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Abstract

The human airway epithelium is essential in homeostasis, and
epithelial dysfunction contributes to chronic airway disease.
Development of flow-cytometric methods to characterize subsets
of airway epithelial cells will enable further dissection of airway
epithelial biology. Leveraging single-cell RNA-sequencing data in
combination with known cell type–specific markers, we developed
panels of antibodies to characterize and isolate the major airway
epithelial subsets (basal, ciliated, and secretory cells) from human
bronchial epithelial-cell cultures. We also identified molecularly
distinct subpopulations of secretory cells and demonstrated cell
subset–specific expression of low-abundance transcripts and
microRNAs that are challenging to analyze with current single-cell
RNA-sequencing methods. These new tools will be valuable for
analyzing and separating airway epithelial subsets and interrogating
airway epithelial biology.

Keywords: airway epithelium; single-cell RNA sequencing; flow
cytometry

Clinical Relevance

We leveraged single-cell RNA-sequencing data sets to develop
flow-cytometric panels to characterize and isolate the major
airway epithelial subsets (basal, ciliated, and secretory cells)
from human bronchial epithelial-cell cultures. These panels
identified major airway epithelial-cell subsets, revealed
molecular heterogeneity within these populations, and
permitted analysis of low-abundance transcripts and
microRNAs. We envisage that these panels and their future
refinements will be powerful tools for interrogating airway
epithelial biology in human health and disease.

Flow cytometry is a commonly used
research and diagnostic tool that uses
fluorophore-conjugated antibodies
as probes to identify, characterize,
and/or isolate cell populations (1).
The immunology community has

developed panels of antibodies useful
for detailed immunophenotyping of
immune cells derived from many organs,
including the lung. A recent American
Thoracic Society working-group report
(2) heralded the importance of flow

cytometry in pulmonary research
but noted that “the development of
appropriate markers for nonimmunologic
cells is less mature than other pulmonary
cell types,” including epithelial
cells.
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The airway epithelium defends against
inhaled environmental challenges, including
pollutants, pathogens, and allergens (3),
and epithelial dysfunction is central to
the pathogenesis of major lung diseases,
including asthma, cystic fibrosis, chronic
obstructive pulmonary disease, and primary
ciliary dyskinesia (4). Proximal airway
epithelial subsets, including basal cells,
ciliated cells, secretory cells (including club
and goblet cells), intermediate cells, brush
cells, and pulmonary neuroendocrine cells,
have been defined morphologically and by
their anatomical location within the tissue
using histological analysis and EM (5, 6).
Single-cell RNA-sequencing (scRNA-seq)
is further advancing our understanding
of airway epithelial heterogeneity.
Recent studies of human and murine
airways have confirmed the presence
of previously defined major airway
epithelial subsets, identified molecularly
distinct subpopulations of these cells, and
uncovered previously unrecognized cell
types, including ionocytes (7–11).

Pan-epithelial antibodies
(EpCAM/pan-cytokeratin) (12) and limited
sets of cell type–specific antibodies
(e.g., TUBA [acetylated a tubulin] for
ciliated cells [13], NGFR [nerve growth
factor receptor] and ITGA6 [integrin
subunit a 6] [14] for basal cells, and
MUC5AC for goblet cells [15]) have been
used individually for flow cytometry. We
sought to develop a larger panel of
antibodies for simultaneous analysis of
the major subsets of airway epithelial
cells and provide a new tool for further
understanding airway epithelial physiology
and pathology. To this end, we used
known markers described elsewhere in the
literature, augmented these by leveraging
information from scRNA-seq datasets, and
developed panels of antibodies for flow
cytometry to identify, characterize, and
isolate the major human-airway epithelial
subsets.

Some of the results of these studies
have been previously reported in the
form of abstract (16) and in the form of
a preprint (https://doi.org/10.1101/2020.04.
20.051383).

Methods

Additional methodological details are
provided in the data supplement.
A detailed step-by-step protocol is

also provided as a Supplementary
Document.

