuration into the following sections.

2.2.1 Interfaces

This first section declares a router’s interfaces as well as enters into interface configuration

mode to specify attributes for each interface. Some examples of interface configuration
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include the assignment of an IP address and subnet, setting up duplex operation, or assigning

a speed to an interface. This router sets up three Gigabit Ethernet interfaces (LAN interface)

and one Loopback interface (logical, or virtual interface).

i n t e r f a c e Loopback0

ip address 1 . 2 . 2 . 2 255 . 255 . 255 . 255

i n t e r f a c e GigabitEthernet0 /0

ip address 1 0 . 1 3 . 2 2 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

media−type gb ic

speed 1000

duplex f u l l

n e g o t i a t i o n auto

i n t e r f a c e GigabitEthernet1 /0

ip address 1 . 0 . 2 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

n e g o t i a t i o n auto

i n t e r f a c e GigabitEthernet2 /0

ip address 1 0 . 1 4 . 2 2 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

n e g o t i a t i o n auto

2.2.2 OSPF

This section configures the router’s OSPF process. The 1 in router ospf 1 defines the

unique process-id parameter for OSPF processes on a router. This router specifies a router-

id 1.2.2.2, which uniquely identifies the router within an OSPF routing domain. The network

area command defines the interfaces on which OSPF runs as well as the area ID for those

interfaces. The redistribute connected subnets command allows for the redistribution

of routes into OSPF, using the connected keyword to refer to routes that are automatically

established when IP is enabled on an interface. Another example usage of the redistribute

command is redistribute static subnets to redistribute a router’s IP static routes into an

OSPF routing domain [cisa].
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r ou te r o sp f 1

router−id 1 . 2 . 2 . 2

r e d i s t r i b u t e connected subnets

network 1 . 0 . 0 . 0 0 . 2 5 5 . 2 5 5 . 2 5 5 area 1

2.2.3 BGP

This next section configures Border Gateway Protocol (BGP), allowing a router to exchange

network reachability information with other BGP speakers. The first line router bgp 1

specifies the AS number (1) of the router and enables a BGP routing process for the router.

The router-id command configures a fixed router ID as an IP address. This router ID is

used as a tie-breaker in the BGP path selection procedure, with preference for the lowest IP

address.

This router creates BGP peer groups by using the neighbor peer-group command

while in BGP configuration mode. Neighbors with the same BGP policies can be added to

the same peer group to simplify configuration, so that these peer groups can be referenced

in the address family mode of BGP configuration instead of repeating commands for each

neighbor in a peer group. This router’s configuration defines a peer group as1 with AS

number 1. A neighbor with IP address 1.10.1.1 will have all the policies of peer group as1

applied to this neighbor.

The neighbor update-source command specifies to use the router’s Loopback interface,

instead of assigning the closest interface, as the source interface for the TCP connection to

BGP neighbor 1.10.1.1. The Loopback interface is typically used as the source interface for

iBGP sessions because the BGP session will stay up as long as IGP can determine a path to

the neighboring router. This allows BGP sessions to be robust to physical interface failures

if there are multiple paths to the neighbor. This router and neighboring router 1.10.1.1 are

both in AS1, which is why this router updates the source interface to the Loopback interface

for that particular BGP session. [cisb].

r ou t e r bgp 1
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bgp router−id 1 . 2 . 2 . 2

bgp log−neighbor−changes

ne ighbor as1 peer−group

neighbor as1 remote−as 1

neighbor as2 peer−group

neighbor as2 remote−as 2

neighbor as3 peer−group

neighbor as3 remote−as 3

neighbor as4 peer−group

neighbor as4 remote−as 4

neighbor 1 . 1 0 . 1 . 1 peer−group as1

neighbor 1 . 1 0 . 1 . 1 update−source Loopback0

neighbor 1 0 . 1 3 . 2 2 . 3 peer−group as3

neighbor 1 0 . 1 4 . 2 2 . 4 peer−group as4

2.2.4 BGP IPv4 Address Family

This section configures BGP routing sessions that use IP addresses in the IPv4 unicast

address family. The additional-paths commands specify that this router can both send

and receive additional paths and selects all possible candidate paths with unique next hops

for advertisement. Typically, a router would only advertise the best path from its routing

information base (RIB). There are three components that make up the RIB for a BGP

speaker [RLH06]:

• Adj-RIBs-In: Stores routes from BGP neighbors’ route announcement messages

• Loc-RIB: Applies local policies to Adj-RIBs-In, narrowing down received routes to the

set of best routes that this router will use.

• Adj-RIBs-Out: Stores routes that will be advertised to this router’s BGP neighbors

The neighbor advertise additional-paths command is necessary for the router to ad-
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vertise routes from the set of additional paths to a specified neighbor or peer group. This

particular router example advertises additional paths only to neighbors in peer group as1

[cisd].

The network command specifies networks that will be advertised by this BGP routing

process. This router advertises 1.0.1.0/24 and 1.0.2.0/24 subnets. The neighbor send-

community command specifies that community attributes should be sent to the particular

BGP neighbor, since the default setting does not send community attributes to any neighbors.

The neighbor route-map { in | out } commands are used to apply a route map to

incoming or outgoing routes for the specified neighbor or peer group. A route map applied

with keyword in to a router’s neighbor will filter route announcements received from that

BGP neighbor. More specifically, these route maps are part of the router’s local policies

which narrow the list of routes in Adj-Ribs-In to the subset of routes used by the router

in Loc-RIB. Similarly, a route map applied with keyword out to a router’s neighbor will

filter routes as they move from Loc-RIB to the router’s Adj-RIB-out. This part of the

RIB typically consists of a a router’s best routes unless the additional-paths feature was

configured [RLH06].

The neighbor activate command enables the exchange of routing information with a

BGP neighbor. This is enabled by default for IPv4, but is disabled for all other address

families [cisa]. Therefore, the configuration directives in this example are redundant.

address−f ami ly ipv4

bgp add i t i ona l−paths s e l e c t a l l

bgp add i t i ona l−paths send r e c e i v e

network 1 . 0 . 1 . 0 mask 2 5 5 . 2 5 5 . 2 5 5 . 0

network 1 . 0 . 2 . 0 mask 2 5 5 . 2 5 5 . 2 5 5 . 0

ne ighbor as1 send−community

neighbor as1 a d v e r t i s e add i t i ona l−paths a l l

ne ighbor as2 send−community

neighbor as2 route−map a s 2 t o a s 1 in
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neighbor as2 route−map a s 1 t o a s 2 out

ne ighbor as3 send−community

neighbor as3 route−map a s 3 t o a s 1 in

ne ighbor as3 route−map a s 1 t o a s 3 out

ne ighbor as4 route−map a s 4 t o a s 1 in

ne ighbor as4 route−map a s 1 t o a s 4 out

ne ighbor 1 . 1 0 . 1 . 1 a c t i v a t e

ne ighbor 1 0 . 1 3 . 2 2 . 3 a c t i v a t e

ne ighbor 1 0 . 1 4 . 2 2 . 4 a c t i v a t e

maximum−paths 5

ex i t−address−f ami ly

Figure 2.1: Router BGP Diagram

Figure 2.1 describes the BGP topology given router as1border2’s configuration, showing

the physical interfaces used to peer with EBGP neighbors in AS3 and AS4. The dotted line

represents the IBGP link connecting as1border2 to 1.10.1.1, as this path is determined by

an IGP such as OSPF. Also, since as1border2 does not have a directly connected interface
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to subnet 1.0.1.0/24, another router in this autonomous system may be connected to this

subnet and will advertise the prefix to as1border2 through OSPF. Then, as1border2 can

learn where to direct the traffic upon receiving data packets from EBGP neighbors.

