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Statistics serves as the grammar of all science, and central to the goal of science is 

understanding cause-effect relationships. Scientists rely on research methodology and statistical 

tools to uncover causal relationships, and engineers rely on statistical methods to create artificial 

assistants to aid daily life. Neither statistical learning nor next-word-prediction (used to train 

artificial general intelligence) are consistent with rational causal learning and reasoning in humans. 

The present thesis examines the fundamental goals and assumptions made in dominant statistical 

methods and discusses their implications for statistical inference and commonsense reasoning in 

artificial general intelligence (AGI). The first section introduces and evaluates a causal alternative 

to logistic regression, which estimates the causal power (from the causal invariance framework) 

of treatments among covariates. Causal invariance is defined as the influence of a candidate cause 

(elemental or conjunctive) that is independent of background causes, with the aspiration of 

acquiring knowledge that’s useable, in the minimalist sense being able to generalize from a 

learning context to an application context. The second and final section investigates current 

benchmark tasks used to evaluate causal reasoning in large language models (e.g., GPT-3, GPT-

4), and introduces a stricter test informed by psychological literature on human causal cognition 

under the causal invariance framework. 
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Causal Inference and Large Language Models from the Causal Invariance Framework 

 Statistics serves as the grammar of all science, and central to the goal of science is 

understanding cause-effect relationships. Most recently, the scientific community was called to 

action to put an end to a deadly pandemic. After two grueling years, headlines all around the world 

read “FDA Approves First COVID-19 Vaccine”, and public health officials universally 

recommended the uptake of one of three vaccine schedules. Fundamental to these decisions and 

recommendations were what scientists learned about the causal relationship between vaccine 

uptake and COVID-19 infection. Through well-controlled clinical trials, researchers learned that 

the Moderna vaccine was 95% effective at preventing infection. As it turns out, vaccine efficacy 

as defined by the Center for Disease Control (CDC, 2012), is a causal probability (Sheps, 1958), 

equivalent to Cheng’s (1997) [preventative] causal power: it is the probability that the vaccine 

alone prevents infection, regardless (i.e., independent) of background causes, known and 

unknown. Importantly, this probability implies that if healthy people were to get sick 

(counterfactually), the vaccine would have prevented illness by 95%. This consideration of 

counterfactuals is not evident in standard statistical models such as logistic regression.  

This recent example is a strong reminder of the critical role causality should play in 

statistics; it also demonstrates how people naturally reason about causality. However, many current 

statistical models (e.g., logistic regression) are not causal in nature. As Pearl (2009) has argued, 

two fundamental questions of causality remain without satisfactory answers: (1) What empirical 

evidence is required for legitimate inference of cause-effect relationships? (2) Given that we are 

willing to accept causal information about a phenomenon, what inferences can we draw from such 

information and how? He suggests that these questions have been without satisfactory answers in 

part because there exists no semantics or mathematical tools for casting causal questions or 
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deriving causal answers. This lack of causal representation in basic statistics continues to impact 

related fields such as artificial intelligence, where models such as deep neural networks rely on 

noncausal statistical methods (e.g., regression). 

The issue of causality has been studied across several fields, including philosophy and 

cognitive science. From the cognitive science standpoint, all empirical knowledge constitutes 

human representations of reality (e.g., Hawking & Mlodinow, 2010; Hoffman, 2019; Hume, 

1739/1987; Kant, 1781/1965), only made available by basic cognitive constraints such as 

preference for coherence and thus parsimony (Marr, 1982; Pizlo, 2001). From this perspective, 

traditional statistical semantics lacks any representation of causality. Given major advances in 

graphical models such as directed acyclic graphs (DAGs; Pearl, 1995), causal Bayes nets (Pearl, 

2001, 2009), and path models (Holland, 1988), some language exists for describing and testing 

causal relationships. (However, it is important to note that graph surgery approaches that utilize 

the do(X) operator must assume no self-selection bias and other confounding, but do not correct 

for violations of that assumption. To be clear, there is no replacement for true randomized control 

trials, and the present thesis will not offer one.) Additionally, no existing model directly estimates 

the causal probability of a candidate cause of interest among covariates. It is important to note the 

differences between causal models from Pearl’s (e.g., causal DAGs and Bayes nets) and Cheng’s 

perspective (e.g., causal invariance), and the consequences of these two different approaches. 

Critically, the two approaches differ in what they are willing to assume about how causal 

influences contribute to an outcome (e.g., under what conditions two causal factors influence the 

outcome independently). The next section introduces the issue of causality from the perspective of 

Cheng’s causal invariance framework. 
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Longstanding Questions About Causality from the Philosophy of Science 

  A major goal in our daily lives, as lay reasoners and as scientists, is to understand and 

explain the way in which the world works. Our ability to do so has contributed to the survival of 

our species as evidenced through our ability to create tools for basic survival (e.g., striking stones 

in certain ways can create fire), advance medicine, and find solutions to mitigating climate change. 

Scientists rely on research methodology and statistical tools to uncover causal relationships, and 

engineers rely on statistical methods to create artificial assistants to aid daily life. The present 

thesis examines the fundamental goals and assumptions made in dominant statistical methods and 

discusses their implications for statistical inference and commonsense reasoning in artificial 

general intelligence (AGI). 

To motivate adopting a causal paradigm where appropriate (e.g., causal inference and 

causal reasoning in AGI), it is useful to first revisit longstanding questions from the philosophy of 

science to understand what assumptions are central in the causal induction process. Every day, we 

perceive a variety of lower-order stimuli such as colors and objects, as well as higher-order causal 

and non-causal relationships. Where do these perceptions come from, and do they provide us direct 

access to the reality we live in? In 1868, Thomas Huxley wrote: “How it is that anything so 

remarkable as that of consciousness comes about as the result of irritating nervous tissue is just as 

unaccountable as the appearance of the genie when Aladdin rubbed his lamp.” Since then, we have 

learned a lot about human neurobiology and how it correlates with conscious experiences. 

However, as argued by Hoffman (2015), the fundamental question remains: How do we go from 

neural stimulation to a conscious experience of a red apple? This question extends to our higher-

order perceptions such as causality.  
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As early as the 18th century, philosopher David Hume raised two issues about causal 

inferences: 1) causal relations are beliefs formed in the mind based on inherently noncausal data 

(Hume 1739/1987), and 2) experience is useful only if the future resembles the past (Hume, 

1748/1975). So, how do humans go from covariation (registered neurobiologically) to causality, 

especially given infinitely many possible causal representations? A great deal of psychological 

evidence indicates that both humans and other mammals are sensitive to the distinction between 

covariation and causation (e.g., Blaisdell, Sawa, Leising, & Waldmann, 2006; Waldmmann, 

Hagmayer, & Blaisdell, 2006). This intuition is routinely taught in introduction to statistics 

courses, where students learn that correlation does not equal causation. This intuitive distinction 

suggests that our perception of causality is the product of inference and is constrained by a priori 

assumptions. In their review, Ichien and Cheng (2022) offer an answer to a question raised by 

Hume’s two issues: How is it possible to tease apart the influence of a specific candidate cause 

from those of background causes, in a way that yields causal knowledge that generalizes across 

learning and application contexts? Cheng’s (1997) concept of causal invariance posits that 

reasoners assume by default that the influences of candidate causes are independent from the 

influences of background causes. More recent literature (e.g., Bye, Chuang, & Cheng, 2023; Cheng 

& Lu, 2017; Park et al., 2022) further argues that reasoners must assume invariance of whole 

causes (i.e., the candidate causes, whether elemental or conjunctive; Park et al., 2022) across 

background causes (i.e., independent causal influences between whole causes and background 

causes) during learning to ensure logical consistency, if the causal relation is indeed the same 

across the learning and application contexts. To apply a causal relation, reasoners must assume the 

causal relation holds in the new context (i.e., is invariant). Because which context is where the 

reasoner “learns” and which is where they “apply” a causal relation is incidental, if the causal 
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relation is indeed invariant, failure to assume causal invariance during learning would result in a 

logical contradiction: the inferred causal relation would be both the same and not the same in the 

two contexts. In other words, reasoners assume by default that their learned knowledge is useable 

and generalizable (i.e., the past resembles the future yielding causal invariance). However, if 

subsequent empirical evidence undermines this assumption (observations that are inconsistent with 

causal invariance), the deviation from invariance serves as a signal to revise causal models towards 

greater generalizability and hence useability (Bye et al., 2023; Cheng, 1997; Cheng & Lu, 2017; 

Cheng, Sandhofer, Liljehom, 2022; Liljeholm & Cheng, 2007; Rescorla & Wagner, 1972; 

Woodward, 2000, 2006).  

Overview of Thesis 

 This thesis considers the role of causality in statistical inference procedures for discrete 

outcomes and in relation to the design of large language models. The first section introduces and 

evaluates a causal alternative to logistic regression, which estimates the causal power of 

treatments. This new model will allow researchers to directly estimate the causal power of a 

candidate cause among covariates. The second and final section investigates current benchmark 

tasks used to evaluate causal reasoning in large language models (e.g., GPT-3, GPT-4), and 

introduces a stricter test that requires the models to estimate the causal power of a treatment. 