Primary Human Bronchial
Epithelial-Cell Culture
Human bronchial epithelial cells (HBECs)
isolated from explanted tissue from lung-
transplant donor recipients or from lungs
not used for transplantation (total n= 12;
see Table E1 in the data supplement) were
cultured at air–liquid interface (ALI) as
previously described (17, 18). We harvested
cells 23 days after establishment of ALI.
Some cultures were stimulated with
IL-13 (10 ng/ml; PeproTech, Inc.) for
the final seven days of culture to induce
goblet-cell production as indicated (19).
The University of California, San Francisco,
Committee on Human Research approved
the use of HBECs for these studies.

Flow-Cytometric Analysis
We trypsinized HBECs to generate single-
cell suspensions and fixed cells in 0.5%
(vol/vol) paraformaldehyde; if not stained
immediately, cells were frozen at 2808C.
Cells were blocked, stained with the
analytical panel (Table 1), and analyzed by
flow cytometry.

Flow-Cytometric Cell Sorting
Before trypsinization, cells were incubated
in culture media containing SiR-Tubulin
(Cytoskeleton, Inc.). Single-cell suspensions
were generated as above, and singlets were
stained with fixable viability dye eFluor450
(Thermo Fisher Scientific) to discriminate
live cells. Cells were subsequently stained
with a sorting panel (Table 1) and isolated
using flow cytometric cell sorting.

Gene Expression Analysis
We isolated total RNA from sorted
cells, performed reverse transcription,
and analyzed cDNA by qRT-PCR to
quantify specific mRNAs and microRNAs
(miRNAs). Table E2 lists qRT-PCR primer
sequences.

Results

Identification of Airway
Epithelial-Subset Markers
To identify a panel of candidate cell
subset–specific markers, we combined
markers previously used for flow
cytometry (TUBA [ciliated], ITGA6
and NGFR [basal], and MUC5AC [goblet])

with transcripts identified in several
recent human scRNA-seq data sets
(CDHR3 [cadherin-related family
member 3; ciliated] and CEACAM5
[carcinoembryonic antigen-related cell-
adhesion molecule 5; secretory]) (7, 9–11).
We also analyzed HBECs differentiated at
ALI (17, 18) using the Drop-seq scRNA-seq
platform (20); IL-13–stimulated cultures
were included, as IL-13 induces goblet-
cell production (19) (Figure E1A). We
examined our data set for cell type–specific
transcripts (Figure E1B), defined as genes
more highly expressed in one cell type than
the others (false discovery rate, 0.05)
and identified two additional markers
CEACAM6 (secretory) and TSPAN8
(tetraspanin-8; goblet). We combined all
markers into a prospective flow panel
(Table 2). CD24, which has previously been
used as a ciliated-cell marker for flow
cytometry (21), was also tested but was
omitted from the panel because of
a complex staining pattern (see data
supplement).

To test whether these putative cell-
subset markers were suitable for flow
cytometry, we stained unstimulated and IL-
13–stimulated HBECs from five individuals
with antibodies against these markers
individually and performed flow cytometry.
Each antibody stained a subset of HBECs
from both unstimulated and IL-13–
stimulated cell cultures, except for
the goblet-cell markers TSPAN8 and
MUC5AC, which stained a subset of cells
from IL-13–stimulated cultures but stained
few if any cells from unstimulated cultures
(Figure 1A). We observed significant
increases in cells staining for TSPAN8
(P= 0.022) and MUC5AC (P= 0.0016) after
IL-13 stimulation; however, we did not
observe statistically significant effects of IL-
13 stimulation on the proportion of cells
stained for the other markers (Figure 1B).