2.2.5 Filter Lists

Upon returning to global configuration mode, this router configures various filter lists, and

these lists will later be applied to route maps. The ip community-list command creates

BGP community lists. A standard community list specifies well-known communities and

community numbers, whereas an expanded community list filters communities using a regular

expression. The new-format referenced in ip bgp-community new-format refers to the

usage of two 2-byte numbers separated by a colon to view the autonomous system number and

network number (AA:NN) as the community value string format; otherwise, the community

value is displayed as its numerical, 32-bit value [cisa]. AS path filter lists uses the ip as-path

access-list command to filter routes based on the AS path value matching a given regular

expression, making it analogous to expanded community lists. Both community filters and

AS path filters can have multiple statements per filter entry, creating a logical OR between

the statements of each filter list. If a single statement has multiple values to match, a logical

AND is created.

The ip prefix-list command adds statements to a prefix list entry. Each statement can

permit or deny route announcements if they match the network/mask length prefix as well as

the optional constraints on the prefix length with ge and le [cisa]. The access-list command

defines IP access lists. Extended ACLs have access list numbers within the range (100-199),

therefore the access lists in this example are extended ACLs. One can view the extended

ACL as an alternate implementaton of a prefix list when it is applied to a route map’s match

statement. For example, access-list 101 permits prefixes 1.0.1.0/24 and 1.0.2.0/24. The first

IP address in the access-list corresponds to the prefix for the route to match with, and the

second IP address corresponds to the mask length for the prefix match. The keyword host

is a replacement for wildcard 0.0.0.0, which means to take all bits from the IP address.
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Extended ACLs only match the exact prefix length, losing some flexiblity in comparison to

prefix lists [cisc].

ip bgp−community new−format

ip community− l i s t expanded as1 community permit 1 :

ip community− l i s t expanded as2 community permit 2 :

ip community− l i s t expanded as3 community permit 3 :

ip community− l i s t expanded as4 community permit 4 :

ip as−path access− l i s t 1 permit ˆ1$

ip p r e f i x− l i s t as4−p r e f i x e s seq 1 permit 4 . 0 . 0 . 0 / 8 l e 32

ip p r e f i x− l i s t i n b o u n d r o u t e f i l t e r seq 5 deny 1 . 0 . 0 . 0 / 8 l e 32

ip p r e f i x− l i s t i n b o u n d r o u t e f i l t e r seq 10 permit 0 . 0 . 0 . 0 / 0 l e 32

access− l i s t 101 permit ip host 1 . 0 . 1 . 0 host 2 5 5 . 2 5 5 . 2 5 5 . 0

access− l i s t 101 permit ip host 1 . 0 . 2 . 0 host 2 5 5 . 2 5 5 . 2 5 5 . 0

access− l i s t 102 permit ip host 2 . 0 . 0 . 0 host 2 5 5 . 0 . 0 . 0

access− l i s t 102 permit ip host 2 . 1 2 8 . 0 . 0 host 2 5 5 . 2 5 5 . 0 . 0

access− l i s t 103 permit ip host 3 . 0 . 1 . 0 host 2 5 5 . 2 5 5 . 2 5 5 . 0

2.2.6 Static Routes

In global configuration mode, the router also configures its static routes. The static route

command ip route specifies the network prefix and the next hop IP address of the given

route. The directive can include additional information, such as administrative cost, about

the static route.

ip route 1 6 9 . 2 3 2 . 9 0 . 0 2 5 5 . 2 5 5 . 2 5 5 . 0 1 6 9 . 2 3 2 . 1 1 0 . 7

ip route 1 6 9 . 2 3 2 . 9 3 . 0 2 5 5 . 2 5 5 . 2 5 5 . 0 1 6 9 . 2 3 2 . 1 1 0 . 7

12



2.2.7 Route Maps

This final section defines the route maps which had been previously declared in the BGP

configuration section. A route map is identified by a name, such as as1 to as2, and consists

of an ordered sequence of individual statements/clauses. Each route map clause has match

commands and/or set commands. With a permit route map, a route which matches the

conditions of the match statement(s) will then perform the actions of the set statement(s).

The conditions of a match statement can match ACLs, prefix lists, community lists, an AS

path, or a metric (MED) value. A set statement can update BGP attributes such as local

preference, MED, a next hop address, a community attribute, or the AS path.

route−map a s 1 t o a s 2 permit 1

match ip address 101

s e t metr ic 50

s e t community 1 :2 a d d i t i v e

route−map a s 1 t o a s 2 permit 3

match ip address 103

s e t metr ic 50

s e t community 1 :2 a d d i t i v e

route−map a s 2 t o a s 1 permit 100

match community as2 community

s e t l o c a l−p r e f e r e n c e 350

route−map a s 1 t o a s 3 permit 1

match ip address 101

s e t metr ic 50

s e t community 1 :3 a d d i t i v e

route−map a s 1 t o a s 3 permit 2

match ip address 102

s e t metr ic 50

s e t community 1 :3 a d d i t i v e
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route−map a s 3 t o a s 1 permit 100

match community as3 community

s e t l o c a l−p r e f e r e n c e 350

route−map a s 1 t o a s 4 permit 2

s e t metr ic 50

s e t community 1 :4 a d d i t i v e

route−map a s 4 t o a s 1 permit 100

match ip address p r e f i x− l i s t as4−p r e f i x e s

match community as4 community

s e t l o c a l−p r e f e r e n c e 350

2.3 Network Emulation

To emulate the router device such that it behaves as if it were in a real environment running

the protocols, we use Mininet [LHM10] with the MiniNExT [SZC14] extension layer. Mininet

can emulate a complete network of hosts, links, and switches on a single machine, but Mininet

runs everything in the root process [sin]. Since we require isolation (separate process spaces

with Linux containers) from other entities, we use MiniNExT (Mininet ExTended) [SZC14],

an extension layer that makes it easier to build complex networks in Mininet. The only trade-

off is that MiniNExT only supports Ubuntu 14 running Linux Kernel version 3.

To implement routing protocols, we use Quagga [Qua], a routing software suite, which

provides implementations of OSPFv2, OSPFv3, RIP v1 and v2, RIPng and BGP-4. For each

router, we have a configuration file which is used as an input to Quagga. The file provides

configuration for the protcols supported by the router. Quagga configuration files typically

specify the IP addresses assigned to the router’s interfaces, parameters for routing protocols

like OSPF and BGP, and their desired policies with its neighbors. The Quagga configuration

language follows a syntax similar to the Cisco IOS syntax described in §2.2.

In order to test the routers, we need the ability to send arbitrary announcements. Since

14



Quagga works in the way specified by the configuration file alone and cannot generate arbi-

trary route announcements, we require a route-injector which can send announcements that

we specify to a router being tested. ExaBGP [Man] facilitates route injection by plugging

scripts into BGP. Those scripts can then receive and advertise routes. ExaBGP manages

BGP while the scripts read routes from standard input or advertise them on standard output.

Unlike Quagga, ExaBGP does not perform any FIB manipulation.

2.4 Related Work

Previous work has explored control plane verification and data plane testing in networks.

Tools such as rcc [FB05], Batfish [FFP15], ARC [GVA16], ERA [FSF16], and Minesweeper

[BGM17] are control plane analysis and verification systems used to make claims about net-

work properties such as reachability and consistency.

rcc (router configuration checker) uses static analysis to check configuration constraints

in order to identify BGP configuration faults based on a high-level correctness specification.

Their normalized representation for BGP configurations uses mySQL database. Unlike the

other control plane analysis tools, rcc does not create a model of the network.

Batfish uses a variant of Datalog to encode a logical model of the control plane, rep-

resenting the configuration information and control plane semantics as logical facts. From

the logical model and a given environment (i.e. link status and route announcements from

neighbors represented as logical facts), Batfish can analyze the resulting data plane. Since

Batfish can only reason about a single data plane at a time and given the large number of

potential environments, it is intractable to generate and analyze all data planes for a given

control plane.