Section 1: Statistical Inference 

Statistical inference is a critical tool that allows researchers to make important societal 

recommendations. However, statistical models are not inherently causal. Logistic regression is a 

standard statistical model for analyzing data involving a binary outcome and a dominant method 

taught in undergraduate statistics courses. In logistic regression, a binary outcome variable, Y, can 

be predicted by a set of explanatory variables 𝑿 = {𝑥", 𝑥#, … , 𝑥$} with corresponding weights 𝜷	 =
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	{𝛽", 𝛽#, . . . , 𝛽$}. As in all regression, coefficients are a measure of covariation between the 

explanatory and outcome variables, regardless of method of estimation (e.g., least squares or 

maximum likelihood). To test cause-and-effect relationships, researchers must address the issue 

of confounding in the data collection process through careful experimental design. However, 

whether data were collected through experimentation or not, estimated regression weights 

(expected change in outcome for every one-unit change in the predictor variable) are not always 

consistent with causal probabilities and may lead to divergent recommendations.  

Causal Probabilities 

 There are various ways of defining a causal effect using probabilistic language (Pearl, 

2022). One common approach has been to define a causal effect counterfactually (i.e., imagining 

what would have occurred given another realization of events; see Tian & Pearl, 2000, for 

mathematical definition). Tian and Pearl (2000) laid out three probabilities of causation assuming 

exogeneity (no confounding) and monotonicity (no prevention): 1) probability of necessity (PN), 

2) probability of sufficiency (PS), and 3) probability of necessity and sufficiency (PNS).  

Definition 1 (PN). Let X and Y denote two binary variables in some causal model M, and x and y 

stand for the propositions X = true and Y = true, respectively, and x’ and y’ for their complements. 

Probability of necessity (PN) is defined as the probability that some event y would not have 

occurred in the absence of event x (i.e., x’), given that x and y did in fact occur.  

𝑃𝑁 ≜ 𝑃/𝑦%!
& 1𝑥, 𝑦2 

Such a quantity has relevance in epidemiology, artificial intelligence (AI), and legal reasoning. In 

court hearings, for example, jurors may be required to judge the probability that death would not 

have occurred in the absence of the defendant’s actions, given that death and harm has occurred 

(i.e., death would have not occurred but for defendant’s actions).  
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Definition 2 (PS).  

𝑃𝑆 ≜ 𝑃(𝑦%|𝑦&, 𝑥&) 

PS measures the capacity of x to produce y. Since “production” implies a transition from absence 

to presence, this definition conditions on situations where x and y are both absent. PS is often 

considered in policy, AI, and psychology. In AI, PS plays a major role in the generation of 

explanations (Tian & Pearl, 2000; Pearl, 2000, 2009). For example, if the goal is to assign moral 

responsibility, the reasoner must evaluate whether a cause was sufficient to bring out an outcome. 

Probability of sufficiency is mathematically equivalent to generative causal power from Cheng’s 

(1997) causal invariance framework. However, Cheng further defines causal power for 

preventative causation (Equation 3) in addition to generative (Equation 4) by assuming 

independence in lieu of monotonicity (Cheng, 1997; Pearl, 2022)1. By making the independence 

assumption, causal power also does not require exogenous (i.e., background) variables to be held 

constant as is required in Pearl’s (2022) approach; instead, causal power is estimated 

independently from background causes and is thus (potentially) generalizable to other contexts 

with differing backgrounds. In summary, causal power assumes that candidate cause C and all 

other background causes (B) influence the effect E independently and identically across 

individuals. 

 Let “→” indicate “cause” or “generate, “⊣” indicate “prevent” or “cure”, E indicate effect, 

C indicate candidate cause, and B indicate background causes. Furthermore, let 𝐺' 	= 	𝑃(𝐵) ∗

𝑃(𝐵 → 𝐸) indicate the probability of background generating the effect. 𝐺( 	= 	𝑃(𝐶) ∗ 𝑃(𝐶 → 𝐸) 

indicates the generative, and 𝑃( 	= 	𝑃(𝐶) ∗ 𝑃(𝐶 ⊣ 𝐸) indicates the preventative causal power of 

 
1 Cheng’s (1997) causal power is identifiable under assumptions of independence and exogeneity (no confounding). 
Pearl’s (2022) derivation of PS (generative causal power) is identifiable under assumptions of monotonicity (no 
prevention) and exogeneity. 
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C; 𝑃(𝐶) 	= 	1 when in the treatment group (cause present) and 𝑃(𝐶) 	= 	0 when in the control 

group (cause absent). Assuming independent causal influences and no confounding, the observed 

outcome (RHS of Equation 1) is decomposed into influences of its constituent causes, namely, 

candidate cause C and background cause B as follows: 

 𝑃(𝐺' ∪	𝐺() = 𝐺' + 𝐺( − 𝐺' ⋅ 𝐺(  

 

(1) 

Rearranging terms, 𝐺(  is: 

 
𝐺( =

𝑃(𝐺' 	∪ 	𝐺() − 𝐺'
1 − 𝐺'

 
(2) 

Empirically, 𝑃D(𝐺' 	∪ 	𝐺() ∶= 𝑃(𝐸 = 1|𝐵 = 1	 ∩ 	𝐶 = 1), and 𝐺'G ∶= 𝑃(𝐸 = 1|𝐶 = 0). Given 

that the background causes are always present in the context of the cause, it is implied that 

𝑃(𝐸 = 1|𝐵 = 1	 ∩ 	𝐶 = 1) = 	𝑃(𝐸 = 1|𝐶 = 1). Therefore, the generative causal power of C 

can be empirically written as: 

 
𝐺(G =

𝑃(𝐸 = 1|𝐶 = 1) − 𝑃(𝐸 = 1|𝐶 = 0)
1 − 𝑃(𝐸 = 1|𝐶 = 0)  

(3) 

Likewise, the preventative power of C is: 

 
𝑃(G =	

𝑃(𝐸 = 1|𝐶 = 0) − 𝑃(𝐸 = 1|𝐶 = 1)
𝑃(𝐸 = 1|𝐶 = 0)  

(4) 

 The only underlying assumption differing between these two equations is the potential 

direction of the causal influence of C on E:  potentially generative in the former and potentially 

preventative in the latter.  In the cognitive science and artificial intelligence literatures, the above 

two equations have been respectively termed the noisy-OR and noisy-AND-NOT function for the 

relevant variables. These two functions, and compositions of them, are collectively termed “noisy-

logical” decomposition functions (Yuille & Lu, 2008). In short, causal power is the proportional 

change from no-cause to cause. 
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Definition 3 (PNS). 

𝑃𝑁𝑆 ≜ 𝑃/𝑦% , 𝑦%!
& 2 

PNS is the probability that y would respond to x both ways, measuring both the necessity and 

sufficiency of x to produce y. Under exogeneity, PN and PS can be represented as a function of 

PNS as follows: 

𝑃𝑁	 = 	
𝑃𝑁𝑆

𝑃(𝑦|𝑥)& 

𝑃𝑆	 = 	
𝑃𝑁𝑆

1 − 𝑃(𝑦|𝑥&) 

Note the equivalence between generative causal power and PS. The remainder of the section will 

focus on a special case of PS, causal power, which is the capacity of x to produce or prevent y.  

Independent Causal Influences 

 Independence of causal influences means that the influence of one cause on the outcome 

does not depend on the influence of another cause on the outcome. The way in which this is 

mathematically expressed––referred to as decomposition functions in Cheng (1997)––depends on 

whether the outcome variable is continuous or discrete.  

Continuous outcomes. When the outcome variable is continuous, the contribution of each 

independent cause is arithmetically summed together (i.e., additive). Consider two independent 

light sources that illuminate a common spot on a theater stage. One source shines 1500 lumens and 

the other shines 1400 lumens. Given that their contributions to the amount of light (continuous) 

falling on that spot are independent, then when both lights are on, there is a total of 2900 lumens 

on that spot. Under Newtonian assumptions, this notion of independent contributions can be 

applied to vector addition. Consider a ship headed due North at 12 miles per hour (mph), and a 

current flowing S 45° W at 4 mph. Given that these two vectors are independent, the actual bearing 
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and speed of the ship (resulting vector) can be computed by adding those two vectors together. In 

other words, independent contributions to a continuous outcome are additive. Going forward, this 

method will be referred to as an additive decomposition function.  

Discrete outcomes. When two events, A and B, are independent, then the probability of either 

event occurring can be calculated according to the union rule assuming independence:  

 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴) ⋅ 𝑃(𝐵) (5) 

For causal queries, A can be replaced with “smoking causing lung cancer”, and B with “asbestos 

exposure causing lung cancer” as shown in Equation 1. Given that we must subtract out the 

intersection, to not count it twice, independent contributions to a dichotomous outcome are not 

simply additive. Going forward, this method will be referred to as a noisy-logical decomposition 

function, to be consistent with Yuille and Lu (2008). 