Characterization of Airway
Epithelial-Cell Subsets Using an
Analytical Antibody Panel
To assess whether we could combine the
cell-subset markers to identify major airway
epithelial subsets, we stained unstimulated
and IL-13–stimulated HBECs from five
individuals with an analytical panel
comprising all eight antibodies (Table 1)
and performed multicolor flow cytometry.
We used a sequential gating strategy to
identify major airway epithelial subsets
(Figures 2A–2E and E2); positive staining
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was determined using either fluorescence-
minus-one or matched isotype controls (see
data supplement, Figure E3). Cells staining
for the ciliated-cell marker TUBA were
clearly distinct from those staining for the
basal-cell marker NGFR. TUBA2NGFR2

cells could be further classified on the basis
of staining with other markers: a minority
expressed the basal-cell marker ITGA6,
whereas many expressed the secretory-
cell marker CEACAM6. Within the
CEACAM61 secretory-cell population,
staining for the goblet-cell marker
MUC5AC was largely confined to the
TSPAN81 population that emerged after
IL-13 stimulation. CDHR3 and CEACAM5
were not used as part of this standard
sequential gating strategy (additional details
are presented in the data supplement).

We quantified the proportion of four
major epithelial-cell subsets in five donors
(Figure 2F). Because results from three
donors with interstitial lung disease were
similar to those from the remaining two
donors with no history of airway or lung
disease, we combined all five donors to
analyze the effects of IL-13 on epithelial-cell
subsets. HBECs derived from individuals with
no history of airway disease (n=2) had similar
proportions of ciliated (TUBA1NGFR2),
basal (TUBA2NGFR1 and TUBA2NGFR2

CEACAM62ITGA61), and secretory cells
(TUBA2NGFR2CEACAM61ITGA62)
as those derived from individuals with
interstitial lung disease (n=3). IL-13

stimulation resulted in a consistent increase
in the proportion of secretory cells
(TUBA2NGFR2CEACAM61ITGA62;
P=0.0079 by Wilcoxon signed-rank
test) and goblet cells (TUBA2NGFR2

CEACAM61ITGA62TSPAN81MUC5AC1;
P=0.0075), and a trend toward a decrease in
the proportion of ciliated cells in response to
IL-13 (P=0.056). To assess the reproducibility
of flow-cytometric quantification, we cultured
cells from three frozen aliquots originating
from two individuals with no history of airway
disease on separate occasions and analyzed
the cells by using flow cytometry. Cell-type
proportions were highly consistent among
replicates (Figure E4), indicating that the
culture and flow-cytometric methods give
reproducible results, even when replicates
are conducted on separate occasions.
Variation among replicates was modest
compared with variation among samples
from different donors. Variation among
samples from different donors may
represent interindividual differences or
differences in the harvesting or processing
of the samples before cell culture.

The standard gating strategy was useful
for quantifying major subsets but did not
fully represent the complexity of the airway
epithelium, as revealed by staining with the
full eight marker panel. When considering
all 28 (256) possible marker-staining
combinations, we identified 12 subsets
comprising at least 1% of total cells in
unstimulated cultures. After IL-13

stimulation, 17 such subsets were identified,
6 were unique to IL-13–stimulated cultures
and were accounted for by an increase in
the number of cells bearing secretory-
cell markers (CEACAM6, CEACAM5,
TSPAN8, and MUC5AC); among these
IL-13–induced subsets were also cells
costaining for ciliated- and secretory-
cell markers (see data supplement and
Table E3).

To explore heterogeneity further, we
analyzed the 10-dimensional data set (one
fluorescence intensity for each of the
eight antibodies, forward scatter, and side
scatter) using t-distributed stochastic
neighbor embedding (Figures 2G–2R). The
distribution of marker staining indicated
that cell-type heterogeneity was the major
driver of staining patterns in this data set,
although IL-13 stimulation (Figure 2Q) and
interdonor variation (Figure 2R) also
contributed to the staining patterns. We
next examined each staining parameter in
relation to the t-distributed stochastic
neighbor embedding plot. TUBA staining
(Figure 2G) was confined to a distinct
cluster of cells that were predominantly
CDHR31 (Figure 2H); cells bearing these
two ciliated-cell markers had little if any
basal cell– or secretory cell–marker
staining. Another cluster comprised cells
stained for the basal-cell markers NGFR
(Figure 2I) and ITGA6 (Figure 2J), but with
little if any secretory cell– or ciliated
cell–marker staining, except for a small