ARC develops an abstract representation for control planes, translating network configu-

rations into a collection of weighted digraphs that represent the true forwarding behavior of

the network. Reasoning about the control plane is accomplished by computing graph char-

acteristics of ARC. However, ARC represents only a limited set of control plane protocols
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and features.

ERA models a control plane message as a 128-bit vector to encode attributes of the route

announcement, using binary decision diagrams (BDDs) to represent sets of route announce-

ments to enable fast set operations. The control plane is modeled as a function which takes

routes as inputs and produces routes as outputs. ERA is unable to verify configurations for

all environments.

Bagpipe allows network operators to express BGP policies as declarative specifications. It

represents configurations as a set of network traces. Using an SMT-based symbolic execution

solver, Bagpipe performs an initial network reduction to search through a finite set of traces

and verify the control plane policies for a single AS. Since Bagpipe focuses on BGP, it does

not model any IGPs.

Minesweeper represents network configurations as a logical formula N . Network operators

can also use logical formulas to express properties P . By using an SMT solver to search for

a solution to N ∧¬P , Minesweeper can verify that these properties are not satisfiable under

any possible environment if a solution exists. Since Minesweeper uses an SMT solver, only

one solution is generated that violates the formula instead of all possible solutions.

Automatic Test Packet Generation (ATPG) [ZKV14] automatically generates tests for a

given data plane. It is a framework to test the forwarding rules and links of a network. This

tool attempts to help the network operator determine if the data plane matches their in-

tended configuration specification. Similarly, our tool can help network operators determine

if the control plane matches their intended configuration specification. To perform this con-

trol plane testing, we monitor the traversal and transformations of routing announcements

instead of the data plane test packets used in ATPG.

OpenConfig [ope] is a working group focused on compiling vendor-neutral data models,

using YANG as the data modeling language. The OpenConfig data model includes much

of the same configuration information as the Batfish data model. One eventual goal is for

aspects of the OpenConfig data models to be standardized. We did not find a way to generate

OpenConfig data models when given router configurations. Since OpenConfig’s data models
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have not been standardized yet, we based the implementation of our IR on the Batfish data

model.

2.5 Design Overview

In order to model a router’s BGP process, we identified the relevant information from a

router configuration. At a high-level, this information consists of the import and export

policies of a router and the network topology.

The import and export policies of a router are the route announcement filters, which

are referred to as route-map in Cisco IOS. These filters modify route attributes as routes

are installed in the RIB and control the propagation and transformation of BGP routing

announcements through the network. A router can have different policies for each of its

BGP neighbors. The network topology must identify all the nodes and edges in the network

graph. Given a set of router configurations, we needed a mechanism to extract this network

information.

Router configurations can come in a variety of languages depending on the router’s ven-

dor. For example, configurations written for Cisco IOS have a different syntax to configu-

rations written for Juniper Junos OS. It would be tedious work to write a parser for each

vendor’s configuration language. Instead, we leverage the existing work from Batfish to ex-

tract a vendor neutral data model of the network [FFP15]. Using this data model allows our

testing framework to accept any configuration language once we develop a data extractor for

Batfish’s JSON representation of the network data model.
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Figure 2.2: Design Model

We have four desired outputs from the Batfish data model. First, we express the import

and export policies as human-readable pseudocode. Second, we want to represent these

same policies as functions written in C to be used input for our test generation mechanism.

Third, we want to generate C code to perform router equivalence checks among pairs of

routers. Fourth, we need to generate configurations in a language suitable for the Quagga

routing software suite since Quagga will implement the routing processes for our emulated

network. To help us generate these outputs, we develop an intermediate representation of

BGP configuration with Python classes, dictionaries, and lists. An overview of our design

model is depicted in Figure 2.2.
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CHAPTER 3

Internal Representation

To implement the data extractor, we identify relevant information from the data model

that will be necessary to produce the four outputs. Then, we store this information into

data structures (using Python classes, dictionaries, and lists), which we consider to be our

internal representation (IR) of router’s BGP policies. Our IR allows for convenient lookups

to generate the configuration files and C code, separating the data gathering step from the

analysis step. This chapter describes the IR in detail.

3.1 Classes

We describe the various Python classes which were created to organize our IR into an object-

oriented design. The following Python code describes the initializers for each object type.

3.1.1 Session

We define a Python class object named Session to represent a BGP session between a router

(specified by its hostname router name) with one of its neighbors (specified by the neighbor’s

IP address neighbor). This neighbor is part of AS number as number. The initializer for

Session accepts the names of the import/export policies rather than the policy objects

themselves. This implementation decision was due to the indirect references used in the

Batfish data model. We leave import policy and export policy variables to be populated

in the future once we gather information about these policies. We discuss how policies are

represented in §3.1.2.

class Se s s i on :
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def i n i t ( s e l f , router name , ne ighbor ip , as number , \

impor t po l i cy , e x p o r t p o l i c y ) :

s e l f . router name = router name

s e l f . ne ighbor = ne i ghbo r ip

s e l f . as number = as number

s e l f . impor t po l i cy = None

s e l f . import po l icy name = impor t po l i cy

s e l f . e x p o r t p o l i c y = None

s e l f . export po l i cy name = e x p o r t p o l i c y

s e l f . i n t e r f a c e = None

There exists a common structure for the export policy of each BGP neighbor. For

example, suppose we are given a router whose neighbor has IP address 10.13.22.3. The

Batfish data model will have a key ”exportPolicy” within this neighbor’s BGP information

associated with value ∼BGP PEER EXPORT POLICY:default:10.13.22.3∼. When looking

up this export policy name in the ”routingPolicies” section of the data model, we find a list

of statements. One statement will have a key ”class” with value

”org.batfish.datamodel.routing policy.statement.If”. This statement object will also have

key ”guard” with two possible class types:

• org.batfish.datamodel.routing policy.expr.Conjunction

• org.batfish.datamodel.routing policy.expr.CallExpr
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Figure 3.1: BGP Peer Export Policy Example

If the ”guard” is of type ”CallExpr”, this BGP neighbor will only use the export pol-

icy named ∼BGP COMMON EXPORT POLICY:default∼. This refers to a JSON object

in this router’s ”routingPolicies” which describes the router’s common export policy. This

common export policy is based on the router’s configuration, and the effects of this policy

are shared by all the router’s BGP neighbors. For instance, it includes the list of IP pre-

fixes being advertised by this router. It can also include the list of networks for which a

summary-address is created in the routing table using the aggregate-address command.

Furthermore, it includes information about redistribution of connected routes or redistribu-

tion of static routes into BGP as well as the route maps applied which may be applied to

the route redistribution.

If the ”guard” is of type ”Conjunction”, there will be a key ”conjuncts” referencing a

list of policies, and this list typically has two policies. One of these policies is the common

export policy. The second policy is the name of the outgoing route map which is applied to
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this BGP neighbor in the router configuration. For example, Figure 3.1 shows a router with

an export policy filter named as1 to as3 applied to neighbor 10.13.22.3.

3.1.2 Policy/Route Map

A routing policy consists of a list of match-action clauses, where an action (e.g. setting an

attribute value) occurs if an attribute of a route announcement matches a certain predicate.

These predicates include satisfying a prefix match, matching a regular expression of a com-

munity list, and matching a regular expression of an AS path list. Since a routing policy

can have multiple clauses, we represent a Session’s import and export policy as a list of

Route Map Clause.