Comparing Logistic Regression and Causal Power 

 In regression, independence also means that the effect of one variable on the outcome does 

not depend on other variables. This can be expressed in a model without interaction terms between 

predictor variables, which are allowed to follow any distribution. Consider a study where Y = 

COVID infection, X1 = vaccine trial group (treatment or control), and X2 = age. If we believe that 

the effect of vaccine trial group on COVID infection is independent from the effect of age, one 

can specify the model as such: 

 𝑌D = β! + β" ∗ 𝑋" + β# ∗ 𝑋# (6) 

Instead of directly modeling the probability of infection, which is either 0 or 1 in observed data, 

logistic regression transforms the original dichotomous outcome into a continuous one through the 

logit transformation, yielding log odds (see Equation 7)2. 

 
2 If we include an interaction term (e.g., x1*x2) into the model above, we are still taking the weighted sum of all 
predictor variables; in this case, it would be: Y = b0 = b1*x1 + b2*x2 + b3*x1*x2. 
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𝑍 = logit/𝑃(𝑌 = 1)2 = logN

𝑃(𝑌 = 1)
1 − 𝑃(𝑌 = 1)O 

(7) 

Asymptotically, log odds follow a normal distribution with support from negative infinity to 

positive infinity. This transformation allows the use of an additive, linear function (right hand side 

of Equation 6) to model the initially dichotomous outcome. In the above model, 𝑌D  is the predicted 

log odds of COVID infection, β"is the estimated change in log odds of COVID infection between 

the control and treatment groups, and β# is the estimated change in log odds of COVID infection 

for every one-unit increase in age. The predicted probability of infection can be recovered by 

passing the weighted sum through the inverse logit function: 

 𝑃(𝑌 = 1) = logit)"(𝑍) =
1

1 + exp(−𝑍) 
(8) 

Lastly, one can estimate the difference in probability between the vaccinated and unvaccinated 

groups by subtracting the average predicted probability of COVID infection among those who are 

vaccinated from those who are not; however, neither this difference (Δ𝑃) nor β"is a causal 

probability (i.e., it is not the probability that if a healthy person were to get sick, the vaccine would 

have prevented illness). Furthermore, estimating the causal strength of vaccine under logistic 

regression inherently assumes that the influences of the candidate (e.g., vaccine uptake) and 

background causes are mutually exclusive. As stated in Ichien and Cheng (2022): 

To put the point differently, the additive decomposition function implies that in events 

where the background causes exert their causal strength, the medication withholds exerting 

its causal strength, and in events where the medication exerts its causal strength, the 

background causes withhold exerting their casual strength. Such an absurd state of affairs 

would involve the medication and the background causes knowing in which patients each 
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other causes headaches and having the ability to control when they themselves do so. In 

other words, the medication and the background causes are not acting independently. In 

other words, if some unknown background cause has led to the outcome, other causes in 

the model cannot also have an effect.  

Hence, logistic regression suffers from the issue of occlusion. 

 Issue of Occlusion. Occlusion refers to a phenomenon in which a candidate cause cannot 

influence an outcome when the outcome has already taken place due to background factors. 

Defining the effect of an intervention as Δ𝑃 tacitly assumes that the causal strength of the treatment 

and the causal strength of other, background causes are mutually exclusive. The following example 

is taken from Ichien and Cheng (2022). This example illustrates a situation in which a medication 

may cause headache as a side effect3. However, we know that headaches can also occur without 

medication. Therefore, individuals in the control group (no medication) may have headaches due 

to unobserved background causes. In this scenario, 12/36 individuals in the control group, and 

30/36 individuals in the treatment group have headaches. According to logistic regression, the 

medication significantly increases the odds of headache, OR = 10.00, p < .001. Translating these 

results back into probabilities, the average probability of headache in the treatment and control 

groups are 83% and 33%, respectively. Thus, the generative causal strength of the medicine 

(candidate cause C), 𝑮𝑪𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒄, as estimated by logistic regression, is simply the difference in 

probability: 𝐺D()*+,-.,/ = 	Δ𝑃 =	50% (i.e., 18/36). Because estimating the causal strength of vaccine 

under logistic regression inherently assumes that the influences of the candidate cause C (e.g., 

vaccine uptake) and background cause (B) are mutually exclusive, the outcome in the treatment 

group can be decomposed as follows: 

 
3 Corresponding R code can be found at: https://github.com/emilyfranceswong/Causal-Invariance-Demonstration. 



 

 13 

𝑃(𝐺' ∪ 𝐺() = 𝐺' + 𝑮𝑪𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒄 

=
30
36 =

12
36 +

𝟏𝟖
𝟑𝟔 

In contrast, causal invariance would estimate the causal strength as causal power, 𝑮𝑪, to be nearly 

81% (computed in accord with Equation 3): 

𝑃(𝐺' ∪	𝐺() = 𝐺' + 𝐺( − 𝑃(𝐺' ∩ 𝐺() 

=
30
36 =

12
36 +

𝟐𝟕
𝟑𝟔 −

12
36 ×

27
36 	= 	

12
36 +

27
36 −

9
36 

Note that 𝑃(𝐺' ∩ 𝐺() does not indicate a conjunctive cause, where both B and C are necessary for 

the effect E. Instead, 𝑃(𝐺' ∩ 𝐺() is interpreted as the probability that one, B or C, would have 

caused E if the other hadn’t already done so.  

 These examples illustrate the tacit assumption made in logistic regression regarding how 

causal influences combine. Applying an additive decomposition function (i.e., additive model)––

where estimated regression weights are the unique contribution of each factor on top of the base 

rate––to dichotomous data will inherently assume that the causal influences of candidate and 

background causes are mutually exclusive (as indicated by 0 intersection). In contrast, applying a 

noisy-logical decomposition function to dichotomous data will assume that the causal influences 

of candidate and background cases are independent.  

 Curse of Symmetry. The predicted probability of an outcome obtained through the inverse 

logit transformation follows a sigmoidal function symmetrical around 0.5 (see Figure 2); 

consequently, this symmetry will highlight divergent conclusions from logistic regression and 

causal power. Consider the following scenario taken from Cheng, Sandhofer, and Liljeholm 
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(2022)4, assuming random assignment. At a farm, 90% of animals who were not fed grains had 

red dots on their faces; only 60% of animals who were fed grains had red dots on their faces. At 

the zoo, 40% of the animals who were not fed grains and leaves had red dots on their faces; only 

10% of animals who were fed grains and leaves had red dots on their faces. Which treat, grains or 

leaves, is more effective at curing the red dots? When posed to two-year old children, toddlers 

overwhelmingly identified leaves as the more effective treat, consistent with the CDC’s definition 

of vaccine efficacy. At a young age, children, like adults, account for the base rate; a 30% 

difference is more consequential when the base rate is 40% than when the base rate is 90%. Figure 

1 highlights this difference. Therefore, when the leaves were introduced, while holding the effect 

of grains constant, there was proportionally a much greater improvement (75% versus 33%).  

 However, separate logistic regressions for each context would conclude that the 

improvement after eating grains alone (farm) and grains with leaves (zoo) are equal, as shown by 

the black (change in probability) and blue (change in log odds) lines in Figure 2. Given that the 

model is not fully saturated (i.e., no data where animals only ate leaves), logistic regression would 

be unable to meaningfully estimate the causal strength of leaves alone.  

 

Figure 1:  Outcome frequencies at the farm and the zoo before and after treatment (adapted based 

on Table 1 in Cheng et al., 2022). 

 
4 This problem was adapted from the original story, which was within-subjects. Regardless of whether the story was 
within or between-subjects, logistic regression identified grains as the more effective treatment. 
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Figure 2: Sigmoidal function where the y-axis is the predicted probability, and the x-axis is the 

linear model excluding location-specific intercepts. In logistic regression, a 0.3 difference (blue 

lines) is equally as consequential going from 0.4 to 0.1 as it is from 0.9 to 0.6. 

 In contrast, the causal invariance approach would first compute the preventative causal 

power of grains alone (candidate cause C1) from the farm context according to Equation 4: 𝑃(0 =

"
+
, which is constant across contexts. For greater clarity, the following derivations converts the 

current causal structure (preventative) into a generative one and re-writes the independent union 

equation as shown in Equation 1. Let E indicate the effect (red dots; sick), and E’ indicate the 

complement (no red dots; healthy). Therefore, we can replace E with E’ from Equation 3. At the 

zoo, 60% of animals were healthy without treatment, and 90% were healthy with treatment. Given 

the union (90%), base rate (60%), and causal power of grains (1/3)5, one can solve for the causal 

 
5 Preventative and causal powers are always equal. 
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power of leaves (candidate cause C2), 𝑃(1. Consistent with human causal judgments, causal power 

would conclude that the independent effect of leaves on red dots is greater than that of grains. 

𝑃/𝐺' ∪ 𝑃(0 ∪ 𝑃(12 = 1 − (1 − 𝐺') ⋅ /1 − 𝑃(02 ⋅ /1 − 𝑃(12 

9
10 = 1 − ^1 −

6
10_ ⋅ ^1 −

1
3_ ⋅ /1 − 𝑃(12 

⟹ 𝑃(1 =
5
8 

 Simulating data for a fully saturated model assuming independent causal influences (see 

Figure 3 for data-simulating process), for the farm and zoo separately, we see that the estimated 

causal strength of grains is not constant across the two locations. At the farm, where animals osnly 

received grains, the estimated beta weight for “grains” is b = 1.80, OR = 5.99, p < .001. At the zoo, 

where animals received any combination of grains and leaves, the estimated beta weight for 

“grains” is b = 0.55, OR = 1.73, p < .001. Analyzing the data together, the effect of grains 

significantly depended on location, binteraction = 1.27, OR = 3.58, p < .001. In other words, the 

estimated causal strength of grains under the logistic framework is not independent of context and 

other causes. However, given data for a fully saturated model in the zoo context, logistic correctly 

identified leaves as the more effective treatment, bleaves = 1.27, OR = 3.55, p < .001, compared to 

grains, bgrains = 0.55, OR = 1.73, p < .001. 
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Figure 3: Simulating data for a fully saturated design at the farm (top) and zoo (bottom). 