Table 2. Panel of Cell Subset–Specific Markers

Name Antigen Cell Subset Description References

Acetylated a-tubulin TUBA Ciliated Recognizes axonemal a-tubulin acetylated on the
epsilon-amino group of lysine(s), a hallmark of
stable microtubules, which are enriched in motile
cilia

7, 9, 10, 23, 32

Cadherin-related family
member 3

CDHR3 Ciliated Calcium-dependent cell-adhesion protein
associated with ciliogenesis and asthma;
receptor for rhinovirus C

9, 10, 13, 33, 34

Integrin subunit a 6 CD49f/ITGA6 Basal Integral membrane protein of the integrin a chain
family; function uncharacterized in the airway

10, 14

Nerve growth factor receptor CD271/NGFR Basal Cell-surface receptor localized to basal cells of
unknown function in the airway

7, 14

CEA cell-adhesion molecule 5 CD66c/CEACAM5 Secretory Cell-surface glycoprotein upregulated after
smoking cessation and linked to lung
squamous-cell carcinoma

9, 10, 35, 36

CEA cell-adhesion molecule 6 CD66e/CEACAM6 Secretory Cell-surface glycoprotein associated with severe
asthma and upregulated after smoking cessation

7, 9, 10, 35, 37

Tetraspanin 8 TSPAN8 Goblet Cell-surface glycoprotein of unknown function in
the airway

9, 10

MUC5AC MUC5AC Goblet Secreted, gel-forming glycoprotein associated with
mucus dysfunction in chronic lung disease

4, 9, 10
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Figure 1. Identification of cell-specific markers for flow cytometry. (A) Human bronchial epithelial cells (HBECs) grown in the absence (cyan histogram)
or presence of IL-13 (magenta histogram) were stained using antibodies against cell subset–specific markers. Positive staining was determined by
comparing the same sample stained with an appropriate isotype control (gray histogram). Histograms represent data from a single experiment with one
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subset that stained for CDHR3. Cells that
stained for neither ciliated- nor basal-cell
markers generally stained with antibodies
against one or both of the secretory-cell

markers CEACAM5 (Figure 2K) and
CEACAM6 (Figure 2L). CEACAM5
staining was more pronounced in
IL-13–stimulated cells. TSPAN8 and

MUC5AC were detected only after
IL-13 stimulation. TSPAN8 staining was
limited to a subset of CEACAM51 cells
(Figure 2M); MUC5AC staining was
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Figure 2. Characterization of airway epithelial-cell subsets and IL-13 stimulation using an analytical flow-cytometric panel. HBECs (n = 5 donors)
were cultured with or without IL-13 and processed for multicolor flow cytometry. Data from 10,000 cells originating from a single replicate
were acquired. (A–E) Gating strategy to identify airway epithelial subsets from unstimulated (IL-132) and IL-13–stimulated (IL-131) HBECs.
(A) Doublets and (B) debris were removed, and resulting singlets were gated on (C) NGFR and TUBA. (D) Subsequently, TUBA2NGFR2 singlets
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stochastic neighbor embedding. The t-distributed stochastic neighbor embedding plots are colored to show cells that stained for the
ciliated cell markers (G) TUBA and (H) CDHR3 (red), the basal-cell markers (I) NGFR and (J) ITGA6 (blue), and the secretory cell markers
(K) CEACAM6, (L) CEACAM5, (M) TSPAN8, and (N) MUC5AC (green). Cells that did not stain for the indicated marker are shown in gray.
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history of airway disease; ns = not significant; SSC = side scatter.
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Figure 3. Flow-cytometric sorting of HBEC subsets. Before processing for flow cytometry, six 12-mm Transwells each of HBECs (n=3 donors) cultured in
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evident in a subset of the TSPAN81

population (Figure 2N). Ciliated cells
(TUBA1 and CDHR31) and some
secretory cells tended to have higher
forward scatter (Figure 2O), an indicator of
cell size, and basal cells (ITGA61 and
frequently NGFR1) tended to have lower
side scatter (Figure 2P). Further work will
be required to determine the functional
significance of the many subpopulations
identified using this panel.