For each Route Map Clause object, we keep track of the name of the route map along

with the sequence number of the clause. Each Route Map Clause has variables to keep

track of the three possible match statement types. The community list, as path list,

and route filter list instance variables each refer to a list populated by their respective

BGP filter objects (to be discussed in §3.1.3). If a Route Map Clause only has a match

statement on a community list, self.route filter list and self.as path list will both be empty

lists. Furthermore, instance variable actions contains a list of object Action since a route

map clause can contain multiple set statements. Each Action has a field (e.g. MED, local

preference, community tag, etc.) that will be updated to value.

class Route Map Clause :

def i n i t ( s e l f , name , seq=”” , permit=True , c l = [ ] , r f l = [ ] , \

a sp l = [ ] ) :

s e l f . name = name # name

s e l f . seq = seq # empty s t r i n g ”” as p l a c e ho l d e r

s e l f . permit = permit

s e l f . community l i s t = c l

s e l f . r o u t e f i l t e r l i s t = r f l

s e l f . a s p a t h l i s t = asp l
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s e l f . a c t i o n s = [ ] # Li s t o f p o s s i b l e Act ions

class Action :

def i n i t ( s e l f , f i e l d=None , va lue=None , a d d i t i v e=False ) :

s e l f . f i e l d = f i e l d

s e l f . va lue = value

s e l f . a d d i t i v e = a d d i t i v e # Bool f o r community t a g s

Figure 3.2 depicts the Batfish representation for a single route map clause; more specifi-

cally, this statement is the first clause of route map as1 to as3. Together with Figure 3.3,

which represents the second clause, we have all the information about policy as1 to as3. If

we tokenize the comment string by character ’∼’, the last character contains the sequence

number of this clause.
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Figure 3.2: Route-Map as1 to as3: Statement 1

In Figure 3.2, ∼RMCLAUSE∼as1 to as3∼1∼ represents the statement with sequence

number 1 in route map as1 to as3. From the ”guard,” we know that this clause performs

the actions of ”trueStatements” if the route announcement matches the prefix filter list

101. The actions of this trueStatement include setting the MED to ”50” and updating the

community tag to add ”1:3” for routes matching extended ACL 101. Furthermore, this clause

has key ”falseStatements” to reference any additional clauses from the route map. Figure 3.3

depicts the second clause of as1 to as3 having sequence number 2. This dictionary object
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follows a similar structure containing ”guards,” ”trueStatements,” and ”falseStatements”

keys. The second clauses similarly sets MED to ”50” and updates community to add ”1:3”

for routes matching extended ACL 102.

Figure 3.3: Route-Map as1 to as3: Statement 2

With the Python IR, we represent route map as1 to as3 as a list of two

Route Map Clause objects [RMC1, RMC2]. The two clauses have the following attributes.

RMC1:
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name = a s 1 t o a s 3

seq = 1

permit = True

community l i s t = None

r o u t e f i l t e r l i s t = None

a s p a t h l i s t = 101

a c t i o n s = [ Action1 , Action2 ]

RMC2:

name = a s 1 t o a s 3

seq = 2

permit = True

community l i s t = None

r o u t e f i l t e r l i s t = None

a s p a t h l i s t = 102

a c t i o n s = [ Action3 , Action4 ]

Action1 :

f i e l d = metr ic

va lue = 50

a d d i t i v e = False

Action2 :

f i e l d = community

value = ” 1 :3 ”

a d d i t i v e = True

Action3 :

f i e l d = metr ic

va lue = 50

a d d i t i v e = False
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Action4 :

f i e l d = Community

value = ” 1 :3 ”

a d d i t i v e = True

3.1.3 BGP Filters

As discussed in §2.2.4, a route announcement can be filtered based on a router’s policies. A

BGP route filter can permit or deny routes based on the prefix being announced. For exam-

ple, match ip address prefix-list as4-prefixes or match ip address 101 specify that

their corresponding route maps will filter based on the prefixes of the announced networks

in prefix list as4-prefixes and ACL 101, respectively. Additionally, a route announce-

ment can be filtered based on other route attributes. For instance, match community

as4 community will compare a route’s community tag value to the regular expression de-

fined by community list as4 community using the command ip community-list expanded

as4 community. Similarly, match as-path 10 will match a route announcement with an

AS path matching the regular expression defined by AS path list 10 with the command ip

as-path access-list 10.

BGP filters can have multiple clauses associated with a single BGP filter entry. The

Batfish data model implements this by mapping key ”lines” to a list of JSON objects where

each object represents a unique clause. So, for each router in a network, we maintain Python

lists to represent the following filter types: community lists, AS path list, and route filter

lists.

This required defining class objects for the three match statement types. Community

lists and AS path lists are defined by a name, a matching regular expression, and a Boolean

for permit/deny. The Route Filter List class consists of a name, a permit/deny Boolean,

a sequence number (to determine priority of statements), an IP address prefix, and a prefix

length range. Since a list corresponds to a BGP filter entry, each class instance represents a

single clause of a filter entry.
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class R o u t e F i l t e r L i s t :

def i n i t ( s e l f , name , permit , p r e f i x , mask lower , \

mask upper , seq ) :

s e l f . name = name

s e l f . permit = permit

s e l f . p r e f i x = p r e f i x

s e l f . mask lower = mask lower

s e l f . mask upper = mask upper

s e l f . seq = seq

class Community List :

def i n i t ( s e l f , name , permit , regex ) :

s e l f . name = name

s e l f . permit = permit

s e l f . regex = regex

class AS Path List :

def i n i t ( s e l f , name , permit , regex ) :

s e l f . name = name

s e l f . permit = permit

s e l f . regex = regex

Figure 3.4 depicts how each router has a dictionary of ”communityLists” entries. For

instance, community list as1 community accepts routes with a community tag matching the

regular expression ” 1:”.
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Figure 3.4: Community list as1 community

Figure 3.5 shows how the Batfish data model represents an IPv4 route filter list, which

is referenced by key ”routeFilterLists.” These route filter lists can be implemented as prefix

lists or ACLs that are applied to a route map. So, prefix list as4-prefixes is a route filter

list since it is applied to route map as4 to as1, and it permits route announcements for

networks matching 4.0.0.0/8 with a subnet mask length between 8 and 32.

Figure 3.5: Prefix list as4-prefixes

3.1.4 Router

We created class Router to store router-specific attributes that affect the control plane

policy. Similar to how routes can be redistributed into OSPF as described in §??, route

redistribution allows routes from one routing domain to be redistributed into BGP. This
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affects BGP policy by adding to the set of route announcements that may be propagated by

a router. We include various route redistribution properties as instance variables in Router

to model its affect on a router’s policy.

A router with the redistribute connected command in its BGP configuration process

will lead to setting Router instance variable connected to True. Similarly, a router with the

redistribute static command in its BGP configuration process will lead to setting Router

instance variable static to True. Also, we have instance variable networks to keep a list of

subnet prefixes being announced. We have instance variable static routes to hold a list

of Route objects representing static routes used by this router. We define class Route to

store the destination network prefix, the IP address of the next-hop, and the administrative

distance of a route.

class Router :

def i n i t ( s e l f , name ) :

s e l f . name = name

s e l f . s t a t i c = Fal se # Bool r e d i s t r i b u t e s t a t i c route

s e l f . connected = False # Bool r e d i s t r i b u t e connected route

s e l f . s ta t i c name = None # Name of app l i e d s t a t i c RM

s e l f . s t a t i c p o l i c y = None # S t a t i c route map po l i c y

s e l f . connected name = None # Name of app l i e d connected RM

s e l f . c onnec t ed po l i cy = None # Connected route map po l i c y

s e l f . networks = [ ] # Adver t i sed subne t s

s e l f . s t a t i c r o u t e s = [ ] # S t a t i c rou t e s

class Route :

def i n i t ( s e l f , network , next hop , co s t ) :

s e l f . network = network

s e l f . next hop = next hop

s e l f . c o s t = cos t

If applicable, the Batfish data model embeds route redistribution information in the
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∼BGP COMMON EXPORT POLICY:default∼ of a router. Figure 3.6 gives an example of

a router with route map STATIC-TO-BGP applied to the redistribution of static routes into

BGP. This requires setting self.static = True and static name = STATIC-TO-BGP. We

will later update static policy to the contents of this policy, referencing the list of this

policy’s Route Map Clause.