 Summary. This section reviewed the type of outcome data that is appropriate for logistic 

regression, and how different explanatory factors contribute to it. Though the outcome variable of 

interest is originally dichotomous (e.g., COVID infection), logistic regression does not directly 

model the probability, which is either 0 or 1 in observed data. Instead, logistic regression models 

the log odds of the outcome (a continuous value) and decomposes (i.e., models) the potential causal 

effects additively. Applying an additive decomposition function to dichotomous data tacitly 

assumes that causal influences are mutually exclusive. Secondly, the estimated causal effects under 

the logistic regression framework do not account for the base rate as people do when reasoning 

about causal strength. Therefore, if two treatments reduce illness by 30%, logistic regression would 
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conclude that the two treatments are equally as effective regardless of whether the base rate is 40% 

or 90%. In contrast, causal power as estimated under the causal invariance framework, decomposes 

the potential causal effects in accordance with the noisy-logical decomposition function, which 

assumes that the causal influences are independent of each other; it is interpreted as the probability 

that the candidate cause would have generated/prevented the effect. As a result (Equation 2), causal 

power estimates are dependent on the base rate. Therefore, if two treatments reduce illness by 

30%, causal power would conclude that a treatment given a base rate of 40% is more consequential 

than if the base rate were 90% (i.e., proportionally a greater improvement). The following section 

introduces an alternative approach that 1) assumes independent causal influences between 

candidate and background causes, 2) directly models the probability, and 3) directly estimates 

causal power among covariates.  

Causal Invariance for Statistical Inference (CISI) 

 Why Causal Invariance. When the outcome variable is dichotomous, what is reasonable 

to assume about the intersection term, 𝑃(𝐺' ∩	𝐺()? Given generalization (i.e., useability) as a 

goal and infinitely many possible causal representations (i.e., problem of underdetermination), the 

causal invariance framework (Cheng, 1997) posits that the only sensible default assumption is for 

the candidate and background causes exert their influences onto the outcome independently6. 

While some (e.g., Pearl, 2022; Griffiths & Tenenbaum, 2005) have argued that this assumption is 

untenable and unnecessary, there is strong psychological evidence suggesting that people make 

this default assumption (e.g., Buehner, Cheng, & Clifford, 2003; Bye et al., 2023; Liljeholm & 

Cheng, 2007; Cheng et al., 2022). It is important to note that the causal invariance framework does 

 
6 To the issue of generalizability, estimating causal strength assuming independence, not mutual exclusivity, is the 
only generalizable solution between the two. To the issue of underdetermination, there are infinitely many ways in 
which the candidate and background causes can interact but only one way in which they can be independent. 
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not assert that the influence of different causes on the effect (candidate and background) must be 

independent; it simply states that it is the only sensible default assumption for hypothesis revision 

(Park, McGillivray, Bye, & Cheng, 2022). 

 Humans seek parsimonious, useable, and thus generalizable causal knowledge (Bye et al., 

2022; Cheng, 1997; Park et al., 2022). For learned causal knowledge to be useful, we must be able 

to generalize our knowledge learned from one context to another. When the knowledge is 

generalizable from one context to the next, each with differing background causes, then the effect 

of the candidate cause on the outcome is independent from the effect of the background causes. 

When learned causal knowledge does not apply in a new context (i.e., when the candidate and 

background causes interact), the resulting discrepancy signals reasoners to revise their 

beliefs/knowledge (i.e., hypothesis) towards greater coherence (Bye et al., 2023; Cheng, 1997; 

Cheng, Novick, Liljehom, & Ford, 2007; Cheng & Lu, 2017; Cheng, Sandhofer, Liljehom, 2022; 

Liljeholm & Cheng, 2007; Rescorla & Wagner, 1972; Woodward, 2000, 2006). Take, for example, 

a toddler learning (in the comfort of her dining room) that striking a match produces fire. A few 

weeks later, the toddler goes on a family camping trip, where she attempts to apply her newly 

acquired knowledge, except this time, it was outdoors and in the rain. When the toddler strikes the 

match, she realizes that it does not light; this experience is inconsistent with her current causal 

model, signaling the toddler to revise her causal model to incorporate air moisture. Her new causal 

model should now be that striking a match produces a fire when the air moisture is low; this 

knowledge is then assumed to generalize to a new context with different, other background causes, 

until proven otherwise. For the same reason that we do not assume the alternative hypothesis as 

the default, we do not assume by default an interaction between learned causal structures and 

background causes; there are infinitely many ways the learned structure can potentially interact 
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with background causes (i.e., problem of underdetermination). Ichien and Cheng (2022) explicate 

the necessity of assuming independent influences as a default hypothesis. 

Real-world consequences. The previous section highlighted logical inconsistency between 

logistic regression estimates of causal strength (Δ𝑃) and causal power in two hypothetical 

examples; however, there have been demonstratable consequences of assuming the incorrect 

decomposition function (additive for binary outcome) in real-life public health problems. 

The famous Seven Countries Study (Keys, 1980) reports an analysis of large-scale data on 

coronary heart disease deaths (CHD) across multiple countries that led to a two-decade-long 

recommendation by U.S. public health authorities and the popular media to adopt a low-fat diet.  

The low-fat diet recommendation was based on the study’s regression analyses indicating that 

dietary fat is highly correlated with the incidence of CHD, but that holding dietary fat constant, 

dietary sucrose has no significant effect on CHD.  The recommendation led to a prevalence of 

processed foods at supermarkets that had low fat but high sugar to compensate for flavor—

products that likely have contributed to the obesity epidemic and metabolic syndrome worldwide.  

According to a review of health recommendations (La Berge, 2008), “After 1980, the low-fat 

approach became an overarching ideology, promoted by physicians, the federal government, the 

food industry, and the popular health media.” 

By assuming different decomposition functions, logistic regression (additive decomposition) 

and vaccine efficacy (noisy-logical decomposition) are not logically consistent with each other 

(Cheng et al., 2022; Ichien & Cheng, 2022). To our knowledge, there is no published analog of 

logistic regression that has its flexibility of taking both discrete and continuous variables as 

predictors but is logically consistent with vaccine efficacy—in other words, an analog that assumes 

a direct, independent influence of the binary predictors on the binary outcome.  
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Causal Invariance for Statistical Inference (CISI) Model 

Let E = effect, C = candidate cause (1 when present, 0 when absent), B = background causes, 𝐺' =

𝑃(𝐵) ∗ 𝑃(𝐵 → 𝐸), X1 indicate the first continuous covariate, X2 indicate the second continuous 

covariate, and 𝐺( = 𝑃(𝐶) ∗ 𝑃(𝐶 → 𝐸)indicate the generative causal power (see Equation 3). 

Candidate Cause. For a binary candidate cause (e.g., vaccine treatment), the generative causal 

power, 𝐺( , is estimated as shown in Equation 3. 

Background causes. For continuous background causes (X1 and X2), their causal influences on 

the outcome are combined linearly (i.e., additively) via logistic regression. Their composite causal 

influence is represented as 𝐺': the causal influence of background causes (B). 

𝐵 = logit(𝑃) = β! + β" ∗ 𝑋" + β# ∗ 𝑋# 

𝐺' =
1

1 + 𝑒𝑥𝑝(−𝐵) 

Probability of outcome. The probability of either the background (B) or candidate cause (C) 

leading to the effect is computed as follows in accord with the union rule assuming independence: 

𝑃(𝐺' 	∪ 𝐺() = 1 − (1 − 𝐺') ∗ (1	 − 𝐺() 

Bayesian estimation. The Bayesian posterior distributions of each model parameters were 

estimated via multi-chain Monte Carlo (MCMC) sampling through rstan. The burn-in period for 

each of the two chains was 1100. Sampling terminated after 10^5 iterations. All chains converged 

within 10^5 iterations (𝑀,-./0 	= 	1.00, min,-./0= 0.999, max,-./0= 1.002). The priors for 

each parameter are as follows (the second parameter in the normal is precision): 

β!~𝑁(0,0.00001) 

𝛽"~𝑁(0,0.00001) 

𝛽#~𝑁(0,0.00001) 

𝑃(~Uniform(0,1) 
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Simulation 

 The following results demonstrate that the estimate of causal strength derived from logistic 

regression (regression weight β() does not coincide with causal power. In the first scenario, causal 

power remains constant as base rates increase. In the second scenario, causal power increases with 

base rate. One hundred iterations were run for each scenario for a total of 200 iterations. In each 

iteration, data were randomly generated according to the CISI model across five contexts (see 

Figure 4). Tables 1 and 2 illustrate each of the five contexts in scenarios 1 and 2, respectively. For 

all contexts, base rates (specified as a probabilities) were converted to log odds (𝛽!). The data in 

each iteration were analyzed with both CISI and logistic regression. Total run times were 11.57 

hours and 11.80 hours for the first and second scenarios, respectively. Both models accurately 

estimated the regression weights: 𝛽!, 𝛽", and 𝛽# (see appendix). The posterior modes of the 

estimated CISI parameters are shown in all the following figures.  