To explore whether antibodies from
our panel might be useful for analyses of
cells obtained directly from human airways,
we analyzed freshly isolated cells obtained
from endobronchial brush biopsy by using
immunofluorescence (Figure E5). Ciliated
cells were readily recognized by the
numerous apical cilia and costained for
TUBA and CDHR3; staining for markers of
other subsets was not evident in cells bearing
cilia. NGFR1 cells were smaller and had
a high nuclear-to-cytoplasmic ratio, as
expected for basal cells. CEACAM6-stained
cells often contained MUC5B-stained
granules, consistent with expression in
secretory cells. TSPAN8-stained cells
frequently contained collections of larger,
MUC5AC-stained granules characteristic of
goblet cells. Staining for ciliated- and basal-
cell markers was not observed in cells
replete with cytoplasmic granules. These
data indicate that our panel may also be
useful for characterizing airway epithelial
subsets in clinical samples, although further
work will be required to optimize flow
cytometry for use with endobronchial
brush biopsy specimens or other human
tissue samples.

A Modified Flow-Cytometric Panel is
Suitable for Live-Cell Sorting
Flow cytometry is also useful for live-cell
sorting. Our analytical panel precludes
this because it requires fixation and
permeabilization for staining with

antibodies against the intracellular antigens
MUC5AC and TUBA. We therefore
designed a sorting panel that omitted
the MUC5AC antibody and replaced the
TUBA antibody with SiR-tubulin,
a membrane-permeable live-cell dye that
stains microtubules (22), which have
a major structural role in cilia (23). To
recover live cells and improve RNA
integrity, we also included a viability dye.
The sorting panel is detailed in Table 1.

To evaluate this panel, we performed
flow-cytometric cell sorting on nonfixed
HBECs from three donors (Figures 3A–3E).
After excluding dead cells that failed to
exclude the viability dye, we gated on SiR-
tubulin and NGFR and identified the
SiR-tubulin1NGFR– singlets. Sorted SiR-
tubulin1NGFR– cells were subsequently
stained for TUBA and examined by
microscopy; 58 of 60 cells examined
possessed cilia and stained with TUBA,
confirming that these were ciliated cells
(Figures 3F and 3G). We gated the
remaining singlets on CEACAM6 and
NGFR staining to discriminate between
secretory- and basal-cell subpopulations.
NGFR–CEACAM61 cells were then gated
on CEACAM6 and TSPAN8 staining to
identify goblet cells.

We subsequently sorted these HBEC
subsets. Purity was assessed by flow-
cytometric analysis of sorted cells (Figure
E6), and yield was assessed by counting
sorted cells (Table E4). Subsequently, we
isolated total RNA and performed qRT-PCR
for cell type–specific markers (Figure 3H).
As expected, the ciliated-cell transcripts
FOXJ1 (forkhead box J1), TUBA1A
(tubulin a 1A), and CDHR3 were enriched
in the SiR-tubulin1 ciliated-cell subset;
expression of these transcripts was reduced
by IL-13 stimulation, suggesting that IL-13
affects the transcriptional program of
ciliated cells. The basal-cell transcripts
KRT5 (cytokeratin 5) and NGFR were

enriched in the NGFR1 basal-cell subset;
this subset also expressed ITGA6. The
secretory-cell transcripts, SCGB1A
(secretoglobulin family 1A member 1; also
known as CCSP [club cell–specific protein)
and MUC5B, together with CEACAM6,
were enriched in the CEACAM61

secretory-cell subset, as expected. The
goblet-cell transcripts SPDEF (SAM pointed
domain–containing ETS transcription
factor), MUC5AC, and TSPAN8 were
upregulated in CEACAM61TSPAN81 cells
from IL-13–stimulated HBEC cultures.
Collectively, this analysis demonstrated that
the combination of cell-surface-marker and
SiR-tubulin staining was sufficient for
discriminating the major airway epithelial-
cell populations.