Figure 3.6: redistribute static route-map STATIC-TO-BGP

Figure 3.7 show how ∼BGP COMMON EXPORT POLICY:default∼ can include the

network prefixes (e.g. 1.0.1.0/24) to be advertised. We append these prefixes to instance

variable networks.
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Figure 3.7: network 1.0.1.0 mask 255.255.255.0

Figure 3.8 shows how Batfish data model represents a router’s static routes as a list of

dictionary objects where each entry represents a unique static route. For each element in

the list, we create a Route object and append to static routes.

Figure 3.8: ip route 169.232.90.0 255.255.255.0 169.232.110.7

3.2 Python Dictionaries

So far, we have defined classes to represent the various elements of a router’s configuration

which we deemed relevant towards modeling the propagation of BGP routing announcements.

We have numerous Python dictionaries where the key is a router name and the value is a

dictionary or list containing objects created by the defined classes. These dictionaries allow

for convenient look ups in order to perform code synthesis and configuration generation.
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We discuss in §3.1.1 how Batfish’s representation of a BGP neighbor’s export policy

requires following the indirection of routing policy ∼BGP PEER EXPORT POLICY∼ to

determine if an outgoing route map should be applied to this neighbor. We have dictionary

policy dict to map a router name to a dictionary object mapping these export policies

to the applied route maps. It is a data structure used to populate the export policy of

Session objects.

In §3.1.3, we define the three object types used to represent route map match statements.

We also define three BGP filter dictionaries to store the information of each BGP filter

entry type. First, the community list dict dictionary maps a router name to a dictionary

mapping community list names to community list entries. Each community list entry is

represented by a Python list of Community List objects. Second, the as path list dict

dictionary maps a router name to a dictionary mapping AS path list names to AS path filter

entries. Each AS path filter entry is represented by a list of AS Path List objects. Third,

the route filter list dict dictionary maps a router name to a dictionary mapping route

filter list names to route filter list entries. Each route filter list entry is represented by a list

of Route Filter List objects.

The route map dict dictionary maps a router name to a dictionary mapping route map

names to route map entries. Each route map entry contains a list of Route Map Clause

objects. Since we create BGP filter objects to populate the BGP filter dictionaries, we can

update the instance variables cl, rfl, and aspl of Route Map Clause objects to reference

the same lists that populate the BGP filter dictionaries.

The session list dict dictionary maps a router name to a list of Session objects,

where each Session object corresponds to a single neighbor of a given router. We use

policy dict to update the Session object export policy name appropriately. Once we

have the actual policy names, we update import policy and export policy of the Session

object to reference the route maps in route map dict.

The prefix to intf dict dictionary maps a router name to a dictionary object, where

each indexed dictionary contains mappings between a network prefix and the associated
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interface name on the specified router. This data structure is primarily used to infer the

network topology, pairing interfaces where their corresponding interfaces have long prefix

matches. The number of matching bits should be at least as long as their network prefix

length.

The router dict dictionary allows us to access the remaining components of a router’s

BGP configuration attributes by mapping a router name to a Router object. As we dis-

cover additional configuration directives that affect the BGP routing process, we can add

these attributes to the Router class definition. If new BGP filters are used, we need to

construct a new class and use a dictionary to hold a list of these objects as well as update

the Route Map Clause class definition to have a new instance variable for this BGP filter

type.

After populating our Python dictionaries, is it much easier to generate the four outputs

enumerated in §2.5 in a systematic fashion. One of the benefits of the object-oriented IR

is the convenience of accessing a policy with a neighbor. If we were to interpret a route

map’s match conditions and set statements directly from the Batfish data model, we would

first need to index the ”routingPolicies” section. Then, depending on the match state-

ments of the route map, we may need to look up the following sections: ”communityLists,”

”routeFilterLists,” and ”asPathAccessLists.” Our Session objects have accumulated all this

information to easily get a router’s policy with any of its neighbors. Also, this extraction

of route map information from the data model only needs to be performed once instead of

once per output created. We use Python due to our familiarity with the language and its

object-oriented features. The built-in dictionaries and lists have been suitable for our current

needs to analyze small networks. If there is a future need to perform queries on the network

configuration, we may want to encode the information as database tables in the future.
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CHAPTER 4

IR Output

This chapter describes the outputs we generate as a result of reading a router’s Batfish data

model and extracting the Python IR described in Chapter 3. §4.1 explains our interpretation

of BGP policies and describes how we will create the pseudocode to express these policies.

§4.2 discusses how test route announcements are generated from BGP policies. §4.3 describes

how we perform router equivalence checks using Klee. §4.4 details the process of writing

router configurations for the Quagga software suite to be used for network emulation.

4.1 Pseudocode Generation

As we have discussed earlier, it is difficult to understand a router’s intended policy when

only given the router’s configuration file due to the complexity of router configuration lan-

guages. Leveraging our Python IR representation of BGP router policies, we attempted to

simplify the readability of a policy. At a high level, routing policies can permit or drop route

announcements as well as modify certain attributes of the installed route (for inbound route

maps) or outgoing route announcement (for outbound route maps).

One can view a router’s import policy as a function import policy() which takes as input

a set of route announcement A and produces as output an updated RIB containing the set of

received routes filtered by the import policy B. Then, following BGP’s best path algorithm

and applying the router’s local policies with function local policy() , the set of received routes

is reduced to the set of selected routes C. Finally, export policies export policy() are applied

to the set of selected routes. Similarly, these export policies can be viewed as functions

taking a set of route announcements as input and producing the set of announcements that
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will be propagated to certain neighbors by this router D. Given these variables for each set

of route announcements (A, B, C, D) and these function declarations, we define a router’s

policy and behavior as follows:

def r o u t e r p o l i c y (A) :

impor t po l i cy (A) = B

l o c a l p o l i c y (B) = C

e x p o r t p o l i c y (C) = D

return D

The function router policy() abstracts away the details of a router’s import policy, local

policy, and export policy. Since router policy() returns a set of announcements, we can per-

form function composition across routers in the network. For example, we are given a network

with two routers R1 and R2. We also have functions router policy R1 and router policy R2

to represent the respective routing policies of each router and variable x to represent the

set of all possible route announcements A. To get the set of announcements y that are first

filtered by R1 before being exported by R2, we have:

y = r o u t e r p o l i c y R 2 ( r o u t e r p o l i c y R 1 ( x ) )

By defining the functions called in router policy(), we can expand on the details of the

router’s policy. We use pseudocode (similar syntax to C) to represent the import policy()

and export policy() for the neighbors of a given router. As local policy() for all routers

follow the standard BGP best path algorithm, we currently do not produce pseudocode to

model this function. We provide an example of the generated pseudocode in §5.1.

In order to generate the pseudocode for a single router, we iterate through the router’s

session list dict dictionary entry to get the Session objects for each BGP neighbor.

Within the Session object, we can access the import policy and export policy that map to

a function. A policy consists of a list of route map clauses, and each clause represents a new

if statement in the function. We check if a prefix list, a community list, or an AS path filter

list exists for each clause to write the condition of the route map clause, which is represented

by a conjunction of the three BGP filters. Otherwise, this clause has no match statement,
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so we set the condition to True. The body of the if-statement contains the actions from the

clause. We provide some examples of these function definitions in §5.1.

4.2 Test Generation

The goal of automated testing is to generate a minimal set of tests that achieve a desired

level of coverage. Some examples, in increasing granularity, include all routers, checking that

announcements can be sent and received between neighbors, all links which checks all pairs

of interfaces, and all rules, checking each active filter in a configuration. Currently, we focus

on all rules testing for a single router.