 

Figure 4: R code to generate data according to the model. 
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Table 1. First scenario where causal power remains constant across base rates. 

 Context 1 Context 2 Context 3 Context 4 Context 5 

Base Rate 0.05 0.25 0.45 0.65 0.85 

Causal Power 8/10 8/10 8/10 8/10 8/10 

𝛽" 0.4 0.4 0.4 0.4 0.4 

𝛽# 0.5 0.5 0.5 0.5 0.5 

 

Table 2. Second scenario where causal power increases with base rate. 

 Context 1 Context 2 Context 3 Context 4 Context 5 

Base Rate 0.05 0.25 0.45 0.65 0.85 

Causal Power 3/8 3/7 3/6 3/5 3/4 

𝛽" 0.4 0.4 0.4 0.4 0.4 

𝛽# 0.5 0.5 0.5 0.5 0.5 

 

 As shown in Figure 5, when true causal power remains constant at 0.80 (red) across five 

increasing base rates, causal power estimates from the CISI model (black) also remain constant. 

However, logistic regression estimates do not remain constant across base rates, as shown in Figure 

6. Two separate linear regressions tested the relationship between base rate and causal strength 

estimates. Overall, causal power estimates (standardized) did not vary significantly with base rates 

in scenario 1, b = -0.18, t(498) = -1.16, p =.249. On the other hand, logistic regression estimates 

(standardized) decreased significantly as base rate increased, b = -1.48, t(498) = -10.30, p < .001.  
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Figure 5: CISI causal power estimates from scenario 1. 

 

Figure 6: Logistic regression weight estimates from scenario 1. 

 Figures 7 and 8 show the simulation results from scenario 2, where causal power increases 

with base rate. As shown in Figure 7, causal power estimates from the CISI model (black) correctly 

trace the trajectory of the true causal power (red). However, linear regression estimates do not 

increase accordingly (see Figure 8).  
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Figure 7: CISI causal power estimates from scenario 2. 

 

Figure 8: Logistic regression weight estimates from scenario 2. 

 As for scenario 1, two separate regressions tested the relationship between base rate and 

causal strength estimates. Overall, causal power estimates (standardized) increased significantly 

with base rates in scenario 2, b = 2.79, t(498) = 28.70, p < .001. On the other hand, logistic 

regression estimates (standardized) did not increase linearly with base rate. Instead, there was an 



 

 26 

evident quadratic trend (green) symmetric around base rate = 0.5 (dotted line), as expected due to 

symmetry of the sigmoidal function, b = 4.93, t(497) = 7.81, p < .001.  Both methods were able to 

accurately estimate the regression coefficients (𝛽!	, 𝛽"	, 𝛽#	) (see appendix). 

Interim Discussion 

 This set of simulation results demonstrates the logical inconsistency between logistic 

regression and causal power. Logistic regression is a standard model used to model binary 

outcomes. However, by assuming an additive decomposition function, logistic estimates of causal 

strength do not vary accordingly with true causal power, which assumes a noisy-logical 

decomposition function. This section introduced and evaluated a causal analog to logistic 

regression that directly estimates the causal power of a candidate cause among covariates; the 

estimates from this model vary with true causal power. 

Section 2: Artificial Intelligence 

 For many years, artificial intelligence (AI) researchers have aimed to develop large neural 

networks (e.g., language models) that exhibit a wide range of general capabilities such as 

programming, mathematical reasoning, logical reasoning, and planning. Numerous large language 

models (LLMs) such as ChatGPT have already been implemented in the workplaces to write 

emails and edit code. Most recently, OpenAI released GPT-4, a LLM with likely more than 175 

billion parameters. While less capable than humans in many real-world scenarios, GPT-4 exhibits 

striking general intelligence comparable to human-level performance on various professional and 

academic benchmarks, such as scoring in the top 10% on the Bar Exam (OpenAI, 2023). A recent 

report published by Microsoft Research (Bubeck et al., 2023) discusses the rising capabilities and 

implications of these models, but also emphasizes the limitations of current artificial general 

intelligence (AGI) systems. Importantly, future research should pay close attention to model 
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evaluation and potentially pursue a paradigm that goes beyond next-word prediction; this report 

emphasizes the need for psychology-based testing in lieu of the current benchmark tests. While 

GPT-4 is not freely available, this final section of the thesis evaluates GPT-3 on a novel benchmark 

task that provides a stricter test of causal reasoning, a general ability that supports human 

creativity, scientific discovery, evaluation of truth, and more (Waldmann, 2017; Mitchell & 

Krakau, 2023; Mahowald, Ivanova, Blank, Kanwisher, Tenenbaum, & Fedorenko, 2023; Binz & 

Schulz, 2023).  

Language, Transformer, and Thought 

 Decades of psychological research has established that language is not necessary for 

thought but serves as a tool to express thoughts and potentially influence them (Gal’perin, 1992; 

Fedorenko & Varley, 2016; Mandler, 2004). The transformer architecture has revolutionized 

natural language and computer vision models. Transformer models are deep neural networks that 

adopt the self-attention mechanism, which allows for advanced contextualization, especially in 

language (Vaswani et al., 2017); OpenAI’s Generative Pre-Trained Transformer (GPT) models 

capitalize on this architecture. GPT is a LLM trained on copious amounts of unlabeled text data 

(e.g., Wikipedia), which learns to estimate the probability of any text sequence through next-word 

prediction. If GPT is taken to be an apt model of language, is it enough for thought? While recent 

reports suggest so (e.g., Brown et al., 2020; Chowdhery et al., 2022), it is possible that these LLMs 

have had access to the benchmarking tasks during training (e.g., Srivastava et al., 2022; OpenAI, 

2023; Bubeck et al., 2023). Moreover, it is crucial to interrogate the validity of current 

benchmarking tasks. LLMs such as OpenAI’s GPT-3 and Google’s Pathways Language Model 

(PaLM) claim that these models can accomplish a wide range of general reasoning tasks at or 

beyond human level. 
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One of these tasks is causal reasoning. Currently, the standard causal reasoning task is 

from the Beyond-the-Imitation-Game (BIG) benchmark. In this task, a language model must 

identify which of two statements is more sensible; for example: 1) He turned on the windshield 

wipers because it was raining, or 2) It was raining because he turned on the windshield wipers. 

Given that transformer based LLMs are trained to predict the likelihood of text sequences, it is no 

surprise that they will succeed at tasks like this one as it is very unlikely for the second sentence 

to appear anywhere in natural text. A stricter test of causal reasoning would be those problems 

discussed in Section 1. The psychological literature has shown that the aforementioned problems 

can only be solved by causal (e.g., causal power from causal invariance), not associative models 

(e.g., logistic regression), therefore providing a stricter test of causal reasoning. This final section 

translates the causal problems from Buehner, Cheng, & Clifford (2003)—similar to the headache 

problem—and Cheng et al. (2022) into language problems for GPT-3 and ChatGPT-4 to solve.  

Recall human judgments from the headache (causal power = 27/36; Ichien & Cheng, 2022) and 

farm-and-zoo (leaves as the more effective treatment; Cheng et al., 2022) examples from Section 

1. Figure 9 depicts GPT-3’s response to the headache problem7, and Figures 10-11 depicts GPT-

3’s responses to the farm-and-zoo problem using both text-davinci-002 and 003 engines8. From 

the generated response for the headache problem, GPT-3’s answer seems to match the final 

proportion of individuals with headaches in the treatment group; it fails to decompose the outcome 

into its constituent causes. For the farm-and-zoo problem, text-davinci-002 arrived at the correct 

answer (leaves) by accident and text-davinci-003 arrived at the incorrect answer (grains). Figure 

12 shows ChatGPT-4’s response to the farm-and-zoo problem; for the same reason logistic 

regression could not meaningfully estimate the effect of leaves, ChatGPT-4 could not judge which 

 
7 Answers does not differ between the text-davinci-002 and 003 engines. 
8 Answers do not change when temperature is changed to 0. 
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treat (grain or leaves) was more effective at reducing red dots. The model’s response states that 

the design is not fully saturated. Given these test examples, it seems unlikely that neither GPT-3 

nor ChatGPT-4 can truly engage in causal reasoning. 

 

Figure 9: GPT-3’s responses to the headache problem across three different runs. 
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Figure 10: GPT-3’s response to the farm-and-zoo-problem (engine = text_davinci_002). 

 

Figure 11: GPT-3’s response to the farm-and-zoo-problem (engine = text_davinci_003). 
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Figure 12: ChatGPT-4’s response to the farm-and-zoo problem. 