Analyzing sorted cells may improve the
ability to detect low-abundance transcripts
that are difficult to quantify using available
scRNA-seq approaches.We identified several
transcripts detected in a bulk RNA-seq data
set (24) but absent from our scRNA-seq data
set and performed qRT-PCR to determine
their cell subset–specific expression. For
example, the transcription factor SPDEF
is critical for IL-13–induced goblet-cell
differentiation of HBECs (15) but was
not detected in our scRNA-seq data set.
Using our sorting panel, we found that
SPDEF was selectively expressed in
CEACAM61 secretory cells, particularly
CEACAM61TSPAN81 cells (Figure 3D).
The alarmin TSLP (thymic stromal
lymphopoietin) was almost exclusively
expressed in the NGFR1 basal-cell subset.
The ciliated-cell transcription factor MYB
(MYB protooncogene, transcription
factor) (25) was expressed primarily in
SiR-tubulin1 ciliated cells and was
downregulated by IL-13. Expression of the
secreted protein, PRB1 (proline-rich protein
BstNI subfamily 1), which we identified as
an IL-13–induced gene by bulk RNA-seq but
did not detect using Drop-seq, was enriched

Figure 3. (Continued). a representative donor. After selection of (A) singlets and (B) live cells, cells were gated on (C) SiR-tubulin and NGFR staining.
(D) SiR-tubulin2 cells were gated on NGFR and CEACAM6. (E) NGFR2CEACAM61 cells were gated on CEACAM6 and TSPAN8. The specific
gate/quadrant used in the subsequent analysis step is outlined in red. (F and G) To validate SiR-tubulin staining, SiR-tubulin1 cells were fixed
in paraformaldehyde, immobilized to slides by cytospin, stained with TUBA (cyan), and counterstained with DAPI (magenta). Images show a
representative cell from (F) unstimulated (IL-132) and (G) IL-13–stimulated (IL-131) cultures with TUBA-stained cilia (found in 58/60 cells
examined). Scale bars, 10 mM. (H) qRT-PCR analysis of sorted cell subpopulations. Mean expression values calculated from triplicate experiments
with different donors (n = 3) were normalized to the maximum expression of the gene in any cell type (0–1: white to red). CFTR = cystic
fibrosis transmembrane conductance regulator; DCLK1 = doublecortin-like kinase 1; FOXJ1 = forkhead box J1; KRT5 = cytokeratin 5;
miR =microRNA; MYB =MYB proto-oncogene, transcription factor; PRB1 = proline-rich protein BstNI subfamily 1; SCGB1A = secretoglobulin
family 1A member; SPDEF = SAM pointed domain–containing ETS transcription factor; TSLP = thymic stromal lymphopoietin; TUBA1A = tubulin a

1A class 1.
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in the CEACAM61TSPAN81 secretory-cell
subset.

Analyzing sorted cells also allows for
analysis of small RNAs, such as miRNAs,
that are not assessed using Drop-seq and
related scRNA-seq approaches. miR-
34/449 family miRNAs are required for
motile ciliogenesis (26). We quantified
miR-34c-5p and miR-449a and confirmed
enrichment in SiR-tubulin1 ciliated
cells. We found that miR-375, which is
involved in goblet-cell differentiation in
the colon (27), was IL-13 inducible,
restricted to secretory cells, and enriched
in the TSPAN81 secretory-cell subset.
These data demonstrate that the
sorting strategy we developed is useful
for isolating and characterizing
subpopulations of epithelial cells with
distinct transcriptional and miRNA
profiles.

Discussion

Our study outlines an analytical flow panel
and gating strategy for the characterization
and enumeration of subsets of airway
epithelial cells from HBECs. We also
demonstrate a scheme for isolating
common airway epithelial subsets from
HBECs using a sorting flow panel. Both
panels identified major airway epithelial
subsets—ciliated cells, basal cells, and
secretory cells—as well as molecularly
distinct subsets of each.