This goal is similar to the aim of generating high path coverage in software testing via

symbolic execution [CS13]. Our approach is to take advantage of existing program testing

frameworks by translating BGP configuration into self-contained C programs. Starting from

the object-oriented IR, we translate each router configuration into a program that uses

functions to represent each filter.

The functions in these C programs are analogous to the functions described in §4.1, as

they both reflect router policy. Therefore, generating the C functions used for test gener-

ation is similar to pseudocode generation. They both require iterating through a router’s

session list dict dictionary entry to get the policies for a given router’s BGP neighbors.

However, the C functions are less readable than the pseudocode because these functions

must conform to a real programming language and because we optimize the code to operate

on integers whenever strings are used. For example, if we are given route map as4 to as1, we

can parse from the resulting pseudocode that the community tag value of an announcement

must match ”4:” and the prefix must match ”4.0.0.0/8” and have a prefix mask length

between 8 and 32. We convert the community tag (2 16-bit values separated by ’:’) and IP

address (4 8-bit values separated by ’.’) strings into unsigned 32-bit integers. Then, we use

the following boolean helper functions to replace operator ’==’ in the conditional statements

of the pseudocode.

37



int ann match pre f ix ( Announcement ann , u i n t 3 2 t p r e f i x ,

i n t 3 2 t mask , i n t 3 2 t ge , i n t 3 2 t l e ) ;

int ann match community ( Announcement ann , u i n t 3 2 t match ) ;

Route map as4 to as1 would be represented by the following C functions where commu-

nity ”4:” is represented by integer 262144 and prefix ”4.0.0.0/8” is represented by integer

67108864:

Announcement as4 to as1 168695300 ( Announcement a ){

i f ( ( ann match community (a , 262144)) &

( ann match pre f ix ( a , 67108864 , 8 , 8 , 32) ) ) {

a . l o c a l p r e f = 350 ;

}

else {

a . i s d ropped = 1 ;

}

return a ;

}

We define a C struct that represents an announcement, where each announcement consists

of a set of integer fields representing possible attributes of the announcement (e.g. prefix,

community list, AS path list, local preference). Also, we add another Boolean variable to

the struct, is dropped, to account for the implicit drop. Starting from the object-oriented

IR, we treat each match-action clause as a function that accepts an announcement and

returns an announcement. We order match-action clauses by priority, where the clause with

lower sequence numbers have higher priority. Then, we transform the clauses into if-else

statements that return the possibly modified announcement. The following code segment

shows a sample C-representation of a simple configuration for a router r1.

// Import p o l i c i e s

Announcement r 3 t o r 1 ( Announcement a ){

i f ( a . metr ic == 50){

38



a . metr ic = 30 ;

}

else {

a . i s d ropped = 1 ;

}

return a ;

}

//Export p o l i c i e s

Announcement r 1 t o r 2 ( Announcement a ){

i f ( a . metr ic == 30){

a . l o c a l p r e f = 100 ;

}

else {

a . i s d ropped = 1 ;

}

return a ;

}

Because each function both accepts and returns a single announcement, we can compose

the functions to represent the path an announcement takes through a router or network. By

enumerating all interface-interface paths through a router, we can easily push a symbolic

announcement through each path. We use Klee [CDE08] to generate fields for announcements

that traverse a new path by either satisfying or failing a different set of failures. The following

segment of code defines a main() function that tests the only path through router r1,

receiving routes from r3 and sending announcements to r2. Klee finds two path constraints:

a.metric == 50, a.metric != 50.

int main ( int argv , char ∗∗ argv ){

Announcement a1 ;

int metr ic ;
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klee make symbol i c (&metric , s izeof ( metr ic ) , ” metr ic ” ) ;

a1 . metr ic = metr ic ;

a1 . i s d ropped = 0 ;

// import from r3 and expor t to r2

Announcement r = r 3 t o r 1 ( a1 ) ;

i f ( ! r . i s d ropped ){

r 1 t o r 2 ( r ) ;

}

}

In this simple example, only the metric field is marked as symbolic. In practice, since

we don’t know which fields of the announcement the filter will branch on, all fields of the

announcement are marked as symbolic. Since filters are per interface, we also generate a

mapping that tags each generated test announcement with which interface it tests (and

consequently, to which interface it should be sent). Klee uses an SMT solver to generate

concrete instances of the constraints guarding each path. We harvest these concrete instances

and translate them back into BGP announcements, tagged with which interface it tests which

can then be sent into the network emulator.

4.3 Router Equivalence

Many networks may have pairs of routers with similar configurations if they have similar roles

in the network [BGM17]. We define two routers to be functionally equivalent if we find some

mapping of their neighbors where the routers have equivalent inbound and outbound policies

with respect to the neighbor mapping and if the route maps applied to route redistribution

are functionally equivalent. Once we get the neighbor mapping, we can compare the import

and export policies attributed to the Sessions for all neighbor pairings.

If we find that two routers are functionally equivalent, we guarantee that the routers will

have equivalent behavior in the network. However, the converse may not always be true; two
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routers can have equivalent behavior while being functionally nonequivalent. For example,

two routers with differing output filters but input filters that drop all announcements from all

neighbors would have equivalent behavior without having functional equivalence. Although

functional equivalence is a stronger guarantee than we need, it is a good first step to check

for equivalence. It is efficient since it only requires linear number of checks with respect

to number of neighbors. We could have checked for pathwise equivalence by comparing

all interface-interface paths through a router. This would eliminate some false negatives

from the functional equivalence check, but is much less efficient as it requires an exponential

number of tests.

The process to generate router equivalence checking code is very similar to that of the

test generation code. The route maps are represented as C functions as shown in §4.2. We

append ’1’ or ’2’ to the function names in case the routers use identical route map names,

which is often the case when two routers are configured to behave identically. The difference

in the router equivalence code is in main(). Below, we provide an example of generated code

to determine equivalence between two routers with route map r3 to r1 as defined above.

int main ( int argv , char ∗∗ argv ){

Announcement ann1 , ann2 ;

int m1, m2;

k lee make symbol i c (&m1, s izeof (m1) , ”m1” ) ;

k lee make symbol i c (&m2, s izeof (m2) , ”m2” ) ;

k lee assume (m1 == m2) ;

ann1 . metr ic = m1;

ann1 . i s d ropped = 0 ;

ann2 . metr ic = m2

ann2 . i s d ropped = 0 ;

// Check i f rou te maps r 3 t o r 1 are e q u i v a l e n t

Announcement r1 = r 3 t o r 1 1 ( ann1 ) ;

Announcement r2 = r 3 t o r 1 2 ( ann2 ) ;

a s s e r t ( r1 . i s d ropped == r2 . i s d ropped ) ;
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i f ( ! r1 . i s d ropped && ! r2 . i s d ropped ){

a s s e r t ( r1 . metr ic == r2 . metr ic ) ;

}

We have two announcements ann1 and ann2 with which we mark fields as symbolic.

Since this route map only deals with the metric field, we only mark metric and is dropped

as symbolic. Normally, we mark all attributes of an announcement as symbolic. If the two

route maps are not equivalent, running this C code through Klee will result in assertion

errors, and Klee will output the lines of code containing the failing assertions.

In earlier work, Minesweeper is capable of verifying their notion of local equivalence.

They define local equivalence as routers that make the same forwarding decisions and export

the same set of route announcements given equal input environments. The logical formula

which expresses this formula is the following:

in1 = in2 ⇒ (out1 = out2) ∧

(datafwdR1,P1 = datafwdR2,P1) ∧

(datafwdR1,P2 = datafwdR2,P2)

The formula represents input announcements as in1 and in2, output announcements as

out1 and out2, routers being compared as R1 and R2, and two peers of routers R1 and R2

as P1 and P2. This formula is dependent on R1 and R2 being connected to the same peers

P1 and P2. In a large university network, we observed that routers which appeared to be

equivalent did not share any peers. Even if the routers did not have identical neighbors, we

paired neighbors together which may play similar roles in the network, loosening the idea of

”same peers” to ”similar peers.”