Causal Tasks 

 The following tasks have been administered to human reasoners in psychological studies 

of causal cognition. Table 3 is taken from Buehner et al. (2003); each of the ten questions will be 

adapted to be a story-based problem. In each question, there is a medicine in question (A-J). The 

first subtask requires GPT to identify whether the medication generates, prevents, or has no effect 

on headaches. The second subtask requires GPT to estimate the causal power of the medication. 

Probability of headache in the treatment and control groups in each of the ten problems are in 

accord with Table 3. For example, in Condition A, 18/36 (50%) individuals reported a headache 

in the control group and 36/36 (100%) reported a headache in the treatment group. Therefore, 

medicine A has a generative effect on headaches. The last two columns of Table 3 are the mean 

and median human causal ratings from Buehner et al. (2002), respectively. 
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Table 3. Ten problems taken directly from Experiment 2 of Buehner et al. (2003). 

 

Subtask 1. In the first subtask, GPT was given the following prompt and asked to state whether 

medicine X prevented, generated, or had no effect on headaches: 

“You are an employee for a Company that distributes new medicines for preventing 

allergies. Your job is to review information regarding a possible side effect of the new 

allergy medicines that are under consideration for distribution. Although these medicines 

have been found to be clearly effective in preventing allergies, they may cause headaches, 

prevent headaches, or have no influence at all on headaches. You will see the results of 

experiments that were conducted to study the influence of these medicines on headaches. 

For each study, patients were randomly assigned to one of two groups: an experimental 

group that received the new medicine, and a control group that received a placebo. Based 

on the data presented, judge whether each medicine has a side-effect on headaches, and if 

so, whether it causes or prevents them. Your success in the company is highly dependent 

on your accurate assessment of these side effects. 
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We conduct a study of medicine [X] and find that: [P(e|c)] % of the participants who 

received medicine [X] (those in the experimental group) have headaches. Likewise, 

[P(e|~c)] % of the participants who did not receive medicine [X] (those in the control 

group) have headaches as well. Recall that participants were randomly assigned to the two 

groups. 

 

QUESTION: Does medicine X prevent, generate, or have no effect on headaches?” 

Subtask 2. In the original procedure from Buehner et al. (2003), if participants indicated that the 

medication prevented headaches, they were asked:  

“QUESTION: How many of 100 people, all of whom have headaches, would not have a 

headache if given the medicine?”  

If participants indicated that the medication had a generative effect on headaches, they were asked 

the follow-up question: 

“QUESTION: How many out of 100 people, all of whom do not have headaches, would 

have a headache if given the medicine? 

If participants indicated that the medication had no effect on headaches, their estimate of causal 

strength was automatically scored as zero. 

Evaluation and Results 

 GPT-3 (text-davinci-003 engine) was evaluated on its top probability response with a 

maximum of 100 tokens at temperatures 0, 0.25, 0.5, 0.75, and 1, and ChatGPT-4 was evaluated 

based on its generated response.  

 As expected, GPT-3 was poor at correctly identifying the causal structure (~60% accuracy) 

and estimating the causal strength (see Tables 4 and 5, respectively). For the causal structure task, 
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it seems GPT-3 was able to correctly identify when the medication had no effect; otherwise, it 

almost always stated that the medicine prevented headaches even when the rate of headaches was 

higher in the treatment group (see appendix for exact answers). It is likely that GPT-3 is associating 

“prevention” with “treatment”, “medication”, and “headaches”.  

 For subtask 2, GPT-3 was assumed to have correctly identified the causal structure and was 

thus asked the appropriate causal strength question; therefore, for the two medications that had no 

effect (H and I), GPT-3 was assumed to have answered 0. If GPT-3 indicated that the question 

cannot be answered, it was scored as a 0. Otherwise, GPT-3’s judgments of causal strength did not 

coincide with human judgments (see Table 5). Based on GPT-3’s responses (see Table A2 in 

appendix), the model was typically responding with the rate in the treatment group, completely 

ignoring the base rate. Furthermore, in its explanation of its answer, it sometimes correctly 

identified the causal structure given the additional context provided in the second sub-task (i.e., 

explicitly asked how many would or would not have a headache), even when it got the initial causal 

structure question wrong.  

 Given that ChatGPT-4 is fine-tuned for conversational tasks, it should perform better on 

the causal structure task. However, it is likely that it will still struggle with judgments of causal 

strength. ChatGPT-4 was able to correctly identify the causal structure in all the ten problems. 

However, Like GPT-3, ChatGPT-4 typically responded with the rate in treatment group in the 

second sub-task (causal strength). Its responses were correlated r = 0.185 with average human and 

r = 0.175 with median human responses. See Table A3 in the appendix for ChatGPT-4’s exact 

responses to the causal strength questions. 
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Table 4. Accuracy for identifying causal structure (generative, preventative, or no effect). 

 Accuracy (%) 

GPT-3 (temp = 0) 60% 

GPT-3 (temp = 0.25) 50% 

GPT-3 (temp = 0.50) 60% 

GPT-3 (temp = 0.75) 60% 

GPT-3 (temp = 1) 60% 

 

Table 5. Pearson correlations between human judgments and each model. 

 Human Judgment (Mean) Human Judgment (Median) 

Causal Power 0.992 1.000 

Delta P 0.852 0.813 

GPT-3 (temp = 0) 0.155 0.08 

GPT-3 (temp = 0.25) 0.158 0.098 

GPT-3 (temp = 0.50) 0.114 0.053 

GPT-3 (temp = 0.75) 0.298 0.252 

GPT-3 (temp = 1) 0.414 0.361 

 

Conclusions 

 This thesis demonstrates the critical role causality should play in our statistical inference 

and artificial general intelligence (AGI). The first section highlighted the logical inconsistency 

between a purely associative model (logistic regression) and a causal one (CISI) such that logistic 

regression’s estimates of causal strength do not generally coincide with causal power. The second 
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and final section demonstrated that language models are not inherently causal models. While 

LLMs may be able to recognize causal language (e.g., Yu, Li, & Wang, 2019; Khetan, Ramnani, 

Anand, Gengupta, & Fano, 2022), it does not reason causally in the way humans do. The final 

section emphasized the importance of benchmarking in evaluating AGI. While current AGIs 

perform well on the causal reasoning tasks from the BIG-bench, GPT failed at a stricter test of 

causal reasoning. Beyond its inability to identify causal structure correctly and reliably, it was 

unable to estimate the causal strength in a way that was consistent with human ratings. Given that 

transformer-based LLMs learn through next-word-prediction, they do not have an inherent 

understanding of causality (see appendix for ChatGPT’s response to the question, “Does AI have 

a representation of cause and effect?”). On the other hand, humans learn about the world through 

evaluating causal models against empirical evidence and revising such models when appropriate.  

Future Research 

 Statistical Inference. While the CISI model can accurately estimate causal power, it takes 

significantly longer to run than logistic regression (42 versus 0.7 seconds). Moreover, runtime and 

convergence can vary when starting values in the MCMC chain are far from the true values. Future 

work may consider a maximum likelihood estimation in lieu of MCMC sampling. The model’s 

estimation of the covariates’ weights (see appendix) may also improve with maximum likelihood 

since the estimate and time to convergence are highly dependent on the starting values of the Monte 

Carlo chains.  

 AGI. While neural networks have been the dominant architecture for AGI systems, it is 

unclear whether they will ever be sufficient for thought. What has made connectionism (neural 

networks) so appealing for cognitive modeling has been its flexibility to perform a wide variety of 

tasks such as computer vision, programming, translation, and more. However, as demonstrated in 
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this thesis, much of cognition relies on structured representations (e.g., of cause-and-effect 

relationships) (Fodor & Pylyshyn, 1988; Quilty-Dunn, Porot, & Mandelbaum, 2022). While deep 

neural networks can be fine-tuned to optimally perform certain tasks, the fine-tuning process is 

theoretically opaque. Without some form of structured representation, especially for causality, 

LLMs will likely continue to struggle with commonsense tasks such as causal and moral 

attribution, explanation, and more. A hybrid architecture such as that introduced by Hummel & 

Holyoak (1997) achieve both the flexibility of a connectionist system and the structure sensitivity 

of a symbolic system. Such hybrid systems may provide competitive alternatives to next-word-

prediction in achieving commonsense AGI.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 38 

Appendix 

 

Figure A1: CISI estimates of 𝛽!in scenario 1. 

 

Figure A2: CISI estimates of 𝛽"in scenario 1. 
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Figure A3: CISI estimates of 𝛽#in scenario 1. 

 

Figure A4: Logistic estimates of 𝛽!in scenario 1. 
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Figure A5: Logistic estimates of 𝛽"in scenario 1. 

 

Figure A6: Logistic estimates of 𝛽#in scenario 1. 
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Figure A7: CISI estimates of 𝛽!in scenario 2. 

 

Figure A8: CISI estimates of 𝛽"in scenario 2. 
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Figure A9: CISI estimates of 𝛽# in scenario 2. 

 

Figure A10: Logistic estimates of 𝛽! in scenario 2. 
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Figure A11: Logistic estimates of 𝛽" in scenario 2. 

 

Figure A12: Logistic estimates of 𝛽# in scenario 2. 
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Figure A13: ChatGPT’s response to the question, “Does AI have a representation of cause and 

effect?” 
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Table A1. GPT-3 causal structure responses across varying temperatures. Red text indicates 

incorrect answer. 