Our data underline the increasing
recognition of airway epithelial-cell
heterogeneity and illustrate the value of
combining several markers in flow-
cytometric panels. Cell-type diversity was
increased in response to IL-13, largely
accounted for by changes in secretory-cell
subsets, including the emergence of
TSPAN81 and MUC5AC1 subsets.
Increases in MUC5AC production are
important in asthma pathogenesis (19).
Tetraspanins are transmembrane proteins
that play roles in cell signaling, and the
observation that MUC5AC was detected
largely in TSPAN81 cells suggests
a possible role for this tetraspanin in
regulating mucus production and/or
secretion in asthma. The detection of
MUC5AC in some cells that express both
secretory-cell markers (CEACAM5
and/or CEAMCAM6) together with
ciliated-cell markers (CDHR3 and/or
TUBA) suggests additional complexity

and may relate to previous work showing
that goblet cells can be produced from
ciliated-cell progenitors (28).

In total, our data suggest that airway
epithelial subsets may be more precisely
described by sets of molecular markers than
by using traditional approaches for defining
ciliated, basal, and secretory cells on the
basis of morphology and/or use of more
limited sets of markers (29). Traditionally,
nomenclature is based principally on
histological criteria (5, 6) that fail to
capture the heterogeneity evident from
scRNA-seq (7–11) or antibody panels. Our
protocol provides a working method for
classifying airway epithelial subsets, and
we expect that additional reagents can be
added to this panel to further subdivide
major subsets and identify other
smaller populations, such as ionocytes.
Furthermore, use of standard sets of
molecular markers such as those
developed here will promote clearer
communication and allow for more
meaningful comparisons across
studies.

We coupled flow-cytometric cell
sorting with gene expression analysis and
identified mRNA transcripts not detected in
our scRNA-seq experiment plus several
miRNAs. Although scRNA-seq is revealing
airway epithelial-cell transcriptomes
in unprecedented resolution, current
technologies have limited sensitivity
and do not reliably detect low-abundance
transcripts (e.g., transcription factors)
that may have significant impact on cell
specification and in disease. Furthermore,
available scRNA-seq techniques are
generally not suited for analyzing
mRNA variants or small RNAs, such as
miRNAs. Therefore, our sorting panel may
contribute to deeper cataloging of airway
epithelial-subset transcriptomes. In
addition, our panels could be coupled with
downstream epigenetic and proteomic
analyses to further understand the
specification and/or function of airway
epithelial subsets in human health and
disease.

There is potential to build on the
protocols we have developed. For example,
although flow-cytometric analysis of clinical
samples was not performed, we demonstrate
staining of airway epithelial cells isolated by
endobronchial brushing, and published
scRNA-seq data sets suggest that the panels
we developed could be useful for analyzing

disaggregated cells from human airways (7,
9–11). Furthermore, although our study
used a 10-parameter, 8-fluorochrome
approach, future refinement and the
addition of other markers for rarer
epithelial subtypes (e.g., CFTR [cystic
fibrosis transmembrane conductance
regulator]–expressing ionocytes and
DCLK1 [doublecortin-like kinase
1]–expressing tuft cells) (7–10) may permit
characterization of the null or minor
(,1%) populations reported here. A
limitation of our study is that in some cases,
we studied samples from a limited number
of donors, many of whom had interstitial
lung disease. Hence, larger studies
including more healthy control subjects and
well-characterized subjects with disease will
be important for understanding normal
heterogeneity and how this changes in
disease. In addition, combining the
epithelial panel with existing panels for
immune cells and other nonepithelial
cells will permit a more comprehensive
examination of lung development, airway
inflammation, and immune responses
across the hematopoietic and epithelial
compartments. Mass cytometry (30) or use
of oligonucleotide-barcoded antibodies
together with single-cell sequencing (31)
also promise to allow for more extensive
panels of markers that could further expand
our approach to increase our understanding
of the function of specific subsets and their
heterogeneity.

In summary, we have leveraged
scRNA-seq data sets to develop flow-
cytometric panels for characterizing
subpopulations of airway epithelial cells.
These panels identified major airway
epithelial-cell subsets, revealed molecular
heterogeneity within these populations,
and permitted analysis of low-abundance
transcripts and miRNAs. We envisage that
these panels and their future refinements
will be powerful tools for interrogating
airway epithelial biology. n
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