Minesweeper’s logical formula for local equivalence verifies for identical control plane

behavior given the two router configurations. Our idea of functional equivalence is a stronger

guarantee of equivalence, checking the equivalence of control plane configurations by directly

comparing the implemented policies. Our approach may find some false positives in some

situations where Minesweeper would verify router equivalence.
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Minesweeper can be a useful tool for network operators to determine the existence of

bugs, but it does not identify the issue in the configuration that causes this bug. Our router

equivalence method identifies which attribute of a route announcement has a discrepancy

when two supposedly identical functions are applied to the symbolic announcement. With

future work, we will be able to map the assertion errors to the corresponding route map in

the configuration.

4.4 Quagga Configuration

As mentioned in §2.5, if we are given router configurations in a variety of languages, we

would like to create configuration files that are compatible for the Quagga routing software

package. This allows us to emulate a network using containers (MiniNExT) instead of real

hardware.

After Batfish reads in the original router configuration, the resulting data model contains

the information required to generate these Quagga configurations. For convenience, we can

index dictionaries of the IR to to write some sections of the configuration file rather than di-

rectly access the data model. We divide the Quagga configuration generation procedure into

the following function calls (including the referenced section from Chapter 2, if applicable):

1. write interfaces(): Iterates through ’interfaces’ key in the data model to write

interface names and their attributes (e.g. IP address, speed, duplex, etc.). [§2.2.1]

2. write ospf(): Accesses the ’ospfProcess’ key in the data model to configure the

router’s OSPF process. [§2.2.2]

3. write bgp(): Accesses the ’bgpProcess’ key in the data model to configure the router’s

BGP process. [§2.2.3]

4. write address family(): Configures address-family (e.g. IPv4) specific information

for the BGP process. We get the list of advertised subnets and route redistribution

information from the Router object in router dict. Also, we map route map names

to neighbor IP addresses from the Session objects in session list dict. [[§2.2.4]]

43



5. write static route(): Reads Router object from router dict to write static routes.

[§2.2.6]

6. write community list(): Reads list of Community List objects from

community list dict to define community lists [§2.2.5]

7. write as path list(): Reads list of AS Path List objects from

as path list dict to define AS path lists [§2.2.5]

8. write route filter list(): Reads list of Route Filter List objects from

route filter list dict to define route filter lists (i.e. prefix lists) [§2.2.5]

9. write route map(): Reads the list of Route Map Clause objects in

route map dict to define the route maps. [§2.2.7]
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CHAPTER 5

Results

This chapter describes concrete use cases for the resulting outputs of the object-oriented IR.

§5.1 provides an example of our pseudocode representation of BGP policies. §5.2 discusses

results obtained from performing equivalence checks for routers in the campus network of a

large university. §5.3 goes through an example scenario where we use our network emulation

framework to send route announcements to a single router.

5.1 Pseudocode Example

Suppose we have a router with the following two neighbors: 10.14.22.4 and 10.13.22.3. For

neighbor 10.14.22.4, we have import policy as4 to as1() and export policy as1 to as4(). For

neighbor 10.13.22.3, we have import policy as3 to as1() and export policy as1 to as3(). We

included generated pseudocode for the four functions representing the router’s router policy()

excluding its local policy(). Each policy function consists of if statements with conditional

expressions. The conditionals represent BGP filters (i.e. match statements of route maps).

The body of these if statements describe the modifications to route attributes (i.e. set

statements of route maps). Additionally, each policy function should also have a final else

statement (as show in as4 to as1) to express the implicit drop if no earlier condition was

satisfied by a given route announcement.

// Po l i c i e s f o r Neighbor : 10 . 14 . 22 . 4

// Import Po l i c i e s :

void a s 4 t o a s 1 ( ) {

i f ( ( ( community == ” 4 : ” ) ) &&
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( ( p r e f i x == ” 4 . 0 . 0 . 0 / 8 ” , p r e f i x l e n g t h <= 32 ) ) ) {

l o c a l p r e f = 350

}

else {

drop announcement

}

}

// Export Po l i c i e s :

void a s 1 t o a s 4 ( ) {

i f ( ( True ) ) {

metr ic = 50

community += ” 1 :4 ”

}

}

// Po l i c i e s f o r Neighbor : 10 . 13 . 22 . 3

// Import Po l i c i e s :

void a s 3 t o a s 1 ( ) {

i f ( ( ( community == ” 3 : ” ) ) ) {

l o c a l p r e f = 350

}

}

// Export Po l i c i e s :

void a s 1 t o a s 3 ( ) {

i f ( ( ( p r e f i x == ” 1 . 0 . 1 . 0 / 2 4 ” ) | |

( p r e f i x == ” 1 . 0 . 2 . 0 / 2 4 ” ) ) ) {

metr ic = 50

community += ” 1 :3 ”

}
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else i f ( ( ( p r e f i x == ” 2 . 0 . 0 . 0 / 8 ” ) | |

( p r e f i x == ” 2 . 1 2 8 . 0 . 0 / 1 6 ” ) ) ) {

metr ic = 50

community += ” 1 :3 ”

}

}

From looking at the comments for function as4 to as1(), we learn that this function

represents an import policy with neighbor 10.14.22.4. Function as4 to as1() says that a

route announcement received from neighbor 10.14.22.4 with a community value matching

”4:” and a network prefix matching 4.0.0.0/8 with prefix length less than or equal to 32

should be accepted and installed as a route in the RIB with a local preference of 350. If

a route announcement from 10.14.22.4/32 does not satisfy both these two conditions, the

announcement will be dropped and the route will not be installed. These functions are easily

interpretable due to the minimal complexity, as they only contain a single level of conditional

statements.

§2.2 includes the corresponding lines of Cisco IOS router configuration which express these

routing policies. Function as4 to as1() corresponds to the following lines in the configuration:

ne ighbor 1 0 . 1 4 . 2 2 . 4 peer−group as4

neighbor as4 route−map a s 4 t o a s 1 in

ip p r e f i x− l i s t as4−p r e f i x e s seq 1 permit 4 . 0 . 0 . 0 / 8 l e 32

ip community− l i s t expanded as4 community permit 4 :

route−map a s 4 t o a s 1 permit 100

match ip address p r e f i x− l i s t as4−p r e f i x e s

match community as4 community

s e t l o c a l−p r e f e r e n c e 350

One would need to understand the semantics of the Cisco IOS commands used to reason

about the same policy from the configuration. For instance, one must know about the peer-

group concept to understand that route map as4 to as1 is applied to neighbor 10.14.22.4.
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Also, one must understand how route maps are defined and the meaning of match and set

statements. Finally, one must be able to interpret the prefix list and community list that are

applied to route map as4 to as1 to derive the condition of the match statement. There is a

large amount prior knowledge required to interpret router configurations. The corresponding

pseudocode is much easier to read and understand in comparison.

5.2 Router Equivalence Results

We performed equivalence checks using router configurations taken from a campus network

of a large university. We focused on router configurations containing BGP processes that

use route maps to control routing policies; otherwise, the routers would have no policies to

compare with one another. Through a combination of manual inspection and a neighbor

pairing algorithm, we identified nine potentially equivalent router pairs and listed their

results in Table 5.1.