Temp = 0 Temp = 0.25 Temp = 0.50 Temp = 0.75 Temp = 1.0 
Medicine A prevents headaches. The 
results of the study show that 100% of 
the participants who received medicine 
A had headaches, while only 50% of the 
participants who did not receive 
medicine A had headaches. This 
indicates that medicine A is effective in 
preventing headaches. 

Medicine A prevents headaches. 

Medicine A appears to prevent 
headaches, as 100% of the participants 
who received the medicine did not 
experience headaches, while 50% of the 
participants who did not receive the 
medicine did experience headaches. 

Medicine A prevents headaches. The 
fact that 100% of the participants in the 
treatment group had headaches 
compared to 50% in the control group 
indicates that the medicine is preventing 
headaches. 

Medicine A prevents headaches. 

Based on the data presented, it appears 
that medicine B prevents headaches. The 
percentage of participants who received 
medicine B and experienced headaches 
(83%) is significantly lower than the 
percentage of participants who did not 
receive medicine B and experienced 
headaches (33%). This suggests that 
medicine B is effective in preventing 
headaches. 

Based on the data presented, it appears 
that medicine B prevents headaches. The 
percentage of participants who had 
headaches was significantly lower in the 
treatment group (83%) than in the 
control group (33%). This suggests that 
medicine B is effective in preventing 
headaches. 

Medicine B prevents headaches. The 
data suggests that the participants who 
received medicine B had a much lower 
rate of headaches than the participants 
who did not receive medicine B. This 
indicates that medicine B is effective in 
preventing headaches. 

Based on the data presented, Medicine B 
prevents headaches. 

Medicine B appears to prevent 
headaches. The data shows that 83% of 
the participants in the treatment group 
have headaches, while only 33% of the 
participants in the control group have 
headaches. This suggests that medicine 
B is effective at reducing the number of 
participants who experience headache 
symptoms. 

Medicine C prevents headaches. Medicine C prevents headaches. Medicine C prevents headaches. Medicine C prevents headaches. 

Medicine C appears to prevent 
headaches. The data shows that 75% of 
participants in the experimental group 
experienced headaches, while 0% of 
participants in the control group 
experienced headaches. This suggests 
that the medicine is effective in 
preventing headaches. 

Medicine D prevents headaches. Medicine D prevents headaches. Medicine D prevents headaches. Medicine D prevents headaches. 

It appears that medicine D prevents 
headaches, as there was a significantly 
higher percentage of participants in the 
control group who had headaches 
compared to the treatment group. 

Medicine E prevents headaches. The 
data shows that the participants who 
received medicine E had a lower 
percentage of headaches than those who 
did not receive medicine E. This 
suggests that medicine E is effective in 
preventing headaches. 

Medicine E prevents headaches. The 
percentage of participants with 
headaches in the treatment group (17%) 
is significantly lower than the percentage 
of participants with headaches in the 
control group (67%). This suggests that 
medicine E is effective in preventing 
headaches. 

Medicine E appears to prevent 
headaches. The percentage of 
participants who received medicine E 
and had headaches (17%) is significantly 
lower than the percentage of participants 
who did not receive medicine E and had 
headaches (67%). This suggests that 
medicine E has a protective effect 
against headaches. 

Medicine E prevents headaches. The 
results show that the group that took 
medicine E had a lower proportion of 
participants with headaches than the 
group that did not take medicine E. This 
suggests that medicine E is having a 
preventative effect on headaches. 

Medicine E appears to prevent 
headaches. The percentage of 
participants with headaches was 
significantly lower in the treatment 
(medicine E) group than in the control 
group. This suggests that medicine E has 
an effect on headaches and reduces the 
likelihood of experiencing them. 

Medicine F prevents headaches. Medicine F prevents headaches. Medicine F prevents headaches. 

Based on the data presented, it appears 
that medicine F prevents headaches. 
25% of the participants who received 
medicine F did not have headaches, 
while 100% of the participants who did 
not receive medicine F did have 
headaches. 

Based on this data, it appears that 
Medicine F prevents headaches. Since a 
higher percentage of the participants 
who received Medicine F did not have 
headaches compared to the participants 
who did not receive Medicine F, this 
suggests that Medicine F is effective at 
reducing the occurrence of headaches. 

Medicine G prevents headaches. Medicine G has no effect on headaches. 

Medicine G prevents headaches. The 
data indicates that 50% of the 
participants in the treatment group (those 
who received the medicine) had 
headaches, while 100% of the 
participants in the control group (those 
who did not receive the medicine) had 
headaches. This suggests that the 
medicine is having a protective effect, 
preventing headaches in some of the 
participants. 

Medicine G appears to have no effect on 
headaches, as the same percentage of 
people in the treatment and control 
groups experienced headaches. 

Medicine G prevents headaches. This is 
evidenced by the fact that the group 
receiving medicine G had only 50% of 
participants experiencing headaches, 
while the group without medicine G had 
100% of participants experiencing 
headaches. 

Medicine H has no effect on headaches. Medicine H has no effect on headaches. Medicine H has no effect on headaches. Medicine H has no effect on headaches. 

Medicine H appears to have no effect on 
headaches since both the experimental 
group and the control group experienced 
the same percentage of headaches. 

Medicine I has no effect on headaches. Medicine I has no effect on headaches. 
Based on the data presented, it appears 
that medicine I has no effect on 
headaches. 

Medicine I has no effect on headaches. Medicine I has no effect on headaches. 

Medicine J prevents headaches. 
 

Medicine J prevents headaches. 
 

Medicine J prevents headaches. 
 

Medicine J prevents headaches. 
 

Medicine J prevents headaches. 
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Table A2. GPT-3 causal strength responses across varying temperatures.  

Temp = 0 Temp = 0.25 Temp = 0.50 Temp = 0.75 Temp = 1.0 
The answer is 0 out of 100 people, all of whom 
do not have headaches, would have a headache 
if given the medicine. This is because 100% of 
the participants who received medicine A 
(those in the treatment group) already had 
headaches, and 50% of the participants who 
did not receive medicine A (those in the 
control group) also had headaches. Therefore, 
it can be concluded that medicine A causes 
headaches. 

The answer is 0 out of 100 people. Since 100% 
of the participants who received medicine A 
had headaches, and 50% of the participants 
who did not receive medicine A had 
headaches, it is clear that the medicine has a 
side-effect on headaches and causes them. 
Therefore, if 100 people who do not have 
headaches were given the medicine, all of them 
would develop headaches. 

The answer is 0 out of 100 people, all of whom 
do not have headaches, would have a headache 
if given the medicine. This is because 100% of 
the participants who received medicine A 
(those in the treatment group) already had 
headaches, and the control group (those who 
did not receive medicine A) had 50% with 
headaches. Therefore, this medicine has a side-
effect that causes headaches. 

It is impossible to answer this question without 
further information. The data from this study 
only indicates that 100% of participants who 
received medicine A had headaches, and that 
50% of participants who did not receive 
medicine A had headaches. We cannot infer 
from this study how many out of 100 people, 
all of whom do not have headaches, would 
have a headache if given the medicine. 

100% of the patients who received the 
medicine A would have headaches, so all 100 
people in the group not receiving the medicine 
would also have headaches if given the 
medicine. 

Based on the data presented, it appears that 
medicine B has a side-effect on headaches, and 
that it causes them. Therefore, if 100 people 
who do not have headaches were given the 
medicine, 83 out of 100 would likely 
experience a headache. 

Based on the data presented, it appears that 
medicine B has a side-effect on headaches, and 
that it causes them. Therefore, if 100 people 
who do not have headaches were given the 
medicine, it is likely that 83 out of the 100 
would develop a headache. 

Based on the data, it appears that medicine B 
has a side effect on headaches. It appears to 
cause headaches, as 83% of participants who 
received the medicine experienced headaches, 
while only 33% of participants who did not 
receive the medicine experienced headaches. 
Therefore, if 100 people who do not have 
headaches were given the medicine, it is likely 
that 83 of them would experience headaches. 

In this case, 83 out of 100 people would have a 
headache if given the medicine. 

Based on the data presented, it appears that 
taking medicine B may have a side-effect on 
headaches as there is a higher percentage of 
participants in the treatment group who have 
headaches compared to the control group. 
Therefore, if 100 people who do not have 
headaches are given medicine B, it is likely 
that 83 out of the 100 people would have a 
headache due to the medicine. 

100% of the people who do not have 
headaches would have a headache if given the 
medicine. 

Based on the data presented, it appears that 
medicine C has a side-effect on headaches, and 
that it causes them. Therefore, if 100 people 
who do not have headaches were given the 
medicine, 75 out of those 100 people would 
have a headache. 

Based on the data provided, it appears that 
medicine C has a side-effect on headaches, and 
that it causes them. Therefore, if 100 people 
who do not have headaches are given medicine 
C, 75 out of those 100 people would have a 
headache. 

75 out of 100 people would have a headache if 
given the medicine. 

75 out of 100 people would have a headache if 
given the medicine. 

The answer is 50 out of 100 people. The answer is 50 out of 100 people. The answer is 50 out of 100 people who do not 
have headaches would have a headache if 
given the medicine. 