Router 1 Router 2
Same # of

Neighbors

# of

Functions

# of

Errors

f98af7 cc4c19 True 6 0

8011c1 b41db8 True 3 1

82e495 c1f60e True 2 2

54b94c 7c90b6 True 4 2

8eee7f 7e6174 True 3 1

7a0e46 242229 True 4 2

e63866 6c97a7 True 2 1

44a0b7 8b0d2f False N/A N/A

801fde 5d8007 False N/A N/A

Table 5.1: Router Equivalence Results

Before we run Klee on the generated equivalence checking code, we check for both routers
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to have the same number of neighbors in order to generate the neighbor mapping. We

would not know which route maps should be compared without the neighbor mapping. Our

neighbor mapping scheme uses a naive algorithm that pairs neighbors with the smallest

difference in IP address integer values. We found two instances where the pair of routers

had a discrepancy in their number of BGP neighbors. In the case of 44a0b7 and 8b0d2f, we

found that one router included a neighbor shutdown command for a BGP neighbor in its

configuration file. This command was not present in the second router’s configuration file,

resulting in a different number of neighbors.

Among the seven pairs of routers that we check for functional equivalence, six pairs had

assertion errors with respect to MED values of the announcement. We include an example

of a MED discrepancy in outbound route map 43749b to e4ccdd.

route−map 43749 b to e4ccdd permit 10

match ip address 43749 b 246e3b 3c0 f46

s e t metr ic 50

route−map 43749 b to e4ccdd permit 10

match ip address 43749 b 246e3b 3c0 f46

s e t metr ic 100

ACL 43749b 246e3b 3c0f46 has identical definitions in the two routers’ configurations.

The only difference is that one router sets the MED for the set of announcements matching

network prefixes in 43749b 246e3b 3c0f46 to 50 while the second router sets the MED for

this same set of announcements to 100. Our equivalence checking code was able to catch

this configuration difference, generating an Assertion Fail alert when running with Klee.

MED values are used to hint to external neighbors to prefer a path with a smaller MED

value [cise]. This implies that the differences in how the route maps set the MEDs may be

intentionally configured by the network operator.

A pair of routers that are nearly functionally equivalent may have identical roles in the

network. For example, one router could be the main router, while the second router could be

the backup router for fault tolerance purposes. If this network wants to notify its neighbors
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about this preference, the main router could set a smaller metric in its export route maps

compared to the backup router. When external neighbors receive announcements from this

router with these modified MEDs, BGP best path algorithm will select the main router as

the best path to the advertised network. So although we find that six of the seven tested

pairs contained errors, these pairs of routers may have identical roles without satisfying the

strict requirements of our equivalence definition.

5.3 Sending Test Announcements

We walk through an example which uses our test announcement code to generate and send

announcements through an emulated network, which was set up with MiniNExT using the

inferred topology. Then, we verify that the Quagga routing processes update RIBs and

propagate announcements as specified by each router’s configurations. For the purpose of

evaluating our system, we borrowed a sample topology from Batfish [exa]. The topology is

shown in Figure 5.1. In this topology there are three different autonomous systems (1,2,3).

The routers are running EBGP, IBGP, or both with their neighbors; some routers also run

other protocols like OSPF.
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Figure 5.1: Example topology from Batfish

Let as1border2 be our system under test (SUT). From the IR, we use two of the outputs:

Quagga configuration files and test generation C code. Running Klee with our C code

gives us the announcements to be sent to the SUT. We emulate the SUT with Quagga

process running in the container of as1border2 and two other containers (as1core1 and

as3border2) running an instance of ExaBGP in each of these two containers. From Figure

5.1, as1core1 and as3border2 are the sole neighbor nodes of as1border2.

The configuration for as1border2 is the same as the router configuration described in

§2.2. We focus on the sections describing BGP configuration (§2.2.3), IPv4 address-family

information (§2.2.4), and BGP filters (§2.2.5).

When applying route maps in §2.2.4, we observe that an inbound filter is defined for

incoming announcements from AS3 (10.13.22.3). To exercise this route map, the test gen-

eration module will decide to send two announcements from as3border2 to our SUT: one

with a community tag matching ” 3:” and another announcement that does not satisfy the

community tag. We observe the effect on as1border2 as the updates to its RIB. The routing

table of as1border2 after the Quagga service is started in as1border2 and before any route
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announcements have been injected is shown in Figure 5.2.

Figure 5.2: Routing Information Base of as1border2 before route injection

In the as3border2 container we start the ExaBGP instance, which will begin injecting

routes into as1border2. The running snippet of ExaBGP in Figure 5.3 shows two route

announcements sent 5 seconds apart. Both announcements advertise the prefix 0.0.0.0/0.

The first announcement has community value ”3:0,” whereas the second announcement has

community value ”0:0.” This exercises both paths of route map as3 to as1, which sets local

preference to 350 for routes matching community tag ” 3:” and otherwise dropping route

announcements that do not satisfy this condition.

Figure 5.3: ExaBGP working snippet

After the first announcement is sent, as1border2’s RIB changes as shown in Figure 5.4.

The announcement matches the community tag condition of route map as3 to as1 defined

for incoming routes from neighbor 10.13.22.3, so the SUT accepts and installs this route,

updating the local preference to 350 as specified by the set statement in the route map.
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Figure 5.4: Routing Information Base of as1border2 after the first announcement

After the second announcement is made, the RIB will revert back to its initial state

(Figure 5.2). This occurs because the second announcement advertises the same prefix as

the first announcement, so as1border2 considers it an update to the attributes of this prefix.

The community tag being announced is ”0:0,” which ultimately gets filtered at as3 to as1,

so this route is no longer installed in the RIB.
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CHAPTER 6

Conclusion

This thesis introduced an object-oriented representation of router configurations, encoding

information about a router’s BGP policy. Using this IR, we produce a set of outputs with a

variety of uses.

We present a method to perform router equivalence checks by evaluating for functional

equivalence in C programs generated by the IR. We were able to accurately find BGP-

related discrepancies in router configurations. Future work will be done to alert the network

operators of the discovered configuration differences to compare with their intended policy.

The C programs created from the IR can be run with Klee to generate high coverage tests.

These tests consist of BGP announcements which can be sent into an emulated network.

We have established the framework for control plane testing in the emulated environment

using Quagga, MiniNExT, and ExaBGP. Our generated Quagga configuration files are used

as input to this network to model real routing processes. As our control plane testing

infrastructure is in it infancy, future work can be done on automating the analysis of the

effects of test announcements on the network, and expanding test generation from analyzing

a single node to computing an optimal number of tests over a whole network.

After reading router configurations and vendor documentation, we have a better under-

standing of how BGP configuration errors arise. Configuration languages, such as Cisco IOS,

often have default values and settings which can hide configuration semantics. Router con-

figurations are typically generated based on a common template, and then network operators

modify the template to implement the router’s policy. As the modifications are made, the

network operator’s intended policy may not match the semantics of the configuration.

Furthermore, Cisco IOS configurations use concepts (peer groups, route maps, commu-
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nity lists, prefix lists, etc.) to express policies, but these levels of indirection can be confusing

for people who want to understand the policy being implemented by the configuration. The

generated pseudocode provides an easier way to interpret a router’s import and export poli-

cies by representing these policies as functions of code with conditional statements. Network

operators can compare their intent with the pseudocode rather than directly with the router

configurations, which are much more difficult to comprehend.

We currently generate C code to use in conjunction with Klee, but there can be further

uses for a C representation of BGP policies. For instance, if a network operator has identified

an issue where an announcement does not reach an intended target, we can use the C code

with a debugger (GDB) to step through each router’s policy and determine which router

along the path has a route filter which causes the input announcement to be dropped. Any

tools that can be used with C code can potentially be used to help debug or better understand

the network.

Future work includes augmenting our IR to include additional BGP features (e.g. route

reflectors, route aggregation, etc.) and including other networking protocols (e.g. OSPF, IS-

IS, etc.) to have a complete model of the network. Additional future work to understanding

BGP configurations and policies includes being able to infer a router’s role in a network. This

would allow for comparing the configurations of routers with identical roles. Furthermore,

we may be able to expand on our equivalence testing by performing surgeries on router

configurations before checking for symmetric behavior [PBL16].
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