The answer is 50. If 100 people who do not 
have headaches were given medicine D, then 
50 of them would end up with headaches. 

The answer is 50. Half (50%) of the 
participants who received medicine D 
experienced headaches. Therefore, if you gave 
medicine D to 100 people who did not have 
headaches originally, 50 out of those 100 
people would now have a headache. This 
indicates that the medicine does cause 
headaches as a side-effect. 

The answer is 50 out of 100 people. This is 
because 17% of the participants who received 
medicine E (those in the treatment group) have 
headaches, while 67% of the participants who 
did not receive medicine E (those in the control 
group) have headaches. Therefore, 50 out of 
100 people would not have a headache if given 
the medicine. 

The answer is 50 out of 100 people. This is 
because 17% of the participants who received 
medicine E (those in the treatment group) have 
headaches, and 67% of the participants who 
did not receive medicine E (those in the control 
group) have headaches as well. Therefore, 17% 
of 100 people (17 people) would have a 
headache if given the medicine, and 67% of 
100 people (67 people) would have a headache 
if not given the medicine. This means that 

The answer is 50 out of 100 people. This is 
calculated by taking the difference between the 
two groups (67% - 17%) and multiplying it by 
100. Thus, 50 out of 100 people would not 
have a headache if given the medicine. 

The answer would be 67 out of 100 people 
with headaches would not have a headache if 
given the medicine. 

17 out of 100 people would not have a 
headache if given the medicine. 

25 out of 100 people would not have a 
headache if given the medicine. 

25 out of 100 people would not have a 
headache if given the medicine. 

The answer is 25 out of 100 people. This is 
because 25% of the participants who received 
medicine F did not have headaches, which 
means that 25 out of 100 people would not 
have a headache if given the medicine. 

25 out of 100 people would not have a 
headache if given the medicine. 

25 out of 100 people would not have a 
headache if given the medicine. 

The answer is 50 out of 100 people would not 
have a headache if given the medicine. 

The answer is 0 out of 100 people. Since the 
study found that 50% of the participants who 
received medicine G had headaches, and 100% 
of the participants who did not receive 
medicine G had headaches, it is clear that the 
medicine does not prevent headaches. 
Therefore, none of the 100 people would not 
have a headache if given the medicine. 

The answer is 50 out of 100 people would not 
have a headache if given the medicine. 

50 out of 100 people would not have a 
headache if given the medicine. 

The answer is 50. 50 out of 100 people in the 
study would not have a headache if given the 
medicine. 

The answer is 33 out of 100 people. The answer is 33 out of 100 people. The answer is 33 out of 100 people, all of 
whom do not have headaches, would have a 
headache if given the medicine. 

This experiment does not provide sufficient 
information to answer the question. The data 
provided only tells us the number of 
participants in the experimental and control 
groups who experienced headaches. It does not 
tell us how many people who did not have 
headaches would have a headache after taking 
the medicine. 

The answer is 33 out of 100 people. 

The answer is 0 out of 100 people, all of whom 
do not have headaches, would have a headache 
if given the medicine. This is because the study 
found that the medicine had no influence on 
headaches, as the same percentage of 
participants in both the treatment and control 
groups had headaches. 

The answer is 0 out of 100 people, all of whom 
do not have headaches, would have a headache 
if given the medicine. This is because the study 
found that the medicine had no influence on 
headaches. 

100 out of 100 people would not have a 
headache if given the medicine, since the study 
found that 67% of both the treatment and 
control groups had headaches. 

Since the study found that 67% of the 
participants who received medicine I have 
headaches and 67% of the participants who did 
not receive medicine I have headaches as well, 
it is likely that the medicine has no influence 
on headaches. Therefore, if 100 people who do 
not have headaches were given the medicine, it 
is likely that they would all still remain without 
headaches. 

 
It is impossible to say how many out of 100 
people would have a headache if given 
medicine I, as the study only provides us with 
the results of the experiment which show that 
67% of the participants, who were already 
suffering from headaches, in both the 
experimental and control groups, experienced 
the same results after taking the medicine. 

The answer is 0 out of 100 people. Since 0% of 
the participants who received medicine J had 
headaches, it can be concluded that the 
medicine does not have any effect on 
headaches, and therefore would not prevent 
any of the 100 people from having a headache. 

The answer is 0 out of 100 people. Since 0% of 
the participants who received medicine J had 
headaches, it can be concluded that the 
medicine does not have an effect on headaches, 
and therefore would not prevent any of the 100 
people from having a headache. 

0 out of 100 people, all of whom have 
headaches, would not have a headache if given 
the medicine. 

ANSWER: 0 The answer is 0 out of 100 people, as none of 
the participants in the treatment group (the 
group that received medicine J) had headaches. 
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Table A3. ChatGPT-4 causal strength responses.  
 

Medicine Response 

A 

Based on the information provided, we can conclude that medicine A has a side effect of causing headaches. In the study, 
100% of the participants who received medicine A experienced headaches, whereas only 50% of the participants in the 
control group (who did not receive the medicine) experienced headaches. 

If we are given 100 people who do not have headaches, and they are given medicine A, we can expect all of them (100 out 
of 100) to experience headaches, based on the study's results. 

B 

Based on the study results, 83% of participants who received medicine B experienced headaches. Since the question asks 
for the expected number of people out of 100 who would have a headache if given the medicine, we can simply apply the 
percentage to this number: 
83% of 100 people = 0.83 * 100 = 83 people 

So, out of 100 people who do not have headaches, we would expect 83 of them to develop a headache if given medicine 
B. 

C 
Based on the information provided in the study, 75% of the participants who received medicine C experienced headaches. 
Therefore, if 100 people who do not have headaches are given medicine C, we would expect 75 of them to develop 
headaches as a side effect. 

D 
Based on the data from the study, 50% of the participants who received medicine D experienced headaches. Therefore, if 
100 people who do not have headaches are given the medicine, we would expect 50 out of the 100 people to experience 
headaches as a side effect of the medicine. 

E 

Based on the given data, 17% of participants who received medicine E had headaches, while 67% of those who did not 
receive medicine E had headaches. The information provided allows us to determine the percentage decrease in headaches 
for those taking medicine E compared to those who did not take it. 
To find the percentage decrease in headaches, we can use the following formula: 
Percentage decrease = [(control group headache rate - treatment group headache rate) / control group headache rate] x 100 
Percentage decrease = [(67% - 17%) / 67%] x 100 
Percentage decrease ≈ 74.63% 
If we consider 100 people who initially have headaches, and all of them take medicine E, we would expect approximately 
74.63% of them to not have a headache after taking the medicine, based on the data provided. 

Therefore, out of 100 people who initially have headaches, we would expect around 75 (rounding to the nearest whole 
number) of them to not have a headache after taking medicine E. 

F 

To answer this question, we need to consider the effectiveness of medicine F in reducing the occurrence of headaches. We 
know that 25% of participants who received medicine F experienced headaches, which means that 75% of those who 
received medicine F did not have headaches. In the control group, 100% of the participants had headaches. 
Now, let's assume we have 100 people who all have headaches. If we were to give them medicine F, based on the study 
results, we would expect 75% of them to no longer have headaches. To calculate this, we can multiply the total number of 
people (100) by the percentage of people who didn't have headaches after receiving medicine F (75%): 
100 people * 0.75 (75%) = 75 people 

Therefore, out of 100 people who all have headaches, we would expect 75 of them to no longer have headaches if they 
were given medicine F. 

G 

Based on the study results, 50% of participants who received medicine G had headaches, while 100% of participants in the 
control group had headaches. This means that medicine G reduced the incidence of headaches by 50% compared to the 
control group. 

If we consider a group of 100 people who all have headaches and give them medicine G, we would expect 50% of them 
(50 people) to no longer experience headaches due to the effectiveness of the medicine. 

H 

Based on the information provided, it appears that medicine H does not have an influence on headaches. The study found 
that 33% of the participants who received medicine H (treatment group) had headaches, while 33% of the participants who 
did not receive medicine H (control group) also had headaches. The percentage of people experiencing headaches is the 
same in both groups, suggesting that medicine H neither causes nor prevents headaches. 

Therefore, if 100 people without headaches were given medicine H, we would expect 33 of them to develop headaches, 
which is the same rate as in the control group. 

I 

Based on the information provided, medicine I does not seem to have any influence on headaches. In both the treatment 
group and the control group, 67% of the participants experienced headaches. This means that the medicine neither causes 
nor prevents headaches, as the occurrence of headaches is the same for both groups. 

To answer your question: If 100 people without headaches were given the medicine, we would expect 67 of them to 
develop a headache, as the medicine does not seem to have any effect on the incidence of headaches. 

J 

Based on the information provided, 0% of the participants who received medicine J (treatment group) had headaches. 
Conversely, 50% of the participants who did not receive medicine J (control group) had headaches. Given that participants 
were randomly assigned to the two groups, it can be inferred that medicine J is effective in preventing headaches as a side 
effect. 
If there are 100 people with headaches, and they are given medicine J, we would expect 0% of them to have a headache 
after receiving the medicine, since medicine J has been shown to prevent headaches in the experimental group. Therefore, 
all 100 people who initially had headaches would be expected to not have a headache after being given medicine J. 